
Machine-Learning driven Tranformations and Analysis of Quantum
Circuits for NISQ-era hardware

Thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science
in

Computational Natural Sciences
by Research

by

Animesh Sinha
2018113001

animesh.sinha@research.iiit.ac.in

International Institute of Information Technology
Hyderabad - 500 032, INDIA

April, 2023



Copyright © Animesh Sinha, 2023

All Rights Reserved



International Institute of Information Technology
Hyderabad, India

CERTIFICATE

It is certified that the work contained in this thesis, titled “Machine-Learning driven Tranformations and
Analysis of Quantum Circuits for NISQ-era hardware” by Animesh Sinha, has been carried out under
my supervision and is not submitted elsewhere for a degree.

June 14, 2023 Adviser: Prof. Harjinder Singh



Learning to Compute for making Compute that Learns



Acknowledgments

I want to express my gratitude to my advisor, Prof. Harjinder Singh, for helping me take my first
steps in research, help explore the many domains I might be interested in, and eventually helping me
start making progress on Quantum Computing. I would also like to thank my senior, Utkarsh Azad,
for mentoring me through the entire process, from formulating the problem to benchmarking the re-
sults on both the projects and pricing the requisite domain knowledge and intuition required to tackle
those problems. Prof. Harjinder Singh and Utkarsh Azad have also helped write and edit this thesis
immensely.

Next, I would like to thank the professors in the CCNSB and CQST departments for designing
courses that helped me gain interest in the sciences, specifically Quantum. Prof. Subhadip Mitra, Prof.
Deva Priyakumar, Prof. Santanav Chakraborty, and many others have taken courses that have helped
hone my skills in this domain.

I would also like to thank my friends who helped with techniques learned and ideas developed in
the project. Bhuvanesh Sridharan helped out a lot with the Monte Carlo Tree Search formulation of the
problem and helped find ways to improve the project iteratively. Kalp Shah and Jai Bardhan contributed
valuable thoughts on the scientific and machine learning aspects of the projects involved. Other friends
and lab-mates, including Adrian Alva, Shweta Sahoo, Gaurang Tandon, Kanish Anand, and many oth-
ers, have engaged in discussions on these topics, which have been invaluable to me in validating and
extending my ideas.

Finally, I would like to thank my Mom and Dad for their constant support and guidance on all
matters, including academic and technical advice.

v



Abstract

Quantum Computation is one of the most promising futures in furthering computing power and
increasing the computational scientific simulation ability. However, the present-day quantum devices
suffer from several limitations, a small number of qubits, limited connectivity, noisy evolution, and
others. Therefore, the need of the hour is to come up with both hardware-based and algorithmic changes
to mitigate these limitations and put forth a step toward a quantum computer that achieves supremacy
over its classical counterpart. The primary focus of this dissertation is to present a method of efficiently
compiling quantum circuits on present-day hardware to minimize the effects of limited connectivity and
effects of noise. Further, we explore a class of hybrid quantum-classical algorithms called variational
quantum circuits and attempt to characterize their properties, evolution, and advantages.

First, we provide the requisite background in quantum computing, variational quantum methods,
deep learning, and reinforcement learning. Next, we present qRoute, a reinforcement learning based so-
lution for compiling quantum circuits onto present-day hardware. We elucidate the method that QRoute
uses for depth minimized compilation, which is essentially a Monte-Carlo tree search put together with
a graph neural network to decide which parts of the tree to explore. We discuss the details of the algo-
rithm, the key points of innovation that differentiate it from the previous methods, and the state-of-the-art
results it achieves on various circuits compilation benchmarks. Finally, we move to the application of
quantum computers in solving real-world problems and discuss the circuits called variational quantum
circuits. We present a framework qLEET for characterizing the training paths, loss landscapes, entan-
glement capability, and expressibility of these circuits, and we provide a use-case example in analyzing
an algorithm called QAOA for computing the Max-Cut of a graph, which is an NP-complete problem
and require time exponential in the number of nodes on a classical computer. All code for qRoute
and qLEET has been released to the open-source community and provides easy and modular access to
endpoints where our algorithms can be tweaked for further research in this domain.

vi



Contents

Chapter Page

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Scope of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Research problems tackled . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 qRoute: Qubit Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 qLEET: Variational Circuit Property Visualizations . . . . . . . . . . . . . . . 4

1.3 Thesis Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Applications of our work to science . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Quantum Computation and Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . 8
2.1 Quantum Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Qubits and Quantum Computation Model . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Unitaries, Gates, and Entanglement . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Density Matrices and Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Quantum Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Purely Quantum Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1.1 Grover’s Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1.2 Shor’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1.3 Hamiltonian Simulation . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Variational Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2.1 Quantum Approximate Optimization Algorithm . . . . . . . . . . . 15

2.2.3 Variational Quantum Eigensolvers . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 What is Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.1.1 Markov Decision Processes . . . . . . . . . . . . . . . . . . . . . . 19
2.3.1.2 Value Function and Policy Function . . . . . . . . . . . . . . . . . . 19

2.3.2 Reinforcement Learning Algorithms . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.2.1 Deep Q-Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.2.2 Policy Function Approximators . . . . . . . . . . . . . . . . . . . . 21

2.3.2.2.1 Reasons to use policy gradients: . . . . . . . . . . . . . . 21
2.3.2.2.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.2.2.3 Other Nuances . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.2.3 Actor Critic Methods . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.2.4 Monte Carlo Tree Search . . . . . . . . . . . . . . . . . . . . . . . 22

vii



viii CONTENTS

3 qRoute: Qubit Routing using Graph Neural Network aided Monte Carlo Tree Search . . . . . 23
3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Qubit Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.1 Describing the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.3 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.1 State and Action Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4.2 Monte Carlo Tree Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.3 Neural Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5.1 Random Test Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5.2 Small Realistic Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.5.3 Large Realistic Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 qLEET: Visualizing Loss Landscapes, Expressibility, Entangling power and Training Trajectories
for Parameterized Quantum Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4.1 Trainability of PQCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4.2 Loss Landscape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4.3 Training Trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4.4 Expressibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4.5 Entangling Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4.6 Entanglement Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4.7 Parameter Histograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.5 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.5.1 Effect of Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.5.2 Presence of Barren Plateaus . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.5.3 Estimation of Reachability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Appendix A: qRoute: Algorithm Details and Additional Results . . . . . . . . . . . . . . . . 55
A.1 MCTS Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
A.2 Results on Google Sycamore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
A.3 Example of Routing Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
A.4 Tabulated Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

A.4.1 Random Test Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
A.4.2 Small Realistic Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
A.4.3 Large Realistic Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64



CONTENTS ix

Appendix B: qLEET: Additional Results and Usage Tutorial . . . . . . . . . . . . . . . . . . 65
B.1 Tutorial: Entaglement Ability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 65
B.2 Loss Landscape and Training Trajectory Analysis . . . . . . . . . . . . . . . . . . . . 68
B.3 Entanglement Analysis for MZ operator [1] . . . . . . . . . . . . . . . . . . . . . . . 69
B.4 Quantum Circuits from the Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 71

B.4.1 Loss Landscape and Training Trajectories (Fig. B.3→ Fig. 3) . . . . . . . . . 71
B.4.2 Expressibility (Fig. B.4→ Fig. 5) . . . . . . . . . . . . . . . . . . . . . . . . 71
B.4.3 Entangling Capability (Fig. B.5→ Fig. 6) . . . . . . . . . . . . . . . . . . . . 71
B.4.4 Entanglement Spectrum (Fig. B.6→ Fig. 7) . . . . . . . . . . . . . . . . . . 71

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76



List of Figures

Figure Page

1.1 Example of the Qubit Routing task . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Loss Landscapes of Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Typical Quantum Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Block Sphere representation of Quantum States . . . . . . . . . . . . . . . . . . . . . 10
2.3 List of Logic Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Variational Circuit for QAOA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Topologies of Quantum Computing hardware qRoute is tested on . . . . . . . . . . . . 25
3.2 Examples of qubit connectivity graphs for some common quantum architectures . . . . 25
3.3 Visualization of steps in Monte Carlo Tree Search . . . . . . . . . . . . . . . . . . . . 28
3.4 Graph neural network architecture that approximates value and policy function . . . . 30
3.5 qRoute Results on randomly generated circuits . . . . . . . . . . . . . . . . . . . . . 32
3.6 qRoute Results on small realistic circuit set . . . . . . . . . . . . . . . . . . . . . . . 34
3.7 qRoute Results on large realistic circuit set . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 The architecture stack for qLEET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Problem graph for QAOA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3 Loss Landscape and Training Trajectory for QAOA Max-Cut . . . . . . . . . . . . . . 42
4.4 Quantifying expressibility for single-qubit circuits . . . . . . . . . . . . . . . . . . . . 43
4.5 Visualizing entanglement spectrum for parameterized quantum circuits . . . . . . . . . 46
4.6 Visualizing entanglement spectrum for parameterized quantum circuits . . . . . . . . . 47
4.7 Visualizing entanglement spectrum for parameterized quantum circuits . . . . . . . . . 49
4.8 Presence of barren plateaus in parameterized quantum circuits . . . . . . . . . . . . . 50

A.1 qRoute Results on Google Sycamore for small realistic circuits . . . . . . . . . . . . . 57
A.2 qRoute evolution of state visualized . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
A.3 The transformed circuit output from qRoute . . . . . . . . . . . . . . . . . . . . . . . 59

B.1 Loss and Training Trajectory plots obtained on analyzing the circuit shown. Here, the
analysis is shown for a circuit representing max-cut on a graph with 8 nodes and 20 edges. 70

B.2 MZ operator used in the quantum computing model based on entanglement degree al-
lows to differentiate between the non-orthogonal states of the form e1|0⟩ + e2|1⟩, with
arbitrary accuracy [1, 2, 3, 4]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

B.3 QAOA Circuit for p=1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
B.4 Parameterized Quantum Circuit for a Unitary U1(θ). . . . . . . . . . . . . . . . . . . 73

x



LIST OF FIGURES xi

B.5 Parameterized Quantum Circuit for a Unitary U2(θ). . . . . . . . . . . . . . . . . . . 73
B.6 Parameterized Quantum Circuit for a Unitary U3(θ). . . . . . . . . . . . . . . . . . . 74



List of Tables

Table Page

A.1 Comparative results for a set of randomly generated test circuits . . . . . . . . . . . . 59
A.2 Comparative results for low-depth realistic test circuits . . . . . . . . . . . . . . . . . 62
A.3 Comparative results for long-depth realistic test circuits . . . . . . . . . . . . . . . . . 64

xii



Chapter 1

Introduction

1.1 Scope of the Thesis

The present-day noisy intermediate-scale quantum computers are capable of running simple quantum
procedures, and in the case of some particular problems, they come close to showing a significant
quantum advantage over their classical counterparts [5]. However, we are still a long way off from
the goal of performing general-purpose computation to solve significant problems with a substantial
speedup over the classical realm. Making quantum computation feasible will involve iterated progress
in several domains, like the following:

1. Building hardware with a larger number of qubits that have better noise-resilience and higher
connectivity for multi-qubit operations across those qubits.

2. Designing quantum error detection codes to mitigate noise by composing a single logical qubit
from many physical qubits.

3. Coming up with quantum algorithms to solve problems of practical value which are intractable
on classical computers.

4. Compiling those algorithms down to circuit operations such that they can be carried out quickly
and reliably.

This focus of the work in this dissertation is to address points 3 and 4.

1.1.1 Research problems tackled

We need to tackle the following computational challenges to address the problems listed above. This
thesis proposes novel solutions to all of the problems listed below, outperforming the state-of-the-art
solutions on large classes of quantum circuits.

T1 To incorporate the notion of parallelizability and noise mitigation in quantum circuits in quantum
circuits based circuit routing algorithms The longer quantum circuits take to execute, the more

1



noise and decoherence of the quantum state affect the final results. Quantum states decohere even
quicker when no operations are being applied to them, which is when they wait for parts of the
circuit to finish. Planning methods to execute circuits with the least number of gates do exist, but
we need to add the notion of parallel operations into this planning process, and a hand-crafted or
neurally-learned heuristic that helps guide such search.

T2 To design an algorithm for efficient and neurally-guided search in combinatorially large search
spaces. A parallelizable set of actions need to be scheduled at each timestep by our planner. The
number of possible sets of operations we are deciding over is exponential in the hardware size.
Since searching overall sets is infeasible, all methods to iteratively add or remove elements from
the set to develop some heuristic maximization. We attempt to develop one such method that
would allow us to train our networks in this reinforcement learning (RL) setting stably.

T3 To develop a framework for analyzing variational algorithms on noisy-quantum computers, eval-
uating the quantum advantage, convergence properties of the learning process, etc. Variational
Methods 2.2.2 are typically used to solve hard optimization problems, in which the classical sub-
system learns parameters for a parametrized quantum circuits (PQC) to maximize some function
of the state prepared by said circuit. This is, in essence, a learning algorithm, and analysis of
these learning algorithms and iterating on designs of these circuits should be both based on intu-
ition from other quantum algorithms (in the way quantum approximate optimization algorithm is
inspired by quantum annealing and trotterization 2.2.2.1) and from data obtained about the loss
landscape on which we are optimizing.

1.2 Motivation

This section discusses the specific features of the problems discussed in this dissertation that motivate
elements of our method. We enlist other approaches that bear similar motivation but fail to achieve
results, together with some explanation of this failure.

1.2.1 qRoute: Qubit Routing

The design and development of quantum algorithms are often hardware-agnostic fashion, i.e., the
assumption is that any two qubits can be operated on, and all qubits have perfect fidelity. However,
since it is physically infeasible to allow multi-qubit operations between arbitrary pairs of qubits, we
need to decompose existing gates into sets of SWAP gates to generate physical proximity for operations
to be feasible, as shown in Figure 1.1.

While solving the problem of routing, we note that the value of the entire set of actions scheduled at
each timestep is mainly dependent on the independent value of actions in the set and the values added
by the co-occurrence of small subsets of these actions, i.e., operations occurring on qubits significantly

2



Figure 1.1: Transformation of a quantum circuit where non-local operations are scheduled to one im-

plementable on the hardware (qubits 1 and 2 are not a local pair, 0 and 1, and 0 and 2 are). The

decomposition of some gates is shown with arrows.

separated on hardware do not affect each other. This strikes a remarkable similarity with the general
problem of search in combinatorial spaces [6], an improvement in the solution to the routing problem
with implying a new method to decide over subsets, as will an improvement in a decision over subsets
most likely imply an improvement in our router.

Annealers with dense neural networks as proposed in [6, 7] were the only previous works that solve
qubit routing phrased as a decision over sets problems. We noted the following challenges while running
replications of both these results:

1. Backpropagating rewards across the annealers is noisy; the combining algorithm needs to be a
more deterministic function of its inputs.

2. Value function is hard to estimate, particularly in large circuits, since it requires tremendous
foresight of how long it will take to schedule the rest of the circuit, while optimal actions can be
chosen from a very shallow look ahead.

3. Annealers are slow in high-value set construction and are infeasibly slow with a large number of
qubits or gates.

4. The simulations need to be run on very long event horizons; however, most of the actions should
affect rewards in the near future.

5. The value function should model the symmetries inherent to the system and understand that swap
actions chosen are only dependent on the local structure around the qubit.

Over the past few years, reinforcement learning has shown remarkable breakthroughs in playing
games like Go [8], Chess [9] using planning with Monte Carlo Tree Search, playing StarCraft [10] and
Dota [11] using an actor-critic method with combinatorial decisions for all agents taken using an actor-
critic method trained in an autoregressive setting. These games are faced with tasks similar to those
listed above, with long horizons to reason over, combinatorial search spaces requiring the coordination

3



of many controlled agents, etc., being major issues. The fact that the methods used to solve these games
can cope with these challenges motivated us to try them on the problem of routing as well.

Challenge 1 is well handled by using MCTS instead of the annealer setting. A value network and a
policy network are used, which helps neurally prune the tree helping with challenge 3, and the ability to
model the policy directly in the policy network and to train it in an actor-critic setting to solve challenge
2. Greedy gate scheduling and intermediate rewards on each step as gates are scheduled to help avoid
long-horizon reasoning, addressing challenge 4. The Graph Neural Network with a small number of
message passing rounds can model symmetries and localities well solving 5.

Following the publication of our work, Zhou et al. [12] have proposed a similar MCTS-based method
(without a neural guide) for depth minimization. This method shows promising results amongst other
classical planners and heuristic methods and shows that the choice of setting is valid even independent
of the quantum circuits problem. Our method, however, is capable of routing larger circuits with better
speed and lower depth.

1.2.2 qLEET: Variational Circuit Property Visualizations

Variational Methods (discussed in section 2.2.2) approach optimization problems, i.e., maximization
or minimization under constraints, by posing them as the task of finding the ground state eigenvector of
a hamiltonian that models the problem. A parametrized quantum circuit generates the ground state with
guessed parameters and the guess by a classical system.

Depending on the algorithm we use, the problem Hamiltonian as a function of the parameters of our
prepared state can be easy or hard to optimize over. In classical machine learning, we have seen that
model architecture, which is essentially the way the model is parametrized, can affect the loss landscape
it is optimizing over, and models which result in smooth landscapes perform well, and those which do
not show inferior results. The most striking of these demonstrations is by [13], as demonstrated in the
image 1.2.

If the landscape we are optimizing over is not smooth, the optimization process is easily affected
by choice of initial variables. Furthermore, the convergence of differently initialized optimization runs,
or lack thereof, tells us about the degree of abundance of local minima on this landscape. One notable
example of such analysis is by Lorch [15]. We hope that by using a similar analysis on parameterized
quantum circuits, we can compute which class of circuits leads to better optimizability over the under-
lying hamiltonian. We give an example analysis of this method on circuits like QAOA for computing
the Max-Cut of a graph (formulation discussed in 2.2.2.1) amongst others.

Furthermore, given that we are leveraging quantum computers to solve these problems and optimize
over the loss landscape, we also need to ensure that these quantum resources are being efficiently uti-
lized. For this, Sim et al. [?] have come up with two metrics, expressibility and entanglement capability.

• The parametrization of the Variational Circuits affects what set of states it can generate; there
can always exist some set of states which are not generatable by our parametrized ansatz for any

4



(a) Loss Landscape of the ResNet-56 architecture

with the skip-connections (as proposed in [14]) re-

moved.

(b) Loss Landscape of Resnet=56 with all it’s skip

connections retained.

Figure 1.2: The loss landscapes of neural networks with and without skip connections, as visualized

by Li et. al.[13]. The architectural decision of adding skip connections makes the feasibility of the

optimization process a lot higher, to the extent visualizable on a 2-D random projection.

choice of the parameter-vector. The amount of the state space that our circuit can generate is
measured using the metric of expressibility; the higher the expressibility of the circuit, the better
it is for exploring the entire space of solutions.

• The quantum speedup in these variational circuits is attributed to entanglement between the qubits
(discussed in section 2.1.2), due to which the information being processed inside of the quantum
circuit is exponentially greater than that which would have been by a classical system with the
same number of qubits. A measure of how much of this entanglement capability is used by our
PQC is a valuable metric; its presence seems essential to obtaining an advantage over any classical
method.

In our PQC analysis software qLEET, we build a backend agnostic suite of python packages that
help evaluate this metric for well-known variational algorithms like QAOA for Max-Cut on a Graph,
Variational Quantum Eigensolver, and the like. We include support for doing these evaluations on ideal
conditions with pure state vectors or with density matrices and noise models. The final evaluation can
be computed by sampling the quantum state or mathematically evaluating these metrics by directly
accessing the underlying quantum state to speed up the computation.

1.3 Thesis Layout

C1 This is the introductory chapter, which discusses the scope of the work carried out in this thesis in
the context of developments in quantum computation, addresses the problems we are attempting to

5



pose solutions to and adds some motivation for the methods that we will develop in the following
chapters.

C2 Here, we present a background in quantum computing and reinforcement learning which is req-
uisite for understanding the motivations of the methods developed and the algorithms used in the
remainder of this dissertation. We conclude this chapter by enlisting some ideas that we are going
to use to address the problems posed in 1.1.1.

C3 As the first major contribution of this thesis, we present qRoute: Qubit Routing using Graph
Neural Network aided Monte Carlo Tree Search, which is a reinforcement learning algorithm we
propose for depth-minimized (used as a proxy for noise-mitigated) compilation. We discuss the
routing problem and the specifics of our algorithm and associated neural architecture design.

C4 The other contribution of this thesis is qLEET: Visualizing Loss Landscapes, Expressibility,
Entangling power and Training Trajectories for Parameterized Quantum Circuits, in which we
present a way to analyze the properties of variational methods that can be implemented on present-
day quantum computers, and build a software framework for the same.

C5 We conclude with a summary of methods and results discussed in this thesis, the practical use-
cases of these methods, and the scope of extension of this work in the future.

1.4 Applications of our work to science

Simulating the interations of atoms and molecules to a high degree of precision is crucial to many
tasks in the sciences. Computation of molecular structure, prediction of material properties, simula-
tion of interations between different compounds and reaction pathways all depend on such computa-
tion. However, computation of many-atom quantum-mechanical dynamics on classical computers is
extremely computationally expensive, which has motivated several approximation techniques and ma-
chine learning solution. These are tractable, but not always accurate. Quantum Computers can simulate
nature more directly, and therefore hold great promise in allowing us to feasibly perform such compu-
tation [16, 17].

Methods to map Hamiltonians onto quantum computers have been developed which allow us to
computer the energy states of fermionic systems or accurately simulate the ising model [18, 19, 20,
21, 22]. Computation of ground-state and excited-state energies [23] of quantum systems can be done
through methods like quantum annealing [24] and other variational methods discussed in the following
chapters. Estimating structure of molecules, reactions between them, conformational changes, are all
modelled naturally using these methods. This is particularly relevant in protein structure prediction and
the drug discovery pipeline. Quantum protein structure prediction [17, 25] and drug discovery as actives
lines of research [26, 27]. Quantum methods can make direct computation of structure possible, which
should lead to methods that are sensitive to small changes in the primary structure unlike the machine

6



learning solutions of today, and be extensible to modelling protein-protein and drug-protein interactions
well.

Machine learning tools have also been employed to great success in the sciences. Some examples are
the predictions of properties of physical and chemical systems where deep learning has been of great
value, generation of compounds and material structures aiming at some target property, optimizing
controls over multistep non-linear processes using reinforcement learning, etc. Since quantum methods
can express exponentially more information in as many qubits as a classical computers can in that many
bits, it’s widely believes that this higher expressibility can be exploited for exponential speedups in
general purpose tasks like matrix multiplication. Along these lines, several quantum machine learning
models have been proposed for Fully Connected Neural Networks [28], Convolutional Neural Networks
[29], Recurrent Neural Networks [30], Generative Adverserial Networks [31], Reinforcement Learning
Agents [32, 33], and many others. Quantum speedups that we seek to gain in numerical computation
would accelerate science research in every domain, in much the same way as the growing computational
power we have available has helped in the development of science till now. There exists a significant
body of work in specializing these Quantum quantum circuits methods to problems in sciences [34, 35,
36], and more will come with the development of the field.

In conclusion, chemical and biochemical simulations in particular [37, 38], and science at large,
stands to benefit greatly from progress in quantum computation. Attempts are being made to bring this
quantum advantage onto near term hardware [39]. Hamiltonian Simulation based methods, and Efficient
universal gate-based computation on noisy computers are the most promising of directions relevant in
the scientific context, and these are the primary focus of this dissertation.

7



Chapter 2

Quantum Computation and Reinforcement Learning

This chapter introduces the basics of quantum computing and reinforcement learning that form the
backdrop of the work in the remainder of the thesis.

We start with a brief introduction of the quantum computation model and its mathematical and geo-
metric formalism and introduce the circuit model of computation.

Next, we discuss Quantum Algorithms, starting with pure quantum algorithms like Grover’s, Shor’s,
and Hamiltonian simulation and move on to Variational Methods like QAOA (Quantum Approximate
Optimization Algorithm) and VQE (Variational Quantum Eigensolver). The compilation and visualiza-
tion of these algorithms form the basis of the work presented in this thesis. Both our algorithms have
been tested extensively on some subset of these circuits. There are a small number of such subroutines
that have currently been discovered in quantum algorithmic theory, and these subroutines are often and
repeatedly used, motivating the value of using machine learning methods which can exploit recurring
patterns to perform quantum circuit transformations as close to optimally as possible (Qubit routing
results on these algorithmic benchmarks as setup by IBM are listed in A). The QAOA algorithm for
max-cut is also our test-bed for analyzing and visualizing the learning properties of these variational
circuits.

Finally, we move to a didactic introduction to reinforcement learning by talking about the different
learning frameworks in the field like Value-based, Policy-based, etc. We discuss the algorithmic details
of those methods that are relevant to our work, like Deep-Q-learning, Policy Gradients, Actor-Critic,
and Monte Carlo Tree Search.

2.1 Quantum Computation

2.1.1 Qubits and Quantum Computation Model

Quantum Computers store information as quantum bits, or qubits. These qubits evolve through the
application of unitary operators, also called gates. The gate model of quantum computation is akin to
that on classical computers; the following is a diagrammatic illustration of the same:

8



Figure 2.1: The image shows the parts of a typical quantum circuit, with 3 qubits represented by the

wires and a set of gates applied to them, followed by measurement of those qubits.

A classical bit can be either 0 or 1. However, a qubit can live in any state inbetween 0 or 1, which is
understood as being in a weighted superposition of the 0 and 1 states. So the state of a qubit

|ψ⟩ = α |0⟩+ β |1⟩ =

[
α

β

]
such that |α|2 + |β|2 = 1 and α, β ∈ C (2.1)

where the normalization of probabilities forces. However this state of the qubit is not accessible to us,
and we can only measure the qubit probabilistically, with probability of being |0⟩ being |α|2 and that of
|1⟩ being β2.

Each qubit, in addition to the superposition it is in, also has a phase term, which is represented on the
Bloch-sphere (Figure 2.2) on the x̂− ŷ plane. The phase does not affect the immediate measurement of
the qubit but can affect the resultant phase and superposition when some unitary operation is applied to
the qubit.

2.1.2 Unitaries, Gates, and Entanglement

The state of a system of qubits can be modified by gates. The gates that can executed on a quantum
computer are those that apply norm-preserving linear transforms on the state vector.

|ψ′
1 ⊗ ψ′

2 ⊗ . . .⊗ ψ′
n⟩ = U2n×2n |ψ1 ⊗ ψ2 ⊗ . . .⊗ ψn⟩ (2.2)

9



Figure 2.2: Bloch-sphere represents the state of a qubit |ψ⟩. The pure states |0⟩ and |1⟩ are the vectors

along the z-axis on the opposite poles. The angle along the x-y plane represents the phase of the qubits.

When we transform the state as |ψ⟩ → U |ψ⟩, the norm of the state transforms as ⟨ψ|ψ⟩ → ⟨ψU †|Uψ⟩.
To ensure that norm is preserved, we need the U †U = I, so all gates on quantum computers must be
unitaries.

Some multi-qubit gates introduce a property called Entanglement. Examples of such gates are CNOT,
CZ, etc (See figure 2.3). Once two qubits are ”entangled” through some such operation like CNOT, their
state cannot be written as a product of the individual states of the qubits; they are now linked in a way
that the probability distribution of collapsing either state along the measurement axis is not factorizable.

The state of an entangled system of n-qubits can be represented by a unit-norm state-vector in C2n .
This is because each of the bit-vectors of n-bits which can be an outcome of measurement need to have
their probabilities and phases represented. A linear transform on such a system is therefore defined by a
matrix of shape 2n × 2n, as mentioned in equation 2.2.

2.1.3 Density Matrices and Noise

State preparation on a quantum computer is subject to noise. Therefore there often exists some
uncertainty in the state of qubits on actual physical hardware. This uncertainty can be modeled as a
classical probability distribution over the different quantum states that might have been prepared. Such
a state is called a mixed state, as opposed to a pure state. Mixed states can be represented using Density
matrices ρ, which are 2-D matrices with 2n × 2n elements for n qubits.

ρ =
∑
i

pi |xi⟩ ⟨xi| (2.3)

10



Figure 2.3: Popular logic gates along with their in-circuit representations and corresponding unitary

matrices. X , Y , X , H , S, P and T are all single qubit gates. X is a 180o rotation of the bloch-sphere

around the X axis, same with Y and Z. Rx(θ) = e−iXθ/2 is a rotation of θ angle around the X-axis,

same with the other axes. CX is a controlled form of the X gate, where one qubit participating in the

operation is the controller, and if it’s in the |1⟩ state then X gate will be applied on the qubit, and not if

it was in the |0⟩ state. Such gates result in the two qubits becoming entangled, other controlled gates are

CNOT (controlled version of Z), CRx(θ) (Controlled version of rotation along X), etc. [40]

Much like unitary operations on state vectors (2.1.2), the application of unitaries on density matrices
can be represented through simple matrix multiplication:

O(ρ) =
∑
i

piO(|xi⟩)O(⟨xi|) =
∑
i

piU |xi⟩ ⟨xi|U † = UρU † (2.4)

11



2.2 Quantum Algorithms

2.2.1 Purely Quantum Algorithms

Superposition and Entanglement together provide quantum computers with natural parallel process-
ing power. While full access to this parallelism gets bottlenecked at the measurement layer since we can
sample only one of the many states in weighted superposition, it is conceivable that for many an algo-
rithm, this parallelism can result in a processing speed-up. A near-term goal with Quantum Computers
is to achieve quantum supremacy, which is to solve a problem (possibly one of no practical use) that no
classical computer can solve in a feasible amount of time. [41]

The algorithms developed for quantum computation till date can be categorized into just 3 classes
[42], listed below:

• Grover Like (Amplitude Amplification class of algorithms).

• Shor Like (Using Quantum Phase Estimation and Quantum Fourier Transform)

• Hamiltonian Simulation

All algorithms in each class share the subroutines which are the primary cause of the quantum speedup.
Below we describe these three classes of algorithms in some detail.

2.2.1.1 Grover’s Search

Grover’s search is an algorithm to search for some target element or set of elements in an unordered
list of size n in

√
n time proposed by Grover in 1996 [43].

The Problem : Grover attacks the problem of unstructured search, where we have a list of n elements
in any permutation, and we have an oracle that marks each of these elements 1 if it is one of the results
of the search procedure we wish to find, or as 0 if it is not one of those elements. The oracle only returns
a value of 1 for some m of those elements, where m << n.

Overview of the Algorithm : Following is a brief explanation of how Grover’s Algorithm operates:

1. Preparing the initial superposition of bitstrings: The initial state should be the superposition
of all elements in our search domain. Since these are the indices of the elements we are searching
over, we can take this to be an equal superposition of all basis states, constructed by applying the
hadamard gate over all qubits.

|x⟩ = |s⟩ = 1√
n

n∑
i=1

|bi⟩ (2.5)

12



2. Application of a phase-kickback oracle: For any input state |x⟩, if it is a valid solution (i.e.
f(x) = 1), then the oracle applies to that bitstring a negative phase factor. If |x⟩ is not a basis
state but rather is a superposition of states, then the oracle operates on each basis component of
the state independently as shown in equation. 2.6

O
(
|x⟩
)
= O

(∑
i

wi(x) |bi⟩
)

=
∑
i

wi(x)

− |bi⟩ if f(bi) = 1

|bi⟩ if f(bi) = 0
(2.6)

3. Performing a reflection around the average amplitude: Following the application of the oracle,
we can apply a reflection around the mean amplitude of the superposition of all solutions via an
application of the Diffuser operator.

D
(
|x⟩
)
=
(
2 |s⟩ ⟨s| − 1

)
|x⟩ (2.7)

Given that there are small number of solutions

4. Repeat 2 steps above and measure the final state: We iteratively apply the oracle and the dif-
fuser circuit to take the present superposition closer and closer to the goal state. Measurement of
this state along the computational basis gives us a bitstring, which with some constant probability
is the solution x such that f(x) = 1.

Ampliture Amplification algorithms : The algorithmic structure proposed by Grover can be ex-
tended to solve other problems, the notion being that a quantum circuit that finds an algorithm with
probability p needs to be run only O(1/

√
p) times and not O(1/p) times [44].

2.2.1.2 Shor’s Algorithm

Shor’s Algorithm is used to perform factorization of an integer product of two large prime numbers
[45].

The problem : Given an integer that is known to be the product of two large prime numbers, we have
to factor the number back into the composing integers.

Overview of the Algorithm : Following is a brief explanation of how Shor’s Algorithm works:

1. Preparing the Unitary: We need to model a unitary operator which performs modular multipli-
cation by some constant a.

U |y⟩ = |ay mod N⟩ (2.8)

The n-qubit states for our quantum system are being represented as |0⟩ , |1⟩ , · · · |N − 1⟩, on the
qubits they are being represented as the bitstrings corresponding to those numbers.

13



2. Period Finding to Phase Estimation: Generate a linear combination of states which is an eigen-
state of the unitary operator. The states in the linear combination will form an r-element subgroup,
and the phase terms multiplied to each state will be the r-th roots of unity.

|us⟩ =
1√
r

r−1∑
k=0

e−
2πisk

r |ak mod N⟩ (2.9)

U |us⟩ = e
2πis
r |us⟩ (2.10)

3. Period Finding to Factorization: We compute the phase s
r from the process above. Using this,

we can generate a fractional approximation to the phase and estimate the value of r. We know that

ar mod N = 1 (2.11)

With high probability, r is even; if it’s not then we will repeat this process with a new a. Given the
above, we can guess a factor of N as ar/2 − 1 or ar/2 + 1.

(ar/2 − 1)(ar/2 + 1) mod N = 0 (2.12)

Having ensured initially that a is not a factor of N , we have found a high-probability guess for
the factors being one of these two numbers. We repeat this process until this guess turns out to be
correct.

Other Comments : Shor’s Algorithm provides an exponential advantage over any known classical
algorithm, it demands too many qubits, and that fault tolerance be implemented; these are at present
infeasible. An entire class of Quantum Algorithms takes inspiration from this use of period finding
using the Quantum Phase Estimation process, and one prominent example is the HHL algorithm [46]
for solving linear systems.

2.2.1.3 Hamiltonian Simulation

Nature is hard to simulate on a classical computer. Writing down quantum wavefunctions and up-
dating them is computationally very expensive. As Richard Feynman said: ”Nature is not classical,
dammit, and if you want to make a simulation of nature, you’d better make it quantum mechanical, and
by golly, it’s a wonderful problem, because it doesn’t look so easy.” [16].

The most natural solution is to use the quantum systems to emulate other quantum systems and
perform these computations. It seems intuitive that quantum computers are efficient at doing quantum
simulations; all that needs to be done is that the state of an arbitrary system needs to be mapped onto
that of ours.

There are many ways of performing Hamiltonian simulation on general-purpose gate-based quantum
computers. Some of those methods are listed below:

14



• Using Trotterization [47]: Given a hamiltonian which can be represented as a linear combination
of local Hamiltonians, H = A + B + C, the trotter decomposition of Unitary corresponding to
the Hamiltonian can be approximated by

U = e−iHt = (e−iAt/re−iBt/re−iCt/r)r (2.13)

For larger values of r this results in a pretty accurate simulation.

• Using Taylor Expansion of Hamiltonian [48]: The Hamiltonian can be expanded out as a sum
of unitaries, and then the corresponding unitary can be taylor-series expanded out as a linear
combination of the unitaries corresponding to terms of the Taylor expansion.

U = e−iHt =
∞∑
n=0

(−iHt)n

n!
(2.14)

• Using Quantum Walks [49]: Quantum walks can be constructed corresponding to the Hamiltonian
such that the spectrum of the graph on which the walk is constructed is such that its eigenvalues
correspond to the ground state of the target Hamiltonian.

• Using Quantum Signal Processing [50, 51]: The QSP algorithm transduces eigenvalues of the
Hamiltonian into an ancilla, then transforms the eigenvalues with single-qubit rotations, and fi-
nally projects it back to the ancilla.

2.2.2 Variational Circuits

In the previous section, we have discussed purely quantum algorithms, which possess an advantage
over their present classical competitors but need fault-tolerant quantum computers with many qubits to
be executed.

In this section, we look at a few hybrid quantum-classical optimization algorithms, called variational
quantum algorithms.

Each optimization problem is solved over a parameter space and attempts to maximize some metric
which we call the loss. For a quantum circuit, we can visualize the loss function as some hamiltonian
for which we are trying to find the lowest energy state, i.e., the ground eigenstate. Some parametrized
circuit generates this ground eigenstate, and a classical optimizer is responsible for finding as low an
energy state as possible.

2.2.2.1 Quantum Approximate Optimization Algorithm

Quantum Approximate Optimization Algorithms are a class of variational quantum algorithms used
as a general-purpose hammer to solve combinatorial optimization problems probabilistically [52].

15



Figure 2.4: An example of a QAOA circuit with p = 1 blocks and generated to compute max-cut

on a graph with 3-nodes and 2-edges between (0, 2) and (1, 0). The state generated by the circuit is

parameterized in terms of the five parameters in the circuit. The output along the z-axis is measured

and used to compute the classical loss value, i.e., the size of the max-cut given to which each node

(represented by a qubit) belongs. Finally, a classical optimizer is used to reduce the value of the loss

function such that resulting ansatz from the optimization process represents the cut of minimum size.

Motivation for the Algorithm : The Algorithm takes inspiration from adiabatic quantum computing,
which is a method that does the following: We start with a quantum state that is an easily preparable
ground state of some Hamiltonian, and we vary this Hamiltonian sufficiently slowly and try to reach
some target Hamiltonian, then the given quantum state will also track the ground state of the current
form of the Hamiltonian. So the result of the Algorithm, if performed slowly enough, will be the ground
state of the target Hamiltonian the preparation of which might not have been obvious otherwise.

QAOA takes that philosophy to the gate-computation model and uses the Suzuki-Trotter [47] decom-
position to approximate the application of unitaries corresponding to these Hamiltonians for sufficiently
short periods of time.

Algorithm : The following steps are performed to execute QAOA for a given optimization problem.
(See figure 2.4)

1. Prepare the initial state: We start by applying a Hadamard on all qubits to create an initial state
which is an equal superposition of all basis states.

2. Apply the mixing unitary: The mixing unitary corresponds to the mixing Hamiltonian as fol-
lows.

U(HB) = e−iβHB (2.15)

16



We choose the mixer hamiltonian to be X⊗N , and the corresponding unitary becomes Rx(β)⊗N .
This is because the ground state of this hamiltonian is known to be the initial state that we have
prepared.

3. Apply the problem Hamiltonian: The problem unitary corresponds to the Hamiltonian formu-
lation of our problem, and this is the Hamiltonian for which we are attempting to find the ground
eigenstate.

U(HP ) = e−iγHP (2.16)

The hamiltonian needs to be formulated for each problem individually.

4. Repeat for p iterations: We execute the mixing-Hamiltonian problem-Hamiltonian process for p-
iterations. Each player is a β-duration mixing Hamiltonian and a γ-duration problem Hamiltonian
application. For tuned values of β and γ and sufficiently large p, this can be made to approximate
adiabatic computing.

5. Measure and classically compute loss: The loss value that we are attempting to optimize is the
following:

L = ⟨ψ(β, γ)|Hp|ψ(β, γ)⟩ (2.17)

To compute this, we measure all qubits, and using the bitstring obtained in our classical registers,
we classically compute the value of the optimization metric for this bitstring solution.

6. Classically compute derivatives and update parameters: The parameters for each of the p
layers (β, γ) are optimized using some method like gradient descent or adam. We attempt to
reduce the value of the loss, as defined by the parameter updates in equation 2.17.

QAOA for Max Cut of a Graph : Given a graph with vertices v ∈ V and edges e ∈ E ⊂ V ×V , we
want to compute a partition of vertices into two sets f : V → {−1,+1} such that the number of edges
going across the partition (C = {e = (u, v)|e ∈ E ; f(u) ̸= f(v)}) is maximized (maxf |C|).

The QAOA formulation follows naturally. The classical loss function is the following:

L =
−1
2

∑
e=(u,v)∈E

(f(u) · f(v)− 1) (2.18)

Since the Pauli-Z operator on the |0⟩ and |1⟩ state acts similar to the function f , in the quantum phrasing
we can equivalently use the Z operators. We can drop the global constants and additive terms when
writing out the optimization objective.

H =
−1
2

∑
e=(u,v)

I0 ⊗ I1 ⊗ . . .⊗ Zu ⊗ . . .⊗ Zu ⊗ . . .⊗ IN (2.19)

This can be efficiently implemented in a circuit, which will be used as the problem unitary.

17



Other applications : The QAOA algorithm can be further used to solve approximately other prob-
lems, including those that are NP-complete such as Weighted Max-Cut, 3-SAT, Travelling Salesman
problem, amongst others. On the problem of Max-Cut, QAOA had, for a short span of about 3-months,
held the best approximation ratio ([52]) until it was superseded by semi-definite programming. Even
though QAOA may not be able to be within the bounds achievable by classical computers, the universal-
ity of its applicability is remarkable. Coming up with classical methods to outperform QAOA on every
new task takes much effort, semi-definite programming solutions have proven to be the best bet to out-
perform QAOA, but they have to be formulated afresh for each problem. Therefore, as a general-purpose
solution to many problems, QAOA stands as a very good bet.

2.2.3 Variational Quantum Eigensolvers

Variational Quantum Algorithms is another entry in the class of variation algorithms, which tries
to estimate the ground eigenstate and eigenvalues of a Hamiltonian using the method of optimization
described above.

λmin ≤ ⟨H⟩ψ = ⟨ψ|H|ψ⟩ =
N∑
i=1

λi| ⟨ψi|ψ⟩ |2 (2.20)

2.3 Reinforcement Learning

2.3.1 What is Reinforcement Learning

Machine Learning and all associated sub-disciplines are motivated by the goal of achieving artificial
general intelligence, that is, being able to mimic the human mind and even surpass its capacity to
perceive, compute and actuate. The human mind deals with various problems differing greatly in their
phrasing, the solutions they admit, etc. This host of problem types requires many different types of
learning methods in various settings.

Deep Learning is an extremely powerful and popular one of these methods, which uses parameterized
function approximators (aka. neural networks) to learn arbitrary functions directly from examples. We
typically learn functions that take as input numerical data and associated structure (e.g., graphs) and
produce one or many continuous-valued outputs (regression) or discrete-value outputs (classification).
This has been employed with great success in tasks like image recognition, text generation, etc.

Despite all their predictive power, these methods are limited in the problems they can solve. One
limitation is our inability to provide many labeled examples since running laboratory experiments or
expensive in-silico simulations are often too time and resource-consuming. Another issue is that the
output may not be a simple function of its inputs. For instance, when predicting a compilation output
to take at each step, our action chosen depends greatly on other actions scheduled, and therefore a
single step function cannot solve such a problem; an iterative approach to optimize these coordinates

18



is required. In such cases where a problem is solved in many steps, there is no notion of the correct
result after a single step; we can only score if the composite of steps produces the final result. All these
problems necessitate a machine learning method that can produce outputs over several timesteps and be
able to reason about the correctness of its outputs based on rewards it may obtain at a different time in
our process. This method is Reinforcement Learning. [53]

2.3.1.1 Markov Decision Processes

A Markov Decision process is any real or simulated process going on in time where each decision
follows the Markovian Property, i.e., any future state transitions or rewards are conditionally indepen-
dent of the past states and actions given the present state the environment is in.

A Markov Decision Process (MDP) can be represented as a tuple ⟨S,A, Ta(s, s′), Ra(s, s′)⟩, where
S is the set of all states,A is the set of all actions available from any given state, Ta(s, s′) is the transition
model which represents the probability of going from a starting state s to a next state s′ given that the
action a was taken, and Ra(ss′) is the reward obtained when this transition is realized.

Reinforcement Learning is a method of solving Markov Decision Processes. For our problem to be
solved by RL, we need to ensure that our formulation is Markovian, i.e., our state has enough informa-
tion to, given the action, predict the probability of the next state and the associated reward.

2.3.1.2 Value Function and Policy Function

At every point in time, our agent has access to the state and gets to choose an action. For this action,
it receives a reward, and the state of the simulation is updated. This process continues indefinitely until
a terminal state is reached, i.e., one where no further progress needs to be made and no future rewards
can be collected. This entire trajectory of states and actions together comprises an episode.

The agent maintains a function which is called its policy function π(s, a), which given the current
state, gives the probability of each action it can take from that state. Our agent is allowed to be stochastic
for various practical and theoretical reasons, so the probability for more than one action in a given state
is allowed to be non-zero. This is the function that we shall attempt to optimize while learning from our
environment.

While acting according to any policy function, we can associate each state with what we call the
value function Vπ(s), which represents the expected sum of rewards till the end of the episode obtain-
able by following the policy. The optimal policy function π leads to the maximum value function for
the starting state.

Value-function of one state can be written in terms of that of others. To compute these values over
all the states, we need to apply our updates iteratively.

V (s) =
∑
a∈A

π(s, a)
∑
s′

Ta(s, s
′)(V (s′) +Ra(s, s

′)) (2.21)

19



Instead of associating a value with each state, we can associate it with a state-action pair. This
function is called the Q-function, and it carries equivalent information to the value function.

Q(s, a) =
∑
s′

Ta(s, s
′)

(
R(s, s′) + V (s′)

)
(2.22)

=
∑
s′

Ta(s, s
′)

(
R(s, s′) +

∑
a∈A

π(s′, a)Q(s′, a)

)
(2.23)

2.3.2 Reinforcement Learning Algorithms

In the following sections, we shall see four classes of models:

• Value Function Optimizers

• Policy Function Optimizers

• Actor-Critic Systems

• Planning based Reinforcement Learning

2.3.2.1 Deep Q-Networks

The first class of models attempts to approximate the value function. Assuming that our policy
function will be that which is optimal, and assuming that our actions are deterministic (i.e., transition
probabilities are 1 for the state we result in after an action and 0 otherwise), we can rewrite equation
2.23 as:

Q(s, a)← R(s, s′) + max
a∈A

Q(s′, a) (2.24)

For almost all problems in the real world, the state space is too large to maintain explicitly. Therefore
we use a parameterized function Qθ, typically a neural network, to approximate the q-value from any
given state-action pair.

The parameters θ can be updating using gradient based methods. The update operation is shown in
equation 2.25.

θk+1 = θk − α∇θ

[
1

2

(
Qθ(s, a)−

(
R(s, a, s′) + γmax

a′
Qθk(s

′, a′)
))]∣∣∣∣∣

θk

(2.25)

Several improvements to the training efficiency and stability of the DQN algorithm have been made;
a few examples are the Double DQN by [54]. This set of improvements put together has been analyzed
by [55] under the name Rainbow DQN.

20



2.3.2.2 Policy Function Approximators

The policy function πθ(s, a) gives the probability of each action given the state. In value function
methods, we computed the policy by finding the action with the maximum expected value and assigning
it a probability of 1 and other actions 0 for each state. When learning the policy directly, we use a
stochastic policy instead, which chooses smooth and optimizable actions.

2.3.2.2.1 Reasons to use policy gradients: Following are the benefits of attempting to learn the
policy directly instead of attempting to learn the value function and the policy through it:

1. Learning value function may be much harder than learning the relative quality of actions. E.g.,
when compiling a circuit, it is tough to ascertain the value function of the state, which would
correspond to the number of timesteps it would take to compile the remainder of the circuit; it’s
much easier to decide what action would best help make progress in the circuit compilation task.

2. We might want to obtain an inherently stochastic policy, where policy-based methods are the
better choice. This often happens when we want to sample different action choices from our
algorithm and rank them later.

3. Many a time, the action space is continuous or intractably large, and maximizing the value over
all the actions is not feasible. Here we can only use policy-based methods. The routing problem’s
action space fits the bill for this.

2.3.2.2.2 Method To optimize our policy, we sample trajectories from our policy and increase the
probability of actions in trajectories that obtain high rewards and lower the probability of those with
lesser rewards.

The utility of our policy is the expected reward under trajectories sampled from this policy; this is
the quantity we wish to maximize over the parameters θ. To perform this maximization, we compute
∇θU(θ) and update the parameter vector as θ ← θ + ϵ∇θU(θ). The gradient only depends on the
gradient of the log of our policy function scaled by the rewards obtained along the trajectory and, very
importantly, does not depend on the true transition model. Equation 2.26 follows from a mathematically
involved derivation done in [56].

∇θU(θ)← 1

m

m∑
i=1

H−1∑
t=0

∇θ log πθ(u
(i)
t |s

(i)
t )

(
H−1∑
k=t

R(s
(i)
k , u

(i)
k )− b(s(i)t )

)
(2.26)

2.3.2.2.3 Other Nuances : Despite having the gradient that we need to update along, it is unclear
what learning rate we should use to perform the said update. Unlike in deep learning, where the next
iteration would correct if we overstep along the gradient, an overstep in our policy can lead to evaluation
over an incorrect policy and can essentially wipe out all we have learned till now. Trust Region policy

21



optimizations (TRPO) by [57] and Proximal Policy Optimizations (PPO) by [58] are methods that ad-
dress this. Furthermore, to increase sample efficiency, Direct Deterministic Policy Gradients (DDPG)
by [59], and Soft Actor critic (SAC) [60] are used.

2.3.2.3 Actor Critic Methods

In equation 2.26, we are free to subtract a baseline value b(s(i)t ) from the summed up rewards for
each action; however, this baseline should be independent of the action and can only depend on the
state. Subtraction of this baseline leads to lower variance estimates in the value of actions. The network
now has to predict a quantity called the advantage. Advantage represents the difference in the value of
each action over or below the expected reward obtainable from the state.

A(s, a) = Q(s, a)− V (s) (2.27)

This is implemented in practice using two networks, an actor network, which estimates the values of
the actions, and a critic network, which estimates the resultant values of the states, which we subtract as
a baseline from the rewards. These methods are often known to be stabler than their pure policy-gradient
counterparts.

There are several variants on how the critic network and the explicit rollout together lead to the
estimate of the value for each state, which has been discussed in detail by [61, 62, 63]

2.3.2.4 Monte Carlo Tree Search

When the transition model (next state and reward given action) is known, we can plan explicitly using
a tree search. Since the tree would grow combinatorially big, we use reinforcement learning to find the
most promising nodes. Monte Carlo Tree Search is one such method, which has gained prominence due
to its use in AlphaGo by [8] to play Go and in AlphaZero by [9] to play Chess, Go, and other games
with no human supervision during training.

The use of MCTS for Qubit Routing is discussed in much greater detail in the following chapter.

22



Chapter 3

qRoute: Qubit Routing using Graph Neural Network aided Monte Carlo

Tree Search

3.1 Abstract

Near-term quantum hardware can support two-qubit operations only on the qubits that can interact
with each other. Therefore, to execute an arbitrary quantum circuit on the hardware, compilers have to
first perform the task of qubit routing, i.e., to transform the quantum circuit either by inserting additional
SWAP gates or by reversing existing CNOT gates to satisfy the connectivity constraints of the target
topology. The depth of the transformed quantum circuits is minimized by utilizing the Monte Carlo
tree search (MCTS) to perform qubit routing by making it both construct each action and search over
the space of all actions. It is aided in performing these tasks by a Graph neural network that evaluates
the value function and action probabilities for each state. Along with this, we propose a new method
of adding mutex-lock like variables in our state representation which helps factor in the parallelization
of the scheduled operations, thereby pruning the depth of the output circuit. Overall, our procedure
(referred to as QRoute) performs qubit routing in a hardware agnostic manner, and it outperforms other
available qubit routing implementations on various circuit benchmarks.

(Published in the Proceedings of AAAI Conferenence on Artificial Intelligence, 2022 [64])

3.2 Introduction

The present-day quantum computers, more generally known as Noisy Intermediate-Scale quantum
(NISQ) devices [65] come in a variety of hardware architectures [66, 67, 68, 69], but there exist a few
problems pervading across all of them. These problems constitute the poor quality of qubits, limited
connectivity between qubits, and the absence of error-correction for noise-induced errors encountered
during the execution of gate operations. These place a considerable restriction on the number of instruc-
tions that can be executed to perform useful quantum computation [65]. Collectively these instructions

23



can be realized as a sequential series of one or two-qubit gates that can be visualized more easily as a
quantum circuit as shown in Fig. 3.1a [70].

To execute an arbitrarily given quantum circuit on the target quantum hardware, a compiler routine
must transform it to satisfy the connectivity constraints of the topology of the hardware [71]. These
transformations usually include the addition of SWAP gates and the reversal of existing CNOT gates.
This ensures that any non-local quantum operations are performed only between the qubits that are
nearest-neighbors. This process of circuit transformation by a compiler routine for the target hardware
is known as qubit routing [71]. The output instructions in the transformed quantum circuit should follow
the connectivity constraints and essentially result in the same overall unitary evolution as the original
circuit [7].

In the context of NISQ hardware, this procedure is of extreme importance as the transformed circuit
will, in general, have higher depth due to the insertion of extra SWAP gates. This overhead in the circuit
depth becomes more prominent due to the high decoherence rates of the qubits and it becomes essential
to find the most optimal and efficient strategy to minimize it [71, 6, 7]. In this chapter, we present a
procedure that we refer to as QRoute. We use Monte Carlo tree search (MCTS), which is a look-ahead
search algorithm for finding optimal decisions in the decision space guided by a heuristic evaluation
function [72, 73, 74]. We use it for explicitly searching the decision space for depth minimization and
as a stable and performant machine learning setting. It is aided by a Graph neural network (GNN) [75],
with an architecture that is used to learn and evaluate the heuristic function that will help guide the
MCTS.

3.3 Qubit Routing

In this section, we begin by defining the problem of qubit routing formally and discussing the work
done previously in the field.

3.3.1 Describing the Problem

The topology of quantum hardware can be visualized as a qubit connectivity graph (Fig. 3.2). Each
node in this graph would correspond to a physical qubit which in turn might correspond to a logical
qubit. The quantum instruction set, which is also referred to as quantum circuit (Fig. 3.1a), is a sequen-
tial series of single-qubit and two-qubit gate operations that act on the logical qubits. The two-qubit
gates such as CNOT can only be performed between two logical qubits iff there exists an edge between
the nodes that correspond to the physical qubits, [6]. This edge could be either unidirectional or bidi-
rectional, i.e., CNOT can be performed either in one direction or in both directions. In this work, we
consider only the bidirectional case, while noting that the direction of a CNOT gate can be reversed by
sandwiching it between a pair of Hadamard gates acting on both control and target qubits [76].

24



1

q1

q2

q3

q4

q5

q6

q7

q8

q9

f

d

c

e

a

b

q1

q2

q3

q4

q5

q6

q7

q8

q9

1 2 3 4

f

d

e

a

c

b

q1 q1

q2 q3

q3 q2

q4 q7

q5 q5

q6 q9

q7 q4

q8 q6

q9 q8

1 2 3 4 5

(a) Quantum circuit

1

q1

q2

q3

q4

q5

q6

q7

q8

q9

f

d

c

e

a

b

q1

q2

q3

q4

q5

q6

q7

q8

q9

1 2 3

f

d

e

a

c

b

q1 q1

q2 q3

q3 q2

q4 q7

q5 q5

q6 q9

q7 q4

q8 q6

q9 q8

1 2 3 4 5(b) Decomposed circuit

1

q1

q2

q3

q4

q5

q6

q7

q8

q9

f

d

c

e

a

b

q1

q2

q3

q4

q5

q6

q7

q8

q9

1 2 3 4

f

d

e

a

c

b

q1 q1

q2 q3

q3 q2

q4 q7

q5 q5

q6 q9

q7 q4

q8 q6

q9 q8

1 2 3 4 5

(c) Decomposed transformed circuit

Figure 3.1: An example of qubit routing on a quantum circuit for 3×3 grid architecture (Figure 3.2a).

(a) For simplicity, the original quantum circuit consists only of two-qubit gate operations. (b) Decompo-

sition of the original quantum circuit into series of slices such that all the instructions present in a slice

can be executed in parallel. The two-qubit gate operations: {d, e} (green) comply with the topology

of the grid architecture whereas the operations: {a, b, c, f} (red) do not comply with the topology (and

therefore cannot be performed). Note that the successive two-qubit gate operations on q3 → q4 (blue)

are redundant and are not considered while routing. (c) Decomposition of the transformed quantum

circuit we get after qubit routing. Four additional SWAP gates are added that increased the circuit depth

to 5, i.e., an overhead circuit depth of 2. The final qubit labels are represented at the end right side of

the circuit. The qubits that are not moved (or swapped) are shown in brown ({q1, q5}), while the rest of

them are shown in blue.

1

54

97

2

8

6

3
E1 E3 E5

E6 E8 E10

E2

E7

E11

E4

E9

E12

� � � � �

�� � � � �

�� �� �� �� ��

�� �� �� �� ��

(a) 3×3 grid architecture with edges (i.e.

neighboring qubits) labelled

1

54

97

2

8

6

3
E1 E3 E5

E6 E8 E10

E2

E7

E11

E4

E9

E12

� � � � �

�� � � � �

�� �� �� �� ��

�� �� �� �� ��

(b) IBMQX-20 architecture represented as a graph

Figure 3.2: Examples of qubit connectivity graphs for some common quantum architectures

25



Given a target hardware topology D and a quantum circuit C, the task of qubit routing refers to
transforming this quantum circuit by adding a series of SWAP gates such that all its gate operations then
satisfy the connectivity constraints of the target topology (Fig. 3.1c). Formally, for a routing algorithm
R, we can represent this process as follows:

R(C, D)→ C′ (3.1)

Depth of C′ (transformed quantum circuit) will, in general, be more than that of the original circuit due to
the insertion of additional SWAP gates. This comes from the definition of the term depth in the context
of quantum circuits. This can be understood by decomposing a quantum circuit into series of individual
slices, each of which contains a group of gate operations that have no overlapping qubits, i.e., all the
instructions present in a slice can be executed in parallel (Fig. 3.1b). The depth of the quantum circuit
then refers to the minimum number of such slices the circuit can be decomposed into, i.e., the minimum
amount of parallel executions needed to execute the circuit. The goal is to minimize the overhead depth
of the transformed circuit with respect to the original circuit.

This goal involves solving two subsequent problems of (i) qubit allocation, which refers to the map-
ping of program qubits to logic qubits, and (ii) qubit movement, which refers to routing qubits between
different locations such that interaction can be made possible [77]. In this work, we focus on the latter
problem of qubit movement only and refer to it as qubit routing. However, it should be noted that qubit
allocation is also an important problem and it can play an important role in minimizing the effort needed
to perform qubit movement.

3.3.2 Related Work

The first major attraction for solving the qubit routing problem was the competition organized by
IBM in 2018 to find the best routing algorithm. This competition was won by [78], for developing a
Computer Aided Design-based (CAD) routing strategy. Since then, this problem has been presented
in many different ways. These include graph-based architecture-agnostic solution by [71], showing
equivalence to the travelling salesman problem by [79], machine learning based methods by [80], and
heuristic approaches by [81], [82], [83], etc. A reinforcement learning in a combinatorial action space
solution was proposed by [6], which suggested used simulated annealing to search through the combi-
natorial action space, aided by a Feed-Forward neural network to judge the long-term expected depth.
This was further extended to use Double Deep Q-learning and prioritized experience replay by [7].

Recently, Monte Carlo tree search (MCTS), a popular reinforcement learning algorithm [84] previ-
ously proven successful in a variety of domains like playing puzzle games such as Chess and Go [85],
and was used by [12] to develop a qubit routing solution.

26



3.3.3 Our Contributions

Our work demonstrates the use of MCTS on the task of Qubit Routing and presents state of the art
results. Following are the novelties of this approach:

• We use an array of mutex locks to represent the current state of parallelization, helping to reduce
the depth of the circuits instead of the total quantum volume, in contrast to previous use of MCTS
for qubit routing in [12].

• The actions in each timestep (layer of the output circuit) belong to a innumerably large action
space. We phrase the construction of such actions as a Markov decision process, making the
training stabler and the results better, particularly at larger circuit sizes, than those obtained by
performing simulated annealing to search in such action spaces [6, 7]. Such approach should be
applicable to other problems of a similar nature.

• Graph neural networks are used as an improved architecture to help guide the tree search.

Finally, we provide a simple python package containing the implementation of QRoute, together
with an easy interface for trying out different neural net architectures, combining algorithms, reward
structures, etc.

3.4 Method

The QRoute algorithm takes in an input circuit and an injective map, M : Q → N , from logical
qubits to nodes (physical qubits). Iteratively, over multiple timesteps, it tries to schedule the gate opera-
tions that are present in the input circuit onto the target hardware. To do so, from the set of unscheduled
gate operations, P , it takes all the current operations, which are the first unscheduled operation for both
the qubits that they act on, and tries to make them into local operations, which are those two-qubit
operations that involve qubits that are mapped to nodes connected on the target hardware.

In every timestep t, QRoute starts by greedily scheduling all the operations that are both current and
local in P . To evolveM, it then performs a Monte Carlo tree search (MCTS) to find an optimal set of
SWAPs by the evaluation metrics described in the Section 3.4.2 such that all operations in the current
timestep put together form a parallelizable set, i.e., a set of local operations such that no two operations
in the set act on the same qubit. The number of states we can encounter in the action space explodes
exponentially with the depth of our search, therefore an explicit search till the circuit is done compiling
is not possible. Therefore we cut short our search at some shallow intermediate state, and use a neural
network to get its heuristic evaluation. Detailed algorithm has been presented in appendix A.1.

The following subsections describe in greater detail the working of the search and the heuristic
evaluation.

27



1-3

5-94-6

6-87-4

2

8-6

9-5

3-1

X X

1 X X 1 X X

1 1 X X11 X X

1-3

5-94-6

6-87-4

2

8-6

9-5

3-1

X X

1 X X 1 X X

1-3

57-4

6-44-6

3-1

8

9

2

X

1 1 X X11 X X

1-3

5-94-6

6-87-4

2

8-6

9-5

3-1

X X

1 X X 1 X X

1-3

57-4

6-44-6

3-1

8

9

2

X

1 1 X X11 X X

Update

Update

Update

Update

1-3

57-4

6-44-6

3-1

8

9

2

X

Model

Evaluation
(value function)

��������� ���������

������������
��
�

Figure 3.3: Iteration of a Monte Carlo tree search: (i) select - recursively choosing a node in the search

tree for exploration using a selection criteria, (ii) expand - expanding the tree using the available actions

if an unexplored leaf node is selected, (iii) rollout - estimating long term reward using a neural network

for the action-state pair for the new node added to search tree, and (iv) backup - propagating reward

value from the leaf nodes upwards to update the evaluations of its ancestors.

3.4.1 State and Action Space

Definition 3.4.1 (State) It captures entire specification of the state of compilation at some timestep t.

Abstractly, it is described as:

st = (D, Mt, Pt, Lt) (3.2)

where, D is the topology of target hardware, andMt and Pt represents the current values ofM and

P respectively. Lt is the set of nodes that are locked by the gate operations from the previous timestep

and therefore cannot be operated in the current timestep.

Definition 3.4.2 (Action) It is a set of SWAP gates (represented by the pair of qubits it acts on) such

that all gates are local, and its union with the set of operations that were scheduled in the same timestep

forms a parallelizable set.

28



We are performing a tree search over state-action pairs. Since the number of actions that can be taken
at any timestep is exponential in the number of connections on the hardware, we are forced to build a
single action up, step-by-step.

Definition 3.4.3 (Move) It is a single step in a search procedure which either builds up the action or

applies it to the current state. Moves are of the following two types:

1. SWAP(n1, n2): Inserts a new SWAP on nodes n1 and n2 into the action set. Such an insertion

is only possible if the operation is local and resulting set of operations for the timestep form a

parallel set.

2. COMMIT: Finishes the construction of the action set for that timestep. It also uses the action

formed until now to update the state st (schedules the SWAP gates on the hardware), and resets

the action set for the next step.

In reality, different gate operations take different counts of timesteps for execution. For example, if
a hardware requires SWAP gate to be broken down into CNOT gates, then it would take three timesteps
for complete execution [76]. This means, operations which are being scheduled must maintain mutual
exclusivity with other other operations over the nodes which participates in them. This is essential to
minimizing the depth of the circuit since it models paralleizability of operations.

However, constructing a parallelizable set and representing the state of parallelization to our heuristic
evaluator is a challenge. But an analogy can be drawn here to the nodes being thought of as “resources”
that cannot be shared, and the operations as “consumers” [86]. This motivates us to propose the use of
Mutex Locks for this purpose. These will lock a node until a scheduled gate operation involving that
node executes completely. Therefore, this allows our framework to naturally handle different types of
operations which take different amounts of time to complete.

For every state-action pair, the application of a feasible move m on it will result in a new state-action
pair: (s, a) m−→ (s′, a′). This is a formulation of the problem of search as a Markov Decision Process.
Associated with each such state-action-move tuple ((s, a),m), we maintain two additional values that
are used by MCTS:

1. N-value - The number of times we have taken the said move m from said state-action pair (s, a).

2. Q-value - Given a reward functionR, it is the average long-term reward expected after taking said
move m over all iterations of the search. (Future rewards are discounted by a factor γ)

Q((s, a),m) =R((s, a),m) +

γ

∑
m′ N((s′, a′),m′) ·Q((s′, a′),m′)∑

m′ N((s′, a′),m′)

(3.3)

29



�������������������
������������

�������
����


������
��������������

	�����������

������������

�����
�
���������

��������������

�������
	��������

��
���
�����

��
��
�����

�������
���������

�����
���������


������
���������


���������������
����
����

��
����
���

������


��
�������� 	��������

��
�������� ��
�������� ��
���������������
���������


������
���������


Figure 3.4: Graph neural network architecture that approximates the value function and the policy

function.

3.4.2 Monte Carlo Tree Search

Monte Carlo tree search progresses iteratively by executing its four phases: select, expand, rollout,
and backup as illustrated in Fig. 3.3. In each iteration, it begins traversing down the existing search
tree by selecting the node with the maximum UCT value (Eq. 3.4) at each level. During this traversal,
whenever it encounters a leaf node, it expands the tree by choosing a movem from that leaf node. Then,
it estimates the scalar evaluation for the new state-action pair and backpropagates it up the tree to update
evaluations of its ancestors.

To build an optimal action set, we would want to select the move m with the maximum true Q-value.
But since true Q-values are intractably expensive to compute, we can only approximate the Q-values
through efficient exploration. We use the Upper Confidence Bound on Trees (UCT) objective [74] to
balance exploration and exploitation as we traverse through the search tree. Moreover, as this problem
results in a highly asymmetric tree, since some move block a lot of other moves, while others block
fewer moves, we use the formulation of UCT adapted for asymmetric trees [87]:

UCT((s, a),m) = Q((s, a),m) +

c

√∑
mN((s, a),m)

N((s, a),m)
× p(m|(s, a))

(3.4)

Here, the value p(m|(s, a)) is the prior policy function, which is obtained by adding a Dirichlet
noise to the policy output of the neural network [88]. As MCTS continues probing the action space, it
gets a better estimate of the true values of the actions. This means that it acts as a policy enhancement
function whose output policy (Eq. 3.5) can be used to train the neural network’s prior (π), and the
average Q-value computed can be used to train its scalar evaluation (Eq. 3.6).

30



π(m|(s, a)) ∝ N((s, a),m)) (3.5)

V((s, a)) =
∑

mQ((s, a),m)∑
mN((s, a),m)

(3.6)

The details of how MCTS progresses have been elaborated in the supplementary. Once it gets termi-
nated, i.e., the search gets completed, we go down the tree selecting the child with the maximum Q-value
at each step until a COMMIT action is found, we use the action set of the selected state-action pair to
schedule SWAPs for the current timestep, and we re-root the tree at the child node of the COMMIT
action to prepare for the next timestep.

3.4.3 Neural Network Architecture

Each iteration of the MCTS requires evaluation of Q-values for a newly encountered state-action pair.
But these values are impossible to be computed exactly since it would involve an intractable number of
iterations in exploring and expanding the complete search tree. Therefore, it is favorable to heuristically
evaluate the expected long-term reward from the state-action pair using a Neural Network, as it acts
as an excellent function approximator that can learn the symmetries and general rules inherent to the
system.

So, once the MCTS sends a state-action pair to the evaluator, it begins by committing the action to
the state and getting the resultant state. We then generate the following featurized representation of this
state and pass this representation through the neural-network architecture as shown in Fig. 3.4.

1. Node Targets - It is a square boolean matrix whose rows and columns correspond to the nodes on
a target device. An element (i, j) is true iff some logical qubits qx and qy are currently mapped to
nodes i and j respectively, such that (qx, qy) is the first unscheduled operation that qx partakes in.

2. Locked Edges - It is a set of edges (pairs of connected nodes) that are still locked due to either of
its qubits being involved in an operation in the current timestep or another longer operation that
hasn’t yet terminated from the previous timesteps.

3. Remaining targets - It is a list of the number of gate-operations that are yet to be scheduled for
each logical qubit.

The SWAP operations each qubit would partake in depends primarily on its target node, and on those
of the nodes in its neighborhood that might be competing for the same resources. It seems reasonable
that we can use a Graph Neural Network with the device topology graph for its connectivity since the
decision of the optimal SWAP action for some node is largely affected by other nodes in its physical
neighborhood. Therefore, our architecture includes an edge-convolution block [75], followed by some
fully-connected layers with Swish [89] activations for the policy and value heads. The value function
and the policy function computed from this neural network are returned back to the MCTS.

31



40 60 80 100 120 140
Number of Input Gates

25

50

75

100

125

150

175

Ou
tp

ut
 C

irc
ui

t D
ep

th

QRoute
Cirq
Qiskit (basic)
Qiskit (stochastic)
Qiskit (sabre)
t|ket
DQN

Figure 3.5: Comparative performance of routing algorithms on random circuits as a function of the

number of two-qubit operations in the circuit.

3.5 Results

We compare QRoute against the routing algorithms from other state-of-the-art frameworks on vari-
ous circuit benchmarks: (i) Qiskit and its three variants [90]: (a) basic, (b) stochastic, and (c) sabre, (ii)
Deep-Q-Networks (DQN) from [7], (iii) Cirq [91], and (iv) t|ket⟩ from Cambridge Quantum Computing
(CQC) [92]. Qiskit’s transpiler uses gate commutation rules while perform qubit routing. This strategy
is shown to be advantageous in achieving lower circuit depths [93] but was disabled in our simulations
to have a fair comparison. The results for DQN shown are adapted from the data provided by the authors
[7]. Additional data regarding performance on Google Sycamore, the specific results on each circuit,
etc., have been provided in the appendix A.1.

3.5.1 Random Test Circuits

The first benchmark for comparing our performance comprises of random circuits. These circuits
are generated on the fly and initialized with the same number of qubits as there are nodes on the device.
Then two-qubit gates are put between any pair of qubits chosen at random. In our simulations, the

32



number of such gates is varied from 30 to 150 and the results for assessing performance of different
frameworks are given in Fig. 3.5. The experiments were repeated 10 times on each circuit size, and final
results were aggregated over this repetition.

Amongst the frameworks compared, QRoute ranks a very close second only to Deep-Q-Network
guided simulated annealer (DQN). Nevertheless, QRoute still does consistently better than all the other
major frameworks: Qiskit, Cirq and t|ket⟩, and it scales well when we increase the number of layers and
the layer density in the input circuit. QRoute shows equivalent performance to DQN on smaller circuits,
and on the larger circuits it outputs depths which are on average ≤ 4 layers more than those of DQN.
Some part of this can be attributed to MCTS, in its limited depth search, choosing the worse of two
moves with very close Q-values, resulting in the scheduling of some unnecessary SWAP operations.

3.5.2 Small Realistic Circuits

Next we test on the set of all circuits which use 100 or less gates from the IBM-Q realistic quantum
circuit dataset used by [94]. The comparative performance of all routing frameworks has been shown
by plotting the depths of the output circuits summed over all the circuits in the test set in Fig. 3.6. Since
the lack of a good initial qubit allocation becomes a significant problem for all pure routing algorithms
on small circuits, we have benchmarked QRoute on this dataset from three trials with different initial
allocations.

The model presented herein has the best performance on this dataset. We also compare the best
result from a pool of all routers including QRoute against that of another pool of the same routers but
excluding QRoute. The pool including QRoute gives on average 2.5% lower circuit depth, indicating
that there is a significant number of circuits where QRoute is the best routing method available.

On this dataset also, closest to QRoute performance is shown by Deep-Q-Network guided simulated
annealer. To compare performances, we look at the average circuit depth ratio (CDR), which is defined
by [7]:

CDR =
1

#circuits

∑
circuits

Output Circuit Depth
Input Circuit Depth

(3.7)

The resultant CDR for QRoute is 1.178, where as the reported CDR for the DQN is 1.19. In fact,
QRoute outperforms DQN on at least 80% of the circuits. This is significant because in contrast to the
random circuit benchmark, the realistic benchmarks consist of the circuits that are closer to the circuits
used in useful computation.

3.5.3 Large Realistic Circuit

For final benchmark, we take eight large circuits ranging from 154 gates to 5960 gates in its input
from the IBM-Quantum realistic test dataset [94]. The results are plotted in Fig. 3.7. QRoute has the
best performance of all available routing methods: Qiskit and t|ket⟩, on every one of these sampled

33



QRoute DQN t|ket Qiskit
(basic)

Qiskit
(sabre)

Qiskit
(stochastic)

Cirq

Quantum Compiler

0

500

1000

1500

2000

2500

3000

3500

4000

Ou
tp

ut
 C

irc
ui

t D
ep

th Best with
QRoute

Best without
QRoute

2000

2200

2400

2600

Figure 3.6: Plots of output circuit depths of routing algorithms over small realistic circuits (≤ 100

gates), summed over the entire dataset. The inset shows the results on the same data comparing the best

performant scheduler excluding and including QRoute on each circuit respectively.

circuits with on an average 13.6% lower circuit depth, and notable increase in winning difference on the
larger circuits.

The results from DQN and Cirq are not available for these benchmarks as they are not designed to
scale to such huge circuits. In case of DQN, the CDR data results were not provided for the circuits
over 200 gates, mainly because simulated annealing used in it is computationally expensive. Similarly,
for Cirq, it takes several days to compile each of the near 5000 qubit circuits. In contrast, QRoute is
able to compile these circuits in at most 4 hours, and its compilation process can be sped up by reducing
the depth of the search. Spending more time, however, helps MCTS to better approximate the Q-values
leading to circuits with lower resulting depth.

3.6 Discussion and Conclusion

In this chapter, we have shown that the problem of qubit routing has a very powerful and elegant
formulation in Reinforcement Learning (RL) which can surpass the results of any classical heuristic

34



154 gates 1343 gates 1405 gates 1498 gates 1701 gates 2100 gates 2319 gates 2648 gates 3089 gates 4459 gates 5960 gates
0

2000

4000

6000

8000
QRoute
t|ket⟩
Qiskit (basic)
Qiskit (stochastic)
Qiskit (sabre)

Number of Gates in Circuit

D
ep

th
 o

f O
ut

pu
t C

irc
ui

t

Figure 3.7: The results over eight circuits sampled from the large realistic dataset benchmark, the

outputs of each routing algorithm are shown for every circuit.

algorithm across all sizes of circuits and types of architectures. Furthermore, the central idea of building
up solutions step-by-step when searching in combinatorial action spaces and enforcing constraints using
mutex locks, can be adapted for several other combinatorial optimization problems [95, 96, 97, 98, 99].
Our approach is flexible enough to compile circuits of any size onto any device, from small ones like
IBMQX20 with 20 qubits, to much larger hardware like Google Sycamore (results provided in supple-
mentary) with 53 qubits (the Circuit Depth Ratio for small realistic circuits on Google Sycamore was
1.64). Also, it intrinsically deals with hardware having different primitive instruction set, for example
on hardware where SWAP gates are not a primitive and they get decomposed to 3 operations. QRoute
enjoys significant tunability; hyperparameters can be changed easily to alter the tradeoff between time
taken and optimality of decisions, exploration and exploitation, etc.

QRoute is a reasonably fast method, taking well under 10 minutes to route a circuit with under
100 operations, and at most 4 hours for those with upto 5000 operations, when tested on a personal
machine with an i3 processor (3.7 GHz) and no GPU acceleration. Yet more can be desired in terms
of speed. However, it is hard to achieve any significant improvement without reducing the number of
search iterations and trading off a bit of performance. More predictive neural networks can help squeeze
in better speeds.

One of the challenges of methods like DQN, that use Simulated Annealing to build up their actions is
that the algorithm cannot plan for the gates which are not yet waiting to be scheduled, those which will
come to the head of the list once the gates which are currently waiting are executed [7]. QRoute also
shares this deficiency, but the effect of this issue is mitigated by the explicit tree search which takes into
account the rewards that will be accrued in the longer-term future. There is scope to further improve
this by feeding the entire list of future targets directly into our neural network by using transformer
encoders to handle the arbitrary length sequence data. This and other aspects of neural network design
will be a primary facet of future explorations. Another means of improving the performance would be
to introduce new actions by incorporating use of BRIDGE gates [93] and gate commutation rules [76]
alongside currently used SWAP gates. The advantage of former is that it allows running CNOT gates on
non-adjacent qubit without permuting the ordering of the logical qubits; whereas, the latter would allow
MCTS to recognize the redundancy in action space, making its exploration and selection more efficient.

35



Finally, we provide an open-sourced access to our software library. It will allow researchers and
developers to implement variants of our methods with minimal effort. We hope that this will aid future
research in quantum circuit transformations. For review we are providing, the codebase and a multime-
dia in the supplementary.

On the whole, the Monte Carlo Tree Search for building up solutions in combinatorial action spaces
has exceeded the current state of art methods that perform qubit routing. Despite its success, we note
that QRoute is a primitive implementation of our ideas, and there is great scope of improvement in
future.

36



Chapter 4

qLEET: Visualizing Loss Landscapes, Expressibility, Entangling power

and Training Trajectories for Parameterized Quantum Circuits

4.1 Abstract

We present qLEET, an open-source Python package for studying parameterized quantum circuits
(PQCs), which are widely used in various variational quantum algorithms (VQAs) and quantum ma-
chine learning (QML) algorithms. qLEET enables computation of properties such as expressibility and
entangling power of a PQC by studying its entanglement spectrum and the distribution of parameterized
states produced by it. Furthermore, it allows users to visualize the training trajectories of PQCs along
with high-dimensional loss landscapes generated by them for different objective functions. It supports
quantum circuits and noise models built using popular quantum computing libraries such as Qiskit, Cirq,
and Pyquil. In our work, we demonstrate how qLEET provides opportunities to design and improve hy-
brid quantum-classical algorithms by utilizing intuitive insights from the ansatz capability and structure
of the loss landscape.

(Whitepaper on Arxiv, quant-ph, May 2022 [100])

4.2 Introduction

Recent advances in the field of quantum technologies have led to the development of near-term
quantum hardware, more popularly referred to as noisy intermediate-scale quantum (NISQ) devices
[65, 101]. Unfortunately, due to restrictive qubit connectivity, imperfect qubit control, and minimal er-
ror correction, their computation capabilities are limited to executing only low depth algorithms [102].
For this reason, these devices are supposedly used as accelerators for their classical counterparts instead
of stand-alone devices themselves. This has led to the development of hybrid quantum-classical (HQC)
algorithms, which use both quantum and classical hardware either iteratively or sequentially. The prob-
lems are decomposed into classically tractable and intractable parts in such a setup, where the latter is
solved using the quantum processor [103].

37



Parameterized quantum circuits (PQCs) are one of the fundamental components of these algorithms
[104]. They are responsible for evolving the qubits system to a state which is dependent on the series of
parameters (θ⃗) provided by a classical processor and the objective function from some initial state |ψ0⟩.
The initial state of the qubit system here could either be ground state |0 . . . 0⟩, or some other particular
state such as Hartree-Fock state |ψ⟩HF as in the case of electronic structure problems. The PQC (U(θ⃗))
is also popularly referred to as ansatz [104]. Their structure dramatically affects the performance of
HQCs as they influence both the (i) convergence speed, i.e., the number of quantum-classical feedback
iterations, and (ii) closeness of the final state (|ψ(θ⃗)⟩) to a state that optimally solves the problem
(|ψ(θ⃗∗)⟩), i.e., the overlap or the fidelity (F = |⟨ψ(θ⃗)|ψ(θ⃗∗)⟩|2) [105] between the final state and
the target state.

Therefore, it becomes imperative to design optimal PQCs for a given problem. However, this is not
straightforward because their design depends not only on the problem instances themselves but also
on the quantum hardware that executes them. After all, some essential properties like depth of circuit
post compilation depend on the hardware’s topology and the supported native gates. Overall, there exist
three main classes of ansätze: (i) problem-inspired ansatz, where the evolutions of generators derived
from properties of the given system are used to construct the PQCs [106], (ii) hardware-efficient ansatz,
where a minimal set of quantum gates native to a given device are used to construct the PQCs [107], and
(iii) adaptive ansatz, which is midway between the former two ansätze [108]. Using these three classes,
one can develop numerous ansatz designs for any given problem. However, to finally choose one, we
need to have insights from the problems and a concrete strategy to compare their performances.

In this work, we present a python library called qLEET 1, [109]. The primary motivation behind
the development of qLEET stems from this need to have a framework for analyzing the capabilities of
parameterized quantum circuits and comparing their performances. It does so by allowing users to study
various properties related to the behavior of PQCs and assess their effectiveness for a given problem
instance. In particular, it will enable visualization of the loss landscape of a PQC for a given objective
function and its training trajectory in the parameter space. Furthermore, it allows the calculation of some
essential properties of PQCs, such as their expressibility and entangling power [110]. It is integrable
with other popular libraries such as Qiskit [90], Cirq [91], or PyQuil [111] and also supports instruction-
set languages like OpenQASM [112] and Quil [111].

Structure - In Sec. 4.3 we present an overview of the architecture stack of qLEET. Then in Sec.
4.4.1 and Sec. 4.5, we demonstrate the use of qLEET in the context of analyzing training of PQCs and
mitigating the challenges associated with them. Finally, in Sec. 4.6, we conclude with a discussion
about our current limitation and possible future extensions of this work.

1https://github.com/QLemma/qleet

38

https://github.com/QLemma/qleet


CircuitDescriptor

circuit (cirq, qiskit, pyquil)

parameter symbols

loss functions

convert across backends

MetricSpec

from samples

from state vector

from density matrix

from circuit

qleet.interface

MetaLogger

PQCTrainer

CircuitDescriptor

train

evaluate

CircuitSimulator

CircuitDescriptor

NoiseModel

simulate

qleet.simulators

tutorials

qleet.examples

loss_landscape

PQCSimulatedTrainer

MetricSpecifier

scan

random_subspace

plot

log

qleet.analyzers

log

plot

LossLandscapePlotter

entanglement

EntanglementCapability

CircuitDescriptor

CircuitSimulator

NoiseModel

entanglement_capability

entanglement_measure

training_path

OptimizationPathPlotter

PQCSimulatedTrainer

histogram

ParameterHistograms

CircuitDescriptor

PQCSimulatedTrainer

simulate

plot

entanglement_spectrum

EntanglementSpectrum

CircuitDescriptor

CircuitSimulator

NoiseModel

entanglement_spectrum

plot

expressibility

Expressibility

CircuitDescriptor

CircuitSimulator

plot

expressibility

NoiseModel

qleet

Figure 4.1: The architecture stack for qLEET: Each block directed from qLEET represents a module.

For the analyzers and simulators modules, each sub-block represents a submodule with class objects

defined and used them (camel case) and function methods provided by them (underlined). For the

interface module, each block represents the class objects defined in it (camel case header) and contains

succinct description of their inputs and outputs.

4.3 Overview

All the functionalities present in qLEET are grouped under four modules, which reside under the
top-level module called qleet. Each such module provides modularity in feature development and
interacts with one another via a specified workflow or API. We present the complete architecture stack
for qLEET in Fig. 4.1, listing down the following modules and identifying the interactions within them:

1. Interface module: qleet.interface serves as the interface for users to build workflow of
the variational computation by specifying the parameterized quantum circuit (PQC) along with
its key components like symbolic placeholders for variational parameters (θ⃗), an objective or a

39



cost function (C) as an observable in Pauli basis and some metrics for evolving the circuit to the
final state defined by MetricSpec. It also contains CircuitDescriptor, which allows for
the building of PQC using any supported framework, therefore making the computation software
agnostic, and MetaLogger, which maintains the record for events that happen during qLEET’s
execution.

2. Simulators module: qleet.simulator contains the simulation engine for performing the
computation. Depending upon the type of workflow you want to execute, you can choose be-
tween PQCTrainer and CircuitSimulator for running training routing and for perform-
ing standalone circuit simulation, respectively. At this stage, you may also describe the simulation
environment for the computation by providing a noise model for the system.

3. Analyzers module: qleet.analyzers performs execution of CircuitDescriptor ob-
ject using PQCTrainer or CircuitSimulator functions present in the qleet.simulator
module. Therefore, qleet.analyzers acts as a linkage between the previous two modules
and is responsible for estimating various essential properties regarding PQC. These include loss
landscape and training trajectory calculation or histogram prediction for variational computation
and expressibility, entangling power and entanglement spectrum calculations for a given ansatz
structure. This module also offers plotting functionality for some of these features.

4. Example module: qleet.examples contains basic set of introductory tutorials and prede-
fined templates for users to get started with using qLEET and contribute to it. These include
examples of using qleet.analyzers for various kinds of calculations, as mentioned before.

We maintain the consistency of our codebase via unit testing, type checking, and format checker via
pytest [113], mypy [114], and black [115], respectively. Overall, we aim for the architecture stack for
qLEET to follow object-oriented design principles, which helps us create a clean and modular software
tool that is easy to test, debug, and maintain in the future.

4.4 Features

This section presents the theory and examples for the features supported by the qLEET. We begin by
introducing the idea of the trainability of a parameterized quantum circuit (PQC). From there, we would
motivate the idea of studying different properties related to PQC to improve and analyze its trainability.
We end the discussion in each subsection by demonstrating how modules in qleet can be used for
analyzing the mentioned properties.

4.4.1 Trainability of PQCs

We consider an N-qubit PQC Û(θ⃗) with an objective function defined by a Hermitian observable O
in the Pauli basis. For an input quantum state ρ, the process of training is defined as minimizing the

40



0

1

2
3

4

5

6

7

8
9

10

11

Figure 4.2: Problem graph considered for MaxCut using QAOA. It is generated as an Erdos-Renyi graph

with 12 nodes and 0.5 edge probability.

following function C:

min C(θ⃗) = minTr[OÛ(θ⃗)ρÛ †(θ⃗)] (4.1)

A PQC Û(θ⃗) evolves the input state ρ to a parameterized target state ρ(θ⃗) and to minimize C(θ⃗) we
update paramters θ⃗ via some classical optimization routine such that:

θ⃗k+1 = θ⃗k − γf(∇θ⃗) C, f(0) = 0 (4.2)

Therefore, for successfully training a PQC, we would require contributions from any variational param-
eter θv to∇

θ⃗
, i.e., ∂C/∂θv to be non-vanishing, non-exploding and unbiased. This means that we expect

E(∂C/∂θv) = 0 and Var(∂C/∂θv) > 0 ∀θv ∈ θ⃗. However, this is not always the case, as we would
see later in Sec. 4.5. To better understand this behavior, it is critical to look at the evolution of C with
respect to changes in variational parameters for which loss landscape and training path is beneficial.
Furthermore, it has also been shown that circuits with ∇

θ⃗
C → 0 for circuits with large expressibility.

Hence, it is also crucial to not just look at the evolution of C but also get insights from the intrinsic
properties of the PQC itself, such as its expressibility and entangling power.

41



1

-3
-2

-1
0

1
2

3

2

-3
-2

-1
0

1
2

3

(
1 ,

2 )

11
12
13
14
15
16
17
18

(a) Loss Landscape for p = 1

1

-3
-2

-1
0

1
2

3

2
-3-2-10123

(
1 ,

2 )

11

12

13

14

15

16

(b) Loss Landscape for p = 4

1

-3
-2

-1
0

1
2

3

2

-3-2-10123

(
1,

2)

11

12

13

14

15

(c) Loss Landscape for p = 8

80 60 40 20 0 20 40 60 80
f( )

80

60

40

20

0

20

40

60

80

g(
)

#1
#2
#3
#4
#5

(d) Training trajectories for p = 1

75 50 25 0 25 50 75
f( )

80

60

40

20

0

20

40

60

80

g(
)

#1
#2
#3
#4
#5

(e) Training trajectories for p = 4

75 50 25 0 25 50 75
f( )

80

60

40

20

0

20

40

60

80
g(

)
#1
#2
#3
#4
#5

(f) Training trajectories for p = 8

Figure 4.3: Loss landscape and training trajectories plots for solving the MaxCut problem using QAOA

routine implemented with qLEET for the graph presented in Fig. 4.2. The training trajectories have

been plotted for five instances of training with different random initializations of variational parameters

θ⃗ for each value of p ∈ {1, 4, 8}, where p denotes the number of times QAOA ansatz is repeated and

functions f(θ⃗) and g(θ⃗) represented functions obtained after dimensionality reduction using t-SNE

42



0.0 0.2 0.4 0.6 0.8 1.0
Fidelity

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

JSD = 0.98, KLD = 4.605
Haar
PQC

(a) U(θ⃗) = I

0.0 0.2 0.4 0.6 0.8 1.0
Fidelity

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Pr
ob

ab
ilit

y

JSD = 0.245, KLD = 0.206
Haar
PQC

(b) U(θ⃗) = HRZ(θ1)

0.0 0.2 0.4 0.6 0.8 1.0
Fidelity

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Pr
ob

ab
ilit

y

JSD = 0.078, KLD = 0.025
Haar
PQC

(c) U(θ⃗) = HRZ(θ1)RX(θ2)

0.0 0.2 0.4 0.6 0.8 1.0
Fidelity

0.000

0.005

0.010

0.015

0.020

Pr
ob

ab
ilit

y

JSD = 0.04, KLD = 0.005
Haar
PQC

(d) U(θ⃗) = HRZ(θ1)RX(θ2)RZ(θ3)

1

Figure 4.4: Quantifying expressibility for single-qubit circuits. For each of the four circuits show here,

1000 sample pairs of circuit parameter vectors were uniformly drawn, corresponding to 2000 param-

eterized states. Histograms of estimated fidelities (orange) are shown, overlaid with fidelities of the

Haar-distributed ensemble (blue), with the computed Kullback-Leibler (KL) divergence and Jensen-

Shannon Distance (JSD) reported above the histograms.

4.4.2 Loss Landscape

Loss landscape is a visual representation of the loss values or the C(θ⃗) around the trainable variational
parameter space of the PQC. This inspection is usually done around the optimal variational parameters
θ⃗∗ to identify features like local minima, ridges, and valleys present in the loss surface. Such analysis
helps in analyzing smoothness off the surface, indicating the ease with which a gradient-based optimizer
might be able to perform on it [13].

For example, in Fig. 4.3, we look at the loss landscape associated with solving the MaxCut problem
using the QAOA algorithm [116] for an Erdos-Renyi graph (Fig. 4.2). We see that as the number of
layers of QAOA ansatz, parameterized by p, are increased, the loss landscape becomes much smoother,
and local minima pits disappear. Therefore, it would be much easier for a descent-based optimizer to
traverse to global minima in case of higher p. This and similar loss landscape calculations in qLEET
are done using the loss landscape function present in the analyzer module. As shown in Eq. 4.3,
we compute the value of the loss function L for all the parameters in an orthonormalized 2-D subspace

43



S with basis vectors ϕi sampled from the whole trainable variational parameter space.

L(ϕi) = CPQC(θ⃗
∗ + ϕ⃗i), ϕ⃗i =

∑
i

αiθi

=
∑
O

Tr

[
Oρ

(
θ⃗∗ + ϕ⃗i

)] (4.3)

We gather different information about the loss of landscape based on how we choose to perform the
sampling. For example, using principal component analysis (PCA) over the set of variational parame-
ters θ⃗ at each training step would give us the vectors ϕ⃗ that represent the directions in parameter space
for which major changes happen during that training step. Similarly, other methods for obtaining sub-
space could be used, such as doing random sampling of basis vectors or t-SNE (t-Distributed Stochastic
Neighbor Embedding) of the parameter vectors encountered in the training trajectory. All such methods
provide beneficial insights about the structure of the loss landscape using which one could adapt their
training strategy by tweaking the optimization routine, evaluation metric, etc.

4.4.3 Training Trajectory

In many cases, just looking at the loss landscape for a given PQC model is not enough as we de-
fine the subspace S using two of many possible directions as axes by taking linear combinations of
variational parameters, while the loss landscape itself is highly nonlinear. Moreover, the high dimen-
sionality of the parameter space makes the task of visualization of loss landscape extremely challenging.
However, both of these difficulties can somewhat be alleviated by visualizing the loss landscape via the
evolution of variational parameters of PQC during training in low dimensions. This evolution of varia-
tional parameters can be realized as the training trajectory for the PQC, and plotting them over several
re-initializations helps us learn about the convergence properties of the PQCs and their optimization
schedules.

In qLEET, training trajectories are calculated inside the analyzer module by the training path

function. We use the entire set of variational parameters θ⃗t to generate the trajectory over all re-
initialization for every time step t in the training process. We project the parameter vectors down to
an orthonormalized 2-D subspace S using techniques such as PCA [117], t-SNE [118], or PHATE
[119]. Similar to the case of loss landscape visualization, each of the mentioned techniques reveals
different trajectory characteristics depending on its ability to preserve both global and local structures
of higher-dimensional data in low dimensional subspace. Furthermore, the 2-D projections of the pa-
rameter trajectories can also be plotted on the loss surface, with the loss values as its third axis [15].

For example, we present the training trajectories with t-SNE projection in Fig. 4.3 for the same
MaxCut problem that we discuss in the previous subsection about the loss landscape. We look at five
different training instances for each p, where we begin with randomized initialization of variational
parameters θ⃗ every time. We see that for p = 1 evolutions of θ⃗ for every instance happen in their
own respective clusters, suggesting the optimizer unsuccessfully gets stuck for different local minima

44



every time. In contrast, for both p = 4 and p = 8, we see much lesser clusters formation and more
intercrossing, hinting at certain parameters θk evolving to the same values while the optimizer reaches
the global minima.

4.4.4 Expressibility

We generate a distribution of states ρ(θ⃗) for a PQC Û(θ⃗) by randomly sampling over the varia-
tional parameter space. We quantify the deviation of this distribution from the one obtained from the
maximally expressive Haar distribution as the Expressibility of the given ansatz.

A(t) =

∥∥∥∥∫
Haar

ρ⊗tdρ−
∫
θ⃗
ρ(θ⃗)⊗tdρ(θ⃗)

∥∥∥∥2
HS

(4.4)

where
∫

Haar dρ denotes the integration over the states ρ distributed according to the Haar measure over
the unitary group U , t represent the tth moment, and ∥A∥2HS is the Hilbert-Schmidt norm calculated as
Tr(A†A). We compute Eq. 4.4 as the divergence between the state fidelities F(ρ, σ) =

(
Tr
√√

ρσ
√
ρ
)2

[120] generated from the ensemble of uniformly sampled parameterized states ρ(θ⃗) to that of the en-
semble obtained from uniform Haar distribution [110].

Expr = D(P̂PQC(F ; θ⃗)|PHaar(F)), Expr ≥ 0 (4.5)

According to this definition, a PQC U(θ⃗) is more expressible if the distribution of state fidelities gener-
ated by the ansatz circuit U(θ⃗) is closer to the one generated by the unitaries UHaar sampled uniformly
from the unitary group U . Therefore, the smaller the Expr value, the more is the expressibility of the
parameterized unitary. We see this in Fig. 4.4, where we compare the fidelity distribution of PQC
and Haar random states with respect to the number of Pauli rotation gates present in the single-qubit
circuits and calculate the Expr values for both Kullback-Leibler (KL) and Jensen-Shannon (JS) di-
vergence. Furthermore, in Fig. 4.5, we measure the increasing expressibility of the five qubit ansatz
U(θ⃗) =

∏L
1

(⊗5
i=1Rx(θ

1
i )Rz(θ

2
i )Rx(θ

3
i ) . . .

⊗
i<j CX(i, j)

)
, where we see how expressibility in-

creases with the number of layers L. Finally, we note that, in addition to experiments like these,
expressibility function in qLEET can also be used to predict the likelihood of whether the given
PQC would be able to represent an unknown N-qubit target state and do a comparative analysis between
different ansätze.

4.4.5 Entangling Capability

A fundamental property that makes quantum computation different from the classical one is the
existence of entanglement in the system, which can be potentially exploited to gain a computational
advantage. Hence, it is essential to quantify its ability to generate entanglement in the system to assess
the effectiveness of a parameterized quantum circuit. We use entanglement measures to capture different
properties of multipartite entanglement present in the system. The first measure that we use is the Meyer-
Wallach Q measure [110, 121] in which the amount of entangled states produced by a PQC is estimated

45



1 2 3 4 5
Number of layers

0.00

0.05

0.10

0.15

0.20

0.25

Ex
pr

Jensen-Shannon distance (JSD)

Figure 4.5: Measuring expressibility for the parameterized quantum circuit U(θ⃗) =∏L
1

(⊗5
i=1Rx(θ

1
i )Rz(θ

2
i )Rx(θ

3
i ) . . .

⊗
i<j CX(i, j)

)
using the Jensen-Shannon distance (JSD)

measure as a function of number of layers L.

by measuring the average entanglement between individual qubits and the rest of the system. In this
context, the entangling capability of a PQC can be defined directly via the considered entanglement
measureQ averaged over all states ρ(θ⃗) generated by the PQC from the uniform sampling of variational
parameters θ⃗:

Q =
2

|θ⃗|

∑
θi∈θ⃗

(
1− 1

n

n∑
k=1

Tr(ρ2k(θi))

)
, (4.6)

where ρk is the density matrix for the state of the k-th qubit. In a similar spirit, we can use another
entanglement measure called Scott Measure [122], which generalizes the Meyer-Wallach measure using
m entanglement measures, each of which will measure the average entanglement between blocks of m
qubits and the rest of the system. Therefore, as pointed out before, each measure would give access
to different properties related to multipartite entanglement, and as m increases, Qm becomes more
sensitive to correlations of an increasingly global nature. Similar to the previous case, the entangling
capability of the PQC can be defined by the value of Qm measures, averaged over uniformly sampled θ⃗

46



0 1 2 3 4 5 6 7 8 9
Number of CX gates

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Q

Mayer-Wallach
Measure

Figure 4.6: Measuring entangling power for the parameterized quantum circuit U(θ) using the Mayer-

Wallach measure as a function of the number of CX (or CNOT) gates appended to the circuit U(θ⃗) =⊗5
i=1Rx(θ

1
i )Rz(θ

2
i )Rx(θ

3
i ).

too:

Qm =
2m

(2m − 1)|θ⃗|

∑
θi∈θ⃗

(
1−

m!(n−m)!)

n!

∑
|S|=m

Tr(ρ2S(θi))
)

m = 1, . . . , ⌊n/2⌋

(4.7)

In qLEET, we perform these calculations inside the entanglement function in the analyzer mod-
ule, where one can choose between both Meyer-Wallach and Scott measures for any PQC loaded as a
CircuitDescriptor object. For example, in Fig. 4.6, we use it to plot the entangling capability of
a five qubit circuit template U(θ⃗) =

⊗5
i=1Rx(θ

1
i )Rz(θ

2
i )Rx(θ

3
i ) against the numbers of CNOT gates

appended to circuit in a pair-wise fasion, i.e., CNOT(i, j), where i < j and i, j < 5. We see that as
the number of CNOT gates are increased, the entangling capability improves. We also notice a region
of minimal increase between [5, 7], which can be attributed to addition on qubits which were already
transitive correlated.

47



4.4.6 Entanglement Spectrum

In the previous subsection, we quantified the entangling capability of an ansatz using entanglement
measures. However, these measures might be insufficient to fully characterize all the properties related
to multipartite entanglement [123]. This problem can be tackled by making use of the entanglement
spectrum [124], which is defined as the eigenspectrum of the entanglement Hamiltonian Hent:

Hent = − log(ρA), (4.8)

where the ρA = TrB(ρ) is the reduced density matrix of the qubit system obtained by the typical
bipartition of the N qubit system into subsystems A and B with k = ⌈N/2⌉ and N − k qubits, re-
spectively. For states sampled from maximally expressive Haar distribution, the eigenvalues ξk of Hent

follows the Marchenko-Pastur (MP) distribution [125]. Therefore, we can quantify both expressibility
and entangling power of the PQC by looking at the eigenspectrum of HPQC

ent , calculated from uniformly
sampled variational parameters θ⃗.

In qLEET, entanglement spectrum function in the analyzers module can be used for com-
puting and plotting the entanglement spectrum for any given PQC U(θ⃗). For example, in Fig. 4.7,
we use it to perform the entanglement spectrum analysis on a 16 qubit PQC, which is made of L
layers comprising three rotation gates on each qubit and CNOT gates between adjacent qubits, i.e.,
U(θ⃗) =

∏L
l

(⊗15
i=0Rx(θ

1
i )Rz(θ

2
i )Rx(θ

3
i )
⊗14

i=0CX(i, i + 1)
)
. We see that as the number of layers

are increased in the ansatz, the eigenvalue distribution becomes more and more closer to the MP distri-
bution. In fact, computing a divergence measure between these two distributions can also be used as a
quantification of capability of the ansatz.

4.4.7 Parameter Histograms

For our M -parameter PQC Û(θ⃗), the parameters θi at the start of the training process are sampled
from some prior probability distribution π0(θ). Through the training process, we desire to learn an
optimized join probability distribution over the parameters π∗(θ). This learnt parameter distribution

π∗ = argmin
π(θ)

E
θ∼π
C(θ⃗) = argmin

π(θ)
E
θ∼π

Tr[OÛ(θ⃗)ρÛ †(θ⃗)] (4.9)

The evolution of the parameter distribution from π0 → πt → π∗ is visualized by our parameter
histogram module. The probability distributions are analyzed by starting with an ensemble of vectors
θ⃗l ∼ π0, letting the entire ensemble evolve using our classical optimization subroutine, and sampling
the vectors in the ensemble to get the distribution over parameters at time t as πt(θ⃗).

The marginal distribution over each variable πt(θ⃗i) is plotted at each timestep. Change in the profile
of this distribution over consecutive timesteps implies a role of those parameters in those timesteps of
the learning process.

48



0 10 20 30 40 50 60
k

30

25

20

15

10

5

0

k

Marchenko-Pastur Distribution

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

La
ye

rs

Figure 4.7: Visualizing entanglement spectrum for a PQC U(θ⃗) =∏L
1

(⊗12
i=1Rx(θ

1
i )Rz(θ

2
i )Rx(θ

3
i ) . . .

⊗11
i=1CX(i, i + 1)

)
. Here, ξk are the eigenvalues of HU(θ⃗)

ent

arranged in descending order and cut off at −30. The solid lines (blue to brown) represents the

distribution ξk for different layers L and the dotted line (black) represents the ideal Marchenko-Pastur

(MP) distribution. We see that as the number of layers is increased, the distribution of ξk becomes more

similar to MP distribution.

4.5 Challenges

In this section, we will discuss some key challenges that we come across in variational quantum com-
putation and possible ways to identify and mitigate these problems by using tools provided in qLEET.

4.5.1 Effect of Noise

The quantum hardware that exists today are imperfect, as a result of which a computation being
run on them may suffer various kinds of errors [126]. Therefore, in order to realistically simulate
and characterize the performance of a parameterized quantum circuit (PQC), we must include these
errors in our computation. Our library does so by using noise models from libraries such as Cirq and

49



(a)

1

3 2 1 0 1 2 3

2

3
2

1
0

1
2

3

G
lo

ba
l

0.00

0.25

0.50

0.75

1.00

(b)

1

3 2 1 0 1 2 3

2

3
2

1
0

1
2

3

Lo
ca

l

0.00

0.25

0.50

0.75

1.00

(c)

3 2 1 0 1 2 3
1

3

2

1

0

1

2

3

2

0.60

0.45

0.30

0.15

0.00

0.15

0.30

0.45

0.60
2

G
lo

ba
l

(d)

3 2 1 0 1 2 3
1

3

2

1

0

1

2

3

2

0.32

0.24

0.16

0.08

0.00

0.08

0.16

0.24

0.32

2
Lo

ca
l

Figure 4.8: Here we show the emergence of barren plateaus in the task of learning an Identity gate

using the ansatz RX(0, θ1)RX(1, θ2)CZ(0, 1) solely based on the choice of the cost function. Figures

(a) and (b) represents the loss landscape for the CGlobal and local CLocal cost functions, respectively.

Similarly, figures (c) and (d) represents coloured heat maps for their corresponding gradients∇θ2CGlobal

and ∇θ2CLocal

Qiskit, which provides for errors related to coherent gate errors, incoherent errors, and state preparation
and measurement (SPAM) errors. Users can provide the NoiseModel to the CircuitSimulator
function in the simulator module while running the experiments.

Another source of error in quantum computation arises from the limited number of times the circuit
is repeatedly executed for sampling. This restricts the precision with which one can compute the Pauli
observable Ô for calculating the cost function C as the number of measurementsm required for estimat-
ing the expectation value ⟨Ô⟩ with precision ϵ would be O(1/ϵ2) [127]. In qLEET, the default value of
the number of repetitions is 1024 and is determined by the shots variable, which can be provided at
the time of calling any analysis function from the analyzer module.

4.5.2 Presence of Barren Plateaus

The main crux of the discussion presented in the previous section is that the choice of ansatz and
the cost function together is crucial for successfully training a PQC for a given task. One of the critical

50



hindrances for the training to go as expected is the barren plateau (BP) phenomenon, where the partial
derivatives ∂θkC(θ⃗) of the cost function C(θ⃗) with respect to variational parameters θk will, on average,
exponentially vanish (Eq. 4.10). This leads to the flattening of the loss landscape, traversing through,
which would require an exponentially large number of shots (for more precision) against finite sampling
noise to determine the direction that minimizes the cost. Moreover, it was recently shown in [128] that
BPs can also be induced due to noise present in the quantum hardware. This could be a significant issue
since it could erase the potential computation advantage associated with quantum computation due to
the exponential scaling required to attain the necessary precision, making the complexity comparable to
classical algorithms.

Var
θ⃗
[∂θkC(θ⃗)] ∈ O

(
1

mN

)
, for m > 1 (4.10)

In qLEET, one can potentially visualize the BP phenomena by visualizing the loss landscape for a
chosen PQC and cost function. This could allow users to see if BP can be mitigated by tweaking either
the structure of PQC itself or just the cost function. For example, in Fig. 4.8, we show an example of BP
dependent on the cost function in a shallow ansatz [129]. Here we compare global CGlobal and local CLocal

cost functions for learning the Identity gate using a very simple ansatz: RX(0, θ1)RX(1, θ2)CZ(0, 1).

CGlobal = ⟨ψ(θ⃗)| (I − |0 . . . 0⟩ ⟨0 . . . 0|) |ψ(θ⃗)⟩

= 1− p0...0
(4.11)

CLocal = ⟨ψ(θ⃗)|

(
I − 1

n

∑
j

|0⟩ ⟨0|j

)
|ψ(θ⃗)⟩

= 1− 1

n

∑
j

p0j

(4.12)

We see how the loss landscape flattens for the CGlobal and the gradients vanish exponentially in compar-
ison to CLocal. In addition to the BP phenomena, we also notice the narrow gorge phenomena, where
global minima are contained in a steeply deep valley. This makes it difficult for gradient-based opti-
mization to reach the global minima since it might not have a low learning rate to not overstep inside
the gorge.

4.5.3 Estimation of Reachability

Reachability quantifies whether a given PQC, Û(θ⃗), with parameters θ⃗ is capable of representing a
parameterized quantum state |ψ(θ⃗)⟩ that minimizes the cost function C. Mathematically it is defined as
[130]:

fR = minψ∈H ⟨ψ| C |ψ⟩ −min
θ⃗
⟨ψ(θ⃗)| C |ψ(θ⃗)⟩ , (4.13)

where the first and second term is the minimum over all states |ψ⟩ sampled from the Haar measure and
all states that the PQC can represent, respectively. The reachability is equal or greater than zero fR ≥ 0,
with fR = 0 when the PQC can generate an optimal state |ψ(θ⃗∗)⟩ that minimizes the objective function.

51



This can be easily implemented in qLEET using the CircuitSimulator function present in the
simulator module.

4.6 Conclusion

This paper presents an open-source library called qLEET and demonstrates its ability to analyze var-
ious properties of parameterized quantum circuits (PQCs), such as their expressibility and entangling
power. We motivate the importance of studying these properties from the problem of trainability of
PQCs. We have discussed and showed how important insights could be gained from visualizing loss
landscapes and training trajectories for variational quantum computation. We also present the theory of
expressibility and entangling capability of a PQC based on the deviation of the distribution of parame-
terized states produced from the Haar measure, which samples uniformly from the entire Hilbert space.
We also describe the idea of the entanglement spectrum, which allows visualizing the previous two
properties at once. Overall, we demonstrate how different modules included in qleet can be used by
users to study various variational algorithms and quantum machine learning models. Finally, we discuss
some critical challenges for variational quantum algorithms such as Barren Plateaus and Reachability.
We conclude that qLEET will provide opportunities for the quantum community to design new hybrid
algorithms by utilizing intuitive insights from the ansatz capability and structure of the loss landscape.

52



Chapter 5

Conclusions

This dissertation shows that Quantum-inspired Machine-Learning methods can be naturally applied
in various parts of the Quantum processing pipeline. We present two novel methods: qRoute - a
reinforcement-learning-based quantum circuit routing method, and qLEET - a variational quantum cir-
cuit visualization and evaluation framework. These methods and results are one small step on the way
of improving the capability of near-term quantum computers to a point useful quantum-simulations can
be executed. Hamiltonian simulations for Quantum chemistry is likely one of the tasks that is possible
to execute even on noisy computers, and our experiments and results have been motivated along these
lines.

In qRoute, we have shown state-of-the-art performance on various quantum circuit compilation tasks.
This demonstrates that reinforcement learning settings can learn algorithms more performant than man-
ually engineered heuristics. The routing task is one step of the long hardware-efficient algorithm devel-
opment and compilation pipeline. The solution for the routing task is also a proposed solution to the
general problem of decision over subsets.

In qLEET, we have shown a framework consisting of both optimization-inspired and quantum-
inspired methods to evaluate the learning capabilities of variational quantum circuits. These visualized
metrics include loss landscape, training trajectories, expressibility, entanglement capability, and param-
eter histogram of these circuits. The framework presented is provided with code compatible with Cirq,
Qiskit, and PyTket quantum circuits and works with any choice of the loss function, optimizer, and noise
model. Our method helps guide ansatz design and parametrization better for solving these variational
problems. 1

The routing process is just one part of the compilation process, where we convert a circuit that does
not respect the constraints of the hardware to one that does. Converting a unitary directly to a hardware-
constraint-respecting circuit and optimizing noise under a specific noise model instead of minimizing
depth are goals that we need to design algorithms for, and qRoute seems like a viable solution candidate
as a part of the pipeline for these processes. There is also scope for adaptation of the qRoute algorithm

1The software package for qRoute has been made publically available on https://github.com/
AnimeshSinha1309/qroute-router/.

53

https://github.com/AnimeshSinha1309/qroute-router/
https://github.com/AnimeshSinha1309/qroute-router/


for these objectives. Similarly, qLEET can be extended with more visualizations and analyses of the
optimization landscape and quantum resource utilization. qLEET has been explored on a small class of
algorithms like QAOA and VQE, visualization of other algorithms and variation algorithm design and
hyperparameter tuning using qLEET has been left as future scope of the project. 2

In the entirety, we believe that the contributions of this dissertation will help better the time-efficiency
and noise-immunity of some algorithms on noisy near-term intermediate-scale quantum computers and
will serve as some inspiration to pipelines for other tasks in near-term quantum algorithm design.

2The software package for qLEET has been made publically available on https://github.com/QLemma/qleet.

54

https://github.com/QLemma/qleet


Appendix A

qRoute: Algorithm Details and Additional Results

A.1 MCTS Algorithm

The following is the detailed implementation of our MCTS procedure. In each iteration of the Monte
Carlo Tree Search, we start at the root, keep selecting nodes unless we find that we have selected a node
never seen before, expand it, and propagate the resultant rewards up the tree to its ancestors.

In our implementation, the value of the decay factor γ is different for the COMMIT actions from
those of SWAP actions. We use a decay of 1.0 (i.e. no decay) for the non-commit actions and 0.95 for
commit actions. So we only have decay in reward propagation across 2 different states, not within the
construction of a single action. The function step(s, a) is a call to the environment to schedule the gates
as described by the action a and evolve the state st

a−→ st+1.

A.2 Results on Google Sycamore

Following is the plot of the average Circuit Depth ratio produced by our method on the Google
Sycamore processor. Sycamore has a much larger size of 53 qubits. Our method manages to give an
average depth ratio of 1.64 here, and is the best of all competing routing methods.

55



Data: state st

Initialize: root← (st, empty action set)

loop n mcts times
(s, a)← root

repeat
Compute UCT values using prior + noise

Select move that maximizes UCT value

if (s, a).child[move] ̸= null then
(s, a)← (s, a).child[move]

else

if move = COMMIT then
s′← step (s, a)

a′← empty set

else
s′ ← s

a′ ← insert into a the qubit pair corresponding to the move

end

state.child[move]← (s′, a′)

store reward[(s, a), move]←R(s′, a′) -R(s, a)

end

until last taken move was expand

reward← evaluation from model of (s, a)

while (s, a) ̸= root do
p-move← move from parent of (s, a) to (s, a)

(s, a)← parent in tree of (s, a)

reward← reward[(s, a), p-move] + γ· reward

update (s, a).Q-value[move] with reward

increment (s, a).N-value[move] by 1

end

end

memorize the Q-values and N-values at the root for training the model later

(s, a)← root

repeat
(s, a)← child of (s, a) with maximum Q-value

until move ̸= COMMIT

return a
Algorithm 1: Monte Carlo tree search

56



qroute pytket qiskit-stochastic qiskit-sabre cirq qiskit-basic
Quantum Compiler

0

1000

2000

3000

4000

Ou
tp

ut
 C

irc
ui

t D
ep

th

Figure A.1: A comparative of the performance of the different routing methods on the small circuit

dataset when routing on Google Sycamore device.

57



A.3 Example of Routing Process

In this section, we show an example run of our algorithm on a 3 × 3 device with a normal grid
topology, i.e. only qubits adjacent to each other are connected. In the images that follows, we have
shown the evolution of the state, the value of the state at each timestep and the action, i.e. the set of
gates which are being scheduled. Our MCTS is also responsible for constructing each action by putting
together several moves (which are either adding individual gates to the action, or a committing the action
for this timestep), that process is not demonstrated in the images. A point to note is that at the start of
each timestep, the locks on all qubits may not necessarily be open, because there can be operations
which were scheduled in a previous timestep and span over several timesteps. However, this is not the
case in our example here where all the gates are assumed to take the same amount of time. We have
provided a video simulation of this evolution as a supplementary, as well as the code to visualize this
for other circuits.

1-3

5-94-6

9-57-4

2-3

8-6

6-8

3-2 1-3

5-94-6

6-87-4

2

8-6

9-5

3-1 1-3

57-4

6-44-6

3-1

8

9

2 1

57-4

84-6

3

6-4

9

2 1

57-4

84-7

3

6

9

2 1

57

84

3

6

9

2

�������� �������� �������� �������� ���������������������

Figure A.2: The step by step evolution of the state as the circuit is getting routed. The state is shown

on a 3 × 3 grid, where in each cell we have the node ID and the next node that it need to participate in

a 2-qubit operation with. The yellow and orange colors represent that those 2 qubits have participated

in a 2 qubit operation like CNOT, which was scheduled in the previous timestep. The green and purple

colors represent that they have just participated in a SWAP operation. Any qubit which is colored was

locked in the previous timestep when the action that scheduled it was getting constructed. At time=5,

the circuit has been scheduled and none of the qubits have any targets left.

58



q0

q1

q2

q3

q4

q5

q6

q7

q8

(a) Quantum circuit

q0

q1

q2

q3

q4

q5

q6

q7

q8

(b) Decomposed circuit

Figure A.3: This figure shows the input and output of the routing process shown above in Figure A.2.

The input circuit was used to decide the targets of the qubits. Gates are added to the output circuit

whenever a 2-qubit operation, whether CNOT or SWAP is applied by the router. We can check that both

these circuits are equivalent

.

A.4 Tabulated Results

A.4.1 Random Test Circuits

Table A.1: Comparative results for a set of randomly generated test circuits

Input Circuit Output Circuit Depth

# Gates # Layers Qroute Cirq Qiskit (basic) Qiskit (stochastic) Qiskit (sabre) t|ket⟩
30 11 20 29 31 21 24 19

30 11 19 36 39 23 27 28

30 10 22 32 28 23 23 23

30 8 18 24 32 20 33 26

30 7 17 19 35 17 23 30

30 11 18 39 34 22 31 26

30 10 19 22 34 21 20 26

30 9 17 24 31 21 31 33

30 10 17 24 36 22 31 21

59



Table A.1 continued from previous page

Input Circuit Output Circuit Depth

# Gates # Layers Qroute Cirq Qiskit (basic) Qiskit (stochastic) Qiskit (sabre) t|ket⟩
30 10 21 23 39 22 27 23

50 18 31 57 66 41 50 46

50 17 29 54 63 37 48 46

50 12 34 47 62 31 50 53

50 17 28 62 67 38 38 58

50 17 33 42 61 39 50 51

50 15 40 49 61 38 48 41

50 18 35 60 66 38 52 50

50 18 33 54 53 35 42 52

50 13 32 58 63 31 39 35

50 16 30 52 59 37 44 42

70 19 39 85 93 45 59 76

70 21 47 96 71 41 56 60

70 18 46 64 81 43 57 67

70 21 59 83 84 53 58 79

70 18 47 67 60 44 55 80

70 21 45 77 83 46 69 59

70 19 41 63 76 44 52 74

70 17 40 68 67 42 62 63

70 23 37 70 84 52 63 72

70 23 40 64 91 49 73 60

90 29 53 106 93 64 80 114

90 26 64 103 117 64 73 77

90 28 56 93 111 64 85 89

90 22 57 94 114 54 75 87

90 32 58 99 108 66 87 84

90 23 54 104 127 60 97 90

90 28 52 96 103 60 80 92

90 25 50 97 113 60 76 75

90 23 51 103 107 54 74 82

90 25 56 96 111 61 79 91

110 34 63 133 113 72 97 137

110 27 65 128 143 70 95 118

110 31 64 117 128 69 95 126

60



Table A.1 continued from previous page

Input Circuit Output Circuit Depth

# Gates # Layers Qroute Cirq Qiskit (basic) Qiskit (stochastic) Qiskit (sabre) t|ket⟩
110 30 73 116 139 66 104 106

110 32 62 108 129 75 100 124

110 36 68 112 135 78 93 107

110 33 94 135 158 74 99 103

110 33 67 124 110 75 96 117

110 31 64 114 129 71 101 113

110 30 65 116 145 69 97 115

130 33 74 151 149 74 113 154

130 33 91 135 166 79 122 126

130 38 77 130 162 91 123 133

130 32 77 112 153 75 116 139

130 38 71 145 151 94 113 137

130 34 66 127 153 79 98 122

130 35 75 131 151 89 101 144

130 31 70 114 157 74 107 135

130 33 76 130 141 79 102 128

130 41 95 148 161 91 102 114

150 35 87 175 151 86 109 142

150 44 92 194 195 104 154 158

150 38 84 162 177 93 136 149

150 35 79 128 178 84 123 149

150 48 96 177 195 101 138 158

150 43 92 179 167 97 126 142

150 41 90 171 185 98 120 165

150 39 85 155 158 91 125 158

150 39 88 148 182 94 135 158

150 38 89 178 162 96 123 159

A.4.2 Small Realistic Circuits

61



Table A.2: Comparative results for low-depth realistic test circuits

Input Circuit Output Circuit Depth

Circuit Name Layers DQN Qroute Cirq Qiskit Qiskit Qiskit t|ket⟩
(Estimate) (basic) (stochastic) (sabre)

4gt11 83 14 17 16 22 18 19 18 15

decod24-v0 38 23 28 30 43 23 31 32 24

alu-v3 34 23 28 27 39 28 28 25 28

decod24-v3 45 57 68 72 79 74 84 81 77

4gt4-v0 80 71 85 89 108 111 91 109 128

alu-v0 27 15 18 16 19 21 19 17 17

miller 11 23 28 25 23 36 36 34 35

4gt11 82 18 22 19 28 22 24 23 24

mod10 176 70 84 83 113 87 94 87 96

ex1 226 5 6 7 8 10 7 8 6

4gt5 75 33 40 38 54 40 41 46 43

ising model 10 20 24 23 40 20 20 20 5

4gt11 84 8 10 8 13 11 11 12 8

4mod5-v0 18 31 37 34 53 39 40 40 33

alu-v4 37 16 20 20 16 23 22 25 24

qft 10 34 41 53 81 113 50 75 49

4mod5-v0 19 15 18 17 25 20 19 24 26

alu-v0 27 example 15 18 16 18 21 20 17 17

ex-1 166 9 11 13 12 14 12 11 13

4mod7-v1 96 65 78 75 91 83 97 85 88

4mod5-v1 22 10 12 12 17 13 12 12 14

4gt12-v1 89 88 105 109 163 126 135 134 125

alu-v1 29 15 18 16 21 19 20 21 19

mod5d2 64 25 30 30 45 30 38 34 31

4mod7-v0 94 66 79 77 131 83 92 92 82

4gt13 91 46 55 53 64 52 68 60 52

4mod5-v0 20 9 11 11 16 17 10 10 10

alu-v2 33 15 18 19 26 17 19 20 17

4 49 16 91 109 99 138 107 129 104 128

decod24-v2 43 22 27 25 38 26 28 33 25

4gt10-v1 81 60 72 71 113 82 80 81 75

alu-bdd 288 35 42 47 60 55 52 54 44

62



Table A.2 continued from previous page

Input Circuit Output Circuit Depth

Circuit Name Layers DQN Qroute Cirq Qiskit Qiskit Qiskit t|ket⟩
(Estimate) (basic) (stochastic) (sabre)

4mod5-v1 23 30 36 33 46 45 45 48 40

one-two-three-v2 100 29 35 35 40 41 41 40 39

rd53 138 42 50 54 70 67 69 78 59

alu-v2 32 64 77 72 96 88 87 98 96

rd32 270 35 42 38 53 48 53 49 40

aj-e11 165 63 75 73 103 82 90 81 82

4gt12-v0 88 77 92 90 128 116 111 107 140

decod24-v1 41 35 42 38 55 42 50 47 43

3 17 13 17 21 24 17 26 18 24 22

4mod5-v0 19 16 20 17 27 16 21 22 13

mini alu 305 53 64 63 113 86 81 79 81

one-two-three-v0 98 59 71 71 82 69 81 77 87

4gt13 90 50 60 54 72 56 63 56 80

4mod5-bdd 287 31 37 41 48 35 48 50 35

ham3 102 11 14 14 16 15 16 15 9

alu-v1 28 16 20 16 21 20 18 22 18

rd32-v0 66 16 20 19 20 20 20 20 14

cnt3-5 179 43 52 64 91 72 61 65 83

4gt13 92 26 31 30 41 33 38 36 29

alu-v4 36 47 56 55 59 65 68 61 60

rd32-v1 68 16 20 17 21 20 20 20 14

4gt13-v1 93 27 33 29 34 35 36 36 31

4gt5 76 42 50 47 69 53 52 53 53

mod5d1 63 11 14 14 17 12 12 14 14

graycode6 47 5 6 5 9 5 5 5 5

xor5 254 5 6 5 8 10 8 8 6

decod24-bdd 294 31 37 34 50 40 40 46 37

alu-v0 26 35 42 41 62 47 48 45 54

mod5mils 65 16 20 19 21 17 21 25 18

alu-v3 35 16 20 20 25 23 21 21 24

one-two-three-v1 99 56 67 60 87 70 84 70 95

one-two-three-v3 101 29 35 34 43 36 37 38 46

4gt5 77 51 61 61 78 63 66 70 66

63



A.4.3 Large Realistic Circuits

Table A.3: Comparative results for long-depth realistic test circuits

Input Circuit Output Circuit Depth

Circuit Name Number of Gates Qroute t|ket⟩ Qiskit (basic) Qiskit (stochastic) Qiskit (sabre)

rd84 142 154 120 154 142 138 133

adr4 197 1498 1580 1770 1840 1968 1988

radd 250 1405 1504 1799 1812 1815 1888

z4 268 1343 1400 1670 1623 1718 1914

sym6 145 1701 1806 2167 2168 2261 2299

misex1 241 2100 2231 2580 2770 2681 2944

rd73 252 2319 2468 2793 2943 3071 3132

cycle10 2 110 2648 2941 3380 3418 3485 3705

square root 7 3089 3327 4560 3759 3822 3695

sqn 258 4459 4779 5535 5526 5696 6252

rd84 253 5960 6264 7507 7411 7537 8843

64



Appendix B

qLEET: Additional Results and Usage Tutorial

B.1 Tutorial: Entaglement Ability Analysis

In this section, we will learn how to calcualte expressibility of Parameterized Quantum Circuits
(PQCs) using qLEET, which could thought of as traversing power of a PQC in the Hilbert space. We
look at different parameterized states generated by the sampled ensemble of parameters for a given PQC.
We then compare the resulting distribution of state fidelities (F) generated by this sampled ensemble to
that of the ensemble of Haar random states.

We currently support two expressibility measures - Kullback–Leibler Divergence and Jensen–Shannon
Divergence

Expressibility = DKL

(
P̂PQC(F ; θ)

∣∣PHaar(F)
)

Expressibility = D√
JSD

(
P̂PQC(F ; θ)

∣∣PHaar(F)
)

All circuit analysis using qleet begins with defining a parameterized quantum circuit using a library
of choice, and then passing it into qleet’s CircuitDescriptor interface.

params = [qiskit.circuit.Parameter(r"$\theta 1$")]

qiskit circuit = qiskit.QuantumCircuit(1)

qiskit circuit.h(0)

qiskit circuit.rz(params[0], 0)

qiskit descriptor = qleet.interface.circuit.CircuitDescriptor(

circuit=qiskit circuit , params=params, cost function=None

)

The analyze the expressibility, we can use the corresponding analyzer. We can get the expressibility
using either of the two supported measures.

qiskit expressibility = qleet.analyzers.expressibility.Expressibility(

65



qiskit descriptor , samples=100

)

expr jsd = qiskit expressibility.expressibility("jsd")

print("JSD Expressibility:", expr jsd)

expr kld = qiskit expressibility.expressibility("kld")

print("KLD Expressibility:", expr kld)

plt figure = qiskit expressibility.plot()

We look at different parameterized states generated by the sampled ensemble of parameters for a
given PQC. We then compare the resulting distribution of eigenvalues of the bipartite state generated by
this sampled ensemble to that of the ensemble of eigenvalues of Haar random states.

We currently support two measures to calculate entanglement spectrum divergence (ESD) - Kull-
back–Leibler Divergence and Jensen–Shannon Divergence

ESD = DKL

(
P̂PQC(Hent; θ)

∣∣PHaar(Hent)
)

ESD = D√
JSD

(
P̂PQC(Hent; θ)

∣∣PHaar(Hent)
)

params = [

qiskit.circuit.Parameter(r"$\theta 1$"),
qiskit.circuit.Parameter(r"$\theta 2$")

]

qiskit circuit = qiskit.QuantumCircuit(2)

qiskit circuit.rx(params[0], 0)

qiskit circuit.cx(0, 1)

qiskit circuit.rx(params[1], 1)

qiskit descriptor = qleet.interface.circuit.CircuitDescriptor(

circuit=qiskit circuit , params=params, cost function=None

)

analyzer = (

qleet.analyzers.entanglement.EntanglementCapability(

qiskit descriptor , samples=500

)

)

entanglement mw = analyzer.entanglement capability("meyer−wallach")
print("Entanglement Capability (Meyer Wallach):", entanglement mw)

66



entanglement scott = analyzer.entanglement capability("scott")

print("Entanglement Capability (Scott Measure):", entanglement scott)

In this section, we will plot the entanglement spectrum.

def ansatz(params, cparams=None):

layers, num qubits , depth = params.shape

ansatz = qiskit.QuantumCircuit(num qubits)

for idx in range(layers):

if idx:

ansatz.barrier()

for ind in range(num qubits):

ansatz.rx(params[idx][ind][0], ind)

ansatz.rz(params[idx][ind][1], ind)

ansatz.rx(params[idx][ind][2], ind)

for ind in range(num qubits −1):
ansatz.cx(ind, ind+1)

return ansatz

data = []

results = []

num qubits = 12

for idx in range(1, 17):

print(idx, end=’ ’)

params = np.array([qiskit.circuit.Parameter(fr"$\theta {idx}$")
for idx in range(idx*num qubits*3)])

qiskit descriptor = qleet.CircuitDescriptor(

circuit=ansatz(np.array(params).reshape((idx, num qubits , 3))),

params=params, cost function=None

)

qiskit entanglement spectrum = \
qleet.analyzers.entanglement spectrum.EntanglementSpectrum(

qiskit descriptor , samples=100

)

pqc esd , mean eig = \
qiskit entanglement spectrum.entanglement spectrum("jsd")

results.append(pqc esd)

data.append(mean eig)

data = np.array(data)

67



fig = qiskit entanglement spectrum.plot(data)

B.2 Loss Landscape and Training Trajectory Analysis

For this section of the tutorial, we shall be constructing our circuits in the Cirq library, which is also
supported by our multi-backend analyzer. Using cirq, we define a parameterized quantum circuit, we
define its parameters as sympy symbols, and we define a cost function as a Pauli measurement on the
outputs of this circuits. All of this is passed into out CircuitDescriptor interface

graph = nx.gnm random graph(n=8, m=20)

qubits = cirq.GridQubit.rect(1, graph.number of nodes())

p = 5

params = sympy.symbols("q0:%d" % (2 * p))
qaoa circuit = cirq.Circuit()

for qubit in qubits:

qaoa circuit.append(cirq.H(qubit))

for i in range(p):

for edge in graph.edges():

qaoa circuit += cirq.CNOT(qubits[edge[0]], qubits[edge[1]])

qaoa circuit += cirq.rz(params[2 * i]).on(qubits[edge[1]])
qaoa circuit += cirq.CNOT(qubits[edge[0]], qubits[edge[1]])

for j in range(len(qubits)):

qaoa circuit += cirq.rx(2 * params[2 * i + 1]).on(qubits[j])

qaoa cost = cirq.PauliSum()

for edge in graph.edges():

qaoa cost += cirq.PauliString(1 / 2 * cirq.Z(qubits[edge[0]]) *
cirq.Z(qubits[edge[1]]))

circuit = qleet.interface.circuit.CircuitDescriptor(

qaoa circuit , params, qaoa cost)

solver = qleet.simulators.pqc trainer.PQCSimulatedTrainer(circuit)

class MaxCutMetric(qleet.interface.metric spec.MetricSpecifier):

def init (self, graph):

super(). init ("samples")

68



self.graph = graph

def from samples vector(self, samples vector):

return np.mean([nx.algorithms.cuts.cut size(

self.graph, np.where(cut)[0]) for cut in samples vector])

def from density matrix(self, density matrix):

raise NotImplementedError

def from state vector(self, state vector):

raise NotImplementedError

metric = MaxCutMetric(graph)

plot = qleet.analyzers.loss landscape.LossLandscapePlotter(

solver, metric, dim=2)

solver.train(n samples=5000)

fig loss surface = plot.plot("surface", points=20)

trackers = qleet.interface.metas.AnalyzerList(

qleet.analyzers.training path.LossLandscapePathPlotter(plot),

qleet.analyzers.training path.OptimizationPathPlotter(mode="tSNE"),

)

for i in range(5):

solver.train(loggers=trackers, n samples=5000)

trackers.next()

fig loss traversal = trackers[0].plot()

fig training trace = trackers[1].plot()

B.3 Entanglement Analysis for MZ operator [1]

params = [qiskit.circuit.Parameter(r"$\theta 1$"),
qiskit.circuit.Parameter(r"$\theta 2$"),
qiskit.circuit.Parameter(r"$\theta 3$"),
qiskit.circuit.Parameter(r"$\theta 4$")]

qiskit circuit = qiskit.QuantumCircuit(4)

69



7

8

9

10

11

(a) Metric Landscape (inverse of

loss) around obtained optima

(b) PCA plot with loss for training

trajectories of 5 runs

−50 0 50

−50

0

50

100

0

0.5

1

1.5

2

2.5

3

3.5

4
color

Training Trajectories

Parameter tSNE-1

Pa
ra

m
et

er
 tS

N
E-

2

(c) 2-D tSNE of training trajectories

from 5 runs

Figure B.1: Loss and Training Trajectory plots obtained on analyzing the circuit shown. Here, the

analysis is shown for a circuit representing max-cut on a graph with 8 nodes and 20 edges.

RX
1

RX
1

RZ
2

RZ
2

q0

q1

q2

q3

Figure B.2: MZ operator used in the quantum computing model based on entanglement degree allows

to differentiate between the non-orthogonal states of the form e1|0⟩ + e2|1⟩, with arbitrary accuracy

[1, 2, 3, 4].

70



qiskit circuit.rx(params[0], 0)

qiskit circuit.rz(params[1], 0)

qiskit circuit.rx(params[2], 2)

qiskit circuit.rz(params[3], 2)

qiskit circuit.cx(0, 1)

qiskit circuit.cx(2, 3)

qiskit descriptor = qleet.interface.circuit.CircuitDescriptor(

circuit=qiskit circuit , params=params, cost function=None

)

qiskit entg capability = (

qleet.analyzers.entanglement.EntanglementCapability(

qiskit descriptor , samples=1000

)

)

entanglement mw = qiskit entg capability.entanglement capability(

"meyer−Wallach")
# >>> entanglement mw = 0.5010648894421558

entanglement scott = qiskit entg capability.entanglement capability(

"scott")

# >>> en tang lement sco t t = array ([0.4979689 , 0.38654991])

B.4 Quantum Circuits from the Experiments

B.4.1 Loss Landscape and Training Trajectories (Fig. B.3→ Fig. 3)

B.4.2 Expressibility (Fig. B.4→ Fig. 5)

B.4.3 Entangling Capability (Fig. B.5→ Fig. 6)

B.4.4 Entanglement Spectrum (Fig. B.6→ Fig. 7)

71



Figure B.3: QAOA circuit for p=1. This circuit (except the first Hadamard layer) will be repeated k

times for p = k.

72



RX
(0, 0, 0)

RX
(0, 1, 0)

RX
(0, 2, 0)

RX
(0, 3, 0)

RX
(0, 4, 0)

RZ
(0, 0, 1)

RZ
(0, 1, 1)

RZ
(0, 2, 1)

RZ
(0, 3, 1)

RZ
(0, 4, 1)

RX
(0, 0, 2)

RX
(0, 1, 2)

RX
(0, 2, 2)

RX
(0, 3, 2)

RX
(0, 4, 2)

q0

q1

q2

q3

q4

Figure B.4: Parameterized quantum circuitU(θ⃗) =
∏L

1

(⊗5
i=1Rx(θ

1
i )Rz(θ

2
i )Rx(θ

3
i ) . . .

⊗
i<j CX(i, j)

)

RX
(0, 0, 0)

RX
(0, 1, 0)

RX
(0, 2, 0)

RX
(0, 3, 0)

RX
(0, 4, 0)

RZ
(0, 0, 1)

RZ
(0, 1, 1)

RZ
(0, 2, 1)

RZ
(0, 3, 1)

RZ
(0, 4, 1)

RX
(0, 0, 2)

RX
(0, 1, 2)

RX
(0, 2, 2)

RX
(0, 3, 2)

RX
(0, 4, 2)

q0

q1

q2

q3

q4

Figure B.5: Parameterized quantum circuit U(θ⃗) =
⊗5

i=1Rx(θ
1
i )Rz(θ

2
i )Rx(θ

3
i )

73



RX
(0, 0, 0)

RX
(0, 1, 0)

RX
(0, 2, 0)

RX
(0, 3, 0)

RX
(0, 4, 0)

RX
(0, 5, 0)

RX
(0, 6, 0)

RX
(0, 7, 0)

RX
(0, 8, 0)

RX
(0, 9, 0)

RX
(0, 10, 0)

RX
(0, 11, 0)

RZ
(0, 0, 1)

RZ
(0, 1, 1)

RZ
(0, 2, 1)

RZ
(0, 3, 1)

RZ
(0, 4, 1)

RZ
(0, 5, 1)

RZ
(0, 6, 1)

RZ
(0, 7, 1)

RZ
(0, 8, 1)

RZ
(0, 9, 1)

RZ
(0, 10, 1)

RZ
(0, 11, 1)

RX
(0, 0, 2)

RX
(0, 1, 2)

RX
(0, 2, 2)

RX
(0, 3, 2)

RX
(0, 4, 2)

RX
(0, 5, 2)

RX
(0, 6, 2)

RX
(0, 7, 2)

RX
(0, 8, 2)

RX
(0, 9, 2)

RX
(0, 10, 2)

RX
(0, 11, 2)

q0

q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

q11

Figure B.6: Parameterized quantum circuitU(θ⃗) =
∏L

1

(⊗12
i=1Rx(θ

1
i )Rz(θ

2
i )Rx(θ

3
i ) . . .

⊗11
i=1CX(i, i+

1)
)

74



Related Publications

1. Animesh Sinha, Utkarsh Azad, and Harjinder Singh. “Qubit Routing using Graph Neural Network
aided Monte Carlo Tree Search.” Proceedings of the AAAI Conference on Artificial Intelligence
2022, arXiv e-prints (2021): arXiv-2104.

2. Animesh Sinha, Utkarsh Azad, and Harjinder Singh. “qLEET: Visualizing Loss Landscapes,
Expressibility, Entangling power and Training Trajectories for Parameterized Quantum Circuits.”,
arXiv e-prints (2022): arXiv-2204.

75



Bibliography

[1] Mohammed Zidan. A novel quantum computing model based on entanglement degree. Modern
Physics Letters B, 34(35):2050401, August 2020.

[2] Sohail Khan, Mohammad Nauman, Suleiman Ali Alsaif, Toqeer Ali Syed, and Hassan Ahmad
Eleraky. A quantum algorithm for evaluating the hamming distance. Computers, Materials &
Continua, 71(1):1065–1078, 2022.

[3] Candida S. Punla and Rosemarie C. Farro. Analysis of the quantum algorithm based on entangle-
ment measure for classifying boolean multivariate function into novel hidden classes: Revisited.
Applied Mathematics & Information Sciences, 15(5):643–647, sep 2021.

[4] Biswaranjan Panda, Nitin Kumar Tripathy, Shibashankar Sahu, Bikash K. Behera, and Walaa E.
Elhady. Controlling remote robots based on zidan’s quantum computing model. Computers,
Materials & Continua, 73(3):6225–6236, 2022.

[5] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin, Rami Barends, Rupak
Biswas, Sergio Boixo, Fernando GSL Brandao, David A Buell, et al. Quantum supremacy using
a programmable superconducting processor. Nature, 574(7779):505–510, 2019.

[6] Steven Herbert and Akash Sengupta. Using Reinforcement Learning to find Efficient Qubit Rout-
ing Policies for Deployment in Near-term Quantum Computers. arXiv e-prints, December 2018.

[7] Matteo G. Pozzi, Steven J. Herbert, Akash Sengupta, and Robert D. Mullins. Using Reinforce-
ment Learning to Perform Qubit Routing in Quantum Compilers. arXiv e-prints, July 2020.

[8] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driess-
che, and et al. Mastering the game of go with deep neural networks and tree search. Nature,
529(7587):484–489, Jan 2016.

[9] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy P. Lillicrap,
Karen Simonyan, and Demis Hassabis. Mastering Chess and Shogi by Self-Play with a General
Reinforcement Learning Algorithm. arXiv e-prints, August 2017.

76



[10] Oriol Vinyals, Igor Babuschkin, Junyoung Chung, Michael Mathieu, Max Jaderberg, Wo-
jtek Czarnecki, Andrew Dudzik, Aja Huang, Petko Georgiev, Richard Powell, Timo Ewalds,
Dan Horgan, Manuel Kroiss, Ivo Danihelka, John Agapiou, Junhyuk Oh, Valentin Dal-
ibard, David Choi, Laurent Sifre, Yury Sulsky, Sasha Vezhnevets, James Molloy, Trevor
Cai, David Budden, Tom Paine, Caglar Gulcehre, Ziyu Wang, Tobias Pfaff, Toby Pohlen,
Dani Yogatama, Julia Cohen, Katrina McKinney, Oliver Smith, Tom Schaul, Timothy Lil-
licrap, Chris Apps, Koray Kavukcuoglu, Demis Hassabis, and David Silver. AlphaStar:
Mastering the Real-Time Strategy Game StarCraft II. https://deepmind.com/blog/

alphastar-mastering-real-time-strategy-game-starcraft-ii/, 2019.

[11] OpenAI, :, Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw
Debiak, Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, Rafal
Józefowicz, Scott Gray, Catherine Olsson, Jakub Pachocki, Michael Petrov, Henrique P. d. O.
Pinto, Jonathan Raiman, Tim Salimans, Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya
Sutskever, Jie Tang, Filip Wolski, and Susan Zhang. Dota 2 with large scale deep reinforcement
learning, 2019.

[12] Xiangzhen Zhou, Yuan Feng, and Sanjiang Li. A monte carlo tree search framework for quantum
circuit transformation. In Proceedings of the 39th International Conference on Computer-Aided
Design, ICCAD ’20, New York, NY, USA, 2020. Association for Computing Machinery.

[13] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss
landscape of neural nets. Advances in neural information processing systems, 31, 2018.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[15] Eliana Lorch. Visualizing deep network training trajectories with pca. In ICML Workshop on
Visualization for Deep Learning, 2016.

[16] Richard P Feynman et al. Simulating physics with computers. Int. j. Theor. phys, 21(6/7), 1982.

[17] Ivan Kassal, James D Whitfield, Alejandro Perdomo-Ortiz, Man-Hong Yung, and Alán Aspuru-
Guzik. Simulating chemistry using quantum computers. Annual review of physical chemistry,
62:185–207, 2011.

[18] Pascual Jordan and Eugene Wigner. Pauli’s equivalence prohibition. Z. Physik, 47:631, 1928.

[19] Sergey B Bravyi and Alexei Yu Kitaev. Fermionic quantum computation. Annals of Physics,
298(1):210–226, 2002.

[20] Michael A Nielsen et al. The fermionic canonical commutation relations and the jordan-wigner
transform. School of Physical Sciences The University of Queensland, 59, 2005.

77

https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/


[21] Kanav Setia and James D Whitfield. Bravyi-kitaev superfast simulation of electronic structure on
a quantum computer. The Journal of chemical physics, 148(16):164104, 2018.

[22] Andrew Tranter, Peter J Love, Florian Mintert, and Peter V Coveney. A comparison of the
bravyi–kitaev and jordan–wigner transformations for the quantum simulation of quantum chem-
istry. Journal of chemical theory and computation, 14(11):5617–5630, 2018.

[23] P. J. J. O’Malley, R. Babbush, I. D. Kivlichan, J. Romero, J. R. McClean, R. Barends, J. Kelly,
P. Roushan, A. Tranter, N. Ding, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, A. G.
Fowler, E. Jeffrey, E. Lucero, A. Megrant, J. Y. Mutus, M. Neeley, C. Neill, C. Quintana, D. Sank,
A. Vainsencher, J. Wenner, T. C. White, P. V. Coveney, P. J. Love, H. Neven, A. Aspuru-Guzik,
and J. M. Martinis. Scalable quantum simulation of molecular energies. Phys. Rev. X, 6:031007,
Jul 2016.

[24] Aleta Berk Finnila, MA Gomez, C Sebenik, Catherine Stenson, and Jimmie D Doll. Quantum
annealing: A new method for minimizing multidimensional functions. Chemical physics letters,
219(5-6):343–348, 1994.

[25] Anton Robert, Panagiotis Kl Barkoutsos, Stefan Woerner, and Ivano Tavernelli. Resource-
efficient quantum algorithm for protein folding. npj Quantum Information, 7(1):1–5, 2021.

[26] Yudong Cao, Jhonathan Romero, and Alán Aspuru-Guzik. Potential of quantum computing for
drug discovery. IBM Journal of Research and Development, 62(6):6–1, 2018.

[27] Maximillian Zinner, Florian Dahlhausen, Philip Boehme, Jan Ehlers, Linn Bieske, and Leonard
Fehring. Quantum computing’s potential for drug discovery: Early stage industry dynamics.
Drug Discovery Today, 26(7):1680–1688, 2021.

[28] MV Altaisky. Quantum neural network. arXiv preprint quant-ph/0107012, 2001.

[29] Iris Cong, Soonwon Choi, and Mikhail D Lukin. Quantum convolutional neural networks. Nature
Physics, 15(12):1273–1278, 2019.

[30] Johannes Bausch. Recurrent quantum neural networks. Advances in neural information process-
ing systems, 33:1368–1379, 2020.

[31] Pierre-Luc Dallaire-Demers and Nathan Killoran. Quantum generative adversarial networks.
Physical Review A, 98(1):012324, 2018.

[32] Daoyi Dong, Chunlin Chen, Hanxiong Li, and Tzyh-Jong Tarn. Quantum reinforcement learning.
IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 38(5):1207–1220,
2008.

[33] Samuel Yen-Chi Chen, Chao-Han Huck Yang, Jun Qi, Pin-Yu Chen, Xiaoli Ma, and Hsi-Sheng
Goan. Variational quantum circuits for deep reinforcement learning, 2019.

78



[34] Junde Li, Rasit O Topaloglu, and Swaroop Ghosh. Quantum generative models for small
molecule drug discovery. IEEE Transactions on Quantum Engineering, 2:1–8, 2021.

[35] Kushal Batra, Kimberley M Zorn, Daniel H Foil, Eni Minerali, Victor O Gawriljuk, Thomas R
Lane, and Sean Ekins. Quantum machine learning algorithms for drug discovery applications.
Journal of Chemical Information and Modeling, 61(6):2641–2647, 2021.

[36] Junde Li, Mahabubul Alam, M Sha Congzhou, Jian Wang, Nikolay V Dokholyan, and Swaroop
Ghosh. Drug discovery approaches using quantum machine learning. In 2021 58th ACM/IEEE
Design Automation Conference (DAC), pages 1356–1359. IEEE, 2021.

[37] Benjamin P Lanyon, James D Whitfield, Geoff G Gillett, Michael E Goggin, Marcelo P Almeida,
Ivan Kassal, Jacob D Biamonte, Masoud Mohseni, Ben J Powell, Marco Barbieri, et al. Towards
quantum chemistry on a quantum computer. Nature chemistry, 2(2):106–111, 2010.

[38] Yudong Cao, Jonathan Romero, Jonathan P Olson, Matthias Degroote, Peter D Johnson, Mária
Kieferová, Ian D Kivlichan, Tim Menke, Borja Peropadre, Nicolas PD Sawaya, et al. Quantum
chemistry in the age of quantum computing. Chemical reviews, 119(19):10856–10915, 2019.

[39] Harper R Grimsley, Sophia E Economou, Edwin Barnes, and Nicholas J Mayhall. An adaptive
variational algorithm for exact molecular simulations on a quantum computer. Nature communi-
cations, 10(1):1–9, 2019.

[40] Michael A Nielsen and Isaac Chuang. Quantum computation and quantum information, 2002.

[41] Umesh Vazirani. A survey of quantum complexity theory. In Proceedings of Symposia in Applied
Mathematics, volume 58, pages 193–220, 2002.

[42] Peter W Shor. Why haven’t more quantum algorithms been found? Journal of the ACM (JACM),
50(1):87–90, 2003.

[43] Lov K. Grover. A fast quantum mechanical algorithm for database search, 1996.

[44] Gilles Brassard, Peter Høyer, Michele Mosca, and Alain Tapp. Quantum amplitude amplification
and estimation. Quantum Computation and Information, page 53–74, 2002.

[45] Peter W. Shor. Introduction to quantum algorithms, 2000.

[46] Aram W Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm for linear systems of
equations. Physical review letters, 103(15):150502, 2009.

[47] Masuo Suzuki. Generalized trotter’s formula and systematic approximants of exponential opera-
tors and inner derivations with applications to many-body problems. Communications in Mathe-
matical Physics, 51(2):183–190, 1976.

79



[48] Dominic W Berry, Andrew M Childs, Richard Cleve, Robin Kothari, and Rolando D Somma.
Simulating hamiltonian dynamics with a truncated taylor series. Physical review letters,
114(9):090502, 2015.

[49] Dominic W Berry, Andrew M Childs, and Robin Kothari. Hamiltonian simulation with nearly
optimal dependence on all parameters. In 2015 IEEE 56th Annual Symposium on Foundations of
Computer Science, pages 792–809. IEEE, 2015.

[50] Guang Hao Low and Isaac L Chuang. Optimal hamiltonian simulation by quantum signal pro-
cessing. Physical review letters, 118(1):010501, 2017.

[51] Guang Hao Low and Isaac L Chuang. Hamiltonian simulation by qubitization. Quantum, 3:163,
2019.

[52] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approximate optimization al-
gorithm, 2014.

[53] P Read Montague. Reinforcement learning: an introduction, by sutton, rs and barto, ag. Trends
in cognitive sciences, 3(9):360, 1999.

[54] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double
q-learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

[55] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney,
Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements
in deep reinforcement learning. In Thirty-second AAAI conference on artificial intelligence, 2018.

[56] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. In Advances in neural infor-
mation processing systems, pages 1057–1063, 2000.

[57] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pages 1889–1897. PMLR,
2015.

[58] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[59] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

[60] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pages 1861–1870. PMLR, 2018.

80



[61] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap,
Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforce-
ment learning. In International conference on machine learning, pages 1928–1937. PMLR, 2016.

[62] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap,
Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforce-
ment learning. In International conference on machine learning, pages 1928–1937. PMLR, 2016.

[63] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015.

[64] Animesh Sinha, Utkarsh Azad, and Harjinder Singh. Qubit routing using graph neural network
aided monte carlo tree search, 2021.

[65] John Preskill. Quantum computing in the NISQ era and beyond. Quantum, 2:79, August 2018.

[66] IBM. IBM Quantum. https://quantum-computing.ibm.com/, 2021.

[67] Frank Arute, Kunal Arya, Ryan Babbush, and et al. Quantum supremacy using a programmable
superconducting processor. Nature, 574(7779):505–510, 2019.

[68] Peter J. Karalekas, Nikolas A. Tezak, Eric C. Peterson, Colm A. Ryan, Marcus P. da Silva, and
Robert S. Smith. A quantum-classical cloud platform optimized for variational hybrid algorithms.
Quantum Sci. Technol., 5:024003, 2020.

[69] J. Eli Bourassa, Rafael N. Alexander, Michael Vasmer, Ashlesha Patil, Ilan Tzitrin, Takaya Mat-
suura, Daiqin Su, Ben Q. Baragiola, Saikat Guha, Guillaume Dauphinais, Krishna K. Sabapathy,
Nicolas C. Menicucci, and Ish Dhand. Blueprint for a scalable photonic fault-tolerant quantum
computer. Quantum, 5:392, 2021.

[70] Andrew M. Childs, Eddie Schoute, and Cem M. Unsal. Circuit Transformations for Quantum
Architectures. In 14th Conference on the Theory of Quantum Computation, Communication
and Cryptography (TQC 2019), volume 135 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 3:1–3:24. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019.

[71] Alexander Cowtan, Silas Dilkes, Ross Duncan, Alexandre Krajenbrink, Will Simmons, and
Seyon Sivarajah. On the Qubit Routing Problem. In 14th Conference on the Theory of Quantum
Computation, Communication and Cryptography (TQC 2019), volume 135 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pages 5:1–5:32. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2019.

[72] L. Kocsis and Csaba Szepesvari. Bandit based monte-carlo planning. In ECML, 2006.

81

https://quantum-computing.ibm.com/


[73] R. Munos. From bandits to monte-carlo tree search: The optimistic principle applied to optimiza-
tion and planning. Found. Trends Mach. Learn., 7:1–129, 2014.

[74] Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In European confer-
ence on machine learning, pages 282–293. Springer, 2006.

[75] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and Justin M.
Solomon. Dynamic Graph CNN for Learning on Point Clouds. arXiv e-prints, January 2018.

[76] Juan Carlos Garcia-Escartin and Pedro Chamorro-Posada. Equivalent Quantum Circuits. arXiv
e-prints, October 2011.

[77] Swamit S. Tannu and Moinuddin K. Qureshi. Not All Qubits Are Created Equal: A Case for
Variability-Aware Policies for NISQ-Era Quantum Computers. In Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Programming Languages and Op-
erating Systems, ASPLOS ’19, page 987–999, New York, NY, USA, 2019. Association for Com-
puting Machinery.

[78] A. Zulehner, A. Paler, and R. Wille. An Efficient Methodology for Mapping Quantum Circuits to
the IBM QX Architectures. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 38(7):1226–1236, 2019.

[79] Alexandru Paler, Alwin Zulehner, and Robert Wille. NISQ circuit compilation is the travelling
salesman problem on a torus. Quantum Science and Technology, 6(2):025016, mar 2021.

[80] Alexandru Paler, Lucian M. Sasu, Adrian Florea, and Razvan Andonie. Machine learning opti-
mization of quantum circuit layouts, 2020.

[81] Davide Venturelli, Minh Do, Eleanor Gilbert Rieffel, and Jeremy Frank. Temporal planning for
compilation of quantum approximate optimization circuits. In IJCAI, pages 4440–4446, 2017.

[82] Marco Baioletti, Riccardo Rasconi, and Angelo Oddi. A novel ant colony optimization strategy
for the quantum circuit compilation problem. In EvoCOP, pages 1–16, 2021.

[83] Shelvin Chand, Hemant Kumar Singh, Tapabrata Ray, and Michael Ryan. Rollout based heuris-
tics for the quantum circuit compilation problem. In 2019 IEEE Congress on Evolutionary Com-
putation (CEC), pages 974–981. IEEE, 2019.

[84] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfshagen, S. Tavener,
D. Perez, S. Samothrakis, and S. Colton. A survey of monte carlo tree search methods. IEEE
Transactions on Computational Intelligence and AI in Games, 4(1):1–43, 2012.

[85] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driess-
che, and et al. Mastering the game of go with deep neural networks and tree search. Nature,
529(7587):484–489, Jan 2016.

82



[86] Edsger W. Dijkstra. Cooperating Sequential Processes, pages 65–138. Springer New York, New
York, NY, 2002.

[87] Thomas M. Moerland, Joost Broekens, Aske Plaat, and Catholijn M. Jonker. Monte Carlo Tree
Search for Asymmetric Trees. arXiv e-prints, May 2018.

[88] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy P. Lillicrap,
Karen Simonyan, and Demis Hassabis. Mastering Chess and Shogi by Self-Play with a General
Reinforcement Learning Algorithm. arXiv e-prints, August 2017.

[89] Prajit Ramachandran, Barret Zoph, and Quoc V. Le. Searching for Activation Functions. arXiv
e-prints, October 2017.

[90] Héctor Abraham and et al. Qiskit: An Open-source Framework for Quantum Computing, January
2019.

[91] Cirq Developers. Cirq, March 2021.

[92] Seyon Sivarajah, Silas Dilkes, Alexander Cowtan, Will Simmons, Alec Edgington, and Ross
Duncan. t|ket⟩: A retargetable compiler for NISQ devices. Quantum Science and Technology,
6(1):014003, nov 2020.

[93] Toshinari Itoko, Rudy Raymond, Takashi Imamichi, and Atsushi Matsuo. Optimization of Quan-
tum Circuit Mapping using Gate Transformation and Commutation. arXiv e-prints, July 2019.

[94] A. Zulehner, A. Paler, and R. Wille. IBM Qiskit developer challenge. https://www.ibm.
com/blogs/research/2018/08/winners-qiskit-developer-challenge/,
December 2018. Accessed on: 2021-03-23.

[95] Nina Mazyavkina, Sergey Sviridov, Sergei Ivanov, and Evgeny Burnaev. Reinforcement Learn-
ing for Combinatorial Optimization: A Survey. arXiv e-prints, March 2020.

[96] Z. Xing and S. Tu. A graph neural network assisted monte carlo tree search approach to traveling
salesman problem. IEEE Access, 8:108418–108428, 2020.

[97] Ruiyang Xu and Karl Lieberherr. Learning Self-Game-Play Agents for Combinatorial Optimiza-
tion Problems. arXiv e-prints, March 2019.

[98] Kenshin Abe, Zijian Xu, Issei Sato, and Masashi Sugiyama. Solving NP-Hard Problems on
Graphs with Extended AlphaGo Zero. arXiv e-prints, May 2019.

[99] Alexandre Laterre, Yunguan Fu, Mohamed Khalil Jabri, Alain-Sam Cohen, David Kas, Karl
Hajjar, Torbjorn S. Dahl, Amine Kerkeni, and Karim Beguir. Ranked Reward: Enabling Self-
Play Reinforcement Learning for Combinatorial Optimization. arXiv e-prints, July 2018.

83

https://www.ibm.com/blogs/research/2018/08/winners-qiskit-developer-challenge/
https://www.ibm.com/blogs/research/2018/08/winners-qiskit-developer-challenge/


[100] Utkarsh Azad and Animesh Sinha. qleet, 2021.

[101] Kishor Bharti, Alba Cervera-Lierta, Thi Ha Kyaw, Tobias Haug, Sumner Alperin-Lea, Abhinav
Anand, Matthias Degroote, Hermanni Heimonen, Jakob S. Kottmann, Tim Menke, Wai-Keong
Mok, Sukin Sim, Leong-Chuan Kwek, and Alán Aspuru-Guzik. Noisy intermediate-scale quan-
tum algorithms. Rev. Mod. Phys., 94:015004, Feb 2022.

[102] Ji Liu and Huiyang Zhou. Reliability Modeling of NISQ- Era Quantum Computers. In 2020
IEEE International Symposium on Workload Characterization (IISWC), pages 94–105, 2020.

[103] Suguru Endo, Zhenyu Cai, Simon C Benjamin, and Xiao Yuan. Hybrid quantum-classical algo-
rithms and quantum error mitigation. J. Phys. Soc. Jpn., 90(3):032001, March 2021.

[104] Marcello Benedetti, Erika Lloyd, Stefan Sack, and Mattia Fiorentini. Parameterized quantum
circuits as machine learning models. Quantum Sci. Technol., 4(4):043001, November 2019.

[105] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information:
10th Anniversary Edition. Cambridge University Press, 2011.

[106] Jonathan Romero, Ryan Babbush, Jarrod R McClean, Cornelius Hempel, Peter J Love, and Alán
Aspuru-Guzik. Strategies for quantum computing molecular energies using the unitary coupled
cluster ansatz. Quantum Sci. Technol., 4(1):014008, October 2018.

[107] Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus Brink, Jerry M
Chow, and Jay M Gambetta. Hardware-efficient variational quantum eigensolver for small
molecules and quantum magnets. Nature, 549(7671):242–246, September 2017.

[108] Ho Lun Tang, V.O. Shkolnikov, George S. Barron, Harper R. Grimsley, Nicholas J. Mayhall,
Edwin Barnes, and Sophia E. Economou. Qubit-ADAPT-VQE: An Adaptive Algorithm for Con-
structing Hardware-Efficient Ansätze on a Quantum Processor. PRX Quantum, 2:020310, Apr
2021.

[109] Utkarsh Azad and Animesh Sinha. qLEET, November 2021.

[110] Sukin Sim, Peter D. Johnson, and Alán Aspuru-Guzik. Expressibility and Entangling Capabil-
ity of Parameterized Quantum Circuits for Hybrid Quantum-Classical Algorithms. Advanced
Quantum Technologies, 2(12):1900070, 2019.

[111] Robert S. Smith, Michael J. Curtis, and William J. Zeng. A Practical Quantum Instruction Set
Architecture. arXiv e-prints, August 2016.

[112] Andrew W. Cross, Ali Javadi-Abhari, Thomas Alexander, Niel de Beaudrap, Lev S. Bishop,
Steven Heidel, Colm A. Ryan, John Smolin, Jay M. Gambetta, and Blake R. Johnson. Open-
QASM 3: A broader and deeper quantum assembly language. arXiv e-prints, April 2021.

84



[113] Holger Krekel, Bruno Oliveira, Ronny Pfannschmidt, Floris Bruynooghe, Brianna Laugher, and
Florian Bruhin. Pytest x.y, 2004.

[114] Jukka Lehtosalo, Guido van Rossum, Ivan Levkivskyi, and Michael J. Sullivan. Mypy, 2012.

[115] Carol Willing, Carl Meyer, Jelle Zijlstra, Mika Naylor, Zsolt Dollenstein, Cooper Lees, Richard
Si, Felix Hildén, and Batuhan Taskaya. Black, 2018.

[116] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A Quantum Approximate Optimization
Algorithm. arXiv e-prints, November 2014.

[117] Ian T. Jolliffe and Jorge Cadima. Principal component analysis: a review and recent develop-
ments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engi-
neering Sciences, 374(2065):20150202, April 2016.

[118] Geoffrey E Hinton and Sam Roweis. Stochastic neighbor embedding. In S. Becker, S. Thrun,
and K. Obermayer, editors, Advances in Neural Information Processing Systems, volume 15. MIT
Press, 2002.

[119] Kevin R. Moon, David van Dijk, Zheng Wang, Scott Gigante, Daniel B. Burkhardt, William S.
Chen, Kristina Yim, Antonia van den Elzen, Matthew J. Hirn, Ronald R. Coifman, Natalia B.
Ivanova, Guy Wolf, and Smita Krishnaswamy. Visualizing structure and transitions in high-
dimensional biological data. Nature Biotechnology, 37(12):1482–1492, December 2019.

[120] Richard Jozsa. Fidelity for Mixed Quantum States. Journal of Modern Optics, 41(12):2315–
2323, December 1994.

[121] David A. Meyer and Nolan R. Wallach. Global entanglement in multiparticle systems. J. Math.
Phys., 43(9):4273–4278, 2002.

[122] Peter J. Love, Alec Maassen van den Brink, A. Yu. Smirnov, M. H. S. Amin, M. Grajcar,
E. Il’ichev, A. Izmalkov, and A. M. Zagoskin. A Characterization of Global Entanglement. Quan-
tum Inf Process, 6(3):187–195, May 2007.

[123] Zhi-Cheng Yang, Claudio Chamon, Alioscia Hamma, and Eduardo R. Mucciolo. Two-
Component Structure in the Entanglement Spectrum of Highly Excited States. Phys. Rev. Lett.,
115:267206, Dec 2015.

[124] Roeland Wiersema, Cunlu Zhou, Yvette de Sereville, Juan Felipe Carrasquilla, Yong Baek Kim,
and Henry Yuen. Exploring Entanglement and Optimization within the Hamiltonian Variational
Ansatz. PRX Quantum, 1:020319, Dec 2020.

[125] Marko Žnidarič. Entanglement of random vectors. J. Phys. A: Math. Theor, 40(3):F105–F111,
dec 2006.

85



[126] H Chaudhary, B Mahato, L Priyadarshi, N Roshan, Utkarsh, and A D Patel. A software simulator
for noisy quantum circuits. Int. J. Mod. Phys. C., February 2022.

[127] Oscar Higgott, Daochen Wang, and Stephen Brierley. Variational Quantum Computation of Ex-
cited States. Quantum, 3:156, July 2019.

[128] Samson Wang, Enrico Fontana, M. Cerezo, Kunal Sharma, Akira Sone, Lukasz Cincio, and
Patrick J. Coles. Noise-Induced Barren Plateaus in Variational Quantum Algorithms. arXiv e-
prints, July 2020.

[129] M. Cerezo, Akira Sone, Tyler Volkoff, Lukasz Cincio, and Patrick J. Coles. Cost function depen-
dent barren plateaus in shallow parametrized quantum circuits. Nature Communications, 12(1),
March 2021.

[130] V. Akshay, H. Philathong, M. E. S. Morales, and J. D. Biamonte. Reachability Deficits in Quan-
tum Approximate Optimization. Phys. Rev. Lett., 124:090504, Mar 2020.

86


	Introduction
	Scope of the Thesis
	Research problems tackled

	Motivation
	qRoute: Qubit Routing
	qLEET: Variational Circuit Property Visualizations

	Thesis Layout
	Applications of our work to science

	Quantum Computation and Reinforcement Learning
	Quantum Computation
	Qubits and Quantum Computation Model
	Unitaries, Gates, and Entanglement
	Density Matrices and Noise

	Quantum Algorithms
	Purely Quantum Algorithms
	Grover's Search
	Shor's Algorithm
	Hamiltonian Simulation

	Variational Circuits
	Quantum Approximate Optimization Algorithm

	Variational Quantum Eigensolvers

	Reinforcement Learning
	What is Reinforcement Learning
	Markov Decision Processes
	Value Function and Policy Function

	Reinforcement Learning Algorithms
	Deep Q-Networks
	Policy Function Approximators
	Reasons to use policy gradients:
	Method
	Other Nuances

	Actor Critic Methods
	Monte Carlo Tree Search



	qRoute: Qubit Routing using Graph Neural Network aided Monte Carlo Tree Search
	Abstract
	Introduction
	Qubit Routing
	Describing the Problem
	Related Work
	Our Contributions

	Method
	 State and Action Space
	 Monte Carlo Tree Search
	Neural Network Architecture

	Results
	Random Test Circuits
	Small Realistic Circuits
	Large Realistic Circuit

	Discussion and Conclusion

	qLEET: Visualizing Loss Landscapes, Expressibility, Entangling power and Training Trajectories for Parameterized Quantum Circuits
	Abstract
	Introduction
	Overview
	Features
	Trainability of PQCs
	Loss Landscape
	Training Trajectory
	Expressibility
	Entangling Capability
	Entanglement Spectrum
	Parameter Histograms

	Challenges
	Effect of Noise
	Presence of Barren Plateaus
	Estimation of Reachability

	Conclusion

	Conclusions
	Appendix A: qRoute: Algorithm Details and Additional Results
	MCTS Algorithm
	Results on Google Sycamore
	Example of Routing Process
	Tabulated Results
	Random Test Circuits
	Small Realistic Circuits
	Large Realistic Circuits


	Appendix B: qLEET: Additional Results and Usage Tutorial
	Tutorial: Entaglement Ability Analysis
	Loss Landscape and Training Trajectory Analysis
	Entanglement Analysis for MZ operator Zidan2020
	Quantum Circuits from the Experiments
	Loss Landscape and Training Trajectories (Fig. B.3  Fig. 3)
	Expressibility (Fig. B.4  Fig. 5)
	Entangling Capability (Fig. B.5  Fig. 6)
	Entanglement Spectrum (Fig. B.6  Fig. 7)


	Bibliography

