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Abstract

Advertising is a part of marketing activity and brings awareness to potential viewers about the prod-
ucts/services. It helps businesses to increase sales and create a brand image of the products. Online
advertising is a form of advertising which uses the Internet to promote products/services to viewers.
With the proliferation of eCommerce, online advertising has become a popular mode of advertising. It
enables a higher reach of users at reduced costs. Search engine advertising, display advertising, social
media advertising, native advertising, video advertising, and email advertising are some of the modes of
online advertising. In this thesis, we have made an effort to improve display advertising.

Web banners or display advertising are important among the types of online advertising. Display
advertising mainly consists of visitors, advertisers, and the publisher. The publisher owns the website (a
collection of web pages). A web page contains ad slots. Advertisers are interested in placing the banners
in the ad slots to expose banners to potential users. Normally, given a website, several advertisers bid
for slots. Given the website, click stream data of user visits, and the demands of multiple advertisers
for user visits, the issue is to develop an approach to allocating ad slots so that the maximum number of
advertisers’ demands can be satisfied and the publisher’s revenue can be improved. The naive approach
suffers from the issues of ad repeatability and underutilization of slots. Existing works addressed this
problem by modeling it as an optimization problem by employing reinforcement learning and data
mining techniques. Also, in the literature, there is an effort to solve the problem by exploiting the
knowledge of coverage patterns and assuming a single slot per web page. However, there are multiple
slots per page in practice, and the existing approach can not be extended to a practical scenario.

In this thesis, we have tried to improve the existing coverage pattern-based approach, which has been
proposed by assuming a single slot per page by considering a practical scenario, i.e., by considering
multiple ad slots for each web page. As part of this effort, it was noted that the existing coverage pattern
algorithms are not scalable to very large-size click-stream transactions. So, in this thesis, to improve
the scalability of the existing approach, we have developed a distributed approach to mine coverage
patterns; next, we have proposed an ad slot allocation approach by considering multiple ad slots per
page.

In the proposed distributed coverage pattern mining (DCPM) approach, we employ a notion of the
summarized form of Inverse Transactional Database (ITD) and replicate it at every node. We also em-
ploy an efficient clustering-based method to distribute the computational load among the Worker nodes.
We have performed extensive experiments using two real-world datasets and one synthetic dataset. The
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results show that the proposed approach significantly improves the performance over the state-of-the-art
approaches in terms of execution time.

We have also proposed a framework for display advertising by considering multiple slots per page.
In this framework, we employ the DCPM approach and compute the ad-slot patterns ASPs. We then
calculate the impressions of each ASP and propose an efficient allocation approach to meet the advertiser
demand in the form of impressions. Our extensive performance evaluation using two real-time click-
stream datasets demonstrates the efficiency of the proposed framework in terms of improved publisher
revenue and reduced ad repeatability.

Ad revenue is vital for several e-commerce companies and revenue from display advertising is one of
the opportunities. We have proposed a scalable pattern mining approach to improve the publisher’s rev-
enue through display advertising. We hope that the proposed framework will facilitate the improvement
of the approaches that are being followed by display advertisement companies.
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Chapter 1

Introduction

Advertising plays a pivotal role in today’s business landscape, serving as an essential tool for organi-
zations to promote their products, services, and brand identities. It helps businesses connect with target
audiences, influence consumer behavior, and drive sales and business growth. The advertising industry
has witnessed a transformative journey, shifting from conventional physical media, such as billboards
and print publications, to embrace new technological horizons. As a medium, the internet has redefined
advertising over the past couple of decades through online advertising. In this thesis, we propose an
improved approach to improve display advertising, which is a type of online advertising.

In the rest of this chapter, we first briefly explain the different types of online advertising along with
research issues. Next, we explain display advertising and briefly describe the related work. Subse-
quently, we summarize the contributions and present the thesis organization.

1.1 Types of online advertising

The advertisers run campaigns on any one or simultaneously across all these types of online advertis-
ing. We discuss some of the important modes of online advertising: Search Engine Advertising (SEA),
Display Advertising, Social Media Advertising, Native Advertising, Video Advertising, and Email Ad-
vertising.

Search Engine Advertising (SEA): It represents a specialized subset of Search Engine Marketing
(SEM), wherein advertisers bid to place their ads on search engine results pages (SERPs) in response
to specific user queries [19] as shown in Figure 1.1. Predominantly utilizing a Pay-Per-Click (PPC)
model, SEA capitalizes on immediate visibility, ensuring that brands appear prominently during poten-
tial customers’ active searches. The essence of SEA lies in its targeted nature, ensuring high relevance
by matching ads to user-intent-driven queries.

The dynamic sphere of SEA invites numerous research issues. A prominent challenge revolves
around understanding and optimizing bid strategies in an auction environment, ensuring cost-effectiveness
while maximizing visibility [49]. Furthermore, deciphering the nuanced role of ad copy, landing page
relevance, and user behavior metrics in influencing the ’quality score’—a pivotal determinant in ad
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placements—remains a focal area of investigation. With the ubiquity of multi-device usage, understand-
ing cross-device conversions and attribution modeling further complicates SEA’s research spectrum.

Figure 1.1: Search Engine Advertising

Display Advertising: It employs visual graphics to promote brands on websites, applications, and
various digital platforms, encompassing formats such as banners, interstitials, and rich media [26] as
shown in Figure 1.2. Unlike search ads that cater to explicit user queries, display ads aim to capture
passive attention, creating brand awareness, and fostering recall. With the integration of multimedia
elements and interactivity, display ads strive to provide an informative and engaging user experience
across many digital landscapes.

The intricate matrix of display advertising poses numerous research conundrums. One primary area
of exploration is the efficacy of targeted versus non-targeted ads and how the incorporation of user data
influences ad performance [33]. Ad fatigue, resulting from repetitive exposure, challenges researchers
to discern optimal frequency caps. Additionally, with the increasing adoption of ad blockers, under-
standing the underlying causes of user aversion to display ads and devising strategies to circumvent this
issue are subjects of pressing academic interest.

Social Media Advertising: It has firmly established its place in the contemporary digital market-
ing paradigm, leveraging vast platforms to disseminate tailored messages to targeted audiences [29] as
shown in Figure 1.3. Through platforms like Facebook, Instagram, Twitter, and LinkedIn, brands can
engage consumers in interactive and personalized ways, building communities around products or ide-
ologies. Given social media’s two-way communication channel, advertisers can cultivate brand loyalty,
foster real-time engagement, and drive awareness and conversion with unparalleled granularity.

2



Figure 1.2: Display Engine Advertising

Despite its ubiquity and success, social media advertising presents a gamut of research challenges.
Central to academic discourse is understanding the determinants of user engagement and the efficacy
of paid versus organic reach [58]. With algorithmic changes in platforms influencing content visibility,
the intricacies of platform-specific advertising strategies and their alignment with user behavior and
preferences remain under the microscope. Furthermore, the continuous evolution of new formats, such
as ephemeral content and influencer collaborations, mandates research into their long-term viability and
impact on consumer perceptions.

Native Advertising An innovative approach within the digital marketing sphere, seamlessly inte-
grates promotional content into media platforms in a manner that aligns with the user experience, often
masquerading as editorial content [63] as shown in Figure 1.4. This subtle blend ensures that native ads
are less intrusive than traditional advertising formats, capitalizing on the user’s trust and engagement
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Figure 1.3: Social Media Advertising

with the platform. By matching the platform’s form, feel, and function, native advertising offers brands
an avenue to communicate with consumers without disrupting their online journey.

Delving into native advertising unfolds a suite of research challenges. One pivotal area of investiga-
tion concerns consumer recognition and discernment, exploring the potential for audience misinterpre-
tation and the ethical implications therein [11]. With the rise of programmatic buying, understanding the
algorithms that place native ads and ensuring content relevancy becomes essential. Moreover, measuring
the efficacy of native ads, given their non-traditional format, and quantifying metrics such as engage-
ment and trust in comparison to standard advertising methods, remain subjects of rigorous academic
exploration.

Video Advertising It has emerged as a dominant and compelling medium within the digital market-
ing ecosystem, harnessing dynamic visual content to engage audiences on platforms ranging from social
media to streaming services [1] as shown in Figure 1.5. Given its capacity to tell compelling stories and
create immersive experiences, video ads have proven effective in fostering brand awareness, generating
leads, and driving sales. This format leverages the synergy of audiovisual elements, positioning itself as
a powerful tool in a marketer’s arsenal, especially in an age where user attention spans are increasingly
fragmented.

The expanding terrain of video advertising presents several research challenges. Key areas of aca-
demic investigation encompass optimal video length in relation to user engagement, the efficacy of
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Figure 1.4: Native Advertising

in-stream versus out-stream ads, and the emergent role of interactive video ads in enhancing the user
experience [59]. With the proliferation of mobile devices, ensuring video content is optimized for vary-
ing screen sizes and resolutions becomes paramount. Moreover, understanding the intricate balance
between storytelling and direct promotion, and its impact on conversion rates, is an area of continuous
exploration.

Email Advertising Email advertising, often termed email marketing, remains an enduring and po-
tent instrument within the digital marketing domain, leveraging personalized content to communicate
directly with consumers in their inboxes [32] as shown in Figure 1.6. This channel allows brands to
curate targeted messages, fostering sustained engagement, and cultivating brand loyalty. Given its in-
herent opt-in nature, email advertising holds the advantage of addressing an audience that has already
expressed interest in the brand’s offerings, rendering it a valuable tool for nurturing leads and driving
conversions.

The realm of email advertising is not devoid of its research intricacies. Scholars are actively ex-
ploring the optimal frequency and timing of email dispatch to maximize open rates and avoid recipient
fatigue [40]. The increasing prevalence of mobile email access necessitates investigations into mobile-
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Figure 1.5: Video Advertising

optimized designs and the impact of interactive elements within email content. Furthermore, as con-
sumers become more privacy-conscious, research on the balance between personalization and privacy,
and the evolving regulations surrounding data usage in email marketing, gains prominence.

Figure 1.6: Email Advertising

Among these, Display advertising is one of the active and predominantly used mode of advertising.
We now present the details of display advertising.
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1.2 About Display advertising

Display advertising is a mode of online advertising in which the advertisements are displayed on
the web page. A web page contains a set of ad slots, where the advertisements can be placed. Basi-
cally, display advertisement consists of the following stakeholders: (i) visitors, (ii) advertisers, and (iii)
publishers. We now explain the role of each stakeholder along with their interests.

(i) Visitor: A visitor is a user who visits web pages. We assume that all the ad slots present on the web
page are viewed by the visitor when the visitor visits the web page. Therefore, the number of views
associated with an ad slot equals the number of visitors visiting the web page. The main aim of the
visitor would be to have a pleasant browsing experience in a given session and would get annoyed if
there is a repeated display of the same advertisements.

(ii) Advertiser: An advertiser is a person or company that advertises a product, service, or event as an
advertisement. Visitors visit the advertisement (ad slots) on the web page and the number of distinct
visits of the advertisement is referred to as impressions. The advertiser places one’s demand in the form
of impressions (number of distinct views).

(iii) Publisher: A publisher is a user who manages ad slots on web pages. The publisher allocates ad
slots to advertisements based on the demand for impressions. The publisher makes revenue by allocating
the ad slots to the advertiser based on the demand as per guaranteed contract norms. The guaranteed
contract norms for display advertising guarantee that the publisher meets the advertisers’ demand and
thus guarantees the corresponding views demanded. In this paper, we are considering the Cost Per
Impression (CPI) model, which is the most commonly used revenue model in display advertising.

One of the research issues in display advertising is efficient ad slot allocation. The problem of ad slot
allocation is as follows: Given a click-stream data set and a set of advertisers along with their demand,
the task of the publisher is to allocate a set of web pages to each advertiser such that the advertiser’s
demand is met and the publisher’s revenue is maximized. A rudimentary approach to solve this problem
includes (i) identification of all unique ad slots on the web pages and (ii) random allocation of ad slots
to each advertiser until one’s demand is met. However, such a rudimentary approach is less efficient for
the following reasons. Firstly, it degrades the visitor experience because there will be many repeating
advertisements on the web pages viewed by the visitor. For example, if a visitor is visiting three pages,
he/she may see the same ad on all pages. (Note that an ideal allocation approach should display a
different ad to the user on each page.) Secondly, it reduces the publisher’s revenue because one cannot
meet the required demand of advertisers due to the wastage of views caused by the repetition of user
visits. From this discussion, it is evident that the main aim of the publisher is to find the set of ad slots
such that the repeated user views of the advertisement are minimized, and distinct user views of the
advertisements/ad slots are maximized.

In the literature, the problem of display ad-slot allocation has been tackled through various ap-
proaches. The ad-slot allocation problem was modeled as an optimization problem and proposed optimal
or near-optimal solutions for the same[20, 21, 61]. Moreover, reinforcement learning-based techniques
were proposed in [2, 71, 35], which train the model through user-activity-based reinforcements. In
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addition, the authors in [31] proposed a data-mining-based framework to address the display ad-slot
allocation. However, the work proposed in [31] is limited to a single ad-slot per web page. In this thesis,
we propose an improved allocation approach by considering multiple ad-slots per web page.

1.3 Research gap and motivation

We explain the research gap in an elaborative manner.

• An effort has been made in [31] to address the ad-slot allocation problem in display advertising
scenarios. This approach proposes a coverage pattern-based approach to improve the ad-slot
allocation. However, the approach in [31] has been proposed by considering only one ad slot per
web page. The limitation is that, as we have multiple ad slots per page in practical scenarios, the
approach cannot be applied in practical scenarios.

• Another issue is that the existing coverage pattern mining is not scalable for transactional datasets
in which the number of items is large. In the clickstream datasets of a typical website, each record
contains the IDs of webpages a user visits. Overall, the number of items is relatively large, i.e.,
equal to the number of webpages on the website. The algorithm used in [31] is not scalable. In
another context, an effort is to investigate a scalable approach based on the MapReduce framework
in [47]. However, as the size of the transactional database (TDB) and the total number of items
in the display ad scenario are huge, the approach in [47] has not worked. Under MapReduce, it
has been observed that there is high data shuffling of a large number of candidate patterns at each
level among various machines in distributed systems.

Overall, we have proposed an approach to improve the scalability of the coverage pattern mining
approach and proposed a workable and practical ad allocation framework by considering multiple ad
slots per page.

1.4 Overview of the proposed approaches

As already mentioned, in this thesis, we propose a scalable and efficient distributed implementation
of the coverage pattern mining technique, referred to as the Distributed Coverage Pattern Mining DCPM
approach. Further, we investigate and introduce an Ad-slot allocation framework in display advertising
with multiple ad-slots per web page, which is quite scalable for large click-stream datasets by leveraging
the DCPM approach.

1.4.1 DCPM approach

Given a Transactional DataBase (TDB) over a set of items, a coverage pattern (CP) [53] is a set of
items or a pattern whose items cover a certain percentage of transactions in TDB. A coverage pattern
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is associated with Relative Frequency (RF), Coverage Support (CS), and Overlap Ratio (OR) measures
(the details of these measures will be provided in Section 3). Given TDB and user-specified CS, OR,
and RF constraints, the problem is to extract all CPs from TDB. In the literature, a level-wise candidate
generation approach, which we designate as Coverage Pattern Mining (CPM) algorithm, was proposed
in [53].

The existing CPM algorithm was proposed by considering a single machine using a level-wise can-
didate generation approach to extract CPs from the given TDB. Typically, the number of candidate
patterns at each level is very large. Given limited main memory and CPU power, computing and val-
idating such a huge number of candidate patterns on a single machine is very time-consuming. We
propose a Distributed Coverage Patterns Mining (DCPM) algorithm to improve the performance.

In this proposed approach, we employ the notion of an Inverse Transactional Database (ITD), a
vertical form of TDB, and replicate it at every machine in the distributed system. We then apply a
distributed implementation of the level-wise (CPM) algorithm. Moreover, we propose a clustering-
based method to distribute the task of extracting CPs among the worker nodes to validate candidate
patterns in an efficient manner. We have conducted a performance evaluation of the new proposed
approach using click-stream and real-time datasets. We observed that the DCPM approach performs
significantly better than the existing state-of-the-art approaches, both in terms of data shuffled across
machines and total execution times.

1.4.2 An efficient ad-slot allocation framework

Given a publisher, set W of web pages, set Φs of ad-slots, web-page to ad-slots mapping data M
and a set A of advertisers along with their demand in terms of impressions, the framework proposes an
efficient ad-slot allocation approach such that the total revenue generated for the publisher is maximized.

The proposed framework comprises three steps. First, we extract all the sets of ad-slot patterns
ASPs (a set of ad-slots) with an overlap of user views of an advertisement less than a certain threshold
value using the DCPM approach. In addition to the ad-slot patterns, we extract all the low-frequency ad-
slots (with a frequency less than a particular threshold, i.e., minRF). Second, we compute the number
of impressions associated with each ad-slot pattern. Third, we propose an efficient ad-slot allocation
strategy using binary search to allocate ad-slot patterns and low-frequency ad-slots to advertisers based
on demand.

1.5 Thesis Organization

The rest of the thesis is organized as follows:

• In Chapter 2, we discuss the literature review.

• In Chapter 3, we explain the background of coverage pattern mining.
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• In Chapter 4, we present the most efficient coverage pattern mining algorithm, i.e., the DCPM
algorithm, and show the enhancement in performance through experiments.

• In Chapter 5, we present the new ad-slot allocation approach for display advertising with multiple
ad slots per web page and present the experiments for the same

• In Chapter 6, we provide the summary of the thesis and discuss future research directions.
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Chapter 2

Related Work

In this chapter, we also discuss the related work on various parallel approaches in the field of pattern
mining. Further, we discuss the related work on ad-slot allocation in banner advertising. Lastly, we
present the related work on coverage patterns and various mining techniques and applications.

2.1 Parallel approaches in pattern mining

In the work [66], a method to optimize the Apriori algorithm using the Hadoop-MapReduce frame-
work is presented. By partitioning the dataset and distributing it across multiple nodes, the algorithm
achieves parallel and scalable processing. It employs a two-phase approach: local processing to identify
frequent itemsets and global merging, then pruning using a hash-based data structure.

The work in [28] presents an enhanced version of the Apriori algorithm that incorporates coding
techniques and the MapReduce framework. The objective is to optimize the performance of the algo-
rithm while addressing scalability and efficiency concerns. The proposed approach introduces coding
mechanisms to reduce intermediate data size and minimize the amount of data transferred during the
MapReduce process. Additionally, it utilizes the parallel processing capabilities of MapReduce for
efficient computation.

The work [13] focuses on addressing the challenges of mining frequent itemsets in large-scale
datasets. It proposes an efficient approach that leverages parallel processing and distributed comput-
ing techniques to handle big data. The authors propose an algorithm that partitions and distributes
the dataset across multiple nodes in a parallel computing environment. They utilize an optimized data
structure to store and process the itemsets, enabling efficient mining of frequent itemsets.

The authors in [16] propose an efficient approach called BIGMiner for mining frequent patterns in
large-scale datasets. It utilizes distributed computing to parallelize the mining process and introduces
optimizations such as data partitioning, pruning strategies, and memory management.

A method for efficiently mining fuzzy high-utility patterns in large datasets using the Hadoop frame-
work is proposed in [65]. It introduces a parallel algorithm that distributes the dataset across multiple
nodes in a Hadoop cluster, allowing for scalable processing. The method incorporates fuzzy extensions
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to high-utility pattern mining and employs pruning techniques and optimizations to enhance perfor-
mance.

The authors in [36] introduce a method for mining linguistic frequent patterns using a compressed
structure. The proposed approach aims to efficiently extract frequently occurring patterns in textual data.
It employs a compressed data structure to store linguistic patterns, reducing memory consumption and
improving processing speed. The method utilizes pattern growth techniques to mine frequent patterns
and incorporates pruning strategies to optimize the mining process.

The work in [44] introduces YAFIM, a parallel algorithm for frequent itemset mining utilizing
Apache Spark. YAFIM is designed to efficiently handle large-scale datasets by leveraging the dis-
tributed computing capabilities of Spark. The algorithm divides the dataset into partitions and performs
local mining on each partition, followed by combining the results to obtain the global frequent itemsets.
YAFIM incorporates optimizations such as pruning techniques and memory management strategies to
improve performance.

The authors of [67] present a parallel and improved version of the Apriori algorithm using the Spark
framework. The proposed algorithm, implemented on a distributed computing platform, enhances the
efficiency and scalability of frequent itemset mining. It utilizes Spark’s parallel processing capabilities
to divide the dataset into partitions, perform local mining on each partition, and combine the results to
obtain global frequent itemsets. The algorithm incorporates optimizations, such as candidate pruning
and memory management techniques, to improve performance.

In [27], authors introduce a distributed algorithm for frequent itemset mining using the Spark frame-
work. The proposed algorithm is designed to efficiently mine frequent itemsets from large-scale datasets
by leveraging Spark’s distributed computing capabilities. It divides the dataset into partitions and per-
forms parallel mining on each partition using the Apriori algorithm. The results from each partition are
combined to obtain the global frequent itemsets. To improve performance, the algorithm incorporates
optimizations such as pruning strategies and memory management techniques.

The work in [48] presents Adaptive-Miner, an efficient distributed algorithm for association rule min-
ing on the Spark framework. Adaptive-Miner is designed to handle large-scale datasets and leverage the
parallel processing capabilities of Spark. The algorithm partitions the dataset and performs distributed
mining on each partition using an adaptive strategy that dynamically adjusts the mining process based
on the characteristics of the data. It incorporates optimizations such as pruning techniques and memory
management strategies to enhance performance.

The work in [51] introduces HFIM, a hybrid frequent itemset mining algorithm designed for big
data processing using the Spark framework. HFIM leverages Spark’s parallel processing capabilities
to efficiently mine frequent item sets from large-scale datasets. The algorithm combines two mining
techniques, Apriori and FP-Growth, to balance memory usage and computational efficiency. It partitions
the dataset and performs parallel mining using a combination of the two techniques to extract frequent
itemsets. HFIM incorporates optimizations such as data compression and pruning strategies to improve
performance.
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The work in [47] introduces a MapReduce-based algorithm for efficient coverage pattern mining.
The algorithm is specifically designed to address the challenges posed by large-scale datasets. It lever-
ages the parallel processing capabilities of MapReduce to distribute the mining process across multiple
compute nodes, enabling faster computation and scalability. The algorithm partitions the dataset into
smaller segments, where each segment is processed independently by a MapReduce task. During the
Map phase, frequent itemsets are extracted from each segment, and in the Reduce phase, the results
are combined to generate the final coverage patterns. This parallel processing approach significantly
reduces the execution time compared to traditional sequential algorithms. The experimental evaluation
demonstrates the algorithm’s scalability and performance in handling large transaction databases.

2.2 Ad-slot allocation in banner advertising

Banner advertising is an effective way to generate revenue for website owners. However, the chal-
lenge arises when it comes to deciding which ad to display in which slot on a webpage. Ad-slot alloca-
tion is an important problem that has been addressed by several research papers over the past couple of
decades. This section summarizes some of the approaches proposed in the literature.

In the work [39], the researchers formulated the ad-slot allocation problem as an integer linear pro-
gram (ILP) and used a branch-and-price algorithm to solve it. Their approach can handle multiple
ad formats and constraints, such as frequency capping and targeting. They also proposed a heuristic
algorithm to solve the problem with large input size.

Authors in [12] explore the use of greedy bidding strategies in keyword auctions. The authors pro-
pose a mathematical framework for analyzing the auction dynamics and optimizing bidding decisions.
They consider keyword value, budget constraints, and ad rankings to develop novel greedy algorithms.
By leveraging these algorithms, advertisers can aim to maximize their utility in the auction. Through
mathematical analysis and empirical evaluations, the paper provides insights into the effectiveness of
the proposed bidding strategies in keyword auctions.

A game-theoretic approach was proposed to model the ad-slot allocation problem in [43]. They
formulated the problem as a non-cooperative game and used a Nash equilibrium solution concept to
allocate the ad slots. Their approach can handle dynamic bidding and changing market conditions.
They also proposed a simulation-based algorithm to test their approach and showed that it performs
well in practice.

The work in [24] proposes a budget-constrained ad-slot allocation algorithm that considers both the
expected revenue from displaying an ad in a slot and the cost of reserving the slot for the ad. They
modeled the problem as a mixed-integer linear program and used a column generation approach to
solve it. Their approach can handle multiple ad formats and constraints, such as budget constraints and
ad relevance. They also showed that their approach performs well in practice.

In [41], authors proposed a model that considers the relationship between the advertiser’s bid, the
click-through rate (CTR), and the resulting cost per click. They analyze the optimal bidding strategy for
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advertisers to maximize their utility and provide insights into the factors that influence CPC pricing. By
examining the mathematical formulation and logical reasoning behind CPC pricing, the paper offers a
comprehensive understanding of this pricing model in the context of display advertising.

A reinforcement learning algorithm to learn the optimal ad-slot allocation policy is proposed in
[64]. They used a deep Q-network to learn the optimal policy based on historical ad performance and
website visitor behavior. Their approach can handle multiple ad formats and dynamic changes in the ad
market. They also showed that their approach performs better than existing heuristics regarding revenue
generation.

In the work [72], researchers proposed a machine learning algorithm to predict the optimal ad-slot
allocation. They used a support vector regression algorithm to predict the click-through rate of each ad
in each slot and then allocated the slots based on the predicted click-through rates. Their approach can
handle multiple ad formats and dynamic changes in the ad market. They also showed that their approach
outperforms existing heuristics regarding revenue generation.

The work in [69] provides a comprehensive measurement and analysis of RTB systems. They con-
duct empirical studies and data analysis to examine various aspects of RTB, including bid landscape,
bidding strategies, and ad performance. Their findings offer valuable insights into the effectiveness and
dynamics of real-time bidding, contributing to a deeper understanding of this important aspect of online
advertising.

The work [6] addresses the problem of budget optimization in sponsored search. They propose a cen-
sored learning approach within Markov Decision Processes (MDPs) to allocate budgets and effectively
maximize performance in sponsored search advertising.

The authors in [10] explored the application of reinforcement learning in real-time bidding for dis-
play advertising. They propose a framework that leverages reinforcement learning techniques to opti-
mize bidding strategies in an online auction environment. Their approach considers factors such as user
profiles, ad characteristics, and historical bidding data to dynamically adapt bidding decisions. Exper-
imental results demonstrate the effectiveness of their approach in maximizing the expected utility and
improving performance in display advertising.

The work [73] introduced the idea of utilizing deep reinforcement learning to optimize online adver-
tising impressions within recommender systems. The model can effectively capture complex patterns
and representations from the available data by employing deep neural networks. The reinforcement
learning component enables the system to learn and adapt its advertising impression strategies based on
feedback and rewards received in real-time. This combination of deep reinforcement learning allows for
a dynamic and data-driven approach to improve the recommendation process and maximize the impact
of online advertising impressions.

The authors in [15] proposed an approach for ad-slot allocation in sponsored search that considers
both the ad’s relevance to the query and the willingness of the advertiser to pay for the ad. They modeled
the problem as a Markov decision process and used dynamic programming to find the optimal ad-slot
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allocation policy. Their approach is able to handle multiple ad formats and constraints, such as budget
constraints and ad relevance. They also showed that their approach performs well in practice.

The work in [62] proposed a hybrid genetic algorithm for ad-slot allocation that combines a local
search algorithm with a genetic algorithm. They used the local search algorithm to generate initial
solutions and the genetic algorithm to refine the solutions. Their approach is able to handle multiple
ad formats and constraints, such as budget constraints and ad relevance. They also showed that their
approach performs better than existing heuristics regarding revenue generation.

Work in [34] proposed a budget-constrained approach for ad-slot allocation that maximizes the ex-
pected revenue. They formulated the problem as an integer linear program and used a branch-and-bound
algorithm to solve it. Their approach takes into account the budget constraints of the advertisers and is
able to handle multiple ad formats.

The authors in [14] proposed a novel idea that involves modeling the bidding behavior of advertis-
ers as a reinforcement learning problem. Specifically, they formulate the bidding process as a Markov
Decision Process (MDP) and use value iteration to solve for the optimal bidding strategy. By consider-
ing factors such as historical bidding data, budget constraints, and expected rewards, they demonstrate
that reinforcement learning can effectively guide advertisers in making optimal bidding decisions in
sponsored searches. The mathematical formulation and solution approach of MDP and value itera-
tion provide a rigorous framework for understanding and optimizing advertiser behaviors in sponsored
search auctions.

In work [38], the authors investigate the challenge of designing auction mechanisms that consider
advertisers’ dual objectives and preferences for both visibility (views) and engagement (clicks). They
propose a novel auction framework that incorporates advertisers’ sensitivity to views and clicks, allow-
ing for a fair and efficient ad space allocation. Through theoretical analysis and simulations, the paper
sheds light on the trade-offs and complexities involved in designing auctions that cater to advertisers’
dual sensitivity, contributing valuable insights to the field of online advertising auctions.

The work in [17] introduces an approach for ad-slot allocation that uses deep reinforcement learning
to learn the optimal ad-slot allocation policy. They used a deep Q-network to learn the policy based
on historical ad performance and website visitor behavior. Their approach is able to handle multiple ad
formats and dynamic changes in the ad market. They also showed that their approach performs better
than existing heuristics in terms of revenue generation.

The authors in [68] proposed an approach for ad-slot allocation that uses a multi-objective genetic
algorithm to optimize both the revenue and the click-through rate of the ads. They modeled the problem
as a multi-objective optimization problem and used a genetic algorithm to find the Pareto-optimal solu-
tions. Their approach is able to handle multiple ad formats and constraints, such as budget constraints
and ad relevance. They also showed that their approach performs better than existing heuristics in terms
of revenue and click-through rate.
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2.3 Coverage Patterns

The notion of coverage was first introduced to mine interesting patterns called coverage patterns in
the literature by [53, 57]. The authors proposed an iterative algorithm called Coverage Pattern Mining
(CPM) to extract coverage patterns by leveraging the sorted closure property [37].

To address the limitations of the CPM approach, a novel technique known as Coverage Pattern with
Pattern Growth (CPPG) was proposed [55]. This approach introduces the concept of a ”non-overlap
projected database (NOPD)” to overcome the need for multiple scans of the database. By utilizing
the NOPD, CPPG recursively extracts CPs for each item. Additionally, the authors introduced the
notion of minimalCPs [56] and introduced the Enhanced Coverage Pattern Projected Growth (ECPPG)
algorithm to extract a minimal set of CPs.

In another study [60], researchers proposed a model for content-specific coverage patterns and an
associated extraction algorithm. Their approach focuses on filtering out non-potential coverage patterns
based on the semantics of the items in the database.

Exploiting the notion of overlap and coverage in coverage patterns, a framework for allocating ad-
vertisement slots in banner advertising (or display advertising) was proposed in [31]. The framework
involves extraction, ranking and allocation of web pages for advertising and has been shown to enhance
publisher’s revenue compared to other rudimentary approaches.

In the realm of sponsored search advertising, researchers explored a mechanism to enhance the
utilization of ad space for tail query keywords [9]. This approach creates an opportunity for advertisers
to bid on ”concepts” instead of keywords by utilizing level-wise coverage patterns to allocate incoming
search queries efficiently. Furthermore, an improved allocation framework incorporating coverage and
concept taxonomy was proposed in [7, 8]. Advertisers can bid on potential concepts in this framework,
leading to improved ad space utilization for tail queries.

Incremental approaches for efficiently mining coverage patterns when new databases are added have
been proposed [46]. In [30], a Comprehensive Coverage Pattern Mining (CCPM) approach for effi-
ciently extracting Coverage Patterns incrementally for more actions like set of transactions are deleted
only, and both sets of transactions are added and deleted from the original database. Additionally, a
parallel algorithm for extracting coverage patterns within the MapReduce framework was introduced
[47].

In the field of visibility mining, researchers introduced the notion of Multi-Location Visibility (MLV)
queries [23]. These queries aim to identify the top-k query locations that maximize the visibility of a
given target object. The proposed approach incorporates a portion-based transactional framework and a
coverage pattern-based mining algorithm to process MLV queries.
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2.4 Summary

In this chapter, we have explained all the existing work related to coverage pattern mining, parallel
pattern mining approaches, and ad-slot allocation approaches in banner advertising.

The proposed approaches in this thesis are different from the related work in the following manner.
In the field of coverage pattern mining, the idea of parallel implementation has only been explored in
[47]. The proposed approach is an improved approach over [47]. Also, no ad allocation framework has
been proposed in the literature by considering multiple slots per page.

In the next section, as a part of the background, we explain coverage pattern mining.

17



Chapter 3

Background

In this section, we provide details on the required background on coverage patterns for our proposed
approaches. We first start by presenting the model of coverage patterns, and related terminologies and
talk about the Coverage Pattern Mining (CPM) algorithm in detail.

3.1 Coverage patterns

3.1.1 Model of coverage patterns

Given a transactional database TDB, where each transaction is a subset of a set I of m items {i1, i2,
i3, . . ., im}. Each transaction T ∈ TDB has a unique identifier TID. Let T ik denotes the set of TIDs
in which item ik is present. Coverage patterns are characterized by the notions of relative frequency,
coverage support, and overlap ratio. We now define these parameters as follows.

Definition 1. Relative frequency The relative frequency of an item ik is the fraction of transactions
containing item ik to the total number of transactions in TDB. Formally, defined as follows:

RF (ik) =
Tik

TDB

Here, 0 ≤ RF (ik) ≤ 1. An item ik is considered as frequent if its RF (ik) ≥ minRF , where
minRF is the user-specified minimum Relative Frequency threshold. A pattern P is a subset of items
in I i.e., P ⊆ I, P={ip, iq, . . ., ir}, where 1 ≤ p, q, r ≤ m. The Coverage Set (CSet(P)) of a pattern P is
the set of all the transactions that contain at least one item from the pattern P i.e., CSet(P)=T ip ∪ T iq ∪
. . . ∪ T ir .

A pattern P is interesting when it covers more number of transactions in TDB. The measure of
coverage of TDB is represented by coverage support.

Definition 2. Coverage support The Coverage Support of a pattern P (CS(P)) is the ratio of the size
of CSet(P) to the size of TDB. Formally, defined as follows:
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CS(P ) =
CSet(P)

TDB

A pattern with high coverage may not be interesting if there is a large overlap among the transactions
covered by items in a pattern. In the literature, the concept of overlap between sets is most often
described using Euler diagrams [5]. Consider two sets A and B in a universe of objects. The overlap
of A and B is computed by A∩B

A∪B . However, this overlap does not satisfy downward closure property.
Therefore, the measure of overlap among the transactions covered by items in a pattern is captured by
overlap ratio metric. The overlap ratio helps in pruning the candidate patterns and identifying items
to be added to a pattern such that the coverage support increases significantly. Given a pattern P, the
notion of overlap ratio of P satisfies the sorted closure property [37] when the items in P are sorted in
decreasing order of their relative frequencies i.e., RF (ip) ≥ RF (iq) ≥ . . . ≥ RF (ir).

Definition 3. Overlap ratio The Overlap Ratio of a pattern P (OR(P)) is the ratio of the number
of transactions that are common between CSet(P−ir) and T ir to the number of transactions in T ir .
Formally, defined as follows:

OR(P ) =
CSet(P-ir) ∩ T ir

Tir

The computation of the overlap ratio of a pattern is an iterative process. To compute the overlap ratio
of a pattern X with l items, first, we need to compute the overlap ratio of pattern X with (l − 1) items
(without the last item).

A high value of coverage support indicates more number of transactions and a low value of overlap
ratio means less repetitions among the transactions covered. A pattern is interesting if its coverage sup-
port is greater than or equal to the user-specified minimum Coverage Support threshold value (minCS)
and its overlap ratio is less than or equal to the user-specified maximum Overlap Ratio threshold value
(maxOR). Given the values of minRF, minCS and maxOR, a pattern P={ip, iq, . . ., ir} is considered as
a coverage pattern if RF(ik)≥ minRF ∀ ik ∈ P , CS(P)≥ minCS and OR(P)≤ maxOR. We now explain
the method to compute coverage support and overlap ratio as follows.

Consider a pattern X={a, d, e} sorted in decreasing order of their RF values. From dataset shown
in Figure 3.1, the RF values of a, d, and e are 0.5, 0.4 and 0.4 respectively. The cover set of X ,
CSet(X)={1,2,3,4,5,6,7,8,9,10}. The coverage support of X , CS(X)=CSet(X)

TDB =10
10=1.0. The com-

putation of the overlap ratio of a pattern is an iterative process. To compute the overlap ratio of X={a,
d, e}, first, we need to compute the overlap ratio of its sub-patternX

′
={a, d}. The overlap ratio of aX

′
,

OR(X
′
)=CSet(a) ∩T d

Td = 1
4 = 0.25. Next, the overlap ratio ofX ,OR(X)= (CSet(a) ∪CSet(d)) ∩ T e

Te

= CSet(X- {e}) ∩T e

Te =2
4 = 0.5. Given the values of minRF = 0.4, minCS = 0.7 and maxOR=0.5,

the pattern X = {a, d, e} is an coverage pattern.
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TID

Items a,b,c a,c,e a,c,e a,c,d b,d,f b,d b,d b,e b,e a,b

1 2 3 4 5 6 7 8 9 10

Figure 3.1: Sample transactional database (TDB).

3.1.2 Coverage pattern mining algorithm CPM

We now present a level-wise apriori-based coverage pattern mining algorithm proposed in [54],
which exploits the sorted closure property of overlap ratio for efficient pruning of candidate patterns.

Given a transactional database TDB with 10 transactions containing items set I={a,b,c,d,e,f} as
depicted in Figure 3.1. Let the user-specified parameters be minRF=0.4, minCS=0.7 and maxOR=0.5.
We present the coverage pattern mining algorithm with a working example.
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Figure 3.2: Coverage pattern mining algorithm working example for minRF=0.4, minCS=0.7 and
maxOR=0.5.
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The coverage pattern mining algorithm is an apriori kind of level-wise approach, where patterns of
size k patterns were generated from the non-overlap patterns of size k-1. Let Ck, NOk, and Lk denote
the k-size candidate set, non-overlap pattern set, and coverage pattern set respectively. The algorithm
begins by scanning the transactional database and extracts a set of all candidate items C1 along with
their relative frequencies. The set of items that satisfy minRF is termed as non-overlap patterns of size
1 (NO1). The set of items that satisfy the minCS constraint are designated as coverage patterns of
size 1 (L1) as depicted in Figure 3.2 Table C1, NO1 and L1. In the next step, NO1 as a seed set,
the algorithm generates the candidate pattern set C2 by executing a self-join operation over NO1, i.e
C2=NO1 ./ NO1. From C2, the patterns that satisfy maxOR constraint are considered as 2-size non-
overlap pattern set NO2 and that satisfy maxOR and minCS are considered as 2-size coverage pattern
set L2 as depicted in Figure 3.2 Table C2, NO2 and L2. Next, the sets C3, NO3 and L3 are generated
in a similar method as depicted in Figure 3.2 Table C3, NO3 and L3. Here, NO3 and L3 are the
same because there is no further generation of the candidate set and the algorithm stops. Normally, at
each k-stage, there are two phases consisting of join phase and prune phase. In the joining phase, the
candidate set was generated and in the pruning phase, the set of candidate patterns that do not satisfy
maxOR threshold was pruned. The coverage pattern mining algorithm terminates when there are no non-
overlap patterns or no candidate patterns generated. This algorithm employs bit strings representation
of patterns, which replaces expensive set-based computation of coverage support and overlap ratio with
simple and relatively faster bit-wise AND and OR operations.

In addition to that, a pattern growth-based coverage pattern mining technique, the Coverage Pattern
Projected Growth (CPPG) algorithm [55] was developed, which is an improved method that leverages
the concept of non-overlap pattern projection. Lastly, researchers have also proposed the Enhanced
Coverage Pattern Projected Growth Method (ECPPG) in [56] to enhance further the performance of
CPPG by utilizing minimal coverage pattern and exploiting the upward closure property to avoid the
computation of unnecessary projections.

3.2 Summary

In this chapter we have presented the background information related to coverage patterns and ad-
slot allocation in banner advertising. We also presented the problem of coverage patterns and coverage
algorithms for efficient extraction of coverage patterns from flat transactional datasets. In the next
chapter, we present an efficient distributed coverage pattern mining algorithm
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Chapter 4

Distributed coverage pattern mining

This chapter presents an efficient distributed pattern mining approach DCPM to extract coverage
patterns from transactional data sets. After the introduction, we discuss the basic idea of the approach
and then present our proposed approach DCPM. We then run an illustration to explain the working of
the approach. Lastly, we present the performance evaluation of our approach with existing methods on
both synthetic and real click-stream data sets.

4.1 Introduction

Notably, the existing CPM algorithm [53] was proposed by considering a single machine, using a
level-wise candidate generation approach to extract CPs from the given TDB. Typically, the number of
candidate patterns at each level is enormous. Given limited main memory and CPU power, computing
and validating such a massive number of candidate patterns on a single machine is very time-consuming.

In [47], an effort has been made to employ a MapReduce paradigm to compute CPs. In this approach,
the TDB is partitioned among the participant sites. As the size of the TDB and the number of items
increase, this approach would encounter performance problems because a large number of candidate
patterns are to be transmitted at each level. In the literature, the notion of ITD is employed for extract-
ing frequent patterns by the ECLAT [42] approach, which extracts frequent item sets in a depth-first
search manner. An effort has been made to propose a distributed ECLAT [45, 52] based on the Spark
framework. The notion of ITD is employed in ECLAT to improve the performance of extracting fre-
quent item sets by computing and validating the frequent item sets in a distributed manner. So far, the
notion of ITD has not been extended to extract CPs.

Considering the challenges mentioned above in the existing coverage pattern mining approaches, we
propose an efficient Distributed Coverage Patterns Mining (DCPM) algorithm. In this approach, we
employ the notion of Inverse Transactional Database (ITD), a vertical form of TDB, and replicate it at
every node. Moreover, we propose a clustering-based method to distribute the task of extracting CPs
among the worker nodes. Notably, the performance could be significantly improved by replicating TDB
using the notion of ITD and employing a clustering-based approach to compute and validate candidate
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patterns in a distributed manner. The results of the extensive performance study on both real-world and
synthetic datasets show that the performance of the proposed approach significantly improves over the
state-of-the-art approaches in terms of execution time and data shuffled across nodes.

4.2 Basic Idea

In the centralized CPM algorithm, candidate patterns are generated at each level. These candidate
patterns are validated by accessing the entire TDB. To improve the performance, we incorporate the
following ideas in the proposed Distributed CPM (DCPM) approach.

First, we efficiently distribute the TDB by computing the Inverted Transactional Database (ITD),
which is a vertical form of the database, where each item is associated with a set of transaction identifiers
to which it belongs. The ITD constitutes the database of all items, which satisfies theminRF threshold.
As a result, a reduced ITD is replicated to each node. Second, at each iteration, we distribute theNOPs
in a balanced manner. While distributing, we group NOPs, which differ only in the last item, and send
the group to each node. With this, the computation of coverage support of a given candidate pattern
can exploit the reuse at the local node. For example, if {a,b,c} and {a,b,d} are candidate patterns, the
coverage set of {a,b}, which is being calculated while computing the coverage of {a,b,c} can be re-used
to calculate the coverage of {a,b,d}. Moreover, significant savings in the transmission cost is achieved
due to sending a group of candidate patterns in a clustered form instead of individual candidate patterns.

The overview of the proposed DCPM approach is as follows. We model the given transactional
dataset into ITD and broadcast it to all Worker nodes. Each item in the ITD that satisfies the minRF
constraint forms the first level NOPs, and items that meet the minCS constraint form the coverage
patterns. For the second level iteration, we distribute the first levelNOPs and compute the second level
NOPs by joining the first level NOPs with corresponding lesser frequent items in the ITD. From the
next level onwards, the NOP clusters from the previous level are distributed, and next-level NOPs
and CPs are computed by utilizing the ITD.

4.3 Proposed Approach

We first present the terminologies used and then introduce the cluster data structure to explain the
proposed approach.

4.3.1 Terminologies

Definition 4. Inverted Transactional Database (ITD) Given a TDB over a set I of items, ITD is a list
of the form < x, L(x) >, where x ∈ I and L(x) is a set of TIDs in which the item x belongs.
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Definition 5. Penultimate Prefix (PP) Consider a pattern X={ip, iq,. . ., ir}, where ‖T ip‖ ≥ ‖T iq‖ ≥
. . . ≥ ‖T ir‖. The penultimate prefix of a pattern X , which we refer to as PP (X), is equal to the set of
items excluding the last item ir, i.e., PP (X) = X − {ir}.

Definition 6. Penultimate Prefix Cluster (PPC) Consider a set S of patterns of equal size and each
pattern X ∈ S is of the form X={ip, iq,. . ., ir}, where ‖T ip‖ ≥ ‖T iq‖ ≥ . . . ≥ ‖T ir‖. Consider
that all patterns in S have a common PP . Then, the Penultimate Prefix Cluster of S, which we refer
to as PPC(X), is equal to < CPP , LLI >, where set CPP is the common penultimate prefix, which
contains the set of items in PP and set LLI is the list of last items, which contains the last item of each
pattern in S.

4.3.2 DCPM approach

Given a transactional dataset TDB, number of machines N , minRF , minCS, and maxOR, the
proposed DCPM approach extracts all coverage patterns from TDB in a distributed environment. We
adopt a Master-Slave architecture for the distributed environment. We designate one of the nodes as the
Master node and the remaining nodes as Worker nodes. The Master node receives the input, distributes
it among the Workers, and coordinates the computation. The computation is carried out in an iterative
manner starting from the first level (k = 1). The Master terminates the computation when there are no
more NOPs or candidate patterns at the given level.

We explain the procedures followed by both Master and Worker for the first iteration, second itera-
tion, and other iterations. The steps of DCPM at level k = 1, 2, and beyond 2 for Master and Worker are
provided in Algorithm 1 and Algorithm 2 respectively.

(i) First level (k=1): This level involves computation of inverse transactional database ITD, NOP1 and
CP1 (1-sized NOPs and CPs). (At k = 1, the algorithm for Master is given in Algorithm 1 and the
algorithm for Worker is given in Algorithm 2)

Master: Master distributes the TDB among N Worker nodes equally, i.e., each Worker receives a
total number of TDB

N transactions to compute ITD.

Worker: Worker receives a TDB partition and computes the partial ITD of the TDB partition
received, and returns it to the Master.

Master: The Master receives all the partial ITDs from the Workers and merges them to compute
the final ITD. Next, NOP1 and CP1 are computed by comparing the RF of the items in the ITD with
minRF and minCS respectively. The items in the ITD, which have lesser frequency values than
minRF are pruned. The resultant ITD is then sorted in decreasing order of RF and broadcasted to all
the Workers for further levels.

Worker: It receives the final ITD and saves it.
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Algorithm 1 Master()

Variables: N : Number of Worker nodes, NOPk: Set of k-size non-overlap patterns, CPk: Set of
k-size coverage patterns, PPC: Penultimate Prefix Cluster, ITD: Inverse Transactional Database,
CPP : Common Penultimate Prefix, LLI: List of Last Items.

k=1 (First Level)
1: Partition the dataset into N equal parts
2: Distribute the N partitions among N Workers
3: Collect Partial ITD from all the Workers
4: Merge all the partial ITDs and sort it in decreasing order based on the item RF.
5: Prune items in the ITD based on minRF constraint
6: Compute NOP1, CP1 from ITD
7: Broadcast ITD to all nodes

k=2 (Second Level)
1: Distribute NOP1 among N Workers
2: Collect partial NOP2 from each Worker . Items in NOP2 are modeled in the form of PPC
3: Merge all partial NOP2 to form the complete NOP2

4: Compute CP2 by filtering patterns in NOP2 with minCS threshold.
k>2 (Beyond Second Level)

1: Distribute the PPCs in NOPk−1 among N Workers
2: Recieve partial NOPk from all the Workers . Items in NOPk are modeled in the form of set of
PPC

3: Merge all the partial NOPk to form the complete NOPk

4: Compute CPk by filtering the patterns in NOPk that satisfy the minCS threshold to obtain CPk

Termination condition: The Master terminates the procedure at level k when either NOPk = {φ} or
the total number of (k + 1) size candidate patterns = 0.

(ii) Second level (k=2): In this level, we compute 2-size NOPs and CPs from NOP1 received from
the first level. (At k = 2, the algorithm for Master is given in Algorithm 1, and the algorithm for Worker
is given in Algorithm 2.)

Master: Master distributes NOP1 among Workers such that each Worker receives only one item in
NOP1. The Master continues to assign the remaining items in the NOP1 to Workers upon completion
of the assigned task. The assignment process continues till all of the items in NOP1 are exhausted.

Worker: The Worker receives one item from NOP1 say x. The Worker joins x with an item in
ITD, say y, such that RF (x) ≥ RF (y) and forms a 2-size candidate pattern {x, y}. The generated
candidate pattern {x, y} is said to be a 2-size NOP when it satisfies the maxOR constraint. Note that
all the lesser frequent items w.r.t. item x will be after the position of x in ITD as the ITD is sorted
in decreasing order of RF. The Worker utilizes the ITD to compute the OR and CS for each candidate
pattern. The computedNOPs forms a set of PPCs (Refer to the definition of PPC from Definition 6).
The computed CS value of a pattern is attached with each NOP . The final set of NOPs, along with
their respective CS value, is sent to the Master.
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Algorithm 2 Worker()

Variables: N : Number of Worker nodes, NOPk: Set of k-size non-overlap patterns, CPk: Set of
k-size coverage patterns, PPC: Penultimate Prefix Cluster, ITD: Inverse Transactional Database,
CPP : Common Penultimate Prefix, LLI: List of Last Items.

k=1 (First Level)
1: Receive partial TDB from the Master
2: Compute partial ITD from the partial TDB
3: Send the partial ITD to the Master
4: Receive final merged ITD from Master
5: Store the ITD for further levels

k=2 (Second Level)
1: Receive partial NOP1 from the Master
2: for all items i in partial NOP1 do
3: Join item iwith items in partialNOP1 which have lesser frequencies to form...... new candidate

patterns
4: Model the candidate patterns in the form of PPC: ({CPP , LLI}) . Refer Level 2 in

Illustrative Example
5: Compute CS and OR using ITD for each candidate pattern
6: Prunes all candidate patterns that do not satisfy maxOR threshold and forms partial NOP2

7: end for
8: Send partial NOP2 to Master

k>2 (Beyond Second Level)
1: Receive a PPC: {CPP , LLI} in NOPk−1 from the Master
2: Compute the Coverage Set (CSet) of CPP .
3: for all items i in LLI do
4: Join CPP and i and calculate the new coverage set of {CPP , i}, CSet
5: for all item j in LLI where RF (i) ≥ RF (j) do
6: Compute CS and OR of the set {CPP , i, j} using CSet
7: If the combination {CPP , i, j} satisfies the maxOR constraint, then ......... ......... .........

......... .... add j into LLI of the PPC with new CPP :{CPP , i}.
8: end for
9: Update and add all the newly formed PPCs into partial NOPk

10: end for
11: Send partial NOPk to Master

Master: It receives the partial NOP2 along with their respective CS value and merges them to
form NOP2. The CP2 (2-sized CPs) are computed by the Master by filtering out NOP2 with minCS
constraint.

(iii) kth level (k>2): This level computes NOPk and CPk from NOPk−1. (At k>2 (Beyond Second
Level), the algorithm for Master is given in Algorithm 1 and the algorithm for Worker is given in
Algorithm 2.)
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Master: The Master distributes the PPCs in NOPk−1 among the Workers such that each Worker
receives one PPC. The Master continues to assign the remaining clusters to Workers upon completion
of the assigned task. The assignment process continues till NOPk−1 is exhausted.

Worker: The Worker receives a PPC from the Master. The Worker generates candidate patterns
by joining item x with item y such that RF (x) ≥ RF (y) and forms a candidate pattern {A,x,y}.
Here, x, y ∈ LLI and A is the CPP of the PPC. (Refer the definitions of LLI and CPP from the
Definition 6). Note that all the items after item x in LLI have lesser frequencies than x because LLI is
already sorted in decreasing order of relative frequency values. Here, LLI in any PPC is already sorted
in decreasing order because the candidate patterns generation is done in an ordered manner. Further,
the Worker computes OR and CS of the pattern {A,x,y}. The set of candidate patterns that satisfy the
maxOR constraint will form the partial NOPk and are sent to Master along with their individual CS
values. The Worker computes the OR and CS in an efficient manner by avoiding the redundant set
operations through reuse (Refer to lines 4, 5, 6 under Worker in Algorithm 2).

Master: The Master receives all the partial NOPk along with CS values from Workers and merges
all the partial NOPk to compute NOPk. Further, the Master extracts CPk from the NOPk subject to
minCS constraint. The master terminates the process at a level when there is no possibility of generating
candidate patterns for the next level.

4.3.3 An Illustrative Example

Table 4.1: Transactional Database

TID 1 2 3 4 5 6

Items a, d a, b, c a, d b, c c a, b, e

We demonstrate the working of DCPM through an example. The sample TDB is shown in Table 4.1.
Consider one Master node and 3 Worker nodes {W1, W2, W3}. Let the values of minRF , minCS,
and maxOR be 0.2, 0.8, and 0.8, respectively.

Level 1. Figure 4.1 depicts the first level of DCPM. The Master distributes the transactions with TIDs
{1, 2} to W1, {3, 4} to W2 and {5, 6} to W3. Each Worker computes partial ITD for the transactions
it has received and sends the partial ITD to the Master as shown in the Figure 4.1. The Master merges
partial ITDs that are received from the three Workers and filters out item e as RF (e) = ITD(e)/TDB =

0.16, which does not satisfy the minRF constraint. The items in the resultant ITD are sorted in decreasing
order of their RF values. The resultant ITD is {a:{1,2,3,6}, b:{2,4,6}, c:{2,4,5}, d:{1,3}} and it is sent
to all Worker nodes. All the items in the filtered ITD form NOP1 i.e., NOP1 = {{a}, {b}, {c}, {d}}.
For 1-size patterns, the CS of any item, say a is the same as RF, i.e.,CS(a) = RF (a) = ITD(a)/TDB =

0.66. Since no item in NOP1 satisfy the minCS constraint, CP1 = {φ}.
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Level 2. Figure 4.2 depicts the second level iteration of DCPM. The Master distributes the items
{a} to W1, {b} to W2, and {c} to W3. Each Worker computes NOP2 by pruning the candidate patterns
that do not satisfy the maxOR constraint. Consider W1, where item a can be joined with every other
item. Thus, the set of possible combinations is {{a, b}, {a, c}, {a, d}}. Among these patterns, the
pattern {a, d} is pruned because OR({a, d}) = ‖ITD(a)∩ITD(d)‖

‖ITD(d)‖ = 1.0, which is greater than maxOR
(0.8). Therefore, the NOPs in the form of PPC set at Worker W1 will be {{a : {b, c}}}. The
Worker calculates the CS of each generated new pattern and attaches it as shown in Figure 4.2. The
coverage support of {a, b}, CS({a, b}) = ‖ITD(a)∪ITD(b)‖

‖TDB‖ = 0.83. The Master collects all the second
level partial NOPs from Workers and forms NOP2 = {{a : {b, c}}, {b : {c, d}}, {c : {d}}}. Note
that NOP2 here is already in PPC form and is equivalent to {{a, b}, {a, c}, {b, c}, {b, d}, {c, d}}.
Furthermore, we obtain CP2 = {{a, b}, {a, c}, {b, d}, {c, d}} by comparing the CS of each pattern in
NOP2 with the minCS constraint.

Level 3. Figure 4.3 depicts the third level iteration of DCPM. The Master distributes the PPCs
{a : {b, c}}, {b : {c, d}}, and {c : {d}} to W1, W2, and W3 respectively. Consider W1 with the
PPC {a : {b, c}}. Here, b is joined with c to form the candidate pattern {a, b, c}. W1 computes the
OR and CS for the generated pattern a, b, c using OR({a, b, c}) = ‖(ITD(a)∪ITD(b))∩ITD(c)‖

‖ITD(c)‖ = 0.66

and CS({a, b, c}) = ‖(ITD(a)∪ITD(b))∪ITD(c)‖
‖TDB‖ = 1.0. Since the OR of {a, b, c} is 0.66, which is less

than 0.8, the pattern {a, b, c} forms an NOP and is sent to the Master. The Master collects all the
3rd level partial NOPs from Workers and forms NOP3 = {{a, b} : {c}, {b, c} : {d}}. Similarly,
CP3 = {{a, b} : {c}, {b, c} : {d}} is extracted by comparing the CS of each pattern in NOP3 with
the minCS constraint. Furthermore, no new 4th level candidate patterns can be generated because each
cluster has only one entry in its LLI . Hence, the DCPM terminates.

4.4 Performance Evaluation

We conducted our experiments in the ADA cluster [3] (at IIIT Hyderabad), which consists of 42
Boston SYS-7048GR-TR nodes equipped with dual Intel Xeon E5-2640 v4 processors, providing 40
virtual cores per node. The aggregate theoretical peak performance of ADA is 47.62 TFLOPS. We have
conducted our experiments on a cluster of 24 virtual nodes. Each virtual node was allocated with 2 GB
of memory.

We have used three datasets, namely BMS-POS dataset [25], the Mushroom dataset [18], and the
T10I4D100K dataset [4]. The BMS-POS dataset is a click-stream dataset of an e-commerce company.
This dataset consists of 515,596 transactions and 1,656 distinct items. The Mushroom dataset is a dense
dataset having 8,124 transactions and 119 distinct items. Moreover, the T10I4D100K is a synthetic
dataset generated by a dataset generator. This synthetic dataset has 100,000 transactions and 870 distinct
items.

We conduct the experiments by varying the parameters relative frequency threshold (minRF ), cov-
erage support threshold (minCS), overlap ratio threshold (maxOR), and the number of machines
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Table 4.2: Parameters used in our experiments

Dataset Parameter Default value Variations

Synthetic minRF 0.04 [0.037 - 0.05], step-size: 0.01

minCS 0.3 [0.5 - 1], step-size: 0.1

maxOR 0.6 [0.05 - 0.45], step-size: 0.01

No. of Machines (NM ) 16 [4 - 24], step-size: 4

BMS-POS minRF 0.04 [0.03 - 0.1], step-size: 0.01

minCS 0.5 [0.5 - 1], step-size: 0.1

maxOR 0.4 [0.05 - 0.45], step-size: 0.01

No. of Machines (NM ) 16 [4 - 24], step-size: 4

Mushroom minRF 0.04 [0.04 - 0.2], step-size: 0.02

minCS 0.4 [0.5 - 1], step-size: 0.1

maxOR 0.35 [0.05 - 0.45], step-size: 0.01

No. of Machines (NM ) 16 [4 - 24], step-size: 4

(NM ). Table 4.2 summarizes the parameters of our performance study. The performance metrics of
our study include total execution time (ET ) in seconds for extracting coverage patterns from the trans-
actional dataset and Data Shuffled (DS), which represents the total amount of data shuffled between
the machines during the execution. ET is the total time elapsed between program initiation at the pre-
sentation of the dataset as input and termination at the delivery of the final coverage patterns subject to
the maxOR, minRF , and minCS constraints. DS is then computed by calculating the total amount
of data transmitted and received by the Master node at each level. Given N Worker nodes and K MB
of total data to be broadcast by the Master, the total data shuffled for a broadcast to all Worker nodes is
(K ×N ) MB.

As a reference, for the purpose of meaningful comparison, we have implemented the following
approaches:

• Coverage Pattern Mining algorithm (CPM): This is the CPM algorithm, implemented on a
single node with 16 GB main memory in the ADA cluster.

• Distributed CPM with MapReduce (DCPM-MR): We implemented the MapReduce-based CPM
proposed in [47], in the following manner. First, we distribute the TDB among the Worker nodes
and compute relative frequency values for all items in one phase of MapReduce. Further, we
calculate one-size non-overlap patterns NOP1 and broadcast the frequency values of all items to
the Worker nodes. Second, we compute two-size non-overlap patterns NOP2 and coverage pat-
terns CP2 using one phase of MapReduce. Third, at any kth level, non-overlap patterns NOPk
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and coverage patterns, CPk are computed using two phases of MapReduce. We implemented the
approach using Apache Spark Framework.

• Distributed CPM with ITD (DCPM-ITD): We implemented the MapReduce based CPM pro-
posed in [47] by introducing the notion of ITD and optimizing the second MapReduce phase. In
this method, we compute the ITD of the given dataset at the start of execution and broadcast it
to all Worker nodes. In DCPM-ITD, the first MapReduce phase for candidate pattern generation
remains the same as the DCPM-MR. However, in the next step for computation of CS and OR of
the generated candidate patterns, the generated candidate patterns are distributed equally among
all the Worker nodes. Each Worker computes the CS and OR for all the candidate patterns it
receives and sends them back to the Master. The Master node then computes the NOPs and CPs
with respect to the constraints. Note that the data is shuffled without employing any clustered
approach. We implemented the approach using Apache Spark Framework.

• DCPM: We implemented the DCPM approach as discussed in Section 4.3. DCPM is implemented
using Apache Spark architecture [70] and utilizes the default task scheduler of the framework.
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4.4.1 Effect of variations in minRF

Figure 4.4 depicts the results of minRF versus ET for BMS-POS, Mushroom, and Synthetic
datasets. The results show that execution time decreases with the increase in minRF for all approaches.
This is due to the decrease in the number of size-one frequent itemsets (items satisfying minRF ).

Compared to CPM, DCPM-MR and DCPM-ITD, the proposed DCPM algorithm takes less time
to extract coverage patterns from the datasets. In comparing DCPM with DCPM-ITD, the execution
time of DCPM is reduced because DCPM does not have the MapReduce step for explicit generation
of all the possible candidate patterns. In comparing DCPM to DCPM-MR, the reduction in execution
time is due to inverse transactional data modeling and clustered distribution of non-overlap patterns.
Further, in comparing the DCPM-ITD and DCPM-MR, the reduction in execution time is due to inverse
transactional data modeling. CPM significantly underperforms w.r.t. three approaches because it is a
serial approach and executed on a single machine. Observe that DCPM is 37 times faster than DCPM-
MR and 3.3 times faster for the BMS-POS dataset than DCPM-ITD when minRF is 0.04.

The performance results in Figure 4.4(b) and Figure 4.4(c) exhibit similar trends for the Mushroom
and Synthetic datasets respectively.
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4.4.2 Effect of varying maxOR on data shuffled

In this experiment, we show the results about the extent of data shuffled between the nodes. Fig-
ure 4.5 depicts the variation in data shuffled between nodes of varying maxOR threshold for BMS-
POS, Mushroom, and Synthetic datasets. The results in Figure 4.5(a) show that data shuffled increases
with an increase in maxOR for all the approaches. This is because when maxOR increases, the number
of non-overlap patterns generated increases. Hence, the amount of data shuffled between the Master and
Worker nodes increases.

Overall, the results show that data shuffled under DCPM is the least. More data is shuffled in DCPM-
ITD over DCPM because of the clustered representation of candidate patterns in DCPM. The amount
of data shuffled is significantly less in DCPM over DCPM-MR because all NOPs are distributed to
all nodes under DCPM-MR, whereas in DCPM, only a partial list of candidate patterns are distributed
to each node in a compact form. As maxOR increases, the number of candidate patterns at each level
increases, thus leading to a lot of data shuffling in DCPM-MR.

4.4.3 Effect of variations in maxOR

Figure 4.6 depicts the results of maxOR versus ET for BMS-POS, Mushroom, and Synthetic
datasets. The results in Figure 4.6(a) show that execution time increases with an increase in maxOR
for all the approaches. This is because as maxOR increases, the number of non-overlap patterns gen-
erated increases, which in turn increases ET . The results show that DCPM improves the performance
significantly over CPM, DCPM-MR and DCPM-ITD approaches. In comparing the DCPM algorithm to
DCPM-ITD, the execution time reduces because DCPM does not have the MapReduce step for explicit
generation of all the possible candidate patterns. In comparing DCPM to DCPM-MR, the reduction in
execution time is due to inverse transactional data modeling and clustered distribution of non-overlap
patterns. Further, the lesser execution time of the former is due to the efficient computation of CS and
OR values using ITD.

We observed similar trends in the results for the Mushroom and Synthetic datasets as depicted in
Figure 4.6(b) and Figure 4.6(c) respectively.

4.4.4 Effect of variations in NM

Figure 4.7 depicts the result of NM (number of machines) versus ET for BMS-POS, Mushroom,
and Synthetic datasets. The results in Figure 4.7(a) show that execution time decreases with an increase
in NM and gradually reaches saturation value for all the approaches. For all the approaches, ET is
the summation of both computation time and communication time. The ET of DCPM decreases with
the increase in NM as the computation time decreases significantly due to parallel computation. It
can be observed that ET is not significantly reduced for both DCPM and DCPM-ITD as compared to
DCPM-MR with the increase in NM. This is due to less computation in both DCPM and DCPM-ITD as
compared to DCPM-MR. We can observe similar trends in the results for the Mushroom and Synthetic
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Figure 4.6: Effect of varying maxOR

.

datasets as depicted in Figure 4.7(b) and Figure 4.7(c). The values differ due to differences in dataset
sizes and distribution of items in the transactions.

4.4.5 Effect of variations in minCS

Figure 4.8 depicts the results of minCS versus ET for BMS-POS, Mushroom, and Synthetic
datasets. The results in Figure 4.8(a) show that execution time remains almost constant with an in-
crease in minCS for all the approaches. This is because as minCS increases, the total number of frequent
items and non-overlap patterns generated remain unaffected because of fixed maxOR and minCS. Thus,
the execution time ET does not show much variation for any value of minCS in all the approaches. It
can be observed that the DCPM algorithm outperforms other approaches for all datasets.
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4.5 Summary

In this chapter, we have proposed a Distributed Coverage Pattern Mining (DCPM) approach. In this
approach, we model the transactional database into an Inverse Transactional Database (ITD) replicate it
to each participant site, and transmit the information about candidate patterns in a summarized form by
employing the notion of clustering. Our performance evaluation with two real-world datasets and one
synthetic dataset demonstrates the effectiveness of the proposed approach in terms of execution time,
and data shuffled across nodes.

In the next chapter, we propose an efficient ad-slot allocation in display advertising leveraging the
proposed DCPM approach.
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Chapter 5

An improved ad-slot allocation framework for banner advertising

In this chapter, we present an efficient coverage pattern-based scalable framework for ad-slot alloca-
tion in display advertising. We first introduce the problem of ad-slot allocation in display advertising.
We then discuss the proposed approach, algorithms, and an illustrative example to explain the workings
of the framework in a detailed manner. Lastly, we talk about the experiments and show the enhancement
in the performance compared to other approaches on various real-time click-stream data sets.

5.1 Introduction

In this section, we briefly introduce the research area and pose the context of the problem.

Display advertising consists of a set of visitors, a set of advertisers, and a publisher as the stakehold-
ers. A visitor is a web page viewer visiting a set of web pages in a single session. The union of all web
pages viewed by all the visitors forms the click-stream data set. Each advertiser comes with a demand
in terms of the minimum number of visitors viewed one’s advertisement. A publisher manages a set of
web pages and corresponding ad slots contained in them. The publisher allocates a subset of ad slots to
each advertiser based on one’s demand and generates revenue in return from the advertisers.

Moreover, the publisher has to ensure a good browsing experience for the web page viewers by
avoiding repeated advertisements. Therefore, in display advertising, efficient allocation of ad slots to
the advertisers is an interesting research issue. In more formal terms, the research issues go as follows,
given a click-stream data set and a set of advertisers along with their demand, the task of the publisher
is to allocate a set of web pages to each advertiser such that the advertiser’s demand is met and the
publisher’s revenue is maximized.

5.1.1 Context of the problem

Consider a Publisher, setW of web-pages {w1, w2, w3, . . . , wt}, set Φs of ad-slots {s1, s2, s3, . . . , sk}
available on all web-pages. Each ad-slot sj is associated with set of views i.e., < sj :T sj >, where T sj

represent set of all visitors visited the ad-slot sj . The map table M={m1,m2,m3, . . . ,mt}, where
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mi :< wi, [ad − slots] > maps web-page wi to corresponding ad-slots. Given a set A of adver-
tisers {a1, a2, a3, . . . , ah}, where each advertiser ai has demand I(ai) in terms of impressions i.e.,
ai:< I(ai) >.

Given an advertiser ai, a single ad slot may not meet the demanded impressions of ai. Therefore,
we allocate a set of ad-slots, which we refer to as Ad-Slot Pattern (ASP ). Let ASP={sp, sq, . . . , sr},
ASP ⊆ ΦS be an ad-slot pattern, the set of all distinct views of ASP is the union of individual ad-slot
views. The set of all distinct views of ASP (D(ASP )) is defined as follows:

D(ASP ) =
⋃

j=p,q...r

T sj (5.1)

The number of impressions of an ASP (I(ASP )) is the collective distinct number of impressions
of individual ad slots of ASP . Formally I(ASP ) defined as follow:

I(ASP ) = D(ASP) (5.2)

The primary motivation for publishers is to allocate available ad slots to advertisers (under guaranteed
contract norms) in order to maximize the revenue generated. Under guaranteed contract norms, we can
allocate a ASP={sp, sq, . . . , sr} to an advertiser ai if and only if the following condition is satisfied.

I(ASP ) ≥ I(ai) (5.3)

From the above equation, it is guaranteed that the total number of distinct views given to the adver-
tiser ai is greater than or equal to the number of impressions demanded by ai.

For a given set Φs of ad-slots, advertiser ai and demand I(ai), multiple ASPs can qualify the con-
straint shown in Equation 5.3. However, the ASP with the least number of repeated visits is considered
to be most interesting because it ensures lesser wastage of views. This can improve the revenue of the
publisher. In this regard, we introduce the notion of overlap ratio of ASP to measure the extent of
overlap among the views corresponding to ASP . We now define the notion of the overlap ratio of ASP
as follows.

Overlap of ASP: Let ASP = {sp, sq, . . . , sr} be a ad-slot pattern and let {T sp ,T sq ,. . .,T sr} be the
corresponding views of ad-slots belonging to ASP such that ‖T sp‖ ≥ ‖T sq‖ ≥ . . . ≥ ‖T sr‖. The
overlap ratio of ASP is the ratio of the number of distinct views common in ASP − sr and sr to sr.
Formally defined as follows:

OR(ASP ) =
D(ASP - {sr} ∩ T sr)

Tsr
(5.4)

Here, 0 ≤ OR(ASP ) ≤ 1. An ASP is interesting when OR(ASP ) is less than a user-specified
maximum Overlap Ratio (maxOR) threshold value.
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Ad-slot allocation problem: Given a publisher, set W of web pages, set Φs of ad-slots available on all
web pages, web-page to ad-slots map table M , maxOR and a set A of advertisers with corresponding
demand in terms of impressions. The problem of the publisher is to assign a set of ad slots (ASP ) to
each advertiser such that I(ASP ) ≥ I(ai) and OR(ASP ) ≤ maxOR, ∀ai ∈ A.

5.2 Proposed Scheme

In this section, we first explain the basic idea and then present the proposed approach and further
explain the approach in detail through an illustrative example

5.2.1 Basic Idea

Given a set of web pages with multiple ad-slots and a set of advertisers, our problem is to assign a
set of ad-slots to each advertiser satisfying the advertisers’ demand and maxOR constraint.

A naive approach to solve this problem would be random allocation of ad-slots to advertisers based
on the number of user visits from the pool of available ad-slots until the advertiser’s demand is met.
However, this approach has the following issues. Due to random allocation, multiple ad slots that are
visited by the same set of users can be allocated to a single advertiser. This leads to repeated (overlap)
views on the advertisement. Therefore, this approach leads to a wastage of views, lowering the number
of allocated advertisers and the revenue generated for the publisher.

In literature, an attempt has been to solve the above challenges in the work [31] using the knowledge
of coverage patterns. However, this approach assumes that the number of ad slots per web page is
limited to 1, which likely deviates from the practical scenario (multiple ad slots per each web-page are
observed). Moreover, this approach uses CPPG algorithm [55] (a pattern growth-based non-parallel
approach to extract the knowledge of coverage patterns), which is not scalable to large click-stream
datasets because of the computational complexity and memory issues. Further, this work also involves
every web page for coverage pattern mining (i.e., mine coverage patterns with minRF as 0), which is
not computationally feasible for large real-time click-stream data sets. In our current work, we propose
an ad-slot allocation approach by considering multiple ad-slots per web page model that addresses the
shortcomings of the framework proposed in [31].

The basic idea is as follows. Given a click-stream data and maxOR value, we first extract all web-
page patterns. Here, a web-page pattern is a set of web pages, which satisfy maxOR constraint. For this,
we employ Distributed Coverage Pattern Mining DCPM algorithm [50] proposed in chapter 4, which
performs well for large click-stream data sets. Next, given a map table (M ), which maps the web page
to its corresponding ad slots. We compute ad-slot patterns (ASPs) from web-page patterns by permuting
with replacement over corresponding ad-slots on each web page. An ad-slot pattern with high overlap
among the user visits may not be interesting because the user visits the same ad slot multiple times, and it
may lead to a bad user experience. Therefore, we need to extract ad slots with high impressions and less
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overlap. Next, for each ad-slot pattern, we compute the number of impressions (I). Here, impressions
represents the coverage of the ad-slot pattern. We rank ad-slot patterns by sorting them in decreasing
value of impressions and increasing order of overlap ration. The ranked ad-slot patterns constitute the
supply nodes set w.r.t publisher. On the other hand, the advertisers make their demands in terms of
the number of impressions. The set of advertisers with their demand constitutes the demand node set.
Having modeled the supply nodes set and demand node set, we propose a greedy binary search-based
ad-slots allocation approach for mapping (allocating) supply nodes set and demand node set.

Alternatively, in the above-mentioned approach, ad-slot patterns can also be generated directly from
the click-stream data using DCPM algorithm by passing reconstituted click-stream data (replacing
web pages with corresponding ad-slots) as input. For example, consider an arbitrary transaction T

= {wi,wj ,.....,wk} from the click-stream data consisting of set of web-pages. This transaction can
be reconstituted into a set of ad slots visited in the user session by simply replacing each web page
wi ∈ T with the corresponding ad slots. Let the web-page to ad-slot map table M = {wi : {ai0 , ai1 ..},
wj : {aj0 , aj1 ..}, ..... , wk : {ak0 , ak1 ..}}. The reconstituted transaction T

′
= {ai0 , ai1 .., aj0 , aj1 .......,

ak0 , ak1 ..} is a set of ad-slots. Now this reconstituted click-stream data can be used directly to mine the
ad-slot patterns (ASPs). However, this approach is computationally infeasible because of the combina-
torial explosion of candidate ad-slot patterns (the number of candidate patterns formed by web pages
(2W − 1) is very much smaller than the number of candidate patterns formed by ad-slots (2Φs − 1),
Φs � W . But still, the value of 2w − 1 is large. In the proposed approach, to reduce the number
of candidate patterns, we explored the opportunity that for any ad-slot pattern ASP consisting of an
ad-slot from a particular web page wi does not further join with any ad-slot from the same web page wi

because that would result in an overlap ratio of 1.0 for the resulting pattern. So in the level-wise DCPM
algorithm, the redundant step of computing and checking the overlap ratio for such candidate patterns,
where the overlap ratio is bound to be 1.0, can be avoided, thus reducing the number of candidate pat-
terns at any level. Therefore, instead of generating ad-slot patterns directly, we should first generate web
page patterns and then generate permutations with respect to the ad slots contained in the web pages to
obtain the final ad-slot patterns ASPs. Finally, based on the advertiser’s demand in terms of the number
of impressions, we propose an ad-slot allocation approach to allocate ad-slots to advertisers to maximize
the revenue of the publisher.

Click-Stream

 Data (T)

MinRF, MaxOR

Ad-slot map table (M)

Advertisers demand data (D)

WPs

Ad-slot Advertiser

 Allocated Data

Extract WPs and

 LFWs

using DCPM

Generate and

rank 

ASPs and LFAs

Ad-slot

 allocation

LFWs

Ranked 

ASPs

Ranked 

LFAs

Figure 5.1: Block diagram of proposed framework
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5.2.2 Proposed approach

In this section, we present an ad-slot allocation approach that helps publishers assign a set of ad-slots
to each advertiser.

Given a publisher, setW of web-pages, set Φs of ad-slots, web-page to ad-slots map tableM , maxOR
and a set A of advertisers along with their demand in terms of impressions, the ad-slot allocation problem
is to assign a set of ad-slots (ASP ) to each advertiser such that I(ASP ) ≥ I(ai) and OR(ASP ) ≤
maxOR, ∀ai ∈ A. Figure 5.1 depicts the block diagram of the proposed approach. Algorithm 3 depicts
the steps involved in the proposed method. The proposed ad-slot allocation framework consists of the
following steps:

1. Extraction of non-overlap Web-page Patterns (WPs).

2. Generation of Ad-Slot Patterns (ASPs) and ranking.

3. Ad-slot pattern Allocation.

Algorithm 3 Ad-slot Allocation Framework
Input: D: Clickstream data; A: Set of advertisers, M: Ad-slot map table; minRF: minimum Relative
Frequency; maxOR: maximum Overlap Ratio
Output: AA: Allocated Advertisers, NAA: Not Allocated Advertisers
Variables: ASPs: Ad-Slot Patterns, LFAs: Low Frequent Ad-slots.

1: ASPs, LFAs←φ
2: ASPs, LFAs← Extract Ranked ASPs(D, M, minRF, maxOR)
3: AA, NAA← Allocate ASPs(ASPs, LFAs, A)

5.2.2.1 Extraction of non-overlap Web-page Patterns

Given a transactional database TDB, which consists of t number of web pages as items, our task is to
extract all non-overlap Web-page patterns from TDB. However, extraction of all possible WPs (2t − 1)
of given TDB is computationally expensive because the value of t is large. Instead, we can extract only
WPs that are viewed by at least a threshold number of viewers, which we call as minimum Relative
Frequency (minRF) threshold. Moreover, to maximize the revenue of the publisher, the overlap between
the web page views in the web-page pattern should be less than a maximum Overlap Ratio (maxOR)
threshold value. A WP that satisfies minRF and maxOR threshold value is called as non-overlap Web-
page pattern (WP).

Given a TDB and user-specified minRF and maxOR threshold values, our task is to extract all non-
overlap WPs. In literature, the work in [50] proposed a Distributed Coverage Pattern Mining (DCPM)
approach to extract coverage patterns from TDB. The DCPM approach is the state-of-the-art and com-
putationally efficient approach to extract coverage patterns from TDB. In this approach, we employ the
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DCPM approach (by setting coverage support to zero) to extract all non-overlap WPs from TDB. In ad-
dition, we store all web pages, which do not satisfy the minRF constraint. These web pages are referred
to as frequent web pages (LFWs).

Algorithm 4 Extract Ranked ASPs(D, M, minRF, maxOR)
Input: D: click stream Data; M: ad-slot Map table; minRF: minimum Relative Frequency; maxOR:
maximum Overlap Ratio
Output: ASPs: Ad-Slot Patterns; LFAs: Low Frequency Ad-slots
Variables: Set W :< Pi, OR(Pi) >, LFWs: Low Frequency Web-pages

1: W, ASPs, LFWs← φ
2: W← Extract WPs from D using DCPM algorithm [50]
3: LFW← All web-pages which does not satisfy minRF
4: LFAs← Set of all ad-slots belonging to web pages in LFW
5: for all WPi in W do
6: Generate all combinations of WPi by replacing web-pages with corresponding ad-slots from

map table M
7: ASPs← ASPs ∪ combinations of WPi

8: end for
9: for all ASPi in ASPs do

10: Compute I(ASPi) using Equation 5.2
11: Update ASPi with <ASPi, I(ASPi), OR(ASPi)>
12: end for
13: Sort patterns in ASPs in the descending order of I(Pi) and increasing order of OR(Pi).
14: return ASPs, LFAs

5.2.2.2 Generation of ad-slots patterns

Our final goal is to assign ad slots to advertisers based on the demand in terms of impressions.
Having extracted all non-overlap WPs from TDB, we have to generate all non-overlap WPs into Ad-
Slots patterns to assign ad-slots to advertisers. Each web page consists of one or more ad slots, and we
maintain a map table consisting of mapping between ad slots and web pages. For each non-overlap web-
page pattern P , we replace every web page ∈ P with corresponding ad-slots as per the mapping table.
Further, we perform permutations over each set of ad slots corresponding to each web page in P to form
Ad-Slot Patterns. For each ASP, we compute impressions using the Equation 5.2. An ASP with a large
number of impressions may not be interesting if there is a significant overlap among the user visits for
a set of ad slots. The measure of overlap among the user visits is captured by the notion of overlap ratio
(OR). In addition, we compute the overlap ratio for each ASP using Equation 5.4. Having computed
I(ASP ) and OR(ASP ), we rank each ASP by sorting ASPs in decreasing the value of impressions and
increasing the value of the overlap ratio.

To understand the permutations step clearly, let us look at an illustration for the same. Consider
a non-overlap web-page pattern WP = {w1, w2, w3}, and the corresponding Map Table for ad-slots
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in web-pages w1, w2, w3 be M = { w1={a11, a12}, w2 = {a21}, w3= {a31, a32, a33} }. Then, the
corresponding sets of permutations of non-overlap web-page pattern generated would be {{a11, a21,
a31}, {a11, a21, a32}, { a11, a21, a33}, { a12, a21, a31}, { a12, a21, a32}, { a12, a21, a33}}.

/

5.2.2.3 Ad-slot allocation approach

In this section, we formulate advertiser’s demand as demand nodes and extracted ASPs along with
low frequent ad-slots as supply nodes. Now, the task of the ad-slot allocation problem is to allocate
supply nodes to demand nodes such that the advertiser’s demand is met and the publisher’s revenue is
maximized. The allocation of supply nodes to demand nodes is done by allocate and delete operations.
We now define the ALLOCATE, DELETE operations, and closest supply node follows.

ALLOCATE: It is a task of assigning supply nodes to demand nodes such that the advertiser’s demand
is met and the publisher’s revenue is maximized.

DELETE: It is a task of deleting all the supply nodes which contain an ad-slot/s in common with
the allocated supply nodes. This operation is triggered immediately after each allocate operation is
completed.
Closest supply node: A closest supply node to the demand node ai is a supply node which minimises
I(ai)− I(ASP ).

The ad-slot allocation approach is as follows. Having modeled demand nodes, we first sort the
demand nodes in decreasing order of their impressions. Next for each demand node starting with the
highest demand, we perform ALLOCATE operation i.e, allocate the supply nodes to demand nodes
such that the demand in terms of impressions is met. Next, we perform the delete operation. During the
allocation process, the following four cases arises.

1. Case-1: For a given demand node, there exists at least one supply node from ASPs satisfying the
demand. Then we allocate the closest supply node to the demand node and perform the DELETE
operation.

2. Case-2: For a given demand node, there exists no supply node from ASPs that can satisfy the
demand. Then we allocate the closest supply node to the demand node. In addition, we keep
allocating low-frequency ad-slots (LFAs) to the demand node until the advertiser demand is met.

3. Case-3: For a given demand node, there exists no supply node from ASPs i.e, all the ASPs are
exhausted. Then we keep allocating the low-frequency ad-slots until the advertiser demand is
met.

4. Case-4: For a given demand node, there are no supply nodes i.e, neither ASPs nor sufficient low-
frequency ad-slots are present to allocate. Then we mark such demand nodes as Not Allocated.
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Algorithm 5 Allocate ASPs(ASPs, LFAs, A)
Input: Set of Ad-Slot Patterns ASPs: 〈Pi, Impressions(Pi),OR(Pi)〉; LFA: Low Frequency Ad-slots;
A : 〈aj , I(aj)〉 set of advertisers
Output: AAM: Allocated Advertisers Map 〈aj , APaj 〉, NAA: Not Allocated Advertisers
Variables: APaj : Pattern allocated to advertiser aj , DASPs: Deleted ASPs, DLFAs: Deleted
Low-Frequency Ad-slots

1: Sort advertisers in A in descending order of their impressions (I(aj))
2: for all aj in A do
3: APaj ← φ
4: APaj = argminPi

abs(I(Pi)− I(aj)) 3 I(Pi) ≥ I(aj) and Pi ∈ ASPs
5: if APaj is φ then
6: APaj = argminPi

abs(I(Pi)− I(aj)) where Pi ∈ ASPs
7: for all sk in LFAs do
8: if I(APaj ) ≥ I(aj) then
9: BREAK

10: end if
11: APaj = APaj ∪ {sk}
12: end for
13: end if
14: if I(APaj ) < I(aj) then
15: NAA = NAA ∪ aj
16: CONTINUE
17: end if
18: AAM← AAM ∪ 〈aj , APaj 〉
19: DELETE (APaj , ASPs, LFAs)
20: end for
21: return AAM, NAA
22: procedure DELETE(APaj , ASPs, LFAs)
23: DASPs← {P |∀P ∈ ASPs; P ∩APaj 6= φ}
24: ASPs← ASPs - DASPs
25: DLFAs← APaj ∩ LFA
26: LFAs← LFAs - DLFAs
27: end procedure
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The above procedure is repeated until either of the demand nodes or supply nodes are completely
exhausted or there is no supply node remaining that can satisfy any of the demand nodes.

5.2.3 An Illustrative Example

We demonstrate the working of the Ad-slot Allocation Framework through an example. The sample
click stream dataset D is depicted in Figure 5.2(A) and ad-slot map table M is depicted in Fig 5.2(B).
Let the user-specified minRF and maxOR values be 0.3 and 0.6 respectively. The ad-slot allocation
framework consists of 4 steps.

Web-page

Set of

Ad-slots

w1 w2 w3 w4 w5 w6 w7

s11 s21, s22 s31 s41 s51, s52 s61, s62 s71, s72

User Id

Session

Data

w
1
, w2, 

w4, w5

w1, w3,

 w6

w2, w3, 

w7

w2, w5, 

w6

w1, w4, 

w7, w5

w1, w2, 

w3, w4

w1, w2, 

w4, w5

w1, w3

1 82 3 4 75 6

(A)

(B)

Figure 5.2: Input data (A) Click-stream data (B) Ad-slot map table

Step-1: Extraction of non-overlap web-page patterns: In this step, we extract the WPs and LFWs
from the click-stream data using the DCPM algorithm corresponding to given minRF and maxOR
threshold values. Figure 5.3(A), Figure 5.3(B) depicts the extracted WPs and LFWs respectively.
Step-2: Generation of ad-slots patterns: Fig 5.4 depicts the generation of ASPs and LFAs. Hav-
ing extracted WPs and LFWs from the previous step, and given a Map table M, the ad-slots patterns
generation consists of the following steps.

1. We replace each web page in the WPs with the corresponding set of ad slots as shown in the Map
Table M. For example we replace WP {w1, w2} with {{s11}, {s21, s22}}, because w1 consists of
ad-slot s11 and w2 consists of ad-slots s21, s22.

2. Next, we form the ASPs by generating all possible combinations of ad slots in WP and compute
impressions (I(ASP)) for each ASP using Equation 5.2.
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Figure 5.3: (A) Web-page patterns (B) Low-frequency web-pages
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Figure 5.4: Generation of ASPs (A) Web-page patterns (B) Ad-slot map table (C) Ad-slots substituted
Web-page patterns (D) Generated Ad-slot patterns (E) Sorted Ad-slot Patterns

3. Sort all the generated ASPs in decreasing order of Impressions (I(ASP)) and increasing order of
Overlap Ratio (OR(ASP)).

4. Also, we list all the ad slots corresponding to LFWs and refer to them as Low Frequent Ad-slots
(LFAs) as depicted in Figure 5.5.

Step-3: Ad-slot allocation: In this step, we allocate ad slots to advertisers based on demand. Fig 5.5
depicts the ad slots allocated to advertisers (AAM) based on the demand. Also, it depicts the not
allocated advertisers (NAA). During the allocation process, 4 cases arise as mentioned in the proposed
approach.
Case 1: Consider the advertiser a1(< a1, I(a1) : 8 >), The ASPs available for allocation are {ASP1-
ASP16} and LFAs available for allocation are {LFA1-LFA4}. Now the ASPs satisfying the demand
of a1 are ASP1, ASP2, ASP3 and ASP4, out of which ASP1 and ASP2 are better than ASP3 and
ASP4 because of low OR. Thus, we allocate ASP1 to advertiser a1 (we can also allocate ASP2 but we
are just going with the lexicographical first pattern).

DELETE operation: After allocating ASP1 to advertiser a1, we delete all the ASPs containing ad
slots in common to ASP1. Therefore, the patterns ASP1, ASP2, ASP5, ASP6, ASP7, ASP11, ASP13

and ASP15 will be deleted from the ASPs because they contain either of the ad-slots s31 or s51.
Case 2: Consider the advertiser a3(< a3, I(a3) : 6 >), after allocating the advertiser a1 and a2,
the ASPs available for allocation are {ASP9, ASP10, ASP12, ASP13, ASP14, ASP16} and LFAs
available for allocation are {LFA1-LFA4}. There exists no available ASP that satisfies the advertiser
a3’s demand of 6 impressions. Thus we allocate an ASP with impressions closest to the demand of
a3. The closest ASPs of a3 are ASP9, ASP10, ASP12 having 5 impressions, out of which we allocate
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the pattern ASP9 to a3. Next, we allocate the balance impressions (I(a3) - I(ASP9) i.e., 6-5=1) from
LFA. We first allocate LFA1 and calculate the total number of impressions of the allocated pattern
ASP9 ∪ LFA1 = {s21, s61} using the Equation 5.2.

I(s21, s61) = |Dw2 ∪ Dw6 | = |{U1, U2, U3, U4, U6, U7}| = 6

Since 6 impressions satisfy the advertiser’s demand, we allocate {s21, s61} to a3.

DELETE operation: After allocating ASP9 and LFA1, we delete all the ASPs containing ad-slots
in common to ASP9. In this example, since there are no other ASPs with ad slots in common to ASP9,
we delete only ASP9. Now, we also delete the LFA1 allocated to a3 from LFAs.

Case 3: Consider the advertiser a7(< a7, I(a7) : 2 >), after allocating the advertisers a1 − a6, there
are no ASPs available for allocation and the only LFA available for allocation is {LFA4}. Since there
are no ASPs available, we allocate LFA4 to satisfy a7’s demand of 2 impressions.

DELETE Operation: After allocating LFA4, we delete it from LFAs.

47



Case 4: Consider the advertiser a6(< a6, I(a6) : 4 >), after allocating all the previous advertisers
a1 − a5, there are no ASPs available for allocation, The only LFA available for allocation is {LFA4}.
Thus, there exists no ASP and LFA satisfying the demand of a6, i.e., I(a6) = 4. Thus the advertiser a6

is added to NAA (Not Allocated Advertiser)

Thus, we finally obtain the output AAM and NAA as shown in Fig 5.5.

5.3 Experiments

5.3.1 Experimental Setup

We have conducted our experiments in the ADA cluster [3] (at IIIT Hyderabad), which consists of
42 Boston SYS-7048GR-TR nodes equipped with dual Intel Xeon E5-2640 v4 processors, providing
40 virtual cores per node. The aggregate theoretical peak performance of ADA is 47.62 TFLOPS. Each
virtual core was allocated with 2 GB of main memory.

The experiments were conducted on click-stream datasets. Clickstream data is the information col-
lected about a user browsing a website during a given session. We have used two benchmark click-
stream datasets, the Kosarak and the BMS-POS datasets.

The Kosarak dataset is provided by Ferenc Bodon, which contains (anonymized) click-stream data
of a Hungarian online news portal [22]. Each user session is a set of web pages visited by the user, and
it is modeled as a transaction. Therefore, click-stream data is a set of transactions, and each transaction
is a set of items. The Kosarak dataset consists of 9,90,001 transactions and 41,270 distinct items.
The BMS-POS dataset is a click-stream dataset [25] of an e-commerce company. This dataset has
5,15,596 transactions and 1,656 distinct items. Notably, the above-mentioned datasets do not contain
any information about the number of ad slots contained on each web page. Since our task is to assign ad
slots to advertisers, we have generated a Map Table M, which maps ad slots to web pages in transactions.
Moreover, we consider that each transaction in the datasets consists of (i) a fixed number of ad slots and
(ii) a variable number of ad slots. In the case of a fixed number of ad slots, we assigned 3 ad slots to
each web page in each transaction. In the case of the variable number of ad slots, we randomly assigned
k ad slots (1 ≤ k ≤ 3) to each web page in each transaction. We have conducted experiments for both
cases. The other input for our performance study is the advertiser’s demand data A. The demand of each
advertiser (ai) is represented in terms of impressions (I(ai)), and it is generated uniformly at random
between 1-2% of the total number of transactions in the respective dataset.

5.3.2 Performance Metrics

In this section, we explain the metrics that we have used for the performance evaluation.
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5.3.2.1 Allocated Advertisers Count (AAC)

Represents the number of advertisers who are allocated with the set ad slots as per their respective
demands in terms of impressions. A larger value of this metric signifies better utilization of ad space
for revenue generation. Cost per impression (CPI) is the most commonly used revenue model [17]. In
this scenario, major components include ad slots on web pages of the website, which supply a certain
number of impressions, advertisers who demand impressions, and the publisher who allocates the ad
slots that match the demands of advertisers through the server and generate revenue under the CPI
revenue model.

5.3.2.2 Total Revenue Generated (TRG)

Represents the total revenue generated by the publisher for allocating the ad slots to the advertisers.
The work in [31] proposed a Cost-Per-Impression (CPI) model, where the publisher earns units equal to
the number of Impressions of an advertiser if one’s demand is met. TRG is formally defined as follows:

TRG =
∑

ai∈AA

(I(ai)) (5.5)

Note that the higher the value of TRG better is the performance of the ad-slot allocation framework.

5.3.2.3 Average Repeated Advertisements(ARA)

ARA represents the average repetition of the number of unique advertisements in a user session. It is
a metric that captures the amount of boredom created by the repetition of the advertisements in a given
session. A lower value of this metric signifies lesser repetition of the advertisements to the visitors and
thus a better user experience. The ARA is defined as follows:

ARA =

∑D
k=1 card(

⋃
w∈Dk

(SA(w))−
⋃

w∈Dk
SA(w))

D
(5.6)

Here,
⋃

w∈Tk
(SA(w)) represents the bag union (allows repeating items) of all the advertisements

belonging to web-page w ∈ Dk and
⋃

w∈Dk
SA(w)) represents the union (does not allows repeating

items) of all the advertisements belongs to web-page w ∈ Dk. Therefore, the ARA captures the notion
of overall advertisement repeatability across the click stream dataset D.

We have selected the above performance metrics in such a way as to reflect the real world in the
closest possible way. In all our experiments, we have varied the number of advertisers (NA) parameter
and presented the results.
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Algorithm 6 Visit Frequency-based(D, A, minRF, minCS, maxOR)
Input: D: Click Stream Data; A<ai, di>: set of advertisers (ai is id of advertiser; minRF: minimum

relative frequency;

Output: AAM: Allocated Advertisers Map < aj , APaj >

1: Sort A in the descending order of impressions(di)

2: Create a set S of available ad-slots using click-stream data

3: for all ai in A do

4: Impressions allocated= 0

5: Ad-slots allocated Demanded impressions = ti

6: while Demanded impressions > Impressions allocated do

7: R = { x | Pick random element x : x ∈ S }

8: AAM[ai] = AAM[ai] ∪ R

9: S← S - R

10: Impressions allocated = | AAM[ai]|

11: end while

12: end for

13: return AAM

5.3.3 Approaches implemented

In our performance evaluation, we compare our proposed approach with three other reference ap-
proaches. They are as follows:

1. Single-Add-slot Visit Frequency based method (SAVF).

2. Multi-Ad-slot Visit Frequency based method (MAVF).

3. Single-Ad-slot Pattern-based method (SAP).

We have implemented all three reference approaches. We now present the reference approaches.

5.3.3.1 Single-Ad-slot Visit Frequency based method (SAVF)

In this method, we first store all web pages along with several impressions. When an advertiser
places one’s demand in terms of the number of impressions, we randomly allocate web pages to the
advertiser until his demand is met. Note that we will allocate one web page to one advertiser only. This
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process is repeated until either all of the advertisers are allocated a set of web pages as per their demand
or the available web page set is completely exhausted.

5.3.3.2 Multi-Ad-slot Visit Frequency based method (MAVF)

In this method, we first store all ad slots and the number of impressions. When an advertiser places
one’s demand in terms of the number of impressions, we start randomly allocating ad slots to the adver-
tiser until his demand is met. Note that we will allocate one ad slot to one advertiser only. This process
is repeated until either all of the advertisers are allocated a set of ad slots as per their demand or the
available ad slots set is completely exhausted. Please refer to Algorithm 6 for pseudo-code.

5.3.3.3 Single-Ad-slot Pattern-based method (SAP)

Given click-stream data and advertiser demand constraints, this method considers that each web page
contains a single ad slot. The approach is as follows. We first extract all web-page patterns (WP) from
click-stream data subject to minRF and maxOR constraints using the DCPM algorithm. Second, we sort
the WPs in decreasing order of their I(WP ), where I(WP ) represents the total number of impressions
of the WP. Third, we start allocating the WPs to each advertiser until the demand is met. This method
is quite similar to the proposed method, except that, WPs are used for allocation instead of ASPs.

Notably, in the proposed approach, we have proposed a framework to allocate ASPs to advertis-
ers subject to advertisers demand, minRF, maxOR constraints in Multi-Ad-slot Pattern based scenario,
which we henceforth refer it as MAP.
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Figure 5.6: KOSARAK: Effect of varying NA on AAC

5.3.4 Results: Effect of variation of number of advertisers NA

Note that, in each of the figures shown. Figure (a) depicts the results for web pages with ad-slots in
the range of 1 to 3 at random. Figure (b) depicts the results for web pages with only one ad slot.
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Figure 5.8: KOSARAK: Effect of varying NA on Revenue

5.3.4.1 Effect on Allocated Advertiser Count (AAC)

Figure 5.6 depicts the variation in AAC with the increase in the number of advertisers for the
KOSARAK dataset. The results show that AAC increases with an increase in NA to a certain level,
decreases a little, and remains almost constant thereafter in all the approaches. The results show that
when the number of advertisers is low, all the methods exhibit the same trend. For example, when
NA=40, ACC=40 in all the approaches. This is because of the fact that when the total number of adver-
tisers is low, the total number of distinct views/impressions needed to satisfy the demands of the given
advertisers is also low. However, as the value of NA increases, the proposed MAP method outperforms
all the other methods as depicted in the results. This is because ASPs used MAP allocation method
leverage the notion of overlap, which ensures lesser repetition of user views and thus minimizes the
wastage of impressions. The multi-ad-slot methods i.e., MAVF and MAP perform better than single-ad-
slot methods SAVF and SAP because of the enhanced ad-space for allocation. Moreover, it can also be
observed in Fig 5.6(a) that the saturation value of AAC in rand (1-3) is less than the saturation value of
AAC in rand 3 as depicted in Figure 5.6(b). This is because of the increased number of ad slots available
for allocation. Thus, the new proposed framework clearly shows the effectiveness of advertising space
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Figure 5.9: BMSPOS: Effect of varying NA on Revenue
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Figure 5.10: KOSARAK: Effect of varying NA on ARP
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Figure 5.11: BMSPOS: Effect of varying NA on ARP

management. The experiments on the BMSPOS dataset in Figure 5.7 also show a similar trend and the
MAP method exhibits significant performance improvement over the rest of all methods.
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5.3.4.2 Effect on Total Revenue Generated (TRG)

Figure 5.8 depicts the variation in TRG with the increase in the number of advertisers (NA) for the
KOSARAK dataset. The results show that TRG increases steadily with an increase in NA to a certain
level and reaches saturation in all the approaches. This is because, as the number of advertisers increases,
all the approaches only allocate the ad slots to a certain extent. This is because the total number of ad
slots available for the publisher to allocate is limited and would be exhausted at some point. However,
observe that the proposed MAP method outperforms all the other methods as depicted in the results.
This is because the MAP method leverages the notion of overlap in the allocation process, ensuring
less repetition of user views. Moreover, MAP uses the low frequent ad slots, further improving ad-slot
allocation. Moreover, it can also be observed in Fig 5.8(a) that the saturation value of AAC in rand (1-3)
is less than the saturation value of AAC in rand 3 as depicted in Figure 5.8(b). This is because of the
increase in number of ad slots available for the allocation process.

Figure 5.9 depicts the variation in TRG with the increase in the number of advertisers (NA) for the
BMSPOS dataset. The results show a trend similar to KOSARAK dataset, but the values differ due to
differences in dataset sizes.

5.3.4.3 Effect on Average Repeated Advertisements (ARA)

Figure 5.10 depicts the variation in ARA with the increase in the number of advertisers (NA) for
the KOSARAK dataset. The results show that ARA increases steadily with an increase in NA to a
certain level and reaches a saturation thereafter in all the approaches. This is because as the number
of advertisers increases, the number of advertisement places increases, resulting in an increase in ARA.
Observe that in the proposed method, the value of ARA is slightly low at a lower value of NA and
slightly higher at a higher value of NA. However, compared to the proportionality increase in AAC, the
proportionality increase in AR is significantly low compared to other methods.

Figure 5.11 depicts the variation in ARA with the increase in the number of advertisers (NA) for
the BMSPOS dataset. The results show a trend similar to KOSARAK dataset but the values of ARA
differ due to differences in dataset sizes. Observed that in the BMSPOS dataset, unlike the KOSARAK
dataset, in the MAP method, the value of ARP is less than SAVF and MAVF methods for all values of
NA even though AAC increases.

5.4 Summary

This chapter proposes an efficient ad-slot allocation framework in display advertising that considers
multiple ad-slots per web page. Our performance evaluation with three real datasets demonstrates the
effectiveness of the proposed framework in terms of revenue generated for the publisher and repetition
of advertisements for the visitor. In the next chapter, we present the summary of the thesis.
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Chapter 6

Summary and Conclusions

In this chapter, we present a summary followed by future work directions.

6.1 Summary

Banner advertising is the most common and widely employed online advertising method used to
increase awareness of products and services. Ad-slot allocation in banner advertising is an interesting
research issue. The existing works on ad allocation have employed diverse optimization techniques to
establish theoretical solution bounds. These approaches have involved optimizing the objective function
either by maximizing or minimizing it under modeled mathematical constraints. Others have used
reinforcement learning and deep learning techniques to optimize the publisher’s revenue generation.
In [31], a coverage pattern-based ad-slot allocation framework was proposed but suffers from certain
issues like scalability for large click-stream datasets and constraints of only one ad slot per web page.
To address these issues, we made two major contributions to this thesis.

Firstly, to address the issue of scalability, we proposed an efficient coverage pattern mining tech-
nique, the Distributed Coverage Pattern Mining (DCPM) approach. DCPM, which is more scalable
than all of the state-of-the-art approaches to coverage pattern mining. In this approach, we model the
transactional database into an Inverse Transactional Database (ITD) replicate it to each participant site,
and transmit the information about candidate patterns in a summarized form by employing the notion of
clustering. We performed extensive experiments using two real-world datasets and one synthetic dataset
and compared them with the state-of-the-art approach. The results demonstrate the effectiveness of our
proposed approach in terms of execution time, and data shuffled across nodes.

Secondly, we have addressed the problem of ad-slot allocation with multiple ad-slots per web page.
We have proposed an efficient ad-slot allocation framework for a given click stream dataset. In this ap-
proach, we first extract all the ad slot patterns (ASPs) from click-stream data using the DCPM approach.
Next, for each ASP, we compute the impressions and sort them in descending of those impressions.
The advertisers place their demand in the form of impressions, too. We then propose a greedy binary
search-based ad-slots allocation approach for mapping (allocating) ASPs to advertisers to maximize the
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publisher’s revenue. In case of a shortage of impressions, we allocate the low-frequency ad slots (LFAs),
which are not a part of any ASPs, to fulfill the shortage of impressions for the demand placed. Our per-
formance evaluation using two real datasets demonstrates that our proposed framework significantly
improves the publisher’s revenue by efficiently allocating the available ad slots to advertisers compared
to existing baseline methods.

6.2 Future work

We are interested in exploring the following ideas as part of future work.

1. In this thesis, we have focused on investigating the distributed implementation for level-wise
coverage pattern mining approach. However, the pattern growth-based approach CPPG [55] for
mining coverage patterns has the potential to further reduce the execution time of mining patterns
through reduced search space. Hence, as part of future work, we want to explore the distributed
implementation of CPPG algorithm.

2. In the ad-slot allocation framework proposed in this thesis, we have considered all the ad-slots to
have identical dimensions. However, in the practical scenario, the size and positions of the ad slots
can vary vastly. Hence, as part of our future work, we want to extend the ad allocation framework
further by considering the dimension of variation of ad slots in terms of size and positioning on
the web page.

3. In this thesis, the ad-slot allocation approach is proposed based on the assumption that the user-
visit pattern at the time of ad-slot allocation remains the same as the pattern observed in the
click-stream data provided as input to the ad-slot allocation framework. However, in the real-
world scenario, the user visit pattern can vary every day because of factors like changes in the
content of the web pages, the occurrence of a new event in a few web pages, etc. Hence, as part
of future work, we want to investigate robust ad-space management frameworks that can handle
the variations in user visit patterns.
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