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Abstract

Typically, anatomy is taught through dissection, 2D images, presentations, and cross-sections. While
these methods are convenient, they are non-interactive and fail to capture the spatial relationships and
functional aspects of anatomy. New visualization technologies such as virtual reality and 3D can com-
pensate for the impediments and provide better understanding while captivating the students. With
recent advances in the industry, the methods to provide a 3D experience are economical. In this thesis,
we introduce a low-cost 3D-interactive anatomy system designed for an audience of typical medical
college students in an anatomy class. The setup used to achieve 3D visualization is Dual projector
polarization. While there are other ways to achieve 3D visualization, like alternate frame sequencing
and virtual reality, this technique can target a large audience and requires minimum accessories for the
setup enabling this to be a low-cost solution for an immersive 3D experience. The 3D interactive Neu-
roanatomy solution is an end-to-end framework capable of designing anatomy lessons and visualizing
the 3D stereoscopic projection of those anatomy lessons. To ensure superior comprehension of students,
we incorporate each teacher’s unique teaching approach while developing anatomy lessons by provid-
ing the ability to create their own lessons. We have created anatomy lessons based on the human brain
which is a vital organ and has a complex anatomy. Our aim is to help medical students to understand the
complexity of organ systems from not just an anatomical perspective but also a radiological perspective.
We use annotations on clinical case data such as MRI, MRA, etc., to create 3D models for anatomy
visualization incorporating clinical information and illustrating real cases. Annotations for structures of
interest are done using manual, automatic, and semi-automatic segmentation methods.

Manual delineation of the structure boundaries is very tedious and time-consuming. Automatic seg-
mentation is quick and convenient. However, manual annotations were done for the 3D anatomy viewer
for small and complex structures due to substandard automatic segmentation. There is a need to improve
automatic segmentation performance for those structures. While segmentation is an essential step in 3D
modeling, it plays a critical role in many neurological disease diagnoses as well, which are associated
with degradation in the sub-cortical region. Therefore accurate algorithms are needed for sub-cortical
structure segmentation. Variance in the size of structures is significant, which introduces a performance
bias towards larger structures in many deep learning approaches. In this part of the thesis, we aim to
remove size bias in sub-cortical structure segmentation. The proposed method addresses this problem
with a pre-training step used to learn tissue characteristics, an ROI extraction step that aids in focusing
on the local context, and using structure ROIs elevates the influence of smaller structures in the network.
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Chapter 1

Introduction

Generally, undergraduate medical education in anatomy comprises a lecture with PowerPoint slides
and occasionally gross anatomical models. In addition, a gross dissection of a cadaver is performed by
the instructor. The use of cadavers poses multiple issues; there is limited availability of cadavers, the
cost of obtaining and maintaining them is high, and there are ethical issues in using cadavers. There
are numerous self-study methods, including websites dedicated to different anatomies and mobile ap-
plications. However, in a classroom setting, there is a heavy focus on 2D anatomy methods such as
PowerPoint presentations, animations, and 2D atlas, since these teaching aids are easily accessible and
cost-effective. However, with these approaches, cognitive leaps between textbooks, verbal lectures,
presentations, and dissection are challenging for students as they have varied understanding levels and
skills with spatial mappings. Limited time available for such anatomical teaching further hampers their
learning. Not much effort has been made to include radiological data and correlate it with the anatomy,
which would aid them in diagnoses since radiological data is extensively used for that purpose. Newer
technologies are needed to overcome these challenges in anatomy teaching.

With the rapid advancement in technology, better visualization techniques such as virtual reality, aug-
mented reality, and 3D visualization can be utilized to teach anatomy, which not only helps in better
understanding but also helps in engaging and motivating the students. Based on various studies and
articles, in general, medical students prefer newer three-dimensional visualization methods to tradi-
tional methods for learning anatomy [73]. 3D visualization especially helps in learning spatial anatomy
compared to traditional 2D visualization. Incorporating 3D interactive visualization tools in addition
to traditional methods augments current learning and helps retention of visual information; additional
radiological data helps develop diagnostic skill sets in students. Teachers of anatomy are key players
who support students’ comprehension. Every teacher has their own style and method of instruction,
and with our solution, we intend to incorporate their objectives and concepts when designing lessons.
Consequently, we propose a 3D interactive visualization tool that is feasible and cost-effective, keeping
in mind the needs of anatomy education in a typical classroom of medical colleges in India.
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1.1 Purpose

The major aim is to boost the intuitive understanding of anatomy in students with newer interactive
3D visualization methods, which are cost-efficient and feasible. Introducing the 3D Interactive solution
that incorporates radiology into anatomy teaching as an integral part of the regular curriculum is also a
prime objective. Involving the professors in designing the study material is a key aspect in achieving
this objective of integrating it into the regular curriculum.

1.2 Related Works

Many studies focus on neuroanatomy [1, 4, 11, 38, 62] while others focus on other anatomical struc-
tures like ear[53], larynx[72], abdomen [15] etc. De Faria et al. [11] constructed stereoscopic images
acquired from the dissected brain and used an anaglyph system to project these stereoscopic images
as interactive videos viewed through personal computers. The students were evaluated using a written
test, and their subjective opinion was considered. They concluded that their method presented a sig-
nificant gain of neuroanatomical knowledge compared to traditional methods. Kockro et al. [38] used
Dextrobeam, a virtual reality environment projecting multimodality images as 3D interactive objects,
for the stereoscopic 3D lecture on the third ventricle for a large group of students, and they rated the 3D
lecture as superior in terms of spatial understanding, effectiveness and enjoyability. Agbetoba et al. [1]
use a 3D virtual planning software and a standard DICOM software RadiAnt showing 2D cross-sections
for 2 groups for evaluation. Various studies Ruisoto et al[62] (neuroanatomy),Nicholson et al[53] (ear),
Venail et al [75](temporal bone) including [11, 38, 1], infer that with 3D technologies students score
significantly better. However, some studies Tan et al. (Larynx) [72], Donnely et al. (abdomen) [15],
Keedy et al. (hepatobiliary) [36] found while there was no significant improvement in test scores with
3D methods compared to traditional methods, the subjective opinion of the students was positive.

1.3 3D Visualization

3D visualization of anatomy has evolved from physical models to virtual representations with the
progress of technology. Virtual or 3D anatomy representations can be easily developed with images
captured using a digital camera at various angles of a specimen. One can also use clinical imaging
modalities such as Magnetic resonance imaging (MRI), Computed tomography (CT) to create a 3D
model. Computer graphics techniques such as surface meshes and volume rendering can provide ap-
pealing 3D effects. These 3D models can be superimposed with the raw modality data (MRI, CT) to
provide a greater understanding of anatomy as well as radiology.

Stereoscopy creates the impression of three-dimensional depth from two-dimensional images. This
is done by providing offset images separately to the left and right eye, which is perceived as 3D depth
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when combined. Visualization of 3D data or objects can be achieved through various techniques. These
can be broadly divided into categories which are:

1. Virtual Reality: Virtual reality generally refers to technology that provides an immersive experi-
ence in an artificial world. The experience can be visual, auditory, and sometimes haptic, usually
achieved with a VR headset with a display system and sensors to track the gaze and render the
appropriate 3D scene. These headsets provide a 3D experience on an individual level and are
more expensive compared to other methods. However, an effort is being made to reduce the cost
to achieve the same level of immersive experience as in high-end VR headsets.

2. Augmented Reality: Augmented reality, unlike virtual reality, enhances the way we perceive the
natural environment by overlaying digital information onto the real world. Perception is not only
limited to vision but auditory, olfactory and haptic senses as well. AR can be achieved by devices
that can combine the real and virtual worlds, such as smartphones, glasses, and headsets. Similar
to VR, it is an individual experience and expensive.

3. Mixed Reality: Mixed reality merges real and virtual worlds, where physical and virtual objects
interact and co-exist. It is a hybrid of virtual and augmented reality.

4. 3D stereoscopic projection: This is one of the oldest and most widely used 3D technologies.
Most commonly seen in 3D movies. The projection systems can be categorized into active and
passive systems. It is intended for multiple viewers and is feasible and cost-effective compared to
the above methods.

1.4 Thesis Focus

In this thesis, we focus on the main issue of improving the standard of anatomy education. We focus
on development of our 3D interactive solution, which provides a framework for anatomy instructors
to create content for teaching, the segmentation methods used in the process of content creation, and
the issue of size bias in these segmentation methods. Generally, undergraduate medical education in
anatomy comprises a lecture with PowerPoint slides and occasionally gross anatomical models. In
addition, a gross dissection is performed by the instructor. Current education focuses heavily on 2D
anatomy since the teaching aids for such are easily accessible. With the advent of technologies, there
is a need to incorporate 3D visualization tools to aid anatomy education. We propose an interactive 3D
solution for anatomy education for a typical classroom in medical colleges in India, which is feasible
and cost-efficient. The interactive 3D visualization tool makes it easier for students to learn discrete
structures and spatial and functional relationships between them and retention of visual information.
Integrating raw radiological data with 3D models derived from its annotations is an added benefit.
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The annotations needed for the purpose of education have to be sourced from various automatic and
manual methods. Manual annotation methods are laborious, and for our purpose, the automatic methods
are insufficient. Hence using both methods and combining their results is essential and most effective.

Segmentation and analysis of subcortical structures like the hippocampus, pallidum, and thalamus
are of interest in anatomical teaching since they play a vital role in the functioning of humans. They
also help in diagnosing some neurological diseases such as Alzheimer’s disease, depression, etc. Seg-
mentation is a challenging task because of brain tissue ambiguity and data scarcity. Deep learning (DL)
solutions are widely used for this purpose by considering the problem as a semantic segmentation of the
brain. In general, many approaches exhibit a performance bias towards larger structures when training is
done on the whole brain, where a significant variance in size exists. We propose a method to address this
problem wherein its two phases are a pre-training step and an ROI extraction step. Tissue segmentation
is used for pre-training to learn tissue characteristics. A rough ROI extraction step for structures boosts
the weightage of smaller structures by focusing on the specifics of structures.

We propose a suite of software tools for anatomy education. An authoring tool to achieve the task
of designing an anatomy lesson using the annotations obtained from clinical data, in a meaningful way
to create coherent content. We explore various tools that the authoring tool provides to create a lesson.
The 3D interactive anatomy viewer loads the lessons created using the authoring tool. It renders the 3D
stereo structures of the anatomy using 3D stereoscopic projection to achieve the 3D effect.

1.5 Contribution

The major contributions of this thesis are as follows:

1. 3D interactive system for Neuroanatomy education

(a) Authoring tool for lesson creation

(b) 3D Anatomy Viewer for interactive 3D visualization

(c) Remote companion application for user-friendly touch interface

2. 3D models and lessons created for neuroanatomy

3. A deep learning-based method to remove size bias in subcortical structure segmentation.

1.6 Outline of thesis

This thesis is organized as follows: In chapter 2, we explore specifics of our use case of the human
brain to highlight the potential of the 3D interactive system for anatomy instruction. We examine how
neuroanatomy is generally taught, and the role neuroimaging plays in capturing anatomical intricacies,
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which we further utilize. In chapter 3, we discuss the system design of our solution, providing a high-
level overview of the system pipeline. The significance of instructor-guided anatomy education is also
emphasized. We further explore the hardware design used to achieve an immersive 3D experience in
a classroom setting. We also delve into software design aspects of the system pipeline, the usage of
clinical data, annotating structures of interest, various techniques for 3D modeling, and important fea-
tures required for designing a coherent lesson. In chapter 4, we delve into the details of data acquisition
using clinical scanners, manual, automatic, and semi-automatic segmentation methods used for generat-
ing annotations. Chapter 5 investigates the problem size bias observed in many automatic segmentation
methods, specifically in subcortical structure segmentation. We propose a two-phased approach to ad-
dress this problem, applicable to different deep architectures and on different datasets to establish the
effectiveness of the proposed approach. In chapter 6, we provide in-depth insights into the implemen-
tation of our 3D interactive system. We outline tools available to design a lesson and showcase the
lesson creation workflow. We also take a look at how anatomy viewer launches lessons created using
the authoring tool and implementation of 3D models and views for different anatomical structures. The
features and working remote companion application are also examined. The last chapter summarizes
the proposed solutions and recommends possible future work.
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Chapter 2

Use Case: Human Brain

The human brain is one of the most complex organs, which not only controls all body functions but
it also helps us interact with the outside world and interpret and analyze the information obtained from
the outside world and make decisions based on that. It embodies the essence of human intelligence and
creativity. The brain controls everything from the movement of our bodies and the functions of every
organ to speech, thoughts, and memories. The brain receives information from the five senses, vision,
smell, hearing, touch, and taste, and it determines how to respond to stimuli.

Figure 2.1: Cross section of brain (Image courtesy: Wikipedia)

The composition of the brain includes fats, water, proteins, carbohydrates, and salts. It also consists
of blood vessels and billions of nerve fibers. The brain can be divided into different components, white
matter, and gray matter.
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(a) (b) (c)

Figure 2.2: (a) Anatomy of a neuron (b) White matter and gray matter (c) Cerebrospinal fluid (CSF)

(Image courtesy: Wikipedia)

Gray matter makes up the outer layer of the brain. It consists of neural cell bodies called soma and
gets its grey tone due to the high concentration of soma. Gray matter is abundant in the cerebrum,
cerebellum, and brain stem. It extends into the spinal cord as well. The white matter area mainly
consists of myelinated axons. White matter is predominantly present in deeper areas. Most of the
brain’s deeper structures are white matter covered by gray matter. Another essential component of the
brain is cerebrospinal fluid (CSF). It is a colorless liquid surrounding the brain, acts as a mechanical
barrier, and provides lubrication. It also helps maintain the pressure within the skull.

2.1 Anatomy of human brain

Anatomically, the three major components of the human brain are the cerebrum, cerebellum, and
brain stem.

Figure 2.3: Anatomical regions (Image courtesy: Wikipedia)

7



2.1.1 Cerebrum

The cerebrum is the largest part of the human brain. It is divided into left and right hemispheres. The
surface of the cerebrum, called the cortex, consists of ridges(gyri) and valleys(sulci). Such folding of the
cortex increases the brain’s surface area, allowing a large number of neurons to fit, which enables higher
functions. Each hemisphere has distinct fissures which divide the brain into four lobes: the frontal,
parietal, temporal, and occipital.

The frontal lobes are located directly behind the forehead, while the occipital lobes are at the back of
the skull, and parietal lobes are found near the center between the frontal and occipital lobes. The tem-
poral lobe is located close to the base of the skull. The frontal lobe is essential for cognitive functions,
such as thoughts, moods and reasoning, and motor functions. The temporal lobe, also called the neo-
cortex, processes speech and sensory information, which contributes to the retention of memories and
emotions. The parietal lobe integrates and interprets input from various senses and is vital for spatial
orientation and navigation. Visual processing takes place in the occipital lobe.

(a) (b)

Figure 2.4: (a) Lobes of the brain (b) Motor and sensory regions of the cerebral cortex (Image courtesy:

Wikipedia)

2.1.2 Cerebellum

The cerebellum is located at the back of the head, below the temporal and occipital lobes, and above
the brainstem. Like the cerebrum, it has two hemispheres. The cerebellum communicates with the
cerebral cortex and musculoskeletal structures of the body, coordinates these motor signals, and helps
control and regulate voluntary muscle movements and maintain posture, gait, and equilibrium. In addi-
tion to this, it also plays a role in cognitive functions.
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2.1.3 Brainstem

The brainstem connects the cerebrum with the spinal cord. The brainstem consists of the midbrain,
the pons, and the medulla.

1. Midbrain: The midbrain is a very complex structure with various neuron clusters, neural path-
ways, and other structures. These features facilitate various functions, from hearing and move-
ment to calculating responses and environmental changes.

2. Pons: The pons is the origin point for cranial nerves. It is involved in the regulation of a range of
activities such as eye and facial movement, tear production, balance, and hearing. Pons connects
the midbrain and medulla.

3. Medulla: Medulla is located at the bottom of the brainstem and is connected to the spinal cord.
The medulla is essential to survival. The medulla regulates various autonomic functions, including
cardiac rhythm, breathing, blood pressure, and reflexive activities such as sneezing, vomiting, and
swallowing.

2.1.4 Subcortical Structures

The subcortical structures include the deep gray and white matter structures (such as the corpus
callosum, hippocampus, amygdala, thalamus, and putamen). They play a pivotal role in cognitive,
affective, and social functions. They also act as a relay station of the nervous system, relaying neural
impulses to different areas of the brain.

1. Hypothalamus plays a role in controlling behaviors such as hunger, sleep, and thirst. It also
regulates body temperature, blood pressure, and secretion of hormones.

2. Pituitary gland controls other endocrine glands in the body. It secretes hormones that control
sexual development, promote bone and muscle growth, and respond to stress.

3. Pineal gland helps regulate the body’s internal clock and circadian rhythms.

4. Thalamus serves as an information hub for almost all neural impulses that come and goes to the
cortex. It plays a role in pain sensation, attention, alertness, and memory.

5. Basal ganglia includes the caudate, putamen and globus pallidus. These nuclei work with the
cerebellum to coordinate fine motions.

6. Limbic system includes the amygdala, cingulate gyri, and hippocampus. It is the center of our
emotions, learning, and memory. The amygdala plays a role in emotional reactions and the hip-
pocampus in memory.
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Each of the subcortical structures undergoes significant changes through childhood, some persisting well
into adolescence. The structural and functional abnormalities of the subcortical regions have been asso-
ciated with various neurological disorders[39], such as schizophrenia, depression, and autism spectrum
disorders [27, 5, 64].

(a) (b)

Figure 2.5: (a) Subcortical structures of brain (b) Blood supply to the brain (Image courtesy: Wikipedia)

2.1.5 Blood vessels

Blood is supplied to the brain by two arteries, the internal carotid arteries, and the vertebral arteries.
The two arteries connect and communicate with each other at the base of the brain, called the Circle
of Willis. The internal carotid arteries supply most of the cerebrum. The vertebral arteries supply the
cerebellum, brainstem, and underside of the cerebrum.

The venous circulation of the brain is very different from that of the rest of the body. Usually, arteries
and veins run together. However, this is not the case in the brain. The major vein collectors are integrated
into the dura(outermost layer of the meninges) to form venous sinuses. The venous sinuses collect the
blood from the brain and pass it to the internal jugular veins.

2.1.6 White Matter Fibers

White matter fibers are essential in connecting various areas of the brain with each other. There are
three types of white matter tracts:

1. Projection fibers connect the cortex to other areas such as the brainstem, cerebellum, and spine.

2. Association fibers connect to different areas within the hemisphere

3. Commissural connects cortical areas of each hemisphere
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2.2 Neuroimaging

Scientific evidence indicates that the brain is highly malleable. The brain adapts its structural and
functional organization throughout life based on experience, environment, and age [29]. Neuroimag-
ing offers vital insight into details of brain structure, functioning of the brain, and molecular pro-
cesses through non-invasive in-vivo techniques. Brain imaging techniques can be classified into two
approaches, namely structural imaging and functional imaging.

2.2.1 Structural NeuroImaging

(a)

(b) (c) (d)

Figure 2.6: (a) Different MRI protocols (b) MRA and MR veinogram (Reproduced with permission

from Mikulis, D.J. and Roberts, T.P. (2007), Neuro MR: Protocols. J. Magn. Reson. Imaging, 26:

838-847.) (c) CT (Case courtesy of Assoc Prof Frank Gaillard, Radiopaedia.org, rID: 14109) (d) DTI

(Image courtesy: Wikipedia)
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Structural Neuroimaging refers to imaging techniques specialized for visualization and analysis of
the brain’s anatomical properties. Structural neuroimaging is vital in detecting abnormalities and dam-
age in the brain, as well as in analyzing geometric properties such as the size and volume of structures
and cortical thickness. Primary Modalities for structural imaging are Magnetic Resonance Imaging
(MRI) and Computed Tomography (CT). Visualization of bone structure and gross brain abnormalities
can be obtained through CT, while through MRI, soft tissues of the brain such as white matter and gray
matter can be obtained in a higher resolution, which is helpful in visualizing anatomy, abnormalities such
as tumors, and mapping white matter tractography. CT uses x-rays to obtain multiple cross-sectional
images of the brain. MRI can provide detailed and high-resolution images due to strong magnetic gradi-
ents; consequent responses to these gradients differ depending on tissue types and structures. MRI has
different modes such as T1-weighted, T2-weighted, fluid attenuation inversion recovery(FLAIR), Pro-
ton density (PD), diffusion tensor imaging (DTI), and diffusion-weighted imaging (DWI). DTI provides
a detailed reconstruction of white matter connections by tracking the movement of water molecules
within the brain, which reflect the underlying white matter tracts. MR angiography (MRA), a type
of MRI, is used to visualize blood vessels and identify abnormalities. Angiography can be performed
through X-rays and CT as well. However, the contrast which may be used in MRA is less likely to cause
an allergic reaction.

2.2.2 Functional NeuroImaging

(a) (b)

Figure 2.7: (a) fMRI during language task (Case courtesy of Dr Alexandra Stanislavsky, Radiopae-

dia.org, rID: 12534) (b) PET and SPECT scans of the healthy and PS patient (Adapted from (Jakobson

Mo et al., 2018) under the terms of the Creative Commons Attribution 4.0 International License)
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Functional neuroimaging is used to localize brain areas and underlying brain functions that are as-
sociated with performing a particular cognitive or behavioral activity, such as movement, vision, and
sense. Depending on the type of signal being analyzed, inferences between the location of brain activ-
ity and brain function can then be determined. Major modalities used for functional neuroimaging are
Functional Magnetic Resonance Imaging (fMRI), Positron emission tomography (PET), Single Photon
Emission Computed Tomography (SPECT), Electroencephalogram (EEG), and Evoked Related Poten-
tials (ERP).
fMRI tracks the changes in blood flow and oxygen level in the brain associated with performing cogni-
tive or behavioral tasks [50]. An increase in metabolic demand of areas of the brain indicates activity
while performing a task, called blood oxygen level dependent (BOLD) response [48], resulting changes
in the signal can be detected by the scanner. PET, SPECT uses a radioactive tracer to measure the en-
ergy consumed by the brain. EEG directly measures the underlying electrical activity of the brain using
electrodes placed on the scalp.

2.2.3 Brain Atlas

A brain atlas is an anatomical representation of the brain showing group-wise or study population
global or regional brain features [14] and provide a standard coordinate system. Atlases are derived
by statistically summarizing, e.g., averaging, voxel-wise, regional, or global brain MRI measures from
several individuals. Structural magnetic resonance imaging (MRI) brain atlases are important tools in
research and clinical practices, such as registration and segmentation of the brain, statistical mapping,
identifying structural changes, and surgical planning. Structural atlases delineate the brain into different
regions (coarse (GM, WM, CSF) or fine-grained (180 regions)) through a process called brain parcella-
tion [12].

Figure 2.8: Freesurfer (Desikan-Killiany) atlas mapped to pial surface(parcellation) [12]
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Chapter 3

System Design

3.1 Overview

A typical lesson in an anatomy class involves an introduction to a functional or structural system
or organ, including a description of various sub-parts of the system. The instructor would provide an
explanation of events or sub-structures, their functioning, their role, and spatial context through various
anatomical views. We propose a solution with the same format as a typical classroom lecture which
augments the syllabus by leveraging the latest technology available. This 3D interactive visualization
solution for anatomy teaching is developed considering feasibility and cost-efficiency for an audience
of typical medical college students in an anatomy class. A polarized stereoscopic 3D system is used
for 3D projection to address and engage the large audience of a classroom. This solution is designed to
provide an interactive and immersive environment for students during the teaching session to increase
their understanding. We use radiological data from real subjects to create an informative, realistic, and
engaging experience for the students. The design calls for the integration of radiology and anatomy, and
it involves transforming raw images into realistic 3D models of human anatomy with instructor-guided
lesson plans. In order to achieve this, various processes and modules are involved. The pipeline of the
system is shown in Fig. 3.1.

Figure 3.1: Pipeline of 3D Interactive solution for anatomy education
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The first step in this system involves procuring radiological data, which is followed by the annota-
tion of raw data for anatomical structures using manual or automatic segmentation. Using modeling
techniques, these annotations are then used to create 3D models of anatomical structures. An authoring
tool is developed to create and customize lesson plans for different anatomical structures. Instructors
can customize the lessons based on their preferences to match their individual teaching styles. The 3D
anatomy viewer allows for accessing various lessons created by anatomy instructors for each anatomical
structure or system. The 3D viewer visualizes the concepts envisioned by the instructor in 3D, providing
an immersive learning experience.

3.2 Hardware Design

3.2.1 3D stereoscopic projection

3D stereoscopic projection methods are ideal in a classroom environment, where the instructor can
control and interact with the 3D content while simultaneously providing an explanation. This ease of
use and their economic nature leads us to explore different 3D projection methods. The most popular
methods are:

1. Active shutter 3D: In this system, the display alternates between left and right eye views, while
the glasses (liquid crystal shutter glasses) alternately darken over each eye based on the timing
signal in synchronization with the frame rate of the display. The above process achieves the 3D
effect. This system offers better quality than the others, but the downside is that there could
be noticeable flicker. However, flicker modern glasses eliminate this problem, but liquid crystal
shutter glasses are considerably expensive. In addition, the cost of such a system rises with the
number of students, making this scenario impractical.

2. Anaglyph 3D: In this system, a differently filtered colored scene, which is offset for each eye, is
superimposed on the screen to produce the depth effect. The glasses have colored lenses that are
chromatically opposite (red and cyan). While this is a low-cost setup, the quality is degraded, and
there is significant color distortion due to the colored lenses, making the 3D experience dull.

3. Polarized 3D: In this system, the left and right view is overlayed onto the screen through different
polarized filters. The glasses consist of lenses with different polarizing filters, which allow only
similarly polarized light to pass through, ensuring that each eye sees the corresponding view. This
setup is widely used in theatres to view 3D movies. The cost of this system is relatively low, and it
scales up well to classrooms with varied audiences to a certain extent, as the glasses are relatively
cheaper.
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3.2.2 Dual Projector Setup

Figure 3.2: 3D Dual Projector Setup

The 3D polarized setup, as discussed earlier, is suitable for its cost efficiency and feasibility. For po-
larized 3D, a single projector system such as RealD (used in theaters) can be considered, but it increases
the setup cost considerably. Consequently, a dual projector system is used to achieve 3D.

The projectors display views of the left and right eyes, each through different polarized filters, which
are placed at a distance from the projector’s lens. The glasses have corresponding polarized filters to
allow only the view intended for that particular eye. There are two types of polarizing filters, circular
and linear. Linear polarizers consist of a pair of orthogonal filters with the projectors and glasses having
the same orientation, which leads to blocking light of different orientations. Circular polarizers have a
pair of filters that have opposite handedness. The right-handed polarizer blocks the light, which is left
circularly polarized, and vice versa. Since a circular polarizer allows for tilting of the glasses, it is the
better alternative. Both left and right views are superimposed when projected on a screen. However,
light reflected from a regular surface or a screen loses some of its polarization. To overcome this problem
silver lenticular screen is used. Actual silver is embedded in the screen, making it a highly reflective
surface. Refer to Appendix A for the images of our hardware setup.
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3.3 Software Design

3.3.1 Segmentation

The annotations of anatomical structures need to be meticulous and are essential to integrate ra-
diology and anatomy. Segmentation can be manual, automatic, or semi-automatic. However, man-
ual segmentation methods are tedious and time-consuming; other conventional automatic segmentation
methods, such as Freesurfer’s FSL and BrainSuite, take days to provide segmentation, are very specific
to the brain, and can work only on certain modalities. Deep learning methods overcome the drawbacks
of both these approaches, delivering annotations within seconds once trained and their performance be-
ing on par, if not surpassing, other traditional approaches. However, the availability of data for training
a deep learning model is challenging, and extensive exploration of methods for each task is necessary.
Hence the combination of manual, semi-automatic, conventional automatic, and deep learning based
segmentation methods are used to create annotations.

3.3.2 Model Generation

Structure annotations can be transformed into 3D models using various techniques. We primarily
use surface modeling, an advanced modeling technique adept in handling complex shapes of anatomical
structures. It provides a seamless and smooth surface, allowing for an authentic three-dimensional
visual representation of anatomical structures. In addition, volume rendering is also used to represent
the volumetric data.

3.3.2.1 3D Mesh

There are many modeling techniques to obtain surface representation, mesh modeling being one of
the most commonly used methods. Rendering of a complex object is simplified by using a polygonal
mesh which essentially defines the shape of the complex object. A mesh consists of vertices, faces, and
edges.

1. vertex is a single point

2. Edge connects two vertices with a straight line segment

3. Face is a closed flat surface enclosed by edges (polygon). Faces can consist of triangles (3 sides),
quadrilaterals (4 sides), or other simple polygons.

The 3D model/mesh is generated using ITKsnap or VTK library, which uses the marching cubes al-
gorithm. It is a simple iterative algorithm that generates 3D surface meshes. The algorithm can be
described as follows: 1. Divide the space within the bounds into an arbitrary number of cubes. 2. Test
the corners of every cube for whether they are inside the object. 3. For every cube where some corners
are inside and some corners are outside the object, the surface must pass through that cube, intersecting
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the edges of the cube in between corners of opposite classification. 4. Draw a surface within each cube
connecting these intersections. The 3D meshes are saved as STL files (other formats like VTK are also
supported). We also use Blender1 to post-process a few imprecise 3D meshes.

3.3.2.2 Volume Rendering

Figure 3.3: Volume Rendering of MR data

Volume rendering displays a 2D projection of the 3D MRI data. This is achieved by directly loading
raw data without any processing. Every voxel value is mapped to opacity and color using the transfer
function, a piece-wise linear function. Volume ray casting is the technique used to achieve this render-
ing. This technique uses a simple camera model to generate the ray for each pixel, with the output 2D
image lying in between the camera and the volume to be rendered. Volume rendering of the brain using
MRI data can be seen in Fig. 6.8(b)

3.3.3 Authoring Tool

We want to establish a comparable structured narrative approach to learning by following the curricu-
lum of standard anatomy taught at Indian medical colleges. Designing lessons to match the sequence
of the narrative becomes crucial. With the help of the Authoring tool we have developed, the educators
have the flexibility to design 3D-based lessons to match their teaching style and the needs of the curricu-
lum. Their expertise makes content meaningful and comprehensible to the learners. The authoring tool
helps the user decide the sequence of structures to fit the narrative and manipulate the properties of 3D
models of anatomical structures. It has text and other graphical tools to assist in illustrating the context
and provide descriptions of particular structures. Through our solution, we place a specific emphasis on
instructor-led anatomy teaching. The features of the authoring tool and the lesson creation workflow are
discussed further in detail in ch. 6.

1https://www.blender.org/
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3.3.4 Lesson Design Considerations

3.3.4.1 Anatomical Relationship Grouping

The human body consists of numerous organs, and each organ is a complex system of smaller struc-
tures, such as the brain, which, as we’ve seen is a complex structure with numerous cortical, and subcor-
tical structures, the blood supply system, and various functional areas which support auditory, and visual
functions. In order to understand the working of a system, we divide it into sub-components. This logi-
cal division includes spatially and functionally related structures and represents them as groups. While
teaching about one structure or an entire system, these relationship groups are also illustrated to provide
the necessary context.

3.3.4.2 Integration of anatomy and radiology

We generate 3D representations based on clinical data. To bring about the seamless integration
of anatomy and radiology, we represent radiological data in the 3D anatomical domain. Radiologists
generally go through clinical data such as MRIs and CTs by examining 2D slices. We propose to localize
these 2D slices or cross sections in 3D space along with the 3D representation of structures to merge
radiology and anatomy, helping with cognitive mapping.

3.3.4.3 Visual Properties of Anatomical Structures

It is difficult is distinguish between structures in a cadaver and radiological scans like MRI and CT
for an untrained eye. To train students to discern minute differences between tissues and organs, it is
beneficial to provide them with the whole picture so that they can be trained to recognize patterns. So
we represent structures with distinguishing visual properties to differentiate between them. Instructors
are given the choice of various visual properties of every structure, such as color, opacity, smoothness,
texture, etc based on their preferences. Each of these properties can be manipulated independently of
each structure.

3.3.4.4 Structure Labeling

To learn anatomy, it becomes important to identify and relate all small and large structures belonging
to a particular anatomical region. Teaching this becomes more convenient and effective by organizing
the labels of all structures in a hierarchical manner and presenting them in a logical sequence. It is
essential that the display of labels is consistent over the examination of the structure from any angle and
that the spacing between the labels is adequate for clarity and understandability. Keeping this in mind,
labels are organized into a neat, evenly spaced circular grid in the 3D scene. The labels are designed to
be capable of adapting to any view. The techniques used to achieve these key elements are discussed in
further chapters.
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3.3.5 3D Anatomy Viewer

The 3D anatomy viewer is an interactive visualization tool that presents the 3D lessons created using
the authoring tool. It incorporates considerations of lesson design. The viewer represents the visual
and structural properties of the 3D structures saved while designing the lesson. It encompasses organ
systems’ anatomical and functional relationships and integrates radiological data with the 3D structures.
The lessons are designed to provide clarity and understanding to students. The interactive 3D interface
is designed to provide an immersive experience for a large number of students. The features of the
anatomy viewer are discussed further in detail in ch. 6.
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Chapter 4

Data and Annotation

The human brain, a complex organ, is chosen as the anatomical structure to be taught. We aim to ex-
plore all aspects of neuroanatomy and help students thoroughly examine and study using 3D techniques.
In order to do so, we need to obtain 3D representations of brain structures. The first step is to collect 3D
volumetric data using various neuroimaging modalities, followed by annotating various structures of the
brain on the data available through segmentation approaches and using segmentation data to generate
3D models using modeling techniques.

4.1 Data

With various neuroimaging modalities available such as T1, FLAIR MRI, DTI, and MRA, various
aspects of the brain, such as cortical structures, deep structures, white matter fibers, and blood vessels,
are represented in 3D volumes. They also allow for obtaining clinical case data to illustrate the reality
rather than the fabricated 3D brain. Naturally, using such data to create 3D representations is a pragmatic
approach.

Brain data of a volunteer from various modalities such as MRI, MRA, DTI, and MRV was obtained
by SCTIMST, Kerala. The images were acquired in DICOM format using Siemens Magnetom Avanto
Tim fit 1.5T scanner and are as follows :

1. Sagittal 3D SPGR , Dimensions: 512 x 512 x228 , Voxel Spacing : 0.5 x .5x 0.8 mm

2. Sagittal CUBE FLAIR, Dimensions :512 x 512 x 320 , Voxel Spacing : 0.48 x 0.48 x 0.59 mm

3. Axial FLAIR , Dimensions: 512 x 512 x 256, Voxel Spacing : 0.41 x 0.41 x 0.98 mm

4. Axial 3D TOF , Dimensions : 512 x 512 x 196 , Voxel Spacing : 0.42 x 0.42 x 0.6 mm

5. Venogram , Dimensions : 512 x 512 x 480 , Voxel Spacing : 0.46 x 0.46 x 0.7 mm

6. Coronal FLAIR , Dimensions : 512 x 512 x 260 , Voxel Spacing : 0.48 x 0.48 x 0.98 mm
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7. Axial DTI(64 Directions) , Dimensions : 256 x 256 x 3757 , Voxel Spacing : 1 x 1 x 2.49 mm

Among the high-resolution data acquired, Axial 3D TOF, Veinogram, Sagittal 3D SPGR, and
Axial DTI are used for further processing. The volumes are acquired simultaneously, so they
are already registered. They are resampled to 1x1x1 mm voxel spacing and converted to NIFTI
format.

4.2 Segmentation

Segmentation involves the extraction of regions of interest (ROIs) from the 3D image data we ob-
tained earlier, such as from Magnetic Resonance Imaging (MRI) or Magnetic Resonance Angiography
(MRA) scans. The segmentation can be done manually, semi-automatically, and automatically. It is a
crucial step in generating 3D models of various anatomical structures. The ROIs, in our case, are the
cortical and sub-cortical structures that need to be identified and annotated.

(a) (b)

Figure 4.1: (a) Manual segmentation of MRI data on ITKSnap (b) Semi-automatic segmentation of

blood vessels on CTA data

Depending on the anatomical area and imaging modality, numerous methodologies, toolboxes, and
algorithms are available for each kind of segmentation approach. Manual annotation is more accurate,
but the process is too tedious, while automatic segmentation methods are fast and effortless but are not
always feasible. It is critical to select a feasible and moderately accurate segmentation method so that
subsequent phases in the pipeline work effectively. In the case of the human brain, many automatic
segmentation methods are available for cortical and subcortical structure segmentation, which produce
reasonable results consistently. However, we employed manual segmentation when automatic segmen-
tation appeared insufficient for certain structures with complex geometries and a few other structures
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that were not available via the automatic segmentation technique we used. Semi-automatic methods
were also used for certain structures when manual segmentation was extremely tedious and the auto-
matic segmentation methods infeasible.

4.2.1 Automatic Segmentation

Automatic segmentation is the go-to method for obtaining a large number of brain structures in one
go. There are atlas-based automatic segmentation methods as well as deep learning based methods avail-
able for extracting cortical and sub-cortical structures of the brain. Our purpose is educational, where
the lessons created using 3D models would be configured and saved well before the classroom presenta-
tion. Since there is no time constraint and moderate accuracy is adequate, unlike for clinical diagnoses,
we use atlas-based segmentation methods, which are deemed fairly reliable in the case of segmentation
of major structures within the brain. The T1 MRI volume is used as its contrast and brightness is appro-
priate to extract structures of the brain. Two software tools are utilized for automatic segmentation

FreeSurfer, a popular and effective open source software tool 1 was used for analysis and segmentation
of neuroimaging data to obtain whole brain segmentation, including the most macroscopic structures
as well as get the surface representation of cerebral cortex. The whole brain segmentation method is
based on a probabilistic atlas. Segmentation of 40 structures per hemisphere was obtained, including the
subcortical structures. In addition, segmentation of hippocampal subfields was also acquired. Freesurfer
version 6.0 was used for this process. All the freesurfer algorithms work using commands in the bash
shell prompt or bash script. Appendix B contains additional information about Freesurfer.

While freesurfer is known for segmentation, an accurate cerebral cortex model was required. Brain-
suite2 [68], a suite of open-source software tools for analyzing magnetic resonance imaging (MRI) of
the human brain, was used for this purpose. One of the primary functions of BrainSuite is to extract
and parameterize the cerebral cortex’s inner and outer surfaces. Hence we used it to extract the Cerebral
Cortex (left and right). Appendix B contains additional information about Brainsuite.

4.2.2 Manual Segmentation

Some structures not present in the segmentation obtained using Freesurfer’s FSL toolbox were seg-
mented manually from the MRI. The structures whose segmentation was erroneous were either manually
segmented from scratch or corrected later using the software. The manual annotation from T1 MRI im-
ages was done using a free open source software ITK-SNAP3 [80] as shown in Fig. 4.1. The structures
that were manually segmented are the Optic globe, Optic tract, optic chiasm, Optic nerve, Mammillary

1http://surfer.nmr.mgh.harvard.edu/
2http://brainsuite.org/
3http://www.itksnap.org/
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Bodies, Interventricular foramen, Third ventricle-supra optic recess, pineal recess, pituitary stalk, pitu-
itary gland, thalamus, Aqueduct of Sylvius, Fourth Ventricle- foramen of Magendi, foramen of luschka,
pineal gland, Lateral ventricles, corpus Callosum. The lobes of the brain, i.e., frontal, parietal, occipital,
and temporal lobes, were also segmented manually.

4.2.3 Semi-Automatic Segmentation

Brain vasculature was extracted from MR Angiography data.MRA data highlights major blood ves-
sels. Veins were separately extracted from an MR Venogram. The annotation for arteries and veins
was obtained using a semi-automatic active contour segmentation method on ITKSnap. The threshold
was adjusted by visual analysis of the data and seed points were selected for precise vessel detection as
shown in Fig. 4.1

4.2.4 White Matter Tractography

Figure 4.2: Fiber tracking on DTI data in DSI Studio

White matter tracts illustrate the various connections within the brain. While T2W and FLAIR MRIs
contain some white matter information, DTI presents intricate details of the white matter fibers, which
are essential clinically in analyzing neuropsychological disorders. We use DSI studio 4, a tractography
software to extract white matter fibers as shown in Fig. 4.2. Using the DSI Studio, we employed both
manual fiber tracking using a priori anatomical knowledge of fibers and of complex automated fiber
tracking, which makes use of normalized anatomical atlases to generate tracts from DTI data. Some
of the tracts generated include corpus Callosum and tapetal fibers, corticospinal tracts, optic radiation
including Meyer’s loop, arcuate fasciculus, fornix, uncinate fasciculus, and superior longitudinal fasci-
culus.

4https://dsi-studio.labsolver.org/
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Chapter 5

Automatic Segmentation: A Method to remove size bias

5.1 Introduction

Subcortical brain structures include deep gray matter structures such as the putamen, thalamus, and
hippocampus. They play a pivotal role in activities such as memory, emotion, and hormone produc-
tion. Structural and functional abnormalities in subcortical regions are associated with degenerative
neurological disorders, including schizophrenia, depression, and Alzheimer’s disease[39]. Segment-
ing subcortical brain structures from Magnetic Resonance Images (MRI) is the first step to diagnosing
such disorders. Manual delineation of the structures from MRIs is still used in practice to get accurate
segmentation for this purpose. Getting expert marking for the structures is tedious, time-consuming,
and inter-rater variability also comes into play. Hence the need for automatic segmentation methods to
accurately segment the brain structures.

Segmentation is already a challenging task because of brain tissue ambiguity and data scarcity. In
addition, a performance bias can be observed in the segmentation results for bigger structures in many of
the proposed solutions, making subcortical segmentation doubly challenging since subcortical structures
vary widely in size. The possible factors behind this size bias include i) inconsistency in annotations
of large structures vs. small structures across subjects, as the former are easier to annotate compared to
the latter, ii) insufficient image resolution leading to more inaccurate boundaries for smaller structures,
and iii) learning both large and small structures from many (for the former) versus few (for the latter)
voxels is inefficient. While the first two issues cannot be resolved easily, the last one can be resolved
by taking a different approach. Towards this end, the proposed method addresses this issue by making
the network learn the structures from its local rather than global context, such as the whole brain image.
This should aid the network in focusing on each structure separately irrespective of their size, giving
an edge to smaller structures. Additionally, a pre-training step is proposed to learn tissue types to aid
in discriminating between tissue types, as the local context information alone can be inadequate for
efficient segmentation.
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5.2 Related Work

Sub-cortical structure segmentation is a widely exploited area by both computer vision and medical
image processing researchers. Few works are discussed here. Initial attempts were based on label
transfer [16, 79, 19]. Expectation Maximization of atlas based prior was used for sub-cortical structure
segmentation in [54]. Machine learning methods like SVM [32, 2], graph cut [78] were also used for
this purpose. Deformable models also became popular for sub-cortical structure segmentation [46, 25].
F-CNN based segmentation approach [67] was also tried for subcortical structure segmentation.

U-net based segmentation [58] built a new benchmark for the segmentation performance. U-net
architecture became popular in medical imaging mainly because of its good performance with limited
data in most cases. Many U-net variants were also introduced for this purpose such as [28, 82, 47, 7]
with reasonable improvements. A label refinement strategy with two concatenated U-nets was used in
[7] and [28] introduced competitive dense blocks and multi-slice information aggregation.[51] proposed
M-Net, a memory efficient method to represent 3D context information of a 2D slice. ψ-net [47] used a
densely convolutional LSTM module for selecting and enhancing features.

Although attention mechanisms have been studied widely for various computer vision tasks such
as classification, detection, segmentation, image captioning, and visual question answering, they have
gained popularity for medical image segmentation tasks only recently. Wang et al.[77] proposed the
Residual Attention Network, which uses self-attention to compute 3d attention maps. Hu et al.[30]
proposed a compact module squeeze and excitation, which is used to compute channel-wise attention.
Roy et al.[61] proposes the generation of separate spatial and channel attention maps, which leverages
both information while being computationally less expensive. Zhang et al. [81] introduce split attention
blocks, which apply channel wise attention on different network branches. These variants of attention
were used for subcortical segmentation in [76, 44]. Wang et al. [76] used squeeze and excitation block,
which emphasizes essential features. Lee et al. [44] proposed Split-Attention U-Net (SAU-Net), along
with pre-training and fine tuning.

5.3 Background

3D U-Net [6] based on the U-Net architecture [59] is utilized. It consists of an encoder and decoder
stage with 3D volume as input, each block using 3D operations like 3D convolution, 3D max pooling,
and 3D transpose convolution and skip connection between encoder and decoder block. The encoder
captures the context of the input volume, and it contracts at each stage. Decoder enables precise lo-
calization, and it expands at each stage. Encoder and decoder in U-Net are symmetrical and similar.
The introduction of skip connections leads to the recovery of fine-grained details for prediction. They
are used to pass features from the encoder path to the decoder path in order to recover spatial informa-
tion lost during down-sampling. Experiments are performed on variants of 3D U-Net like introducing
Residual Block[43] and Dense block[31] at each encoder-decoder level. Residual connections in the
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residual block help with the vanishing gradient problem. The dense block uses skip connections by
concatenating previous feature maps, which leads to extreme feature reusability. The implementation,
in each encoder level, consists of 2 layers, each layer containing a 3D convolution layer, followed by an
instance normalization layer and leaky relu.

5.3.1 Normalization

During training, the distribution of each layer’s input changes due to the change in parameters of
previous layers. This internal covariate shift is addressed by the normalization of the input of each layer.
Generally used normalization methods are batch normalization [33] and instance normalization [74]. In
the batch normalization method, the normalization step involves computation of the mean and variance
of the feature map along the (N, H, W) dimension, while in the Instance normalization method, the mean
and variance along (H, W) are computed. Normalization methods give us the advantage of using higher
learning rates while also acting as regularizers. Instance normalization makes the network agnostic to
the contrast in input volumes and works better with a smaller batch.

5.3.2 Activation Layer

After each convolution layer, the activation function is used to determine the activation of that neuron.
The common activation functions used are rectified linear unit (ReLU) [52, 71] and leaky rectified linear
unit (LeakyReLU) [49]. Nonsaturated activations like ReLU solves the problem of vanishing/exploding
gradient and improves convergence. It is also believed the reason for the superior performance of ReLU
is its sparsity. Leaky ReLU fixes the dying ReLU problem and speeds up the training. Mathematically
ReLU can be represented as,

f(x) =

x, x ≥ 0

0, x < 0
(5.1)

Leaky ReLU can be represented as,

f(x) =

x, x ≥ 0

x/a, x < 0
(5.2)

where a is a fixed parameter in range (1,∞).

5.3.3 Residual Block

With deeper networks, it is observed that accuracy saturates at a certain point and eventually de-
grades. During backpropagation, gradients are multiplied together. The gradient becomes vanishingly
small as we approach shallower layers of a deep network, and learning stops for those layers. In the
Residual block, instead of stacking a few layers directly to fit desired underlying mapping, a residual
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connection is added to layers 2-3 hops away to fit residual mapping. Backpropagation through this
identity function preserves the gradient as well. It is also easier to optimize residual mapping. Formally,

F(x) = H(x)− x (5.3)

where H(x) is the desired underlying mapping, F(x) is the mapping that stacked layers fit, with the
original mapping recast as F(x) + x.

5.3.4 Dense Block

It is desirable to pass low-level information between input and output directly. In Dense block,
maximum information flow between layers is achieved by direct connection of feature maps from one
layer to all subsequent layers via concatenation, unlike summation in residual blocks. This leads to
high feature reusability, boosting of feature propagation, mitigating the vanishing gradient problem, and
reduction in the number of parameters.

5.3.5 Channel Attention (Squeeze and Excitation block)

In deep convolutional neural networks, channels represent different convolutional filters that learn
various feature maps of input. Each of these feature maps contains information that has a different
magnitude of importance. The primary motivation behind channel attention is to prioritize specific
channels over others by scaling the more critical channels with higher values. Hu et al.[30] proposed a
compact squeeze and excitation module, which is one of the most widely used attention mechanisms.
Squeeze and excite block (SE block) consists of a squeeze module, excitation module, and scale module.
Global spatial information is encapsulated in a channel descriptor by aggregating information along
spatial dimensions by using pooling operations like global average pooling. sc ∈ RC represents average
pooled features and is calculated as:

sc = Asq(x) =
1

HxWxD

H∑
i=1

W∑
j=1

D∑
k=1

xc(i, j, k) (5.4)

where xc ∈ RHxWxD is the input feature map X = [x1, x2...xc].
The output of squeeze operation is then fed into a gating mechanism with 2 fully connected (FC)

layers one reduces the dimensionality with r is the reduction ratio, followed by ReLU and dimensionality
increasing layer, and finally a sigmoid activation function. The output is the channel attention map ec
computed as:

ec = Aex(s) = σ(W1δ(W2sc)) (5.5)

where σ denotes sigmoid function, δ denotes ReLU fucntion and W1 ∈ RC/r∗C , W2 ∈ RC∗C/r.
The final output of the block, X̃ = [x̃1, x̃2...x̃c], is obtained by rescaling the input feature map as:

x̃ = ecxc (5.6)
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5.4 Method

5.4.1 Proposed Method

The proposed method aims to focus on narrowing the disparity in performance between structures of
different sizes. To this end, we propose a 2 phase segmentation framework to reduce the size bias. The
two phases are:

1. Pre-training with Grey matter (GM), White matter (WM), Cerebrospinal fluid (CSF) segmentation

2. Sub-cortical segmentation with atlas-guided ROI extraction.

Figure 5.1: Proposed 2-phase training framework for sub-cortical structure segmentation. Phase 1: Pre-

training with tissue segmentation, Phase 2: Structure segmentation from the atlas guided 3D structure

ROI.

The two phases of training that have been proposed in the segmentation for any network are illus-
trated in Fig. 5.1.

5.4.1.1 Pre-training with tissue segmentation

There are three main tissue types in the brain Grey matter (GM), White matter (WM), and Cere-
brospinal fluid (CSF). Sub-cortical structures are Grey matter embedded in White matter deep inside
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the brain. Subsequently, tissue discrimination becomes an important aspect of sub-cortical structure
segmentation. Choosing tissue segmentation, i.e., segmentation of Grey matter, white matter, and cere-
brospinal fluid as a pre-training task helps the network learn to discriminate between the primary tissue
types in the brain, which in turn aids sub-cortical structure segmentation. In this pre-training phase, 3D
volume is fed to the network with GM, WM, and CSF labels as ground truth labels. These ground truth
labels are computed using FSL[34].

5.4.1.2 Atlas-guided ROI extraction

In this phase, weights of the previous phase are loaded as initial weights, and a rough ROI patch is
extracted for each of the sub-cortical structures and fed to the network with the structure labels as ground
truth. The output after this phase of training is the probability map for each structure. The probability
maps are then combined with maximum probability at each pixel to get the final segmentation map. The
motivation behind this strategy is to counteract the variability in sizes of the structures, and it ensures
that smaller structures get equal priority while training compared to methods that provide whole brain
volume input. In our experiments, the rough ROIs are extracted by an affine alignment of the atlas to the
MRI volume. A relaxation step (expanding ROI size by a few pixels) was done for each 3D ROI patch
to compensate for imprecise alignment and to prevent under-segmentation.

5.4.2 Loss function

Categorical cross Entropy is used as the loss function for phase 1. The Sum of unweighted soft dice
loss and categorical cross-entropy loss is utilized for training the model in phase 2. Categorical cross
entropy can be given as

Lce(p, g) = −
N∑
i

C∑
j

gi,j ∗ log(pi,j) (5.7)

Where sum runs over N voxels and C classes of predicted segmentation volume pi,j ∈ P and ground
truth volume gi,j ∈ G. Unweighted soft dice loss can be given as,

Ldice(p, g) = 1−
C∑
j

2
∑N

i pi,jgi,j + ε∑N
i p2i,j +

∑N
i g2i,j + ε

(5.8)

Where sum runs over N voxels and C classes of predicted segmentation volume pi,j ∈ P and ground
truth volume gi,j ∈ G. The ε term is used here to ensure the loss function stability by avoiding the
numerical issue of dividing by 0.

Final Loss for each structure ROI in phase 2 can be given as,

Lce+dice = Lce + Ldice (5.9)
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5.5 Dataset and Implementation details

5.5.1 Dataset description

Two publicly available datasets were used to perform experiments: IBSR [45], and MICCAI [42]
datasets with 18 and 35 volumes, respectively. Both these datasets provide labels for both cortical and
subcortical structures.

5.5.1.1 IBSR Dataset

The International Brain Segmentation Repository (IBSR) dataset1[45] has 18 volumes of 3D T1
weighted MR images.The voxel size in IBSR is variable, namely, 0.93×0.93×1.5 or 1×1×1.5. Manual
segmentation of 32 structures is provided by the Center for Morphometric Analysis at Massachusetts
General Hospital2.18 volumes are split into six folds with three images per fold. Training is done on
four folds; one fold is used for validation and the remaining fold for testing. Model training is done six
such that each image is used as a testing image once. For the final results averaging of results of all
folds (6x3) is done.

5.5.1.2 MICCAI dataset

This dataset contains 35 volumes of 3D T1 weighted MRI images, released for use in the MICCAI
2012 Grand Challenge and Workshop on Multi-Atlas Labeling[42]. It consists of 15 training images and
20 testing images. The original MRIs are from OASIS3 project. The voxel size is uniformly 1×1×1.25.
134 labels for each volume were provided by Neuromorphometrics, Inc4. 15 training images are split
into five folds with three images per fold. Training is done on four folds, and the remaining fold is used
for validation. Training all the folds gives five models, and we use it to test 20 test images. For final
results averaging of results of 100 test images(5x20) is done.

5.5.2 Pre-processing

The input volumes are resampled to a uniform voxel size of 1 × 1 × 1mm3 and histogram based
standardization is performed for each dataset. The subcortical region is smaller in brain MRI scans. For
training, following [41], center-cropped the MRI to a region of size 96x96x96 containing subcortical
structures for the pre-training step.

1http://www.nitrc.org/projects/ibsr
2http://www.cma.mgh.harvard.edu/
3http://www.oasis-brains.org/
4http://neuromorphometrics.com/
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5.5.3 Training details

3D U-Net based architectures with variants (Residual Blocks[43], Dense block[], SE block), with 3
encoder-decoder blocks and a bottleneck block is employed. Adam[37] optimizer is used with initial
learning rate 0.0001, β1 = 0.9 , β2 = 0.999 and weight decay of 0.001, trained for 400 epochs.
The code was implemented using PyTorch and training was done on NVIDIA GTX 2080 with 11GB
RAM. A fixed atlas5 [79, 3, 9, 8, 70, 17] was used for extracting ROIs in the training and testing
phases which is shown in Fig. 5.2. Implementation is available at https://github.com/mythri-venkat/
subcortical segmentation.

Figure 5.2: Atlas with subcortical structures annotations only

5.6 Experiments and Results

A 6-fold validation was done on the IBSR dataset, while a 5-fold validation was done for MICCAI,
and the results were averaged across all the folds for reporting. In order to understand the size induced
performance variations, analysis was done with a sizewise ordering of structures, i.e., structures are
divided into 4 classes: very small, medium, large, and very large. In terms of volume, these are ap-
proximately 4%, 20%, and 50% of the average size of the largest structure in the ’very large’ category
(namely the thalamus)

5.6.1 Evaluation Metrics

Quantitative evaluation of the above segmentation methods is done by the most commonly used
metric, which is Dice Similarity Coefficient(Dice) [].

5https://github.com/voxelmorph/voxelmorph
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Dice Similarity Coefficient(Dice) computes the overlap between the predicted segmentation result
and the ground truth:

Dice(P,G) =
2× |P ∩G|
|P |+ |G|

, (5.10)

Where P and G are predicted segmentation and ground truth, respectively, |P ∩G| denotes the number
of pixels in the overlapped region between predicted segmentation and ground truth while |P | + |G|
denotes pixels of both regions. Dice value varies between 0 and 1, where the former constitutes no
overlap, and the latter represents complete overlap with ground truth.

5.6.2 Ablation Studies

The performance of a Residual U-net with the proposed 2-phase training approach was assessed by
comparing against the traditional training with a whole volume. The obtained results are presented in
Table 5.1. Dice values are given for the structures at an individual and a group (sizewise) level.

In order to understand the contribution from each phase of training, ablation studies were done. The
three variants considered were: Segmenting after pre-training (PT), after ROI extraction (ROI), and with
the proposed 2-phase training. These were evaluated on the IBSR and MICCAI datasets, and the results
are reported in Table 5.1. Performance degradation of 22% is observed in the Dice value for the very
small structure group relative to the very large class group for baseline Res. U-net. The state of the art
(SOTA) ψ-net also reports a 17.6% deterioration [47] .

This underscores the need for developing a strategy to overcome size-specific performance varia-
tions. The Dice value for smaller structures in both datasets shows improvements with the proposed
modifications in training compared to the larger ones.

Another observation from Table 5.1 is that the improvement with the proposed method is significant
from both phases 1 and 2 for smaller structures compared to larger ones. Results for the MICCAI dataset
appear to be more influenced by pre-training and ROI-based training compared to IBSR. This is possibly
due to the difference in data quality.

In MICCAI (relative to the IBSR images), the voxel resolution in the axial direction is better; the
contrast between tissues and the quality of the image is also superior. Consequently, the proposed
method appears to boost segmentation performance in general with the quantum of boost being affected
by the data quality/resolution which is a fundamental issue for segmentation.
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IBSR Dataset MICCAI Dataset

Dice (Mean ± STD) Av. Improvement(%) Dice (Mean ± STD) Av. Improvement(%)

Left &

Right

Res. U-net

(baseline)
Proposed

PT&

ROI
PT ROI

Res. U-net

(baseline)
Proposed

PT&

ROI
PT ROI

Very Small

R.Accumbens 0.692 ± 0.045 0.734 ± 0.038 0.753 ± 0.094 0.784 ± 0.048

L.Accumbens 0.701 ± 0.052 0.736 ± 0.039
5.55 2.1 3.3

0.750 ± 0.074 0.781 ± 0.040
4.8 1.8 4.05

Medium

R.Amygdala 0.746 ± 0.042 0.768 ± 0.048 0.771 ± 0.050 0.823 ± 0.021

L.Amygdala 0.809 ± 0.066 0.763 ± 0.047 0.781 ± 0.042 0.816 ± 0.028

R.Pallidum 0.803 ± 0.027 0.828 ± 0.021 0.840 ± 0.085 0.875 ± 0.025

L.Pallidum 0.804 ± 0.022 0.834 ± 0.020

3.7 1.325 3.4

0.851 ± 0.067 0.876 ± 0.024

4.35 3.5 4.225

Large

R.Caudate 0.867± 0.016 0.875± 0.019 0.871 ± 0.09 0.877 ± 0.055

L.Caudate 0.868± 0.021 0.876± 0.02 0.861 ± 0.11 0.877 ± 0.044

R.Hippocampus 0.809 ± 0.021 0.825 ± 0.024 0.844 ± 0.026 0.865 ± 0.018

L.Hippocampus 0.808 ± 0.019 0.822 ± 0.022 0.848 ± 0.03 0.861 ± 0.025

R.Putamen 0.884 ± 0.016 0.894± 0.013 0.891 ± 0.063 0.908 ± 0.039

L.Putamen 0.884 ± 0.014 0.895 ± 0.011

1.3 0.533 0.617

0.894 ± 0.059 0.908 ± 0.030

1.56 0.5 1.45

Very Large

R.Thalamus 0.894 ± 0.008 0.906 ± 0.008 0.899 ± 0.036 0.915 ± 0.021

L.Thalamus 0.891 ± 0.008 0.903 ± 0.009
1.3 0.75 0.55

0.903 ± 0.033 0.912 ± 0.020
1.4 0.95 1.35

Av 3-14 0.832 ± 0.023 0.849 ± 0.022 0.855 ± 0.058 0.875 ± 0.029

Av. full 0.814 ± 0.027 0.834 ± 0.024 0.839 ± 0.061 0.862 ± 0.031

Table 5.1: Performance analysis of the proposed method. Dice scores averaged over 6 or 5 folds are

listed for a baseline Res. U-net and its variants: Trained with Proposed method, only pre-training (PT)

and only ROI training (ROI).
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Proposed Method
IBSR Dataset MICCAI Dataset

Dice(Mean±STD) Dice(Mean±STD)

U-Net 0.824 ± 0.02 0.852 ± 0.07

Res U-Net 0.833 ± 0.02 0.862 ± 0.03

Dense U-Net 0.831 ± 0.06 0.860 ± 0.07

SE Net 0.832 ± 0.06 0.859 ± 0.06

Table 5.2: Average performance of sub-cortical structure segmentation for all structures using proposed

method(PT+ROI) on various architectures on IBSR dataset and MICCAI dataset.

The proposed training strategy is agnostic to underlying deep learning architecture. Since the first
phase, which is pre-training for tissue segmentation, as well as the second phase of training the pre-
trained network with structure ROIs, can be applied to any network, we know the method is capable of
being generalized. In order to further assess the method, we apply both phases of the proposed training
regime to various U-Net variants such as U-Net, Residual U-Net, Dense U-Net, and SE Net (Squeeze
and Excitation block).

(a) (b)

Figure 5.3: Plots show the % improvement in the Dice score of structures of different sizes for the

proposed method on U-Net and Res. U-Net on (a) IBSR dataset (b)MICCAI dataset

The performance on IBSR and MICCAI data is shown in Table 5.2. The improvement in Dice scores
obtained for the different groups of structures is presented as a bar graph in Fig. 5.3. The improvement
in the performance of smaller structures is consistent for all architectures. The trend shows that the
boost in performance increases with a decrease in structure sizes, effectively reducing the performance
bias of the network due to variance in the size of structures.
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5.6.3 Qualitative Results

(a)

(b)

Figure 5.4: Qualitative results of the proposed method and its variants.Top to bottom: Coronal, Axial,

and sagittal slices. (a) IBSR dataset (b) MICCAI dataset
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Sample outputs of the proposed method with Res. U-Net for the IBSR dataset and MICCAI dataset
are shown in Fig. 5.4 for visual comparison, and it is observed that the labels obtained with the proposed
method are very close to the ground truth with smooth boundaries. Sample of coronal, axial, and sagittal
slices of the result of the proposed method (Res. U-Net) and its variants are also shown in Fig. 5.4 for
both IBSR and MICCAI datasets. We can observe visually that the result proposed method of combining
pre-training using tissue segmentation and ROI extraction is closer to the ground truth compared to only
pre-training or only ROI extraction. The same trend follows in qualitative comparison from Table 5.1;
it is due to the combined contribution of both the phases, pre-training, which helps the network to learn
tissue types, and the ROI extraction, which mitigates the size bias of the network to learn the different
structures.

5.6.4 Comparison with other methods

Finally, a comparison is made with baseline segmentation solutions (Freesurfer, FIRST), Res. U-net,
SE Net,[76] and the SOTA method (ψ-net [47]). Since the proposed method uses a batch size of 2 (due
to limitations in hardware) whereas a batch size of 8 was used to report results in [47], we retrained
the ψ-net with given hyperparameters on our hardware with a batch size of 2 for a fair comparison and
report those results (see Table ??). It is instructive that the proposed method of training for a standard
Res. U-net helps it match (and marginally outperform) even the SOTA solution, which employs a more
complex LSTM-based strategy.

Method Freesurfer FIRST Res. U-net SE Net [76] ψ-net[47]
Proposed
(Res U-Net)

Dice
(Mean±STD) 0.74 ± 0.11 0.808 ± 0.08 0.811 ± 0.03 0.812 ± 0.07 0.821 ± 0.03 0.833 ± 0.02

Table 5.3: Comparison of average performance of sub-cortical structure segmentation for all struc-
tures between standard (available in toolboxes),state of the art solutions and proposed method on IBSR
dataset.

Method Freesurfer FIRST Res. U-net SE Net [76] ψ-net[47]
Proposed
(Res U-Net)

Dice
(Mean±STD) 0.725 ± 0.13 0.799 ± 0.09 0.839 ± 0.06 0.828 ± 0.07 0.842 ± 0.05 0.862 ± 0.03

Table 5.4: Comparison of average performance of sub-cortical structure segmentation for all structures
between standard (available in toolboxes),state of the art solutions and proposed method on MICCAI
dataset.
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5.7 Discussion and Conclusion

A novel method was proposed to remove the size bias in sub-cortical structure segmentation by
helping the network to learn to discriminate between the tissue types, then do a focused segmentation by
supplying the network with the structure ROIs. With this simple support, the network performed better
for the sub-cortical structure segmentation. The proposed modification on different networks shows a
consistent improvement across datasets as well as network architectures. The proposed framework has
the potential for generalization for other anatomy segmentation problems also where the structures vary
widely in size. Integrating the proposed framework into the general segmentation rather than training in
two phases and without additional annotation such as GM, WM, CSF labels, and atlas is also an avenue
to explore.
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Chapter 6

Solution Implementation

6.1 Authoring Tool

The authoring tool is created to manage numerous anatomical areas of interest since the human brain
has many functioning substructures, each being quite complex. With the authoring tool, lessons can be
created to show certain anatomical structures’ functioning and their spatial relationships. The 3D models
obtained from the clinical data through segmentation and 3D modeling are loaded into the authoring tool
to create a lesson. A typical lesson is intended to demonstrate the functioning of a system in the human
brain. The authoring tool provides a user-friendly GUI for the anatomy instructors to create a lesson and
save it effortlessly. Each lesson can then be loaded by the anatomy viewer. The authoring tool was used
to design the lesson plans based on input from anatomy teachers at GMC, Kerala. The modules that
would benefit the most from the integration of the 3D anatomy viewer were determined based on GMC,
Kerala’s neuroanatomy curriculum. Basal Ganglia, optic Pathways, ventricles, thalamus, cerebrum,
sulci, and gyri are the recommended lessons. Refer to Appendix A for more images of the authoring
tool.

Figure 6.1: Authoring tool
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6.1.1 Lesson Creation Workflow

6.1.1.1 Loading 3D Models

The authoring tool is capable of loading 3D models like surface meshes and tractography files. The
browse button opens a file dialog. The users then pick out the directory which contains the 3D models.
It detects if a saved lesson is present, then populates the drop-down with all the lessons available. On
selection of particular lessons, the models, all the labels, and other settings of that lesson are loaded.

Figure 6.2: Flow diagram of loading models and setting structure properties

6.1.1.2 Structure Properties

The visual appearance of the 3D anatomical structures is essential for a seamless 3D effect. The
authoring tool provides various tools to manipulate the appearance of the structures, as shown in Fig.
6.2. They are:

1. Opacity: The opacity of the structures can be changed to give certain textures or to provide spatial
context for smaller structures present within bigger ones. A slider is given to control the opacity
of a structure. It ranges from 0 to 1. With zero being transparent and one being opaque. Multiple
structures can be selected at once, and their opacity varied at the same time.

2. Smoothness: Smoothing operation levels out the irregularities of the 3D structure, making the
cells of the surface mesh better shaped and the vertices more evenly distributed. This is done
iteratively for each vertex by finding modified coordinates based on its neighboring cells and
vertices. A slider is given to control the number of iterations in the smoothing process of a
structure. Its range is between 0 to 100. Increasing the slider value increases the smoothness.

3. Color: Anatomically different structures can be identified easily by coloring them differently.
Coloring structures have the advantage of helping students to commit features of structures and
their differences to memory. A color picker is given next to the entry of the structure in the table.
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4. Spatial Transformation: Spatial transformations like rotation, scaling, and translation can be
applied to individual structures manually in case the annotation obtained is incorrect. One must
toggle into transformation mode in order to do this. In this mode, the same actions that are used
to rotate, translate or zoom the global view can be used to apply the transformation to individual
structures.

6.1.1.3 Labeling

The 3D labels are dynamically positioned in a circular grid. This is achieved by taking the centroid
of all structures as the center of the circle and fixing all the labels at a certain distance(radius) from
the center. The 3D labels have 3 degrees of freedom, so they automatically adjust when the view is
transformed, and the text of the labels remains static.

To create a label, click on the label button on the side panel of the authoring tool, which opens up a
dialog where the text of the label is to be entered, then click on the screen where you intend the label to
be placed. Further adjustments can be made to the arrowhead by clicking and dragging it to place it in
the exact position. A labeled structure is shown in Fig. 6.10.

Figure 6.3: Flow diagram for labeling structures and organizing their hierarchy

6.1.1.4 Label Hierarchy

A lesson can consist of many structures, and each structure may contain substructures. There is a
need to label them. If all the labels of all the structures are visible at once, it can create confusion and
would look chaotic and complex. In order to simplify this, a label hierarchy is created. When a lesson is
loaded, only root-level labels are visible. Clicking on a particular label will turn on its descendent labels
so that one can focus on teaching that particular structure and its substructures; when done, clicking on
the label again will collapse all of its descendants. This is illustrated in Fig. 6.4(b).

To create a label hierarchy, click on the group labels button on the side panel of the authoring tool,
which opens up a window as shown in Fig. 6.4(a). This hierarchy works like a forest, which has many
n-ary trees. A root node can be created by selecting the root label from the combo box, selecting its
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children from the list, and clicking on the group button. By doing this repeatedly, one can create a
hierarchy of labels. The hierarchy is also visualized in the right panel as a treeview structure.

(a)

(b)

Figure 6.4: (a) Grouping label feature in authoring tool to create label hierarchy (b) Label Hierarchy of

Left ventricle

6.1.1.5 Anatomical Planes

To understand and describe anatomy in depth, it is vital to have a standard system. To avoid any
ambiguity that can arise when describing the location of structures, we have anatomical planes and
directions. Anatomical planes are 2D slices in 3D space that divide the human body orthogonally in
the 3D coordinate system. Both anatomically and radiologically, the basic planes are from top to down
(axial plane), from front to back (coronal plane), and from side to side (sagittal plane). In anatomy, we
have anatomical positions. They describe the position of a structure with respect to the other, or they
can be used as directions. We have, Anterior refers to the ‘front’, posterior refers to the ‘back’, Superior
refers to ‘higher’, inferior refers to ‘lower’, Medial means towards the midline, lateral means away
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from the midline. The authoring tool provides users with these views for instructors to consistently and
coherently describe anatomical structures as shown in fig 6.5

Figure 6.5: Anatomical planes and positions

6.1.1.6 Saving a Lesson

After designing the lesson, that is, deciding on the structures, relationships, labels, and other anno-
tations, the lesson can be saved. Clicking on the save button opens up a dialog box for the name of the
lesson. Other settings, such as MRI files and segmentation files for canonical planes, can also be set.

6.2 Anatomy Viewer

The anatomy viewer showcases the full-fledged lesson that the anatomy teachers designed and de-
veloped using the authoring tool. The viewer also integrates radiological data from MRI/CT scans with
3D anatomical structures. By generating a 3D scene of an anatomy lesson in stereo view, it creates an
immersive 3D experience for anatomy education. Given that we have a complete 3D model, the left
and right views are synthesized within the software using the camera model. It supports several forms
of stereo rendering, including anaglyph, crystal eyes, and others. We employ side-by-side horizontal
viewports of left and right views for stereo rendering since we use a dual projector polarised 3D con-
figuration, with each projector producing left and right views. Refer to Appendix A for images of the
anatomy viewer.
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6.2.1 Lesson Configuration

On the first launch, a few configurations need to be set. The viewer application asks for the path for
lessons that were created using the authoring tool. The other settings can be seen in Fig. 6.6.

Figure 6.6: Viewer configuration

The default settings for canonical, segmentation, and outline can be set on this window as well as the
display resolution of the projectors. Users can also modify the lesson path initially selected.

6.2.2 Lesson Launch

Figure 6.7: Lesson Launcher

After successfully setting the configurations, the main window of the anatomy viewer is revealed first
on every subsequent launch of the application. The launcher is shown in Fig. 6.7 The lessons created
and saved using the authoring tool are loaded and populated in the drop-down menu. Any lesson can be
chosen to launch from the drop-down menu by clicking on the load button. Default options for canonical,
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segmentation, and outline can be toggled. The configuration window can be opened by clicking on the
settings button.

6.2.3 3D Models and Views

6.2.3.1 3D View

In this view, which is seen in Fig. 6.8(a), the structures of the brain, which are modeled as 3D
meshes, are loaded and can be viewed with an optional outline or bounding box covering them. Here all
the structures selected for a particular lesson are visible. A lesson can have relative structures which can
be toggled on or off. The objective of relative structures is to help with visualizing the location of the
structure to be studied with respect to others. The cortex is generally visualized as a translucent object
so that it can encompass deeper structures, visualize the scale, and localize them. Each structure can
be selected by clicking on it and will be highlighted, and then one can delete the structure or change its
opacity. One can also view all the structures of the lesson and control their visibility. To get a better look
at structures one can rotate/pan/zoom the current view. Doing this gives a better handle on how it would
be to look at the actual brain in 3D. This view is a great tool for visualizing anatomy and understanding
spatial relationships.

(a) (b)

(c)

Figure 6.8: (a) 3D view of all cortical structures (b) Volume rendering of MR data (c) Canonical planes

overlayed on 3D structures
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6.2.3.2 Canonical Planes

Radiological anatomy is a crucial facet of learning and applying medical knowledge. Here, radiology
is tightly coupled with the 3D anatomical structures from their inception. We showcase that advantage
by blending MRI data and 3D surface meshes. This serves the dual purpose of introducing radiology
and providing the 2D context for 3D anatomy. We have a 3D viewport that covers part of the screen
and contains 3D meshes and the three canonical planes ie. axial, sagittal, and coronal planes. The
cross-sections of the MRI are visible on each plane and are superimposed on the 3D model of the brain
structures. The other part of the screen contains the 2D planes of the corresponding cross-section of
axial, sagittal, and coronal views. The corresponding annotations of the structures present are also
overlayed on the 2D cross-section of the MRIs. These can be seen in Fig. 6.8(c). Each plane can be
selected, and its corresponding slice can be changed, both the 3D plane and 2D planes are synchronized.
So changing the slice on one of them will result in changing the slice on the other.

6.2.3.3 Others

Volume rendering is used to visualize 3D volumetric data obtained using MRIs on a 2D display.
Volume ray casting is the technique used to achieve this rendering. Volume rendering of the brain using
MRI data can be seen in Fig. 6.8(b)

White matter fibers like corpus callosum that are specific to the neuroanatomy are extracted using
DSI Studio from DTI images. They can also be part of the lesson. Trackvis library is used to handle the
white matter fibers, which are saved as tractography files(track files, .trk files). The saved tractography
files which are basically white matter fibers, are modeled into a bundle of polylines that can be colored
with specific colors or randomly. Visualization of white matter fibers can be seen in Fig. 6.9(a,b).

(a) (b)

Figure 6.9: (a) 3D view of corpus callosum (b) white matter fibers of corpus callosum s
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6.2.4 Remote Companion Application

The remote companion application works as an accessory to the anatomy viewer. It provides a
smoother user-friendly interface and greater mobility within the classroom for instructors. The crucial
elements to be able to remotely control the viewer are the android application and the client on the
server where the viewer is present. The android application connects to the server via a network (Wi-Fi
/Bluetooth).

6.2.4.1 Linux Client

It acts as a web server. It communicates with the android application through Wi-Fi using unen-
crypted UDP messages. A trusted environment is necessary for the use of Wi-Fi. Bluetooth tethering
can also be used to create a mini network for communication with the desktop.

6.2.4.2 Android application

The android application provides ease of access to the anatomy viewer through a touch interface. It
needs to be connected to the server’s network. The various features of the android application are:

1. Lessons

2. Zoom

3. Rotation

(a) (b)

Figure 6.10: (a) A popup to connect to server’s network (b) Android application main view

6.3 Software Specifications

In order to support multiple platforms, the applications are developed in Python. PyQt 5 library
is used for User Inferace. The main rendering and stereo visualizations are done by VTK 9.1.0. The
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application is currently tested on Ubuntu 16.04 and Windows 10. Remote companion application also
uses Python and Java(Android). We have adapted Yoke 1 to suit the anatomy viewer. The code for the
anatomy viewer and the authoring tool is available at https://github.com/mythri-venkat/3DVisualizer.

6.4 System Assessment via User Feedback

The following feedback on the Anatomy Viewer and Authoring tool is provided by the Anatomy
Professor at Government Medical College, Kerala, Dr. Doris George Yohannan, MD.

• How do you think this system/tool will help you in teaching anatomy?

My perspective is this will help me show structures better in 3D space in a lecture classroom
scenario. The relationship between structures are something that is complex to be shown with 2D
diagrams alone. The best place we can teach anatomy is the dissection hall, but the limitation is
the limit to show a larger audience and cadaveric specimen availability.

• How do you think it will help the students learn anatomy?

As these are guided demonstrations, students can visualize structures much better with an in-
structor’s guidance. I feel students would also greatly benefit if they can manipulate things on
their own too, which can be a further futuristic extrapolation to this tool/system, which would
obviously require more facilities in the classroom

• Is an authoring tool helpful in developing more lessons?

Yes. I feel it helps us to customize and curate lessons. As mentioned, neuroanatomical spatial
relations are complex and often, structures spanning various conventional ”chapters” may need to
be visualized together (For instance, corpus callosum - a white matter anatomy structure, with the
ventricle; or internal capsule - another white matter structure, with the lentiform nucleus.)

1https://github.com/rmst/yoke
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Chapter 7

Discussion and Future Work

In this thesis, we discussed the inadequacies of existing methods of anatomy education. The limited
time and existing educations aids available such as a 2D atlas, PowerPoint, and cadavers, are insufficient
for the students to understand all the critical aspects of anatomy. In order to overcome these challenges,
we proposed a 3D interactive visualization solution that captures the students’ attention. The progress of
technology today makes 3D visualization inexpensive. Based on various other research, 3D interactive
visualization is effective and shows significant results in engaging students and helping them grasp
complex concepts of anatomy. Using the clinical cases illustrates the reality, and the inherent differences
in individual anatomy play a role in greater understanding. Using the data from clinical scanners makes
the process of creating 3D models effortless.

In the case of neuroimaging, we explored all kinds of clinical data that can be used to teach various
functional and structural aspects of the human brain. Based on the syllabus of GMC, Kerala, and
considering the limitations of the neuroimaging modalities, we came up with a cohesive set of lesson
plans and their contents with the help of anatomy instructors. These lessons demonstrate the versatility
of radiology in capturing tissues, fibers, and fluids within the brain and effectively integrating radiology
with anatomy. We also explored various manual, automatic, and semi-automatic segmentation methods
to obtain annotations using neuroimaging data collected.

In chapter 5, while further exploring automatic segmentation methods, we looked at the performance
bias towards larger subcortical structures such as the thalamus in many of the automatic segmentation
methods. We proposed a two-phased method to remove the size bias, which can be applied to any U-
Net based architecture. The method has a pre-training phase and an atlas-based ROI extraction phase
together to emphasize tissue differences and provide richer local and global information. Experiments
on the MICCAI and IBSR datasets showed significant improvement in the performance of smaller struc-
tures after applying the proposed framework to all variations of U-Net architecture. The network shows
only marginal performance improvement with only the pre-training phase, which helps the network dif-
ferentiate between tissues. At the same time, a significant performance boost is observed for smaller
structures with structure ROIs used for training the network from scratch; ROI extraction plays a vital
role in giving equal importance to smaller structures. Combining both phases shows maximum im-
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provement in the performance of small structures. A comparison of the proposed training framework on
MICCAI and IBSR datasets to many other segmentation methods shows that the performance in terms
of dice score is marginally better or on par with the current state-of-the-art methods on both the datasets.

Using the annotations obtained through the segmentation methods, we delved into the process of cre-
ating 3D models and sifted through various techniques of 3D modeling applicable to the neuroimaging
data. We proposed an authoring tool that uses the generated 3D models and mainly helps anatomy in-
structors create lessons based on their teaching preferences and the curriculum. The user interface of the
authoring tool is intended to offer various tools that simplify the process of developing and managing
lessons. We explored the 3D interactive anatomy viewer, which imports the lessons created using the
authoring tool and its capabilities in demonstrating the variety of ways it can render in stereo 3D struc-
tures, including surface meshes, streamlines, and volume rendering. We evaluated our solution through
feedback from one of our key end users, the anatomy instructors, on the usefulness of the authoring tool
for designing lessons and the anatomy viewer for instructing students.

7.0.1 Future work

In this thesis, we looked at an economical 3D interactive solution to improve the way anatomy
is taught presently to students in medical colleges. Deeper evaluation and analysis are necessary to
improve the way 3D technology can be used to teach anatomy intuitively and enhance student under-
standing. This can be done through a systematic study and demonstration of the application in a live
classroom, which is being organized and will take place soon. While we have showcased the use of the
3D solution for medical education, specifically in neuroanatomy, it is easily adaptable to other educa-
tional needs, to train professionals, in other large-scale demonstrations, etc.

We have successfully demonstrated the use of clinical data to obtain 3D models for anatomy teach-
ing. However, clinical scanners have limitations; not all anatomical data can be extracted using 3D
modalities. Other ways of obtaining microscopic anatomical details need to be explored.

The process of creating a lesson can be further streamlined, and the user experience of the inter-
active application can be improved based on the reviews from anatomy professors and students. The
framework can be extended to provide a suite of software tools to achieve an end-to-end solution for cre-
ating 3D models from a variety of segmentation methods, designing lessons, and achieving 3D anatomy
visualization.

In chapter 5 we proposed a method to remove size bias in subcortical structure segmentation. With
proposed changes to existing architecture, it can marginally outperform the original network and even
the state-of-the-art method in terms of dice coefficient. In the future, with the simplicity of the pro-
posed method, it can also be applied to other regions with similar performance biases between their
substructures due to their sizes. However, the pre-training step of segmenting tissues of the brain is only
specific to the brain, and generalized pre-training can be developed to compensate. The ROI extraction
step needs an atlas; while this boosted performance significantly, an automatic method to extract ROIs
would be a more generalizable solution, which has its challenges.
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and I. Agartz. Subcortical brain volumes relate to neurocognition in schizophrenia and bipolar disorder

and healthy controls. Progress in neuro-psychopharmacology and biological psychiatry, 35(4):1122–1130,

2011.

[28] L. Henschel, S. Conjeti, S. Estrada, K. Diers, B. Fischl, and M. Reuter. Fastsurfer - a fast and accurate deep

learning based neuroimaging pipeline. NeuroImage, 219:117012, 2020.

[29] G. V. Hirsch, C. M. Bauer, and L. B. Merabet. Using structural and functional brain imaging to uncover

how the brain adapts to blindness. Annals of neuroscience and psychology, 2, 2015.

[30] J. Hu, L. Shen, and G. Sun. Squeeze-and-excitation networks. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 7132–7141, 2018.

[31] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely connected convolutional networks. In

Proceedings of the IEEE conference on computer vision and pattern recognition, pages 4700–4708, 2017.

[32] L. Igual, J. Soliva, S. Escalera, R. Gimeno, O. Vilarroya, and P. Radeva. Automatic brain caudate nuclei seg-

mentation and classification in diagnostic of attention-deficit/hyperactivity disorder. Computerized medical

imaging and graphics : the official journal of the Computerized Medical Imaging Society, 36, 09 2012.

[33] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal

covariate shift. In International conference on machine learning, pages 448–456. PMLR, 2015.

[34] M. Jenkinson, C. F. Beckmann, T. E. Behrens, M. W. Woolrich, and S. M. Smith. Fsl. Neuroimage,

62(2):782–790, 2012.

[35] J. Jovicich, S. Czanner, D. Greve, E. Haley, A. van der Kouwe, R. Gollub, D. Kennedy, F. Schmitt, G. Brown,

J. MacFall, B. Fischl, and A. Dale. Reliability in multi-site structural mri studies: Effects of gradient non-

linearity correction on phantom and human data. NeuroImage, 30(2):436 – 443, 2006.

[36] A. W. Keedy, J. C. Durack, P. Sandhu, E. M. Chen, P. S. O’Sullivan, and R. S. Breiman. Comparison

of traditional methods with 3d computer models in the instruction of hepatobiliary anatomy. Anatomical

sciences education, 4(2):84–91, 2011.

[37] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,

2014.

54



[38] R. A. Kockro, C. Amaxopoulou, T. Killeen, W. Wagner, R. Reisch, E. Schwandt, A. Gutenberg, A. Giese,

E. Stofft, and A. T. Stadie. Stereoscopic neuroanatomy lectures using a three-dimensional virtual reality

environment. Annals of Anatomy-Anatomischer Anzeiger, 201:91–98, 2015.

[39] D. Koshiyama, M. Fukunaga, N. Okada, F. Yamashita, H. Yamamori, Y. Yasuda, M. Fujimoto, K. Ohi,

H. Fujino, Y. Watanabe, et al. Role of subcortical structures on cognitive and social function in schizophre-

nia. Scientific reports, 8(1):1–9, 2018.

[40] G. R. Kuperberg, M. Broome, P. K. McGuire, A. S. David, M. Eddy, F. Ozawa, D. Goff, W. C. West,

S. Williams, A. van der Kouwe, D. Salat, A. Dale, and B. Fischl. Regionally localized thinning of the

cerebral cortex in Schizophrenia. Archives of General Psychiatry, 60:878–888, 2003.

[41] K. Kushibar, S. Valverde, S. Gonzalez-Villa, J. Bernal, M. Cabezas, A. Oliver, and X. Lladó. Automated
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Appendix A

Images of our Solution

A.1 Photos of the Setup

(a)

(b)

Figure A.1: Images of 3D anatomy viewer projected on the silver screen, laptop, and tablet.
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(a) (b)

Figure A.2: (a) Zoomed-in view of the viewer on the silver screen (b) Dual projectors with polarizers

A.2 Images of the Authoring Tool and 3D Anatomy Viewer

Figure A.3: Authoring Tool
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Figure A.4: 3D Anatomy Viewer in normal mode

Figure A.5: 3D Anatomy Viewer in stereo mode
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Appendix B

Toolboxes

We use the following toolboxes during various stages in out pipeline:

1. FSL: We mainly use it to automatically segment over 40 cortical and sub-cortical brain structures
and conversion of data between different formats.

2. ITK-SNAP: We use it for semi-automatic and manual segmentation of structures and also to
generate 3D mesh (STL files) from any kind of segmentation.

3. BrainSuite: It is used for cortical surface extraction.

4. DSI Studio: It is used for manual and automatic fiber tracking of white matter fibers in DTI
images.

5. Blender: It is used to post-process 3D meshes.

B.1 Freesurfer (FSL)

FSL1 is a comprehensive library of analysis tools for FMRI, MRI, and DTI brain imaging data.
FreeSurfer is a set of automated tools for cortical and subcortical segmentation, reconstruction of the
cortical surface, and other tasks. It uses a probabilistic atlas and other procedures described in publica-
tions ([13, 24, 21, 18, 20, 35, 40, 60, 63, 65, 69, 66, 23, 10, 22, 26, 56, 55, 57]). The steps involved in
the automated segmentation are as follows: Motion correction and averaging of multiple volumetric T1
weighted images, Removal of non-brain tissue using a hybrid watershed/surface deformation procedure,
Automated Talairach transformation, segmentation of the subcortical white matter and deep gray mat-
ter volumetric structures, Intensity normalization, tessellation of the gray matter- white matter boundary
and automated topology correction, surface deformation following intensity gradients to optimally place
the gray/white and gray/cerebrospinal fluid borders at the location where the greatest shift in intensity
defines the transition to the other tissue class and finally followed by parcellation of the cerebral cortex
into units with respect to gyral and sulcal structure.

1http://surfer.nmr.mgh.harvard.edu/
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B.2 ITK-SNAP

ITK-SNAP2[80] is a software that is used to segment structures in 3D medical imaging. ITK-SNAP
offers semi-automatic segmentation based on active contour approaches, as well as manual delineation
and image navigation. ITK-SNAP provides several supporting utilities in addition to these fundamental
functionalities.

B.3 BrainSuite

BrainSuite3 [68] is a suite of open-source software tools for analyzing magnetic resonance imaging
(MRI) of the human brain. The primary functions of these tools are to extract and parameterize the
cerebral cortex’s inner and outer surfaces, segment and label gray and white matter regions, and analyze
diffusion imaging data. The steps involved in Cortical surface extraction are: Skull stripping, Nonuni-
formity correction, Tissue classification, Cerebrum labeling, Inner Cortical mask generation, Topology
correction, Inner cortical surface extraction, and Pial surface extraction.

B.4 DSI Studio

DSI Studio 4 is a tractography software that maps white matter fibers and connections in the brain
using deterministic fiber tracking methods. It is a blend of several diffusion MRI approaches, including
diffusion tensor imaging (DTI), generalized q-sampling imaging (GQI), q-space diffeomorphic recon-
struction (QSDR), diffusion MRI connectometry, and generalized deterministic fiber tracking.

B.5 Blender

Blender5 is a free and open-source 3D modeling and animation software. It encompasses the en-
tire 3D pipeline, including modeling, rigging, animation, simulation, rendering, compositing, motion
tracking, video editing, and game development.

2http://www.itksnap.org/
3http://brainsuite.org/
4https://dsi-studio.labsolver.org/
5https://www.blender.org/
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