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Abstract

The issue of ensuring safety for aerial robots when navigating near obstacles remains a significant
concern. There are three distinct aspects to addressing these safety concerns: the controller, which must
provide assurances of safety while following a prescribed trajectory; the trajectory planner, which must
generate a trajectory that avoids all obstacles; and the perception module, which must accurately localize
the robot and obstacles with minimal deviation from actual ground truth. This research study focuses
specifically on the first aspect, which pertains to the safe control of aerial robots when maneuvering
near static obstacles. The study considers two types of aerial robots, namely an aerial manipulator and
a quadrotor unmanned aerial vehicle.

The AM considered here is a 2-DOF (degrees-of-freedom) manipulator rigidly attached to a UAV.
Our proposed controller structure follows the conventional inner loop PID control for attitude dynamics
and an outer loop controller for tracking a reference trajectory. The outer loop control is based on the
Model Predictive Control (MPC) with constraints derived using the Barrier Lyapunov Function (BLF)
for the safe operation of the AM. BLF-based constraints are proposed for two objectives, viz. 1) To avoid
the AM from colliding with static obstacles like a rectangular wall, and 2) To maintain the end effector
of the manipulator within the desired workspace. The proposed BLF ensures that the above-mentioned
objectives are satisfied even in the presence of unknown bounded disturbances. The capabilities of
the proposed controller are demonstrated through high-fidelity non-linear simulations with parameters
derived from a real laboratory scale AM. We compare the performance of our controller with other
state-of-the-art MPC controllers for AM.

To address the problem of flying a UAV inside a tunnel, we propose the implementation of a Model
Predictive Control (MPC) framework with constraints based on Control Barrier Function (CBF). The
thesis approaches the issue in two distinct ways; first, by maintaining a safe distance from the tunnel
walls to avoid the effects of both the walls and ceiling, and second, by minimizing the distance from the
walls to effectively manage the nonlinear forces associated with close proximity tasks. Finally, the paper
demonstrates the effectiveness of its approach through testing on simulation for various close proximity
trajectories with the realistic model of aerodynamic disturbances due to the proximity of the ceiling and
boundary walls.
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Chapter 1

Introduction

1.1 Scope of the Thesis

The focus of this thesis is centered on control systems utilized in safety-critical operations of Aerial
robots. Our discussion pertains specifically to the challenges encountered by aerial robots operating
in close proximity to static obstacles, such as buildings. We provide an in-depth analysis of the chal-
lenges faced by current state-of-the-art control systems and motivate towards the development of control
algorithms in this context.

1.1.1 Control Systems

The application of control systems has been a pivotal aspect in the development of automation and
robotics since the inception of the first robot in the 1950s. These systems are responsible for executing
both low-level movements and high-level instructions in various systems, ranging from chemical plants
to sophisticated dynamical robots. In the context of a robotic system, the controller assumes responsi-
bility for governing the actions of the actuators while concurrently mitigating the discrepancy between
the desired trajectory or position. This controller can be bifurcated into two distinct modules: firstly,
the high-level controller, which formulates the requisite actuator torques or angles aimed at minimizing
the position error, and secondly, the low-level controller, which diligently follows the desired torques
or angles to accurately navigate the robot. The components of a robotic system are explained in Fig. 1.1.

These components are summarized below:

1. The sensor stack supplies pertinent data regarding the environment to the processing unit, which
in turn utilizes this information to develop a comprehensive comprehension of the surrounding
which is leveraged by the planner.

2. The Planner generates smooth trajectory points for the robot by avoiding obstacles to achieve the
goal. These tasks can include reaching a goal location, or navigating from one place to another.

1



Figure 1.1: Layout for an autonomous robotic system: The Controller works on a feedback loop to

achieve desired system state given by the planner.

3. The High-level controller generates the desired actuator states using the desired trajectory as
provided by the Planner.

4. The Low-level controller tracks the desired actuator states using a feedback loop which provides
with the current actuator information after the robot dynamic system performs the given input.

Although a planner defines a safe trajectory for a robot, a significant safety obstacle arises when the
robot inaccurately tracks the trajectory or deviates from the intended path due to external disturbances.
Consequently, ensuring stability and safety are primary concerns for any control system.

1.1.2 Aerial Robots: Safety Critical Operations

Unmanned Aerial Vehicles (UAVs) have been used for various tasks in the past decade. Present
times have witnessed the widespread deployment of UAVs in numerous domains, ranging from deliv-
ery, search, and rescue to monitoring [2, 3]. Some other tasks include surveillance, object detection, and
civil infrastructure inspection. Civil inspection and delivery tasks necessitate close-range operations
near stationary obstructions, such as bridges and buildings. Similarly, when a floating-base manipulator
is attached to these UAVs, it can be utilized for various manipulation tasks [4, 5, 6]. Aerial Manipulators
(AMs) have gained much attention in recent years. The Unmanned Aerial Vehicle (UAV) acts as a float-
ing base for the manipulator enabling it to conduct active operations in the 3D space. This combination
of a UAV and a manipulator gives the system enough capabilities to perform complex operations where
human access is limited (e.g., in disaster-affected zones) [7]. The other industrial and commercial ap-
plications of AMs are in the maintenance of power grids, the inspection of bridges, and canopy sampling.
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Figure 1.2: Shows current use of UAVs for inspection tasks near bridges. Source:

https://candrone.com/pages/inspection

Such close proximity operations require maneuvering near these static obstacles [8, 9]. It is unar-
guable that any system designed for these applications must be contructed with safety in mind [10].

In fact, safety has been a major hurdle in deploying such aerial manipulator systems in these appli-
cations [11]. The challenges faced in performing close proximity maneuvers are twofold: firstly, aero-
dynamic effects caused by ground, ceiling, and wall interference destabilize the drone and frequently
result in collisions with obstacles [12, 13]; secondly, the highly coupled dynamics of the UAV and ma-
nipulator can generate undesirable forces and torques [14, 15]. Wind disturbances further exacerbate
the situation by destabilizing the UAV and increasing the likelihood of collisions [16].

1.2 Research problems tackled

A To design a control algorithm to incorporate safety guarantees for trajectory tracking of aerial
robots.

A safety constraint needs to be imposed on the underlying controller to provide safety guarantees
while flying in outdoor areas. These constraints should also tackle obstacle avoidance even when
the desired trajectory is close to the obstacles. Hence, the controller needs to predict the external
forces and the state of the robot in the next time steps to avoid obstacles safely. Hence, we develop
a model predictive controller with constraints from Barrier lyapunov function which incorporates
the predictive nature of the controller with obstacle avoidance constraints.

B To efficiently tackle non-linear dynamics of complex systems as an aerial manipulator in real-time.
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Aerial manipulator is a combination of a floating manipulator attached on a UAV base. The cou-
pled dynamics of such systems is non-linear which exerts many unwanted torques on the UAV
making it unstable. To tackle this, the aerial manipulator model is given to the predictive controller
which predicts these forces and gives control inputs. Similarly, modelling of robotic system en-
hances understanding of the system which in turn improves the stability.

C To incorporate constraints to tackle external disturbances in the form of aerodynamic effects near
static objects and strong winds in the high-level controller.

While operating near static obstacles, the aerial robot faces a lot of forces and torques due to the
aerodynamic interactions of the rotor and the walls. These usually pull the robot towards the wall
leading to collision and/or instability. Additional constraints to handle these forces must be incor-
porated to the underlying controller with disturbance rejection properties to handle these forces.
This would also make the system disturbance tolerant for a bounded unmeasured disturbances.

1.3 Motivation

In this section, we discuss the various methods problems in earlier approaches of solving the re-
search threads addressed in this thesis, which inspire certain aspects of our approach. We also mention
alternative methods that might share similar inspiration or approaches but do not necessarily produce
successful outcomes, and provide reasons for their shortcomings.

1.3.1 Control of an Aerial Manipulator near static obstacles

While the literature is sufficiently populated with novel design approaches of AMs, prior work in-
volving safe control of the AM has been sparse [17, 18, 19]. Adaptive controllers [20, 21] have been
used to tackle torques due to the highly coupled dynamics of the AM by using an outer loop adaptive
control over the proportional–derivative (PD) inner loop of the UAV. Though such strategies provide
computational efficiency, they are incapable of incorporating constraints to avoid obstacles. Model Pre-
dictive Control (MPC) [22, 23, 24] significantly reduces the abruptness in control inputs and tracks the
desired trajectory while anticipating future dynamic interactions of the AM. AMs also need to tackle
impulsive torques whenever the arm tries to manipulate a object which further might lead to instability.

Barrier Lyapunov functions (BLFs) [1, 25] have been combined with MPC for obstacle avoidance of
UAV as they can provide safety guarantees even in 3-dimensions. Safety is ensured by guaranteeing for-
ward invariance of a safe region. BLF-based MPC [26, 27] for a non-linear system have been proposed
as stabilizing controllers to guarantee avoidance of a set of states associated with the unsafe region.
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For operation near static obstacles, MPC [28, 29, 30] has been utilized with hard constraints on the
optimizer to avoid states which might lead to collision. These kinds of constraints don’t incorporate
velocity of the UAV and are not able to enforce the desired bound. Certain MPC algorithms have been
formulated by incorporating these as soft constraints inside the MPC cost, which work satisfactorily
when the constraint weight is high, but restrict the motion of the AM hindering effective trajectory
tracking.

Figure 1.3: Image shows the Operation of an AM near 3 walls and the desired workspace for the AM.

We propose an MPC with constraints using BLF [31, 32] , which provides safety guarantees while
giving leeway to the MPC for effective trajectory tracking. It is also utilized to bind the AM into a safe
region whenever obstacle positions are unknown. We modify the BLF earlier used for obstacle avoid-
ance into a constraint for bounding the AM into a safe region. We also introduce a novel disturbance
rejection term which prevents the AM from leaving the safe region and colliding with obstacles under
external disturbances. The problem statement can be better understood as given in Fig. 1.3.

1.3.2 Safe Maneuver of an Unmanned Aerial Vehicle inside a Tunnel

Indoor operations of UAVs have been restricted due to the problems faced by UAVs near walls.
Motion of a UAV in a tunnel has various challenges, primarily the aerodynamic effects due to the
turbulent forces produced by the rotor and wall interactions. To account for such disturbances from all
directions, we demonstrate our controller for operating inside a tunnel.

Nonlinear Model Predictive Control (MPC) [24] has been used for navigation and obstacle avoidance
of UAVs for real-time utilities. MPC provides the predictive ability [23] which aids in performing agile
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maneuvers with high precision and smooth control actions. [26] tries to limit the risk of unsafety by
formulating a probabilistic guarantee, but fails to provide a rigid safety guarantee to avoid obstacles.
[28] utilises partial sensor information to navigate through unknown environments by providing partial
safety guarantees.

Control Barrier Function (CBF) [1] is used to guarantee safety-critical control for various domains,
including dynamic robotic systems. [1] introduces safety, safety sets, and describes using CBF to en-
force safety in a minimally invasive fashion by not increasing the control effort or trajectory cost. CBF
has been used as a constraint to MPC [29] to provide safety guarantees while addressing the case of
conflict between safety and performance. This provides improved performance to MPC while providing
safety guarantees. [27] shows collision avoidance for multi UAV swarm to reach desired locations and
providing safety guarantees. [31] utilizes MPC while handling external wind disturbances. Although
nonlinear controllers have been tried separately for ground and ceiling effects, no effort has been made
to minimize the impacts of these disruptions using a disturbance resistive barrier function.

Figure 1.4: Image shows the trajectory tracking of a UAV inside a tunnel while handling aerodynamic

effects from the walls.

We tackle disturbances due to aerodynamic interactions with wall by modifying the BLF. This mod-
ified constraint is added to the MPC controller which provides smooth trajectories even in the presence
of unknown bounded disturbances. The problem statement can be better understood as given in Fig.
1.4.

1.4 Contributions

This thesis provides the following contributions:

1. To the best of the author’s knowledge, this is the first attempt to design a predictive controller
with constraints for Barrier Lyapunov Function (BLF) for an aerial manipulator.
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2. The proposed controllers provide obstacle avoidance to the aerial robots while achieving tangible
performance gain over existing predictive controllers.

3. We exploit the BLF to create a novel constraint to bound the UAV inside inside a defined safe
boundary, which is contrary to it’s earlier avoidance utility.

4. For a UAV, the proposed controller is the first attempt to handle all three effects (ground, ceiling,
and wall).

5. We also introduce changes to the BLF to tackle external bounded wind disturbances by a distance
rejection term.

1.5 Thesis Layout

C1 This chapter discusses the scope of this thesis describing the research problem tackled in terms
of control systems for aerial robots. We outline the motivation behind the research problem and
techniques others use for similar problems.

C2 In this chapter, we present the background on the dynamics of aerial robots, state space models,
Model Predictive Control, and Barrier Lyapunov function. We explain how to formulate these for
our proposed controller and provide details on their use.

C3 This chapter is the first contribution of this thesis. We demonstrate MPC-BLF as predictive control
algorithms for an aerial manipulator with the ability to avoid obstacles and enclose the aerial
manipulator in a confined safe space.

C4 In this chapter, we contribute to algorithm development for maneuvering a UAV through a tunnel
and handling additional aerodynamic torques from interactions with the tunnel walls.

C5 In this chapter, we present the conclusion for the thesis with future prospects and endeavors.
The thesis also proposes directions for newer research and practical use cases of the proposed
algorithms.
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Chapter 2

Background

In this chapter, we introduce dynamic modelling and control techniques such as Model Predictive
Control (MPC) for aerial robots. We also mention known techniques and constraints which form the
prerequisite for our work in the subsequent chapters.

Firstly, we present the known dynamic and kinematic model of a UAV and a manipulator. We convert
the dynamic model of the manipulator into a floating base manipulator and combine the above dynamics
to to formulate the dynamic and kinematic model of an Aerial Manipulator (AM).

Secondly, we explain a general state-space model of a UAV and demonstrate how to run an MPC
on the general state-space model. We demonstrate how to form a cost function and utilize this optimal
control technique by optimizing this cost and finding optimal control inputs.

Lastly, we explain the definition of a Barrier Lyapunov function (BLF) and it’s various forms. Sub-
sequently, we elaborate on how to utilize the BLF for obstacle avoidance and how to incorporate these
conditions on an MPC.

2.1 Dynamic Model of Aerial Robots

Dynamic models of robots pertains to the relationship between the forces which act upon a robotic
system and the acceleration they produce. They model the robot as a rigid-body system and define
rigid-body dynamics to understand the robot’s behaviour to varied forces and inputs.

Dynamic modelling problem can be divided into two points, firstly, forward dynamics which calcu-
lates the force when given acceleration, and secondly, inverse dynamics which calculates the accelera-
tion when given the force.

Hence, the dynamic model consists of the following:

1. kinematic model for the mechanism of the robot

2. inertial parameters of the robot
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2.1.1 Dynamic Model of a UAV

In this section we present the Dynamics Model of a quadcopter, floating base 2-DoF robotic arm and
combined dynamics of Aerial Manipulator. Similar versions of the mathematical model using Newton-
Euler Dynamics can be found in the paper[].

We denote the Inertial frame G = [Gx, Gy, Gz] with the centre at OI , the Body frame fixed to
the drone is represented as b = [bx, by, bz] centred at OB . The Manipulator link frames l = 1, 2 are
denoted as Ml = [Mxl

,Myl ,Mzl ] centred at Ol. The position of centre of Drone in inertial frame is
pI = [xI , yI , zI ] and its orientation in Euler angle convention is Φ = [ϕ, θ, ψ]. Similarly the 2-DoF
manipulator joint angle are Θ = [θ1, θ2] defined about the positive direction of By. These are defined
as in Fig. 2.1.

Figure 2.1: UAV showcasing roll, pitch and yaw angles with inertial frame {b} and ground frame {G}

Source: https://wilselby.com/research/arducopter/modeling/

Consider the angular speed of each rotor as ωi, where i ∈ {1, 2, 3, 4}. kf is the motor force constant
which converts angular speed to thrust. The thrust vector TB on the drone in the Body frame is given in
2.1.

TB =

 0

0

−kf
∑4

i=1 ω
2
i

 (2.1)
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For transforming vectors in Body frame {b} to World frame {G} we use the standard rotation matrix
GRb ∈ SO(3). Now, The acceleration of the drone in the inertial frame is given in 2.2.

p̈I =
1

mB
(G+ T )

G = mBge3

T = mB
GRbTB

(2.2)

wheremB is the mass of drone, g is the gravity and e3 = [0, 0, 1]T is the unit vector along inertial z-axis
Iz .

The distance between the centre of Drone and the rotor is L in drone frame B and km is the motor
moment constant. The torque on the drone in Body frame is given in 2.3.

τB =

 Lkf (ω
2
1 − ω3

3)

Lkf (ω
2
4 − ω3

2)

km(ω2
1 − ω3

2 + ω3
3 − ω2

4)

 (2.3)

Using the torque τB and Moment of Inertia Matrix of the drone IB , the angular acceleration ω̇B in
the body frame is given in 2.4.

ω̇B = I−1
B (τB − ωB × IBωB). (2.4)

Thus, the overall drone dynamics can be written as in 2.5[
mBI3 03×3

03×3 IB

][
p̈I

ω̇B

]
+

[
03×3

ωB × IBωB

]
=

[
G+ T

τB

]
(2.5)

where I3 is a 3×3 identity matrix, 03×3 is a 3 × 3 null matrix. For converting ωB to Φ̇ we use the
transformation T as in 2.6.

T =

1 sinϕtanθ cosϕtanθ

0 cosϕ −sinϕ
0 sinϕsecθ cosϕsecθ

 (2.6)

Hence, the final equation for Φ̇ is given in 2.7.

Φ̇ = TωB (2.7)

2.1.2 Dynamic model of a manipulator

For our use case we are using an RR open chain Manipulator consisting of 3 links numbered from
0 to 2 where 0 is the base link i.e. the quadcopter itself in this case and 2 is the end effector i.e. the
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Figure 2.2: A 2R Manipulator Source: https://www.semanticscholar.org/paper/Dynamic-responses-of-

a-2R-manipulator-in-state-by-Han-Zhang/a359ae06e7f1a9566c95a511e3f3928ea71f27e7/figure/0

gripper. Connecting two links are 2 joints numbered from 1 to 2 as in Fig. 2.2.

We follow a standard DH(Denavit-Hartenberg) convention in which link i-1 is connected to link i
by joint i. Any link i is moved by joint i. Length ai and twist αi describes a link. Joints are described
using the link offset di and joint angle θi. We have the coordinate frame i attached to the far end of the
link i and the axis of joint i is aligned with the zi axis.

In this convention the transformation from link coordinate frame i-1 to frame i is defined by rotation
and translation as given in 2.8.

i−1Ti(θi, di, ai, αi) = TRz(θi)Tz(di)Tx(ai)TRx(αi)

i−1Ti(θi, di, ai, αi) =

[
i−1Ri

i−1ti

03×1 1

]
(2.8)

As part of the Newton-Euler formulation we do forward recursion to find the velocities and acceler-
ation of each link and then backward recursion to find the total force and torque experienced by each
joint.

2.1.2.0.1 Forward Recursion We calculate the acceleration and velocities of each link recursively
starting from base link to end-effector.
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Some notations used in Forward recursion are :

θi = the joint angle of joint i

li = link lengths of link i

mi = mass of link i

Ii = Inertia of link i

ri,ci = the vector from joint i to the CoM of link i

ri+1,ci = the vector from joint i+1 to the CoM of link i

ri,i+1 = the vector from joint i to joint i+1

ac,i = the acceleration of the center of mass of link i

ae,i = the acceleration of the end of link i

ωi = the angular velocity of frame i w.r.t. frame i

αi = the angular acceleration of frame i w.r.t. frame i

zi−1 = the axis of rotation of joint i w.r.t. frame 0
iRi+1 = the rotation matrix from frame i + 1 to frame i

To start solving the forward recursion we begin with the initial conditions i.e. the base link velocities
and accelerations. In our case the link 0 i.e. the base link is the drone itself and hence ae,0 = p̈B ,
ω0 = ωB and α0 = αB where p̈B , ωB and αB are linear acceleration, angular velocity and angular
acceleration respectively of the drone in Body frame.
The equations of Forward recursion are given in 2.9.

ωi =
iRi−1ωi−1 +

iR0zi−1θ̇i

αi =
iRi−1αi−1 +

iR0zi−1θ̈i + ωi × iR0zi−1θ̇i

ac,i =
iRi−1ae,i−1 + ω̇i × ri,ci + ωi × (ωi × ri,ci)

ae,i =
iRi−1ae,i−1 + ω̇i × ri,i+1 + ωi × (ωi × ri,i+1)

(2.9)

2.1.2.0.2 Backward Recursion With the computed accelerations and velocities we can now recur-
sively compute the total joint force exerted on each link starting from end-effector to base link. Some
notations used for Backward recursion are :

gi = the acceleration due to gravity(expressed in frame i)

fi = the force exerted by link i-1 on link i

τi = the torque exerted by link i-1 on link i

To begin solving the Backward recursion we start with the terminal conditions i.e. fn+1 = 0 and τn+1 =
0.
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The equations of Backward recursion are given in 2.10.

fi =
iRi+1fi+1 +miac,i −migi

τi =
iRi+1τi+1 − fi × ri,ci +

iRi+1fi+1 × ri+1,ci

+ Iiαi + ωi × (Ii × ωi)

(2.10)

2.1.3 Dynamic model of an Aerial Manipulator (AM)

Finally we can write the Aerial Manipulator Dynamics by adding the forces and torques from the
Manipulator dynamics to the Quadcopter dynamics. We can easily find the mass mam and Moment of
Inertia Iam terms of the combined system.

Hence, The coupled equations of motion for the quadrotor with manipulator is given in 2.11.[
mamI3 03×3

03×3 Iam

][
p̈I

ω̇B

]
+

[
03×3

ωB × IBωB

]
=

[
G+ T

τB

]
+

[
f

τ

]
(2.11)

here f and τ is the force and moment that is exerted by the manipulator at the base of the quadrotor.

2.2 State Space model

In the area of control engineering, a state-space model is a quantitative model of a physical system.
It is characterised by a collection of input, output, and variable factors linked by differential equations or
difference equations without second-order derivatives. The model’s variables, known as state variables,
change over time depending on their present values and the values of the input variables. The outcome
variables’ values are determined by the state variables’ values.

A simple linear state space model are given in 2.12 and 2.13.

ẋ(t) = A(t)x(t) +B(t)u(t) (2.12)

y(t) = C(t)x(t) +D(t)u(t) (2.13)

where:
x(·) is the ”state vector”, x(t)Rnx(t) ∈ Rn;
y(·) is the ”output vector”, y(t)Rqy(t) ∈ Rq;
u(·) is the ”input (or control) vector”, u(t)Rpu(t) ∈ Rp;
A(·) is called the ”state (or system) matrix”, dim[A(·)] = n× n,
B(·) is called the ”input matrix”, dim[B(·)] = n× p,
C(·) is called the ”output matrix”, dim[C(·)] = q × n,
D(·) is called the ”feedthrough (or feedforward) matrix” , D(·) is the zero matrix), dim[D(·)] = q × p,

ẋ(t) :=
d

dt
x(t).
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2.2.1 Controllability

A continuous linear state-space model is controllable only when condition in 2.14 is satisfied.

rank
[
B AB A2B · · · An−1B

]
= n (2.14)

2.2.2 State Space of a UAV

The state space model of a 6 Degree-of-Freedom UAV is presented in 2.18.

The state vector are given below where Θ,Φ,Ψ depict the Pitch, Roll, Yaw respectively are given in
2.15.

x =



x

y

z

ẋ

ẏ

ż

Θ

Φ

Ψ

Θ̇

Φ̇

Ψ̇



(2.15)

The input matrix is given in 2.16.

u =


U1

U2

U3

U4

 (2.16)

Where,

• U1 - Total upward force on the UAV (T −mg)

• U2 - Pitch Torque (about x-axis)

• U3 - Roll Torque (about y-axis)

• U4 - Yaw Torque (about z-axis)
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The output vector is given in 2.17.

y =



x

y

z

Θ

Φ

Ψ


(2.17)

The state space model is given in 2.18.

ẋ = Ax+Bu (2.18)

We utilize the inertia matrix Ix, Iy, Iz to get A and B as in 2.19.

A =



0 0 0 1 0 0 0 0 0 0

0 0

0 0 0 0 1 0 0 0 0 0

0 0

0 0 0 0 0 1 0 0 0 0

0 0

0 0 0 0 0 0 0 −g 0 0

0 0

0 0 0 0 0 0 g 0 0 0

0 0

0 0 0 0 0 0 0 0 0 0

0 0

0 0 0 0 0 0 0 0 0 1

0 0

0 0 0 0 0 0 0 0 0 0

1 0

0 0 0 0 0 0 0 0 0 0

0 1

0 0 0 0 0 0 0 0 0 0

0 0

0 0 0 0 0 0 0 0 0 0

0 0

0 0 0 0 0 0 0 0 0 0

0 0



,B =



0 0 0 0

0 0 0 0

0 0 0 0
1
m 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 1
Ix

0 0

0 0 1
Iy

0

0 0 0 1
Iz



(2.19)

The output equation (in matrix form) is given in 2.20:
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y = Cx+Du (2.20)

And C and D matrix are given in 2.21.

C =



1 0 0 0 0 0 0 0 0 0

0 0

0 1 0 0 0 0 0 0 0 0

0 0

0 0 1 0 0 0 0 0 0 0

0 0

0 0 0 0 0 1 0 0 0 0

0 0

0 0 0 0 0 0 1 0 0 0

0 0

0 0 0 0 0 0 0 1 0 0

0 0



,D =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


(2.21)

From 2.18 and 2.19, we completely define the state space model of a 6DOF UAV.

2.3 Model Predictive Control

Model Predictive Control (MPC) is an approach to control a system by predicting the system’s be-
haviour at future time steps. This future time horizon is called a prediction horizon and is computed
over N time steps. MPC optimizes a performance index (cost) over the prediction horizon while handing
non-linear constraints for a robust closed-loop behavior. The Performance index for the MPC can also
handle multi variable input and output efficiently contrary to classical strategies like PID (Proportional
Derivative and Integral Controller).

The optimization problem for a model predictive controller [33] for a UAV for trajectory tracking can
be described as in 2.22. We use the discrete-time version of the state space equations hence t translates
to k which is a single time step.

min
u

l(xk,uk, tk) (2.22a)

s.t. xk+1 = Axk +Buk (2.22b)

umin ≤ uk ≤ umax (2.22c)

xmin ≤ xk ≤ xmax (2.22d)
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where l is the cost function dependant on the state space model of the UAV. We can use any optimiza-
tion technique for getting an optimal input uopt like ADAM [34], SQP [35] etc. k depicts the time steps
and N denotes the time horizon of the Model Predictive Control algorithm with is a tunable parameter.

2.4 Barrier Lyapunov Function

This section explains the various theory, applications, and uses of the Barrier Lyapunov Function.
Barrier Lyapunov Functions (BLFs) are a type of Lyapunov function used to ensure constraints on a
system while maintaining the stability of the system. Lyapunov functions are scalars that measure the
energy of a system and are used to prove the stability properties of the system. At the same time, BLFs
can enforce constraints on the system states and inputs.

BLFs are defined as negative functions inside the constraint set and positive outside of it, creating
a ”barrier” that prevents the system from violating the constraints. They also satisfy the conditions of
a Lyapunov function, including being positive definite, decreasing along the system trajectories, and
having a global minimum at the equilibrium point.

Using BLFs in control design allows a systematic way to handle constraints in various applications,
such as robotics, aerospace, and power systems. They have proven effective in theoretical analysis
and practical implementation, making them valuable tools in control engineering. Below we present
different types of Barrier Lyapunov Function: Zeroing Control Barrier Function and Control Barrier
Functions.

2.4.1 Zeroing Control Barrier Function

In this section we would briefly introduce the fundamentals for Zeroing Control Barrier Function
(ZCBF). For ZCBF we need to define a set of states which are safe i.e. all state space values which are
permissible and then prove the forward invariance of the set i.e. if the system starts in the safe state
initially we ensure that it remains there.

We first present some of the basics of the ZCBFs and later use them to ensure that the desired
position of the end-effector is always in the workspace of the Aerial manipulator. We use the State
space dynamics of a continuous time control affine form is given in 2.23

ẋ = f(x) + g(x)u (2.23)

where f and g are locally Lipschitz continuous functions that describe the dynamics of the system
and x ∈ Rn defines the state of the system, and u ∈ Rm is the control input to the system.

Now we define a set of ζ ∈ Rn which describes the safe set of the system. We want to guarantee the
forward invariance of the system i.e. if x(0) ∈ ζ then x(t) ∈ ζ,∀t ≥ 0 by using the ZCBF function
h(x) : Rn → R.
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Figure 2.3: Object avoidance using a Control Barrier Function in a multi-agent setting Source: ”Control

Barrier Functions: Theory and Applications” 2019 18th European Control Conference (ECC) [1]

Here, h(x) = 0 for x ∈ X at the boundary of the safe set ζ and h(x) > 0 for any x ∈ X inside the
safe set. Mathematically we represent it as in 2.24

ζ = {x ∈ Rn | h(x) ≥ 0} (2.24)

Now, formulation for the time derivative of h(x) is given in 2.25

dh(x)

dt
= Lfh(x) + Lgh(x)u (2.25)

where Lfh(x) =
∂h(x)
∂x f(x) and Lgh(x) =

∂h(x)
∂x g(x).

We define the extended class K function κ : R → R which is continuous, strictly increasing and
κ(0) = 0.

Definition 1 A continuous differentiable function h(x) : X → R is a Zeroing Control Barrier
function if there exists an extended class K function κ as in 2.26.

sup
u∈Rm

{Lfh(x) + Lgh(x)u+ κ(h(x)) ≥ 0}, (2.26)

We now define a set of control inputs U(x) which satisfies (15) for all x ∈ ζ as in 2.27.

U(x) = {u ∈ Rm | Lfh(x) + Lgh(x)u+ κ(h(x)) ≥ 0}, (2.27)
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We use the agent structure as given in 2.3 to form the Zeroing Control Barrier Function. The set of
all state values which render ζ are considered safe. To guarantee that ζ is forward invariant we use the
following theorem.

Theorem 1. Consider a set ζ that is a subset of Rn. This set is defined as the superlevel set of a
continuously differentiable function h, which also functions as a control barrier function. Given this,
it follows that any Lipschitz continuous controller implemented for the system ensures that the set ζ is
secure.

2.4.2 Control Barrier Function

Dynamics of a UAV in control affine form are given in (2.28):

ẋ = Ax+Bu (2.28)

where A is a square matrix of dimension 4x4 and B is a matrix of dimension 4x2.
h(x) is a valid CBF if it is differentiable and follows the conditions in (2.29).{

h(x) > 0, ∀ x ∈ ζ

h(x) = 0, ∀ x ∈ δζ
(2.29)

where ζ is the set of all states of the UAV which lie in the safe region and δζ are the states of the
UAV on the boundary of the safe region.

If the UAV is initially located within the secure area ζ, the principle of forward invariance can be
applied by verifying that ḣ(x) ≥ 0. This principle ensures that the UAV remains within the safe region
if it commences within it. To enhance optimization for ideal trajectory tracking while also providing
safety guarantees, this principle can be extended to an invariance condition where ḣ(x) ≥ −γh(x). This
invariance condition induces the asymptotic convergence of h(x) to 0. The condition for invariance is
presented in equation (2.30).

∂h(x)

∂x
(Ax+Bu) + γhz(x) ≥ 0 (2.30)

where γ > 0 is the relaxation coefficient and z > 0 is the exponential limit of convergence for the
CBF. We define CBF to avoid point obstacles as h in (2.31).

h(x) =
√
2amax(||p|| − ds) +

pT

||p||
ṗ (2.31)

The expression amax represents the highest possible acceleration value of the UAV, whereas ds is the
secure distance that separates the obstacle from the UAV. Additionally, p denotes the vector from the
obstacle’s location to the UAV center, while ṗ represents the velocity of the UAV at a particular time
instant k. Similarly, h(x) can be defined as a discrete-time control barrier function (CBF). The final
invariance condition can be found in equation (2.32).

19



amax ṗTp√
2amax(||p|| − ds)

−
(

pT

||p||
ṗ

)2

+ ||ṗ||2 + pTu

+γhz(x)||p|| ≥ 0

(2.32)

In this chapter, we discussed the methods for trajectory tracking for aerial manipulators and UAVs.
We also reviewed some existing control frameworks for aerial manipulators, identified their limitations
and gave backgrounds on the necessary aerial robot dynamics and Barrier Lyapunov Function. In the
next chapter, we propose a novel controller framework that addresses these limitations and provides
trajectory tracking while ensuring safe operation of the system under unknown bounded disturbances.
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Chapter 3

Predictive Barrier Lyapunov Function Based Control for Safe Trajectory

Tracking of an Aerial Manipulator

This chapter proposes a novel controller framework that provides trajectory tracking for an Aerial
Manipulator (AM) while ensuring the safe operation of the system under unknown bounded distur-
bances. The AM considered here is a 2-DOF (degrees-of-freedom) manipulator rigidly attached to a
UAV. Our proposed controller structure follows the conventional inner loop PID control for attitude dy-
namics and an outer loop controller for tracking a reference trajectory. The outer loop control is based
on the Model Predictive Control (MPC) with constraints derived using the Barrier Lyapunov Function
(BLF) for the safe operation of the AM. BLF-based constraints are proposed for two objectives, viz.
1) To avoid the AM from colliding with static obstacles like a rectangular wall, and 2) To maintain
the end effector of the manipulator within the desired workspace. The proposed BLF ensures that the
above-mentioned objectives are satisfied even in the presence of unknown bounded disturbances. The
capabilities of the proposed controller are demonstrated through high-fidelity non-linear simulations
with parameters derived from a real laboratory scale AM. We compare the performance of our con-
troller with other state-of-the-art MPC controllers for AM.

Work has been accepted for publication at: European Control Conference (ECC) 2023

3.1 Introduction

Aerial Manipulators (AMs) have gained much attention in recent years [17]. The Unmanned Aerial
Vehicle (UAV) acts as a floating base for the manipulator enabling it to conduct active operations in the
3D space, see Fig. 1.3. This combination of a UAV and a manipulator provides the system with enough
capabilities to perform a range of complex operations where human access is limited (e.g., in disaster-
affected zones). The other industrial and commercial applications of AMs are in the maintenance of
power grids, the inspection of bridges, and canopy sampling [17].

Such applications involve trajectory tracking maneuvers by the AM near static objects like bridges,
trees, and buildings. It is unarguable that any system should be designed to be safe. In fact, safety has
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been a major hurdle in deploying such AM systems in these applications [36]. Three major issues are
faced with said close maneuvers. Firstly, hovering close to such objects leads to ground, ceiling, and wall
effects, causing immeasurable turbulent disturbances [36]. Secondly, the AM encounters disturbances
in the form of forces and torques due to the highly coupled dynamics of the UAV, and manipulator [19].
These disturbances can lead to instability of the AM and cause a collision with the obstacles. E.g.,
external factors in the form of wind disturbances can lead to instability [37]. Thirdly, it is only some-
times possible to accurately model the obstacles around a trajectory due to their irregular shape, lack
of visibility, or uncertainty associated with obstacle locations. This can occur when the AM maneuvers
through a dark or uneven tunnel incapacitating it to determine a bound across the obstacles. Keeping
this in mind, the AM must operate while keeping a safe distance from obstacles and maintaining stabil-
ity. The AM movement can be bound in a desired workspace around the desired trajectory. This will
prevent any possible collisions with obstacles.

3.2 Related Work

Adaptive controller[20] tackles torques due to the highly coupled dynamics of the AM by using an
outer loop adaptive control over the proportional–derivative (PD) inner loop of the UAV. Though it pro-
vides computational efficiency, it is incapable of incorporating constraints to avoid obstacles. Model
Predictive Control (MPC) [22] significantly reduces the abruptness in control inputs and tracks the de-
sired trajectory while anticipating future dynamic interactions of the AM. PID and traditional adaptive
controllers lack this predictive ability. MPC is applied to open a hinged door [30]. Considering the cou-
pled dynamics of an AM and a hinged door, an MPC in the framework of a Linear Quadratic Regulator
is designed.

Barrier Lyapunov Function (BLF) [1] is used as a tool to enforce the safety of non-linear dynamical
systems. Barrier certificates [38] are established considering a safe region of operation defined as ζ.
While guaranteeing forward invariance of ζ, safety is ensured. BLF-based MPC for a non-linear system
described in [32] proposes a stabilizing controller to ensure avoidance of a set of states associated with
the unsafe region for a chemical process. MPC combined with constraints using BLF [27] is used for
distributive multi-UAV avoidance. An MPC scheme for safety planning [27] using BLF demonstrates
the trade-off between the safety and performance of a UAV.

3.3 Contributions

The key contributions of this chapter are the following:

1. To the best of the author’s knowledge, this is the first attempt to incorporate safe operation for
AM maneuvers amidst unknown disturbances and boundary conditions.
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Figure 3.1: Aerial Manipulator in RRC, IIIT Hyderabad

2. We introduce BLF-based constraints over an MPC controller to include obstacle avoidance and
achieve tangible performance gain in trajectory tracking for the end-effector of the AM in com-
parison to prior MPC controllers [22].

3. We exploit BLF to create a novel constraint for bounding the AM inside a defined boundary,
contrary to it’s collision avoidance utility.

4. A disturbance resistivity term is introduced in the BLF for guaranteeing safety under bounded
random disturbances.

The chapter is structured as follows, Section II provides the dynamics model of the AM and BLF forward
invariance constraint for collision avoidance. Section III provides the problem statement, while Section
IV proposes a control architecture for the safe operation of AM. Section V discusses the simulation and
benchmark results.

3.4 Problem Formulation

The primary aim of the chapter is to design a controller to follow the desired trajectory (pd) for the
end-effector of the AM i.e. to minimize at any time t the trajectory error (ee(x))

min
u

ee(x) = ||pe(x)− pd|| ∀ t > 0 (3.1)

where pe(x) is the position of the end-effector and pd is the desired position of the end-effector at time
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Figure 3.2: Inverse Workspace of a floating base manipulator wrt to a fixed end-effector point (0,0). This is a

2-D representation of a 3-D workspace. The 3-D workspace can be visualized by rotating 360°around line x = 0.

The trajectory bound shown as a circle is a sphere ||pr−O|| = r where pr is a point on the sphere, O is the center

of the sphere in 3D space and r is the radius of the sphere.
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Figure 3.3: Setup for AM simulation: (a) Barrier avoidance: Shows close operation of an AM with rectangular

walls on the three sides with a known position. (b) Free space workspace tracking: Shows bounded maneuver

of the AM in the desired workspace within an allowed free space of the operation (here, the obstacle position

information is not available).

t. This trajectory is defined for the end-effector, while the trajectory of the UAV is left to be determined
by the controller, such as to reduce ee(x) given in (3.1).

There are multiple ways to reach a desired point on the trajectory by placing the UAV in the inverse
workspace of the floating base manipulator. This inverse workspace, Fig. 3.2, is defined by taking the
inverse kinematics of the floating base manipulator considering it’s end-effector to be fixed at the desired
trajectory point. E.g., Fig. 3.2 shows the inverse workspace of a 2R manipulator in which manipulator
joint angles are constrained.

Two cases are considered here, Case I, the location of the obstacle is known, and Case II, the allowed
free space for operation is given without specifying the location of the obstacle. For Case I shown in
Fig. 3.3(a), the end-effector of the AM has to follow the desired trajectory close to static obstacles. The
condition for safety is given in (3.2).

||⃗sj(xi)|| ≥ smin
j ∀ j ∈ {1, ..., C}

s⃗j × [a, b, c]T = 0
(3.2)

where s⃗j is the perpendicular distance vector of the critical point j from the wall and smin
j is the

minimum safety distance from the wall. The number of critical points is denoted by C. In Fig. 3.3(a),
critical points on the AM are (A) the base of the manipulator with safety radius s1, (B) joint 2 of the
manipulator with safety radius s2 and (C) end-effector of the manipulator with safety radius s3. Equation
of the wall is given by ax + by + cz + d = 0 where a,b,c,d are parameters of the plane and x, y, z are
points on the plane.
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For Case II, Fig. 3.3(b), a safe free space of operation around the trajectory is provided, and we pro-
vide a guarantee that the AM will stay in that safe bounded region. We choose a spherical differentiable
part Fig. 3.2 of the non-differentiable inverse workspace with radius r. The condition for bounding in
the desired workspace is given in (3.4).

||d⃗(x)|| ≤ r, d⃗(xi) = pI(x)− (pd − diw) (3.3)

where r is the radius of the desired workspace and diw is the deviation of the workspace center from the
desired trajectory point. As the bound for the allowable free space is within the inverse workspace, the
end-effector would be able to reach the desired point in at least one orientation of the AM.

Figure 3.4: Control Architecture of the AM. Outer loop controller denotes the MPC optimization problem

while the inner loop controller denotes the on-board PID control of the AM. Constraints on the optimizer are

denoted by input constraints (u) an Constraints.

3.5 PROPOSED CONTROLLER

The architecture of the proposed controller is shown in Fig. 3.4. It consists of an outer loop MPC
with BLF constraints. The inner loop is driven by a conventional PID controller. The outer loop provides
the desired acceleration and yaw angle references to the inner loop controller.

3.5.1 MPC (Outer loop control)

The state vector of the AM is defined as x = [pI , ṗI , ψ, ψ̇,Θ, Θ̇], where pI and ṗI is the position
and velocity of the center of mass of the UAV in inertial frame respectively, ψ and ψ̇ is the yaw and
yaw rate, and Θ = [θ1, θ2] and Θ̇ = [θ̇1, θ̇2] is the joint angle and angular rate of the manipulator’s
joints. The control input for MPC is u = [ad, ψ̈, Θ̈d] where ad = [ax, ay, az] is the acceleration of the
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UAV center in the inertial frame, ψ̈ is the yaw angular acceleration and Θ̈ is the angular acceleration of
manipulator’s joints. The state space model used within the MPC is formulated as given in (3.4).

ẋ = Ax+Bu (3.4)

A =



03x3 I3x3 03x6

03x3 03x3 03x6

01x7 1 01x4

01x3 01x3 01x6

02x3 02x7 I2x2

02x3 02x3 02x6


B =



03x3 0 03x2

I3x3 0 03x2

01x3 0 01x2

01x3 1 01x2

01x3 0 01x2

01x3 0 I1x2


(3.5)

In (3.5), I is a diagonal matrix such that, I(i, j) = 1, ∀ i = j and I(i, j) = 0, ∀ i ̸= j and 0 is zero
matrix such that, 0(i, j) = 0, ∀ i, j where i, j ∈ N.

For Aerial Manipulator dynamics with state variables as x and control variables as u, the optimal
control problems at every time instant tk where tk = kT and T is a time step is given in (3.6).

min
u

l(xk,uk, tk) (3.6a)

s.t. xk+1 = Axk +Buk (3.6b)

umin ≤ uk ≤ umax (3.6c)

xmin ≤ xk ≤ xmax (3.6d)

where u = [uk
⊤,uk+1

⊤, ....,uk+N−1
⊤]⊤ denotes the vector of control variables and f is the dy-

namic model of the system. umin and umax represent the bounds on u and xmin and xmax represent
the bounds on x. xk denotes the state of the system at kth time step, similarly uk denotes the control
input of the system at kth time step. The cost l is the summation of multiple cost functions l =

∑Nl
i=1 li

explained in the section Weighing strategy.

3.5.1.1 Weighing strategy

The Nl costs are chosen to follow the trajectory and enhance stability. These are defined in (3.7),
(3.8) and (3.9).

3.5.1.1.1 Tracking error for the End-Effector The primary task is the tracking of the end effector
over a given trajectory. This is achieved by penalizing the difference between the current and desired
position as given in (3.7)

l1 =
n−1∑
i=0

(||ee(xk+i)||2W1
) + ||ee(xk+N )||2Ws1

(3.7)
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where ee(xk+i) = pe(xk+i)− pd
k+i.

is the end-effector tracking error calculated at each time step of the prediction horizon. To decrease
error from the desired trajectory, we penalize higher velocities of the manipulator end-effector as given
in (3.8).

l2 =
n−1∑
i=0

(||ve(xk+i)||2W2
) + ||ve(xk+N )||2Ws2

(3.8)

where ve is the velocity of the End-Effector of the Manipulator.

3.5.1.1.2 COG Allignment Error As the manipulator moves in the BxBz plane of the UAV (refer
to Fig. 4.1) while the UAV changes its attitude (θ, ϕ, ψ), the Center of Gravity of the system moves in
the BxBy direction of the UAV due to which undesirable torques appear which destabilize the UAV.
The following cost given in (3.9) is introduced considering this factor.

l3 =

n−1∑
i=0

(||pGXY
(xk+i)||2W3

) + ||pGXY
(xk+N )||2Ws3

(3.9)

where pGXY
is the Center of Gravity of the Manipulator in the BxBy plane.

MPC to reach desired points using this approach was used in [24], and we would call this technique
Naive MPC.

3.5.2 PID (Inner Loop Control)

From the control input (umin
k ) obtained from the outer loop controller, the desired values of θ, ϕ are

estimated using small angle approximation (refer to Fig. 3.4) and along with ψd are tracked by the PID
controller namely PID Attitude. Similarly, PID Height regulates the height, and PID Manipulator angle
controls the joint angles θ1 and θ2 [20].

3.5.3 Safe operation near known barriers

For Case I, the priority for safety is the highest. The AM has to avoid collisions for both the UAV
and the manipulator simultaneously while tracking the desired trajectory. The critical points are chosen
such that if we can guarantee collision avoidance for these points, the entire system can safely perform
desired maneuvers with collision. BLF used for collision avoidance along the radial direction of the
Wall is given in (3.10).

h1(xk) =

√
2⃗sj(xk+i)Tαmax

||⃗sj(xk+i)||
(||⃗sj(xk+i)|| − smin

j ) +
s⃗j(xk+i)

T

||⃗sj(xk+i)||
v⃗k+i (3.10)
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Figure 3.5: Desired workspace for the UAV (refer to the circle in Fig. 3.2). X denotes the Center of the UAV,

p⃗ denotes vector from X to O, v⃗ denotes instantaneous velocity of X and v⃗k denotes instantaneous velocity of

desired trajectory of the end-effector

3.5.4 Bounded Trajectory Tracking

For Case II, one of our major contributions in this section is the usage of BLF for the bounding of
the UAV in the desired workspace shown in Fig. 3.5. We exploit the property that a particle can exit
a sphere only through its motion in the radially outwards direction. Hence, the UAV can only escape
the boundary if it is provided with a high velocity in the radial direction (along p⃗ or −p⃗ ). Due to this
restricted movement in the radial directions on both sides, the UAV does not leave the workspace at that
particular instant k. BLF (h2a) along p⃗ is given in (3.11) and a similar BLF (h2b) along −p⃗ can be
found by replacing p⃗ with −p⃗.

h2a(xk) =

√
2(p⃗k+i)Tαmax

||p⃗k+i||
(||p⃗k+i|| − r) +

p⃗T
k+i

||p⃗k+i||
(v⃗k+i − v⃗t

k+i) (3.11)

h2b can be formulated as in 3.14.

h2b(xk) =

√
2(−p⃗k+i)Tαmax

||p⃗k+i||
(||p⃗k+i||+ r) +

(−p⃗k+i)
T

||p⃗k+i||
(v⃗k+i − v⃗t

k+i) (3.12)
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3.5.5 BLF with Disturbance Rejection

Another contribution of this chapter involves handling unseen disturbances, such as constant wind
or impulses acting at random intervals in the framework of BLF. The condition in (2.32) need not be
satisfied for the given h(x) in the presence of unmeasured disturbances. If the AM encounters a sudden
disturbance, it might result in a collision with obstacles. The condition ḣ(x) ≥ −γhz(x) is tightened
while maintaining relaxation for smooth operation as given in (3.15) with λ > 0.

ḣi(x) + γ(hzi (x)− λ) ≥ 0 (3.13)

Theorem 1: For the state-space model of the dynamical system with a bounded disturbance d given in
(3.14),

ẋ = f(x) + g(x)u+ d, ∀ |d| ≤ dm (3.14)

the forward invariance condition for h(x) is ensured by the condition given in (3.15).

ḣi(x) + γ(hzi (x)− λ) ≥ 0 (3.15)

with λ ≥ | 1γ
∂h
∂xdm|.

Proof:
Expanding (3.15) and using (3.16), the following result is obtained.

∂h(x)

∂x
(f(x) + g(x)u) + γhz(x) +

∂h(x)

∂x
d− γλ ≥ 0 (3.16)

The term ∂h(x)
∂x (f(x)+g(x)u)+γhz(x) is greater than 0. Hence, the condition λ ≥ | 1γ

∂h
∂xdm| yields

the desired result.

∂h(x)

∂x
d− γλ ≥ 0 (3.17)

The BLF functions h1, h2a and h2b are put in (3.15) and are added to the MPC optimizer as constraints.
The resultant controller is termed as MPC-BLF. To the best of the author’s knowledge, there have been
no attempts to handle disturbance forces or torques for an AM using a BLF.

3.5.6 BLF for bounding box (Variation-2)

We formulate a safety constraint in the spherical region of r = 0.075m by ensuring that the system
stops before it crosses the region boundary. The region is defined with respect to the desired end-effector
position at time t which is the the position pt ∈ R3 from the trajectory at time t. The centre of the region
is defined as :

po = pt +

 0

0

0.225

 (3.18)
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As the centre of the region is moving with the same velocity vt ∈ R3 and acceleration at ∈ R3 as
that of trajectory at time t, we take into account the relative velocity between the drone and trajectory as
this helps in ensuring that we remain within the dynamically moving workspace. We define the relative
position and velocity between the drone and centre of the region as ∆p = pd − po and ∆v = vd − vt.

To strictly enforce the safety constraint, we consider that ||∆v|| is acting along the direction of the
vector ∆p as (r − ||∆p||) is the shortest distance from the boundary region. We use the maximum
deceleration value α to check whether we will be able to stop the system before it crosses the boundary.
The safety constraint can be formulated as follows :

||∆p||+ ||∆v||2

2α
≤ r

||∆v||2

2α
≤ r − ||∆p||

(3.19)

The above inequality has the following solutions :

−
√

2α(r − ||∆p||) ≤ ||∆v|| ≤
√
2α(r − ||∆p||) (3.20)

Since, norm of the vector i.e ||∆v|| ≥ 0, the final solution is :

0 ≤ ||∆v|| ≤
√
2α(r − ||∆p||) (3.21)

The safe set ζ for the trajectory tracking Aerial Manipulator can be defined as :

ζ = {(pd, vd) ∈ R6 | h(x) ≥ 0}

h(pd, vd) =
√
2α(r − ||∆p||)− ||∆v||

(3.22)

where h(pd, vd) is the level set function of the set ζ which is used to define the forward invariance of
the safe set i.e. the ZCBF candidate. For proving the forward invariance of the safe set ζ, the constraint
in (15) needs to be satisfied. Writing equation of the form (15) from eq. (32), we get :

γh3 − α∆vT∆p

||∆p||
√
2α(r − ||∆p||)

− ∆uT∆v

||∆v||
≥ 0 (3.23)

Here ∆u = u − ut is the relative acceleration between the Drone and the trajectory at any time t. The
constraint can be expressed in Linear form Au ≤ b as :

A =
∆vT

||∆v||
(3.24)

b = γh3 − α∆vT∆p

||∆p||
√
2α(r − ||∆p||)

+
uTt ∆v

||∆v||
(3.25)

The Safety Barrier Certificate defines the admissible control space U for the system as :

U(x) = {u ∈ R3 | Au ≤ b} (3.26)

This version of BLF to bind the AM inside a safe region did not work as expected, hence was scarped.
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3.6 Simulation Results

The algorithm is implemented on Python 3 on an Intel® Core™ i7-8550U CPU PC running at 1.80
GHz. We use the ’SLSQP’ method from scipy as the non-linear optimizer for MPC. The AM used for
simulation is a mathematical replica of a laboratory scale AM shown in Fig. 4.1 with the following
specifications given in Table 3.1.

Parameter Value

Mass 3.5 kg

Arm length 0.3m

Propeller Diameter 0.33m

Moment of Inertia - UAV Ix = 0.3 kg m2, Iy = 0.3 kg m2, Iz = 0.6 kg m2

Manipulator length link1 = 0.15m, link2 = 0.15m

Moment of Inertia - Manipulator I1 = 4.256× 10−5 kg m2, I2 = 8.321× 10−5 kg m2

Moment of Inertia - Manipulator I1 = 4.256× 10−5 kg m2, I2 = 8.321× 10−5 kg m2

UAV attitude constraints |θ| ≤ π/10 rad , |ϕ| ≤ π/10 rad

Manipulator joint angle constraints |θ1| ≤ π/3 rad, |θ1 + θ2| ≤ π/2 rad

Table 3.1: Specifications of the Aerial Manipulator

We perform simulations separately for two cases.

Case I: Avoiding Wall on three sides of the AM (The position of the obstacle is known).

Case II: Free space for the operation of AM is given (The position of obstacles is unknown, a desired
spherical workspace for the UAV is created.)

For both of the simulations, the task is to follow a desired trajectory by the end-effector. A uniformly
random disturbance with an amplitude of dm = 0.8m/s2 is used to evaluate the performance in the
presence of external disturbances.

3.6.1 Modified Naive MPC for comparison

The Naive MPC is modified as given below to compare the performance with the proposed controller.

3.6.1.1 Hard Constraint (MPC-HC)

For Case I, a hard constraint on the critical points to avoid collision with the Wall is enforced as in (3.2)
∀ i ∈ [0, n]. For Case II, a hard constraint on the relative position of UAV center (Fig. 3.5) as in (3.4)
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∀ i ∈ [0, n] is added. Similar to Case I, this is the intuitive constraint for bounding. These additional
constraints are put on the MPC optimizer in (3.6).

r− ||p⃗k+i|| ≥ 0 ∀i ∈ [0, n] (3.27)

3.6.1.2 Soft Constraint (MPC-SC)

For Case I, a cost function for safe operation near walls is given in (3.28). This cost increases as the
Wall is approached, penalizing the critical points going near the Wall.

l4 =
n−1∑
i=0

1

(||p⃗j(xk+i)|| − sj)2W4

+
1

(||p⃗j(xk+n)|| − sj)2Ws4

(3.28)

For Case II, a cost function that penalizes the UAV movement outside the workspace is given in
(3.29) and is added to the MPC cost.

l5 =

n−1∑
i=0

||p(xk+i)||2W5
+ ||p(xk+n)||2Ws5

∀ |p(xk+i)| ≥ r (3.29)

Parameters and weights for the different MPC versions are given in Table 3.2.

Parameter Value

MPC Weights w1 = 10× I3×3, ws1 = 50× I3×3, w2 = 2× I3×3, ws2 = 10× I3×3

w3 = I3×3, ws3 = 5× I3×3, w4 = 5× I3×3, ws4 = 20× I3×3

w5 = 5× I3×3, ws5 = 20× I3×3

smin
j 0.1 m

uk Initialization 01×6n

diw 0.225m

γ 3

Sampling time (ts) 0.1 s

Total time (t) 120 s

Max disturbance amplitude dm = 0.8m/s2

Table 3.2: Weights and Parameters for MPC
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Figure 3.6: AM position for case I with disturbances (Naive MPC): Red circle depicts collision with

any wall. Green - Desired trajectory, Blue - UAV Center, Orange - End-effector position, Red - Wall.

The UAV and manipulator have to avoid collision with the walls.

3.6.2 Metrics for performance comparison

The performance of the controller is evaluated by the following metrics for N time steps (N =

tf/ts). Here, tf is the final time, and ts is the sampling time in seconds.

• Maneuver completion without collision or escaping the desired workspace

• Manipulator end-effector root mean square error from the desired trajectory, TE =
√

1
N

∑N−1
k=0 (ee(xk))2

• Control effort, ce =
∑N−1

k=0 ||uk||2

• Control Smoothness, cs =
∑N−1

k=0 |∆uk|

3.6.3 Performance comparison for Case II

Selection of the prediction horizon (n) and the parameter λ determines the computational load and
disturbance rejection capabilities, respectively. An analysis was conducted by varying n and λ and the
results are given in Table 3.3. We chose n = 5 and λ = 5 as it shows low TE while maintaining the
workspace bound. These values are used for all subsequent simulations. n = 10 does not show signifi-
cant improvement (¡5%) in TE compared to n = 5 and is rejected because of a very high computational
time compared to n = 5 (¿600%). λ = 5 shows high disturbance resistivity given its low TE and low
cs. TC denotes the computational time for one step.
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Figure 3.7: AM position for case I with disturbances (MPC - HC): Red circle depicts collision with

any wall. Green - Desired trajectory, Blue - UAV Center, Orange - End-effector position, Red - Wall.

The UAV and manipulator have to avoid collision with the walls.

Figure 3.8: AM position for case I with disturbances (MPC-SC): Red circle depicts collision with

any wall. Green - Desired trajectory, Blue - UAV Center, Orange - End-effector position, Red - Wall.

The UAV and manipulator have to avoid collision with the walls.
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Figure 3.9: AM position for case I with disturbances (MPC-BLF): Red circle depicts collision with

any wall. Green - Desired trajectory, Blue - UAV Center, Orange - End-effector position, Red - Wall.

The UAV and manipulator have to avoid collision with the walls.

Parameter n = 1 n = 5 n = 10

λ = 1 λ = 5 λ = 1 λ = 5 λ = 1 λ = 5

TC (s) 0.0313 0.0309 0.1712 0.1603 1.370 1.232

TE (m) 0.1943 0.1839 0.0738 0.0658 0.0701 0.0623

cs 0.1593 0.1603 0.0746 0.0772 0.0716 0.0694

ce 0.1432 0.1248 0.0801 0.0788 0.0939 0.0942

Table 3.3: Ablation showing the effect of parameters on the proposed MPC-BLF method (units men-

tioned in brackets)
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Figure 3.10: AM position for case I with disturbances (Naive MPC): Red circle depicts collision

with any wall. Green - Desired trajectory, Blue - UAV Center, Orange - End-effector position, Red -

Wall. The UAV and manipulator have to avoid collision with the walls.

The results given in Table 3.4 show that none among the Naive MPC, MPC-HC, and MPC-SC is able
to restrict the UAV in the desired workspace, either in the presence or absence of external disturbances.
MPC-HC has no penalization for the velocity of the UAV; hence when a large control input is provided,
it exits the bounds. MPC-SC has to trade-off between TE and bounding cost, hence compromising on
one of the factors. The proposed MPC-BLF is able to restrict the UAV within the desired workspace
with the lowest control effort, highest control smoothness, and lowest tracking error. The inference is
more evident in the presence of external disturbances. The trajectory of the AM is shown in Fig. 3.10
for all four methods in the presence of external disturbances. The proposed MPC-BLF method is the
only one to confine the UAV within the safe boundary (Fig. 3.17). Though MPC-SC is able to avoid the
Wall during its maneuver, it is not possible for the algorithm to give higher priority to wall avoidance.
Hence, it tries to converge for both tasks (Wall avoidance and End-effector tracking) leading to high TE.
Similarly, if weights for bounding the UAV in the desired workspace are increased, the TE shoots up
and vice versa. As MPC-BLF is able to bind the UAV in the desired workspace, it accounts for less TE
compared to MPC-HC or MPC-SC as the end effector reaches the desired trajectory point with lesser
UAV movement reducing the control effort significantly.

For Case I, Fig. 3.10 shows collision with the Wall for Naive MPC, MPC-HC and MPC-SC.

3.6.4 Performance comparison for Case I

As shown in Fig. 3.13, Case I shows similar behaviour as Case II. Fig. 3.13 shows trajectory
tracking in only Ix, a similar result is obtained in Iy, Iz . As shown in Table 3.4, MPC-SC shows a very
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Figure 3.11: AM position for case I with disturbances (MPC - HC): Red circle depicts collision with

any wall. Green - Desired trajectory, Blue - UAV Center, Orange - End-effector position, Red - Wall.

The UAV and manipulator have to avoid collision with the walls.

high TE compared to MPC-BLF even in the absence of disturbances. MPC-BLF is able to avoid the
walls contrary to any other method in the presence of disturbances.

As shown in Table 3.4, AM with Naive MPC collides for Case I as the algorithm has no constraint for
avoidance. MPC-HC is not able to work for safe operation as there is no penalization for high velocities.
If the AM is far from the barrier, but the velocity in the radial direction is high, it will still collide.

3.7 Chapter Conclusion

This chapter presented a BLF-based Model predictive controller with a primary objective of safe
operation in the proximity of static objects. Our approach shows how BLF, formulated for barrier
avoidance and free space tracking objectives, shows robust behavior for the safe operation of an Aerial
Manipulator in the presence of external disturbances. A state-of-the-art MPC-based method is modified
using two types of constraints and compared with the proposed method, which shows significant im-
provement in two cases i.e with and without external disturbances. This is validated in simulation using
parameters from a real laboratory scale AM.

This chapter focuses on flying an aerial manipulator near static obstacles and handles external wind
disturbances. We extend this work in the next chapter for a different application of a UAV flying inside
a tunnel. The new problem has nonlinear torques while flying inside the tunnel which creates a different
set of difficulties to be tackled by the proposed controller.
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Figure 3.12: AM position for case I with disturbances (MPC-SC): Red circle depicts collision with

any wall. Green - Desired trajectory, Blue - UAV Center, Orange - End-effector position, Red - Wall.

The UAV and manipulator have to avoid collision with the walls.

Figure 3.13: AM position for case I with disturbances (MPC-BLF): Red circle depicts collision with

any wall. Green - Desired trajectory, Blue - UAV Center, Orange - End-effector position, Red - Wall.

The UAV and manipulator have to avoid collision with the walls.
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Figure 3.14: AM position for case I with disturbances (Naive MPC): Red circle depicts collision

with any wall. Green - Desired trajectory, Blue - UAV Center, Orange - End-effector position, Red -

Wall. The UAV and manipulator have to avoid collision with the walls.

Figure 3.15: AM position for case I with disturbances (MPC - HC): Red circle depicts collision with

any wall. Green - Desired trajectory, Blue - UAV Center, Orange - End-effector position, Red - Wall.

The UAV and manipulator have to avoid collision with the walls.
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Figure 3.16: AM position for case I with disturbances (MPC-SC): Red circle depicts collision with

any wall. Green - Desired trajectory, Blue - UAV Center, Orange - End-effector position, Red - Wall.

The UAV and manipulator have to avoid collision with the walls.

Figure 3.17: AM position for case I with disturbances (MPC-BLF): Red circle depicts collision with

any wall. Green - Desired trajectory, Blue - UAV Center, Orange - End-effector position, Red - Wall.

The UAV and manipulator have to avoid collision with the walls.
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Naive MPC MPC - HC MPC- SC MPC- BLF

Case I Case II Case I Case II Case I Case II Case I Case II

Without Disturbance

× × × × ✓ × ✓ ✓

TE (m) ’↓’ 0.02432∗ 0.02429 0.02657∗ 0.02386 0.04482 0.09731 0.02629 0.04750

cs ’↓’ 0.00557∗ 0.00612 0.02880∗ 0.04981 0.00443 0.00698 0.00732 0.03212

ce ’↓’ 0.01427∗ 0.01489 0.04787∗ 0.06572 0.02326 0.02229 0.022771 0.04531

With Disturbance

× × × × × × ✓ ✓

TE (m) ’↓’ 0.07366∗ 0.06735 0.05430∗ 0.05490∗ 0.07708∗ 0.11384 0.07164 0.06589

cs ’↓’ 0.08933∗ 0.08942 0.10546∗ 0.11304∗ 0.08933∗ 0.07915 0.15592 0.07720

ce ’↓’ 0.17720∗ 0.20924 0.18921∗ 0.18301∗ 0.21039∗ 0.08328 0.23040 0.07887

Table 3.4: Algorithm Benchmarking for simulations: For Wall Avoidance (Case I), ’×’ signifies that

the AM collided with the wall. For workspace bound (Case II), ’×’ signifies that the UAV was unable

to maintain its position inside the desired workspace. ’*’ denotes that the maneuver was incomplete due

to collision with the Wall or the inability of the MPC optimizer to find a valid control input to satisfy

safe operation conditions. ’↓’ denotes that a lower value of the performance metric is desired.
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Chapter 4

Control Barrier Function-based Predictive Control for Close Proximity

operation of UAVs inside a Tunnel

We augment the previous chapter [31] by including extended disturbance handling in the form of
ground, ceiling and wall effects and apply these changes on a more challenging task which are the key
contributions to this chaper.

This chapter introduces a method for effectively controlling the movement of an Unmanned Aerial
Vehicle (UAV) within a tunnel. The primary challenge of this problem lies in the UAV’s exposure to
nonlinear distance-dependent torques and forces generated by the tunnel walls, along with the need to
operate safely within a defined region while in close proximity to these walls. To address this prob-
lem, the chapter proposes the implementation of a Model Predictive Control (MPC) framework with
constraints based on Control Barrier Function (CBF). The chapter approaches the issue in two distinct
ways; first, by maintaining a safe distance from the tunnel walls to avoid the effects of both the walls
and ceiling, and second, by minimizing the distance from the walls to effectively manage the nonlinear
forces associated with close proximity tasks. Finally, the chapter demonstrates the effectiveness of its
approach through testing on simulation for various close proximity trajectories with the realistic model
of aerodynamic disturbances due to the proximity of the ceiling and boundary walls.

4.1 Introduction

Present times have witnessed the widespread deployment of Unmanned Aerial Vehicles (UAVs) in a
variety of domains, ranging from delivery, search, and rescue to monitoring [39]. Certain civil inspection
and delivery tasks necessitate close-range operations near stationary obstructions, such as bridges and
buildings [40]. Furthermore, UAV based indoor missions involving inspection of tunnels, rooms, aircraft
fuel tanks, coal mines and AC ducts, offer significant advantages over traditional manual methods by
reducing the time and effort required while also minimizing risks to human safety. Nonetheless, when
conducting inspection tasks in close proximity to obstacles or walls, the UAV’s aerial dynamics are
subject to various force and torque disturbances, leading to potential instability and safety concerns. To
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Figure 4.1: Depicts operation of the UAV in a safe region with minimal aerodynamic effects from the

wall. If the UAV goes closer than 2× R from the walls, it experiences turbulent forces, which tend to

destabilize the UAV and cause collision.

account for such disturbances from all directions, we demonstrate our controller for operating inside a
tunnel.

The behavior of a UAV as it approaches the walls of a tunnel is characterized by nonlinear variation
in its thrust, attributable to the intricate aerodynamic interactions at play [12]. As a result, a region of
operation that is deemed unsafe can be identified in the vicinity of the wall or obstacle, necessitating the
confinement of the UAV to a remaining safe region. Nonetheless, certain inspection tasks may require
the UAV to operate in close proximity to the wall. Consequently, the controller must be designed to
facilitate stability in the presence of such nonlinear disturbances. [36] demonstrates the safe distance
for operation is beyond 2× Radius of Propeller from the obstruction or wall.

4.2 Related Work

The literature is sufficiently populated with efforts to model ceiling and ground effects [12, 36, 41,
42], but there is a clear gap in formulating control algorithms to tackle these effects in a combined
fashion. Nonlinear Model Predictive Control (MPC) [24] has been used for navigation and obstacle
avoidance of UAVs for real-time utilities. MPC provides the predictive ability [23] which aids in per-
forming agile maneuvers with high precision and smooth control actions. [26] tries to limit the risk
of unsafety by formulating a probabilistic guarantee, but fails to provide a rigid safety guarantee to
avoid obstacles. [28] utilises partial sensor information to navigate through unknown environments by
providing partial safety guarantees.

Control Barrier Function (CBF) [1] is used to guarantee safety-critical control for various domains,
including dynamic robotic systems. [1] introduces safety, safety sets, and describes using CBF to en-
force safety in a minimally invasive fashion by not increasing the control effort or trajectory cost. CBF
has been used as a constraint to MPC [29] to provide safety guarantees while addressing the case of
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conflict between safety and performance. This provides improved performance to MPC while providing
safety guarantees. [27] shows collision avoidance for multi UAV swarm to reach desired locations and
providing safety guarantees. [31] utilizes MPC while handling external wind disturbances. Although
nonlinear controllers have been tried separately for ground and ceiling effects, no effort has been made
to minimize the impacts of these disruptions using a disturbance resistive barrier function.

4.3 Contributions

The chapter contributes in the following ways:

1. To the best of the author’s knowledge, this chapter marks the initial endeavor to address the
challenges of ground, ceiling, and wall effects simultaneously in a closed space for a UAV via the
utilization of a model predictive controller.

2. This chapter also proposes the use of CBF as a bounding function to bound the UAV into the Safe
region (in Fig. 4.1) to prevent interaction with the aerodynamical forces of tunnel effect.

3. The contemporary CBF function is modified to tackle disturbances and provide safety guarantees
in the presence of bounded external disturbances.

The chapter follows the structure with Section IV describing the UAV dynamic, a conventional CBF,
and different aerodynamic effects acting on the UAV. Section V provides the problem formulation, and
Section VI describes the outer loop MPC with CBF constraints and inner loop PID. Section VII explains
the simulation results for different cases, and Section VIII concludes the chapter.

4.4 Aerodynamic Ceiling, Ground and Wall effect

When a UAV’s rotors start rotating, depending on whether it is near a vertical or horizontal surface,
different aerodynamic forces start acting on it. These aerodynamic forces start affecting the UAV by
pulling or pushing from the expected trajectory. It is crucial to understand where these forces originate
and how they affect to tackle their effects.

4.4.1 Ground Effect

When a UAV flies over a horizontal surface, ground effects (GE) occur. GE is an aerodynamic effect
that has been studied extensively and seen to push UAVs away from the ground [36, 41]. The theoretical
model of GE presented by Cheeseman and Bennet [43] is a widely accepted thurst ratio approximation
of GE as given in (4.1).
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Ground Effect:
[
TGE

T∞

]
=

1

1− (
R

4z
)2

(4.1)

where TGE is the Thrust into the Ground, T∞ is the Thrust baseline, R is the radius of the propeller and
z is the distance from the ground.

4.4.2 Ceiling Effect

When a UAV flies underneath a horizontal surface, nonlinear disturbances in the form of ceiling effect
(CE) acts on the UAV. Contrary to GE, CE pulls the UAV towards the surface [36]. The mathematical
approximation is found as a curve in (4.2)

Ceiling Effect:
[
TCE

T∞

]
=

1

1− (
1

a1
)(

R

a2 + z
)2

(4.2)

where TCE is the Thrust into the ceiling, a1 and a2 are coefficients obtained through an experimental
least square approach.

4.4.3 Sidewall Effect

When a UAV flies close to a vertical surface, it experiences a pull toward the wall. This force is
smaller than GE and CE forces and acts on the rotors randomly while pulling toward the wall, desta-
bilizing the UAV. In [44], the chapter tried to model this effect and found it to be yaw invariant, but it
could not model the effect as it could not detect the wall effect reliably. According to their experiments,
the force along the X-Y axis varied by up to 0.052 N with a standard deviation of up to 0.022 N, and
along the Z-axis varied by up to 0.062 N with a standard deviation of 0.065 N. Hence, these forces act
randomly with these parameters.

4.4.4 Combined Tunnel effect

The combined tunnel effect refers to the two possible combinations of aerodynamic forces acting in
corners. They are near the ceiling (Ceiling effect and sidewall effect) and ground (ground effect and
sidewall effect). These effects were studied in [45], as In Low Corner Effect (ILoCE) and In Upper
Corner Effect (IUpCE). It tries to analyse the effects and concluded that a source and drain vortex
depicting the combined forces is formed in the corners. These vortexes are shown as Particle image
velocimetry (PIV) images, and the force diagrams shows a higher combined force in the corners than
the individual forces.
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Figure 4.2: Image shows the trajectory tracking of a UAV inside a tunnel while handling effects from

tunnel effects.

4.5 PROBLEM FORMULATION

The aim of the chapter is to provide a control strategy to avoid tunnel effects (combined, ceiling,
sidewall and ground effects) and tackle their disturbance to provide safety guarantees when the UAV is
close proximity to the tunnel walls as shown in Fig. 4.1 and Fig. 4.2. These tasks have been defined in
3 cases. We consider UAV center to be same as the UAV center of gravity.

4.5.0.1 Case I

To follow trajectory inside a tunnel while maintaining a minimum distance of 2× Radius of Propeller
(Fig. 4.1) to avoid aerodynamic interactions with the wall. The UAV will be bound inside a safe region
of operation (Negligible Aerodynamic interactions) in the presence of external disturbances in the form
of wind.

4.5.0.2 Case II

Minimize the safe distance of operation (zd, yd, h−zd and b−yd) (Fig. 4.2) from the tunnel walls for
close proximity operations. We minimize the safe hovering distance from the walls even in the presence
of external disturbances.
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4.5.0.3 Case III

To follow a trajectory with close proximity to the wall, ceiling and ground and tackle the combined
tunnel aerodynamic effect.

Primary objective in trajectory tracking and hovering tasks is defined as the error (e(x)) in (4.3).

min
u

e(x) = ||p(x)− pd|| ∀ k > 0 (4.3)

where p(x) is the position of UAV center, pd is the desired position of the UAV center and k is the
discreet time step.

4.6 PROPOSED CONTROLLER

The control architecture of the proposed controller is presented in Fig. 4.3. The control loop consists
of an outer loop Model Predictive Control (MPC) with safety constraints derived from a modified Con-
trol Barrier Function (CBF). The modifications to CBF are made to restrict the UAV inside a desired safe
region contrary to its earlier collision avoidance utility. A disturbance rejection term is also introduced
to the conventional CBF to handle the Tunnel effect and other wind disturbances in the tunnel. The
inner loop control is comprised of thrust and attitude PID control. We present our main contributions in
this section. We begin by writing the discrete-time dynamics of the UAV for calculating the cost inside
MPC outer loop. The state vector of the UAV is defined as xk = [pk, ṗk,Ψk, Ψ̇k] where pk is the
position of the UAV center in the inertial frame and Ψk is the yaw angle of the UAV. The control input
is uk = [p̈k, Ψ̈k] at time interval k. The state space model for the UAV utilized by the model MPC is
given in (2.28).

4.6.1 Model Predictive Control (Outer loop)

The optimal control problem for each time step k is given in (4.4) for the UAV dynamics.

uoptk = min
u

g(xk,uk, tk) (4.4a)

s.t. ẋk = Axk +Buk (4.4b)

xmin ≤ xk ≤ xmax (4.4c)

umin ≤ uk ≤ umax (4.4d)

uoptk depicts the optimal input by the optimizer which is then given to the inner loop controller for
tracking. The cost g is the weighted sum of Ng cost functions g =

∑Ng

i=1 gi given below. Ng is the
number of cost functions and N denotes the prediction horizon of the MPC.
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Figure 4.3: Control Architecture: The Outer loop control for the UAV is a Model Predictive controller which

provides the optimal control input to the Inner loop control (PID) to track while additional constraints to the MPC

are derived from the CBF. xdk is the desired state of the UAV.

4.6.1.1 UAV center tracking error

To account for the penalization of drift from the desired position or trajectory, we add a cost to the
MPC optimizer as in (4.5)

g1 =

N−1∑
i=0

(
∣∣∣∣∣∣p(xk+i)− pd

k+i

∣∣∣∣∣∣2
W1

) +
∣∣∣∣∣∣p(xk+N)− pd

k+N

∣∣∣∣∣∣2
Ws1

(4.5)

where W1 and Ws1 are weight matrices.

4.6.1.2 UAV center velocity error

To penalize the higher velocity of the UAV, we add a cost to the MPC optimizer as in (4.6).

g2 =

N−1∑
i=0

(||ṗ(xk+i)||2W2
) + ||ṗ(xk+N )||2Ws2

(4.6)

where W2 and Ws2 are weight matrices.

The controller with only MPC as the outer loop and PID as the inner loop is referred to as Naive
MPC in the following sections. MPC-HC is demonstrated as Naive MPC with hard constraints on the
optimizer, not in the form of CBF. These algorithms would be utilized to compare the performance of
the proposed controller. Additional constraints for MPC-HC are: For Case I, ||p − ds|| ≤ r and for
Case III, ||d|| ≥ ds which have been explained in Section VI part C.
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4.6.2 PID (Inner loop)

The inner loop PID receives a uoptk as the optimal uk from the MPC optimizer. Desired roll Θ and
pitch Φ angles are calculated using small angle analysis, and the desired thrust and attitude are tracked
by PID Thrust and Attitude Controllers.

4.6.3 CBF Constraints

4.6.3.1 Bounding UAV in safe region (Bounding condition)

For Case I, We give our primary contribution to bound the UAV inside the safe region where aero-
dynamic effects do not hamper the stability of the UAV. To assume a continuous differentiable bounding
area, we choose the safe region to be a spherical boundary similar to Fig. (4.1), as the tunnel effect
and other effects together form a region where the safe region can be simplified to a sphere. The UAV
can only leave the safe region in a radial direction. We constrain the movement of the UAV for a high
velocity motion using CBF. The CBF for one direction is given in 4.7, and we replace p with −p to get
CBF in the opposite direction.

h1(xk) =

√
2(pk+i)Tamax

||pk+i||
(||pk+i|| − r) +

pT
k+i

||pk+i||
(ṗk+i − ṗt

k+i) (4.7)

Where r is the radius of the safe region.

4.6.3.2 Minimize safe distance of operation from tunnel Walls (Disturbance Rejection)

For Case II, we can tighten the bound of the CBF using an additional disturbance rejection parameter
λ to tackle aerodynamic disturbances from various effects. Hence we change the earlier invariance
condition in (2.30) to the condition in (4.8).

ḣ(x) + γ(hz(x)− λ) ≥ 0 (4.8)

4.6.3.3 Trajectory tracking for close proximity flights

For Case III, the CBF is modified to avoid walls and the CBF condition for this task is given in (4.9).

h2(xk) =

√
2d(xk+i)Tamax

||d(xk+i)||
(||d(xk+i)|| − ds) +

d(xk+i)
T

||d(xk+i)||
ṗk+i (4.9)

where d(xk) is the perpendicular distance from the wall at time instance k and ds is the minimum
safe distance from the wall. The combination
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Figure 4.4: UAV position to maintain safe region (Case I) (Naive MPC) It shows that the UAV leaves

the safe region for Naive MPC. Green - Safe Region Boundary, Blue - UAV Center, Orange - Desired

Trajectory.

Figure 4.5: UAV position to maintain safe region (Case I) (MPC-HC) It shows that the UAV leaves

the safe region for MPC-HC. Green - Safe Region Boundary, Blue - UAV Center, Orange - Desired

Trajectory.
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Figure 4.6: UAV position to maintain safe region (Case I) (MPC-CBF) It shows that the UAV main-

tains the safe region for MPC-CBF. Green - Safe Region Boundary, Blue - UAV Center, Orange - Desired

Trajectory.

4.7 Simulation Results

This section presents the results of the performance of the algorithm on simulation. Python 3 was
used to perform the scenario on an Intel® Core™ i7-8550U CPU desktop operating at 1.80 GHz. The
optimizer used is the ’SLSQP’ method provided in the scipy library [46]. The specifications of the UAV
model used are given in Table 4.1 and the parameters used in MPC-CBF are given in Table. 4.2.

Parameter Value

Mass 1.5 kg

Arm length 0.20m

Propeller Diameter 0.24m

Moment of Inertia - UAV Ix = 0.1 kg m2, Iy = 0.1 kg m2, Iz = 0.2 kg m2

UAV attitude constraints |θ| ≤ π/10 rad , |ϕ| ≤ π/10 rad

Table 4.1: Specifications of the UAV: These parameters have been taken from the UAV used to define

the Aerodynamic effects
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Parameter Value

MPC Weights w1 = 10× I3×3, ws1 = 50× I3×3, w2 = 2× I3×3, ws2 = 10× I3×3

uk Initialization 01×4n

γ 3

λ 8

z 3

Sampling step (ts) 0.1 s

Total time (t) 100 s

Max wind disturbance dm = 0.8m/s2

Table 4.2: Weights and Parameters for MPC and CBF

4.7.1 Metric for performance comparison

We measure the performance of the algorithm with the following matrices:

• Bounding inside Safe region

• Trajectory Tracking error, Te =
√

1
N

∑N−1
k=0 (p(xk)− pdk)

2

• Control effort, ce =
∑N−1

k=0 ||uk||2

• Control Smoothness, cs =
∑N−1

k=0 |∆uk|

4.7.2 Results for Case I

For bounding the UAV inside the safe region, Naive MPC is unable to find the bounds and shows
very high Trajectory tracking error in the presence of wind disturbances. MPC - HC is unable to
maintain the bound when the UAV gets a high velocity input. MPC-CBF performs best compared
to other algorithms because it incorporates obstacle avoidance and disturbance rejection using CBF. It
shows a 30% decrease in the trajectory error and maintains the safe region’s bound. Trajectory tracking
results are shown in Fig. 4.12 depicting the trajectory in 3D. The performance matrices are mentioned
in Table. 4.3.
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4.7.3 Results for Case II

The shortest distance between the walls and the UAV depicts the extended stability zone of the UAV
when deploying a new control algorithm. Naive MPC gives the minimal distance as 2× R while MPC-
CBF shows a decrease in this distance by 45% as shown in Table. 4.3.

4.7.4 Results for Case III

When the UAV trajectory passes through the unsafe region, Naive MPC and MPC-HC are unable
to maintain the trajectory and subsequently collide to the wall. Only MPC-CBF is able to maintain the
trajectory while reducing the control effort by 1̃5% thus reducing the power consumed by the UAV.

Figure 4.7: UAV position to maintain safe region (Case I) (Naive MPC) It shows that the UAV leaves

the safe region for Naive MPC.

4.8 Chapter Conclusion

The chapter shows that a Model predictive controller, when combined with constraints using Control
Barrier Function, can provide safety guarantees when flying inside a tunnel. The controller also reduces
the safe hovering distance from the wall by 37% and incorporates high disturbance tolerance. It is also
shown that flying near the ground and ceiling can reduce the UAV’s power consumed (control effort)
by 1̃5%. The algorithm’s efficacy provides safety guarantees while travelling inside a tunnel using
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Figure 4.8: UAV position to maintain safe region (Case I) (MPC-HC) It shows that the UAV leaves

the safe region for MPC-HC.

Figure 4.9: UAV position to maintain safe region (Case I) (MPC-CBF) It shows that the UAV main-

tains the safe region for MPC-CBF.
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UAV Tasks Naive MPC MPC - HC MPC - CBF

Bounding in safe

region (Case I)

Maintain Boundary × × ✓

Te(m) 1.16250 0.70152 0.51087

ce 0.95237 0.93959 0.74246

cs 0.09519 0.12497 0.09190

Minimum distance

to wall (Case II)

Ground effect (m) 0.495 0.521 0.312

Ceiling effect (m) 0.502 0.478 0.298

Sidewall effect (m) 0.481 0.465 0.138

Close proximity

trajectory tracking

(Case III)

Collision ✓ ✓ ×

Te(m) 1.38771 0.8327 0.56010

ce 1.11998 0.99483 0.89015

cs 0.10604 0.09343 0.06222

Table 4.3: Algorithm benchmarking: We compare the Trajectory rms error, control effort and control

smoothness of MPC-CBF while flying amidst external disturbances with other algorithms, and it per-

forms substantially better than all other algorithms.

Figure 4.10: UAV position while trajectory in unsafe region (Case III) (Naive MPC) It shows that

the UAV collides with the wall for Naive MPC.
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Figure 4.11: UAV position while trajectory in unsafe region (Case III) (MPC-HC) It shows that the

UAV collides with the wall for MPC-HC.

Figure 4.12: UAV position while trajectory in unsafe region (Case III) (MPC-CBF) It shows that the

UAV maintains the trajectory for MPC-CBF.
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parameters from a real UAV model. Future work shall include using vision based learning models to
detect obstacles and create barrier functions through their understanding.
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Chapter 5

Conclusion

The presented dissertation explains that Barrier Lyapunov Function when combined with optimal
control strategies like the Model Predictive Controller incorporates safety and improvises the control
algorithms stability and trajectory tracking abilities. MPC-BLF and MPC-CBF provide enhanced tra-
jectory tracking for Aerial robots while providing safety guarantees. The proposed constraints are mod-
ifiable for various avoidance and bounding tasks, while providing no unnecessary hindrance to the MPC
controller cost optimizer. This controller algorithm can also tackle external wind disturbances within a
known bound to provide safety guarantees.

In MPC-BLF for an Aerial Manipulator, the BLF-based Model predictive controller with a primary
objective of safe operation in the proximity of static objects. Our approach shows how BLF, formulated
for barrier avoidance and free space tracking objectives, shows robust behavior for the safe operation of
an Aerial Manipulator in the presence of external disturbances. A state-of-the-art MPC-based method is
modified using two types of constraints and compared with the proposed method, which shows signifi-
cant improvement in two cases i.e with and without external disturbances. This is validated in simulation
using parameters from a real laboratory scale AM.

In MPC-CBF for maneuvering a UAV inside a tunnel, we present a control framework to handle
aerodynamic torques by rotor and wall interactions. These forces are nonlinear and difficult to model,
hence we define constraints to tackle these forces through a CBF. The MPC when combined with con-
straints using Control Barrier Function, can provide safety guarantees when flying inside a tunnel. The
controller also reduces the safe hovering distance from the wall by 37% and incorporates high distur-
bance tolerance. It is also shown that flying near the ground and ceiling can reduce the UAV’s power
consumed (control effort) by approximately 15%. The algorithm’s efficacy provides safety guarantees
while travelling inside a tunnel using parameters from a real UAV model.

In it’s entirety, the contributions of this dissertation are suitable for complex environments, making
this approach a valuable tool for a variety of applications from search and rescue to manipulation.
Overall, the proposed MPC-CBF and MPC-BLF controllers provide an efficient and robust control
strategy for various aerial robots to ensure collision free trajectory tracking while handling various
unknown external disturbances.
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5.1 Future Work

Future work will include determining these CBF bounds with the help of vision algorithms and utilizing
them for safe tracking without human intervention. This would lead to a pathway for fully autonomous
high-level control systems.

Various sensor and calibration errors can be accounted for in the study to make it closer to the real
world, which can further be deployed on the Aerial Manipulator and UAV hardware setup.

Techniques can also be developed for multi-UAV systems using MPC controllers with dynamic ob-
stacle avoidance.

The proposed controllers will be deployed on actual Aerial manipulator and UAV hardware.
Moreover, the alogirhtm could be made more robust by handling uncertainty in the ”Prediction

Model”.
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Appendix A

Algorithm Details

A.1 MPC Implementation

We have provided the implementation of Model Predictive Control Algorithm.
The implementation of MPC algorithm has the following components:

• System Model

• Cost function

• Prediction Horizon

• Optimization problem solver

A.1.1 System Model

System Model has been explained in 3.5 and 2.20 for Aerial Manipulator and UAV respectively.

A.1.2 Cost Function

f o r i i n r a n g e ( n ) :

c o s t e e x e r r o r += ( x man pred − x man des )
@ w1 @ ( x man pred − x man des ) . T
c o s t e e v e r r o r += ( v man pred ) @ w2 @ ( v man pred ) . T

c o s t i n p u t += ( x i n p u t i ) @ wu @ ( x i n p u t i ) . T

[ x pred ,
x d o t p r e d ,
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t h e t a d e s i r e d p r e d ,
omega pred ,
t h e t a m p r e d ,
t h e t a d o t m d e s i r e d p r e d ,
x man pred ,
v man pred ] = d r o n e d y a n m i c s (

a d e s i r e d [ i ] ,
y a w d e s i r e d [ i ] ,
t h e m a m d e s i r e d [ i ] ,
x p red ,
x d o t p r e d ,
omega pred ,
t h e t a m p r e d ,
t h e t a d o t m p r e d ,

)

c o s t e e x e r r o r += ( x man pred − x man des ) @ ws1 @ ( x man pred − x man des ) . T
c o s t e e v e r r o r += ( v man pred ) @ ws2 @ ( v man pred ) . T

c o s t += c o s t e e x e r r o r + c o s t e e v e r r o r + c o s t i n p u t

A.1.3 Prediction Horizon

Prediction horizon has been mentioned for all MPC algorithms in the previous chapters.

A.1.4 Optimatizer

The algorithms are implemented on Python 3 on an Intel® Core™ i7-8550U CPU PC running at
1.80 GHz. We use the ’SLSQP’ method from scipy as the non-linear optimizer for MPC.
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