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Abstract

Reinforcement Learning (RL) has witnessed remarkable advancements in both algorithms and engi-
neering, enabling a wide range of exciting applications. Multi-agent Reinforcement Learning (MARL)
in particular has made strides of progress enabling multiple learning entities to interact in effective
manner. Few of the challenges that still remain are learning under sparse rewards, achieving social gen-
eralization by adapting to changing behaviours of other agents and reproducibility. This thesis tackles
two important challenges in MARL: (1) learning in multi-agent sparse reward environments and (2)
reproducibility with social generalization.

In the first part, we address the issue of learning a reliable critic in multi-agent sparse reward sce-
narios. The exponential growth of the joint action space with the number of agents, coupled with
reward sparsity and environmental noise, poses significant hurdles for accurate learning. To mitigate
these challenges, we propose regularizing the critic with spectral normalization (SN). Our experiments
demonstrate that the regularized critic exhibits improved robustness, enabling faster learning even in
complex multi-agent scenarios. These findings highlight the importance of critic regularization for sta-
ble learning.

In the second part, we introduce marl-jax, a powerful software package for MARL that focuses
on training and evaluating social generalization of agents. Built on DeepMind’s JAX ecosystem and
leveraging their RL framework, marl-jax supports cooperative and competitive environments with mul-
tiple agents acting simultaneously. It provides an intuitive command-line interface for training agent
populations and evaluating their generalization capabilities. Researchers interested in exploring social
generalization in MARL can leverage marl-jax as a reliable baseline.

In conclusion, this thesis addresses two crucial challenges in RL: learning in multi-agent sparse
reward scenarios and reproducibility for social generalization in MARL. By introducing spectral nor-
malization as a regularization technique and providing the marl-jax software package, this research
contributes to enhancing stability, robustness, social generalization and reproducibility in RL.
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Chapter 1

Introduction

The study of how humans learn in the presence of multiple learning agents, including other humans,
is closely related to Multi-Agent Reinforcement Learning (MARL). It explores how individuals acquire
knowledge, skills, and behaviors in social contexts where multiple agents, including humans, are simul-
taneously learning and adapting their behaviors.

Humans are highly adaptive and capable of learning from a variety of sources, including interactions
with other individuals. In the presence of multiple learning agents, humans engage in a complex process
of social learning, where they observe, imitate, and communicate with others to acquire new knowledge
and skills. This social learning process is influenced by various factors, such as social norms, cultural
influences, social hierarchies, and individual differences.

Examining how humans learn in social contexts provides researchers with a rich source of knowl-
edge about effective learning strategies, communication methods, and coordination mechanisms. By
observing how humans acquire knowledge and skills from others, MARL researchers can identify key
factors that contribute to successful learning in multi-agent environments. These insights can then be
integrated into MARL algorithms to improve learning efficiency, coordination, and cooperation among
agents.

Additionally, understanding how humans adapt their strategies and behaviors in response to other
agents’ actions can inform the development of MARL algorithms that promote adaptive and flexible
decision-making. Humans possess the ability to dynamically adjust their behaviors based on the ob-
served behavior of other agents, and MARL algorithms can adopt similar adaptive mechanisms to en-
hance their performance in complex multi-agent environments.

1.1 Contributions

In this thesis we address two important challenges in Multi-agent Reinforcement Learning

1. Sparse reward learning in Cooperative MARL by regularizing the critic using Spectral Normal-
ization
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• We introduce a sparse reward configuration for SMAC and show that it is difficult to learn
when compared to standard reward configuration

• We propose to regularise the critic with spectral normalization and show that it helps learn
better policies under sparse rewards

• We analyse the effects of applying spectral normalization and show that it helps 1) stabilise
the critic gradients and 2) has an optimization effect of scaling the gradients of the entire
critic by the product of the largest spectral value of the weight matrices

2. Reproducibility in MARL by developing marl-jax, a scalable framework for social generalization
in MARL

• We develop marl-jax, a JAX based framework for training and evaluating social generaliza-
tion of trained MARL policies

• The framework is loaded with features such as multi-GPU training and distributed experi-
ence collection enabling large scale experimentation

• The proposed framework is evaluated on two commonly used benchmarks Meltingpot [1]
and Overcooked [7]

1.2 Thesis Organization

This thesis is divided into six parts and is organised as follows

• First chapter motivates the problem of multi-agent reinforcement learning and the contributions
of this work in addressing the two important challenges in MARL

• Second chapter provides with relevant background on reinforcement learning, multi-agent rein-
forcement learning, MDP formulation and its extensions under partial observability and multi-
agent environments and spectral normalization and its impact on deep learning

• Third chapter talks about the problem of learning in sparse rewards cooperative multi-agent learn-
ing and proposes a regularization based solution to address the problem

• Fourth chapter describes about the marl-jax framework and its various implementation details
with the benchmark results

• Fifth chapter concludes the thesis and its contributions and motivates further plausible directions
of research in multi-agent learning and social generalization

• Sixth chapter mentions the resulting publications from this work

2



Chapter 2

Background

2.1 Reinforcement Learning

Reinforcement learning (RL) is a subfield of machine learning that focuses on training agents to
make decisions in an environment to maximize a cumulative reward signal. RL is modeled as a Markov
Decision Process (MDP), which consists of a tuple (S,A,P,R, γ), where S is the set of states,A is the
set of actions, P is the transition probability function, R is the reward function, and γ is the discount
factor [52].

The goal of RL is to learn a policy π : S → A that maps states to actions that maximize the expected
cumulative reward, also known as the return. The return Gt at time t is defined as the sum of discounted
rewards from time t to the end of the episode:

Gt =
T∑
k=t

γk−tRk, (2.1)

where T is the time step when the episode ends, Rk is the reward at time k, and γ is the discount
factor that controls the importance of future rewards.

RL algorithms can be categorized into value-based methods, policy-based methods, and actor-critic
methods [30]. Value-based methods learn a value function that estimates the expected return from a state
or state-action pair. The value function V π(s) for a policy π is defined as the expected return starting
from state s:

V π(s) = Eπ [Gt | St = s] . (2.2)

Policy-based methods learn a policy directly by optimizing a parameterized policy function πθ(u | s)
that maps states to action probabilities. The policy gradient ∇θJ(θ) is defined as the gradient of the
expected return with respect to the policy parameters:

∇θJ(θ) = Eπ [∇θ log πθ(u | s)Qπ(s, u)] , (2.3)
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where Qπ(s, u) is the state-action value function that estimates the expected return starting from
state s, taking action u, and following policy π thereafter.

Actor-critic methods combine both value-based and policy-based methods by learning an actor that
selects actions and a critic that estimates the value function [24]. The actor’s parameters are updated
using the policy gradient, while the critic’s parameters are updated using temporal difference (TD)
learning [51]. The TD error δt at time t is defined as the difference between the observed reward and
the estimated value:

δt = Rt+1 + γV (st+1)− V (st), (2.4)

where st and st+1 are the current and next states, respectively.
In conclusion, RL is a powerful framework for modeling decision-making problems, and various

algorithms have been proposed to learn policies that maximize the expected return, including value-
based methods

2.1.1 Markov Decision Process (MDP)

MDP: {S,U, P, r, γ},

where:

• S represents the set of states in the MDP

• U represents the set of actions or control inputs available to the agent

• P is the state transition probability matrix, where P (s, u, s′) represents the probability of transi-
tioning from state s to state s′ under action u

• r represents the reward function, where r(s, u) denotes the immediate reward received when
taking action u in state s

• γ is the discount factor, determining the trade-off between immediate and future rewards

The MDP formulation allows us to mathematically model the interaction between an agent and its
environment in a sequential decision-making setting. The agent’s goal is to learn a policy π(u|s) that
maximizes the expected cumulative reward over time. The policy specifies the action to be taken in each
state, and the agent aims to find the optimal policy π∗ that maximizes the expected cumulative reward.

The dynamics of the MDP can be expressed using the Bellman equation, which represents the value
function V π(s) for a given policy π:

V π(s) =
∑
u∈U

π(u|s)

(
r(s, u) + γ

∑
s′∈S

P (s, u, s′)V π(s′)

)
.
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The optimal value function V ∗(s) can be defined as the maximum value over all policies:

V ∗(s) = max
π

V π(s).

Similarly, the optimal action-value function Q∗(s, u) represents the maximum expected cumulative
reward when taking action u in state s:

Q∗(s, u) =
∑
s′∈S

P (s, u, s′)

(
r(s, u) + γmax

u′∈U
Q∗(s′, u′)

)
.

Solving the MDP involves finding the optimal policy π∗ or the optimal action-value function Q∗

through methods such as value iteration, policy iteration, or reinforcement learning algorithms.

2.1.2 Partially Observable Markov Decision Process (POMDP)

POMDP: {S,U, P,O, r, γ}

• S represents the set of states in the POMDP

• U represents the set of actions or control inputs available to the agent

• P is the state transition probability matrix, where P (s, u, s′) represents the probability of transi-
tioning from state s to state s′ under action u

• O is the observation probability matrix, where O(o|s, u) represents the probability of observing
observation o given the agent is in state s and takes action u

• r represents the reward function, where r(s, u) denotes the immediate reward received when
taking action u in state s

• γ is the discount factor, determining the trade-off between immediate and future rewards

In a POMDP, the agent does not have direct access to the underlying states but receives observations
based on the true state. The agent maintains a belief state b that represents its current belief or probability
distribution over the underlying states. The belief state is updated using the observed information and
the transition and observation probabilities.

The agent’s goal in a POMDP is to learn a policy π(u|b) that maximizes the expected cumulative
reward over time. The policy specifies the action to be taken based on the current belief state, and the
agent aims to find the optimal policy π∗ that maximizes the expected cumulative reward.

5



2.1.3 Policy Gradient

Policy gradient is an algorithm used in Reinforcement Learning (RL) to learn policies directly with-
out explicitly estimating value functions. It is especially effective in situations where the action space is
large or continuous.

The main idea behind policy gradient is to optimize the parameters of a policy directly by estimating
the gradient of a performance measure with respect to these parameters. The performance measure
typically represents the expected cumulative reward obtained by following the policy.

Mathematically, let θ denote the parameters of the policy πθ. The policy gradient can be computed
as:

∇θJ(πθ) = ∇θEτ∼πθ [R(τ)] (2.5)

= ∇θ
∫
τ
P (τ |θ)R(τ) (2.6)

=

∫
τ
∇θP (τ |θ)R(τ) (2.7)

=

∫
τ
P (τ |θ)∇θ logP (τ |θ)R(τ) (2.8)

= Eτ∼πθ [∇θ logP (τ |θ)R(τ)] , (2.9)

where, R(τ) = G0, that is the return of the episode starting at timestep zero, or the return of the entire
episode.

Probability of a Trajectory The probability of a trajectory τ = (s0, a0, ..., sT+1) given that actions
come from πθ can be written as

P (τ |θ) = ρ0(s0)

T∏
t=0

P (st+1|st, ut)πθ(ut|st). (2.10)

Log-Probability of a Trajectory The log-prob of a trajectory by taking log on both sides of the
above equation is

logP (τ |θ) = log ρ0(s0) +
T∑
t=0

(
logP (st+1|st, ut) + log πθ(ut|st)

)
. (2.11)

Taking gradient of Log-Probability of Trajectory with respect to policy parameters

∇θ logP (τ |θ) = (((((((∇θ log ρ0(s0) +

T∑
t=0

(
((((((((((
∇θ logP (st+1|st, ut) +∇θ log πθ(ut|st)

)
(2.12)

=

T∑
t=0

∇θ log πθ(ut|st). (2.13)

Final Policy Gradient Equation

∇θJ(πθ) = Eτ∼πθ

[
T∑
t=0

∇θ log πθ(ut|st)R(τ)

]
. (2.14)
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2.1.3.1 Actor-Critic Methods

Actor-Critic methods algorithms combine the advantages of both policy-based and value-based ap-
proaches. These methods extend the basic policy gradient algorithm by incorporating a value function
estimation component known as the critic.

In traditional policy gradient methods, the agent learns a policy directly and updates its parameters
based on the expected cumulative reward. However, these methods can suffer from high variance and
slow convergence since they rely solely on the reward signal. Value-based methods, on the other hand,
estimate the value function to guide the learning process, but they may struggle with exploration and
suffer from bias in the value estimation.

Actor-Critic methods bridge the gap between policy-based and value-based methods by introducing
a critic network that estimates the value function. The critic provides an estimate of the expected cumu-
lative reward, which is used to evaluate the quality of actions taken by the policy. The actor component
updates the policy parameters based on the advantage or the difference between the estimated value and
the actual observed rewards.

The interaction between the actor and the critic leads to a more stable and efficient learning process.
The critic helps to reduce the variance in the policy updates by providing a baseline for comparison,
while the actor focuses on improving the policy based on the advantage information.

Actor-Critic methods have shown significant success in various RL tasks, including both single-agent
and multi-agent scenarios. They offer a balance between exploration and exploitation, provide stability
in learning.

Objective = Et [log πθ(ut|st) ·At(st, ut;φ)] (2.15)

In this equation, πθ(ut|st) represents the actor’s policy, which specifies the probability of taking
action ut in state st given the actor’s parameters θ. At(st, ut;φ) denotes the advantage function, which
measures the advantage or value of taking action ut in state st based on the critic’s parameters φ. The
advantage function compares the value of an action with the expected cumulative reward under the
current policy.

2.1.3.2 Advantage Function

The advantage function measures the advantage of taking a specific action in a given state compared
to the expected cumulative reward under the current policy. It is defined as the difference between the
estimated state-action value function and the estimated state value function:

A(st, ut) = Gt − Vt(st) (2.16)

A(st, ut) = Qt(st, ut)− Vt(st). (2.17)

We can also write the advantage function as At = A(st, ut).
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2.1.3.3 Proximal Policy Optimization

PPO is based on the actor-critic method and employs a clipped surrogate objective function to ensure
stable updates. The algorithm iteratively collects trajectories by interacting with the environment and
uses these trajectories to update the policy parameters.

The key idea behind PPO is to strike a balance between exploration and exploitation while updating
the policy. By limiting the policy updates, PPO maintains a certain level of exploration, allowing the
algorithm to explore new and potentially better actions. At the same time, it also exploits the information
learned from the previous policy, avoiding drastic changes that could lead to instability.

It achieves this by using a surrogate objective function that consists of two components: a policy ratio
term and a clipping term. The policy ratio term measures the advantage of the new policy compared to
the old policy, while the clipping term constrains the policy updates to be within a specified range.

Mathematically, the objective function of PPO can be defined as:

L(θ) = Et
[
min

(
πθ(ut|st)
πθold(ut|st)

At, clip
(
πθ(ut|st)
πθold(ut|st)

, 1− ε, 1 + ε

)
At

)]
, (2.18)

where θ and θold represent the current and previous policy parameters, πθ(ut|st) is the probability
of taking action ut in state st under the current policy, At is the advantage function that measures
the advantage of taking action ut in state st, and ε is a hyperparameter that controls the extent of the
clipping.

The objective function is maximized through stochastic gradient ascent, where the policy parameters
are updated using gradient-based optimization techniques such as Adam or RMSprop.

2.2 Multi-agent Reinforcement Learning

Multi-Agent Reinforcement Learning (MARL) is a subfield of reinforcement learning that focuses
on developing algorithms and techniques for training multiple agents to interact and collaborate in an
environment. In MARL, the agents can be autonomous entities with their own objectives, observations,
and actions. The goal is to enable the agents to learn effective policies and behaviors through interaction
with the environment and other agents.

Unlike single-agent reinforcement learning, where a single agent learns to optimize its behavior in
isolation, MARL involves multiple agents that must take into account the actions and behaviors of other
agents. The agents can have different levels of cooperation, from fully cooperative settings where all
agents work together towards a common goal, to competitive settings where agents compete against
each other, or mixed settings with a combination of cooperation and competition.

MARL presents unique challenges compared to single-agent RL. The presence of multiple agents
introduces the issue of non-stationarity, as the policies of other agents can change during training. The
agents must learn to adapt and respond to the evolving strategies of their counterparts. The state space
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and action space also become more complex, as the agents’ actions and observations are influenced by
the actions and behaviors of other agents.

MARL has a wide range of applications, such as multi-robot systems, self-driving cars, traffic con-
trol, and multi-agent games. It enables the development of intelligent systems that can collaborate,
compete, and interact in complex and dynamic environments.

2.2.1 Types of Agents

2.2.1.1 Homogeneous Agents

Homogeneous agents in Multi-Agent Reinforcement Learning (MARL) environments refer to sce-
narios where all the agents in the system have the same capabilities, goals, and learning algorithms.
They have the same action space and state space. Homogeneous MARL environments often involve
cooperative or competitive settings, where agents collaborate or compete with each other towards a
common or individual objective.

In homogeneous MARL, agents learn and interact with the environment simultaneously, exchanging
information and adapting their policies based on their observations and interactions. The agents can
share knowledge, coordinate their actions, and collectively improve their performance over time.

2.2.1.2 Heterogeneous Agents

Heterogeneous agents in MARL environments refer to scenarios where agents have distinct char-
acteristics, capabilities, goals, or learning algorithms. Each agent may have a different action space,
observe different state information and have different state space, or pursue different objectives. Het-
erogeneous MARL environments often represent more complex and realistic settings, where agents
possess diverse skills, strategies, or roles.

MARL environments with heterogeneous agents introduce additional challenges and opportunities.
Agents may have different levels of expertise, specialization, or responsibilities, leading to complemen-
tary or conflicting objectives. Coordination and cooperation among heterogeneous agents become more
intricate, as they need to adapt to the varying capabilities and behaviors of others.

2.2.2 Challenges in MARL

2.2.2.1 Non-Stationarity

Non-stationarity refers to the dynamic nature of the environment caused by the interaction of mul-
tiple agents. As agents learn and update their policies, the environment changes, making it difficult to
maintain stable learning. The actions of other agents can be unpredictable, and the system’s overall be-
havior can exhibit non-stationary patterns. Dealing with non-stationarity in MARL requires developing
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algorithms and techniques that can adapt to changing environments and accommodate the interactions
and learning of other agents.

Both IPPO and IQL face the challenge of non-stationarity in cooperative environments. In inde-
pendent learning algorithms like IQL [53] and IPPO, the interactions between agents and the learning
process can lead to changes in the environment dynamics and the behaviors of other agents. These
changes result in non-stationary conditions, where the underlying assumptions of stationary environ-
ments for the learning algorithms no longer hold. To cope with this issue, approaches such as using a
centralised critic, as seen in MADDPG [32], are employed to address the non-stationarity problem and
stabilize the learning process in cooperative multi-agent scenarios.

In addition to approaches like MADDPG, other solutions have been proposed to address the non-
stationarity challenge in cooperative multi-agent environments. Two notable examples are VDN (Value-
Decomposition Networks) and QMIX (Q-Mix).

VDN [50] decomposes the global Q-function into individual Q-values for each agent, allowing each
agent to learn its own value function while considering the joint action-value. By combining these
individual Q-values, VDN ensures coordination and cooperation among the agents.

QMIX [46] takes a different approach by using a mixing network to combine individual agent’s Q-
values in a way that guarantees monotonicity in the joint action-value function. This ensures that the
value function increases as the agents improve their policies, facilitating cooperative behavior.

Another approach that combines centralised training with decentralised execution is MAPPO (Multi-
Agent Proximal Policy Optimization) [57]. MAPPO leverages a centralised critic during training to
address non-stationarity and improve the learning stability, while allowing for decentralised execution
during policy execution for better scalability and real-world applicability.

These solutions, including VDN, QMIX, and MAPPO, offer different strategies to handle the non-
stationarity challenge in cooperative multi-agent learning. By incorporating centralized training, decen-
tralised execution, value decomposition, and joint action-value mixing, these methods aim to improve
the coordination and cooperation among agents and enhance the overall performance in cooperative
multi-agent environments.

2.2.2.2 Generalization to Co-players

Generalization refers to the ability of agents to transfer their learned knowledge and skills to new
scenarios or co-players. In MARL, agents may encounter novel situations or interact with previously
unseen agents. Generalizing to co-players involves adapting and adjusting strategies to effectively col-
laborate or compete with unfamiliar agents. Generalization challenges arise due to the diversity of
co-players and the need to adapt policies based on their behaviors. Ensuring that MARL algorithms can
generalize to co-players is essential for robust and scalable multi-agent learning.

The ”Options as Responses” (OPRE) [55] framework presents a hierarchical agent that exhibits the
capability to generalize its behavior to opponents it has not encountered during training. The hierarchical
architecture of OPRE is rooted in the game-theoretical structure of the environment. At the top level, the
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agent selects strategic responses to opponents, while at the lower level, these responses are translated
into a policy over low-level actions. By employing a hierarchical approach, OPRE enables the agent
to effectively reason and adapt its behavior in response to different opponents. The top-level decision-
making allows the agent to consider the overall strategic context of the game and choose appropriate
responses. The low-level policy implementation ensures that these strategic responses are translated into
specific actions in a fine-grained manner.

Another approach to address the challenge of diverse behavioral responses in multi-agent reinforce-
ment learning is through a two-phase training process. In the first phase, a population of policies is
trained to exhibit diverse behaviors. Then, in the second phase, this population of diverse policies is
leveraged to train a Best Response policy that can generalize to the entire population.

TrajDi [33] introduces a training objective based on Jensen-Shannon divergence to encourage the
generation of a diverse population of policies. By optimizing this objective, TrajDi promotes the explo-
ration of different behavioral strategies among the agents, leading to a more varied population.

LIPO [10] employs a policy incompatibility objective to train a diverse population of policies. This
objective encourages the policies to have different behavioral patterns that are not compatible with each
other, resulting in a more diverse set of strategies among the agents.

Ranked Policy Memory (RPM) [43] presents a unique method inspired by the concept of a replay
buffer. It maintains a buffer of policies and ranks/classifies them based on the episodic return obtained.
By using this ranked policy memory, RPM trains a Best Response Policy that has the ability to generalize
to co-player policies exhibiting a wide range of behaviors.

These approaches aim to promote diversity among the policies in multi-agent settings, allowing for
a richer and more varied interaction between agents. By training a diverse population of policies or
utilizing a ranked policy memory, these methods enhance the ability to generalize and adapt to different
behavioral responses exhibited by other agents.

For a comprehensive review of generating diverse populations of agents, we recommend referring
to [45]. This review paper provides a detailed exploration of methods and techniques for promoting
diversity among agents in multi-agent systems with focus on Ad-Hoc Teamwork.

2.2.3 Types of Multi-Agent Environments

2.2.3.1 Cooperative Setting

Cooperative Multi-Agent Reinforcement Learning is a field of research that focuses on developing
algorithms and strategies for enabling a group of agents to work together towards a common goal. In
cooperative MARL, the agents collaborate and coordinate their actions to maximize the overall perfor-
mance or achieve a shared objective.

Unlike single-agent reinforcement learning, where a single agent interacts with an environment, co-
operative MARL involves multiple agents interacting with the environment simultaneously. Each agent
has its own observation of the environment, and they typically communicate and exchange information
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to make joint decisions. The agents may have different capabilities, roles, or actions, but they cooperate
by sharing information, coordinating their actions, and learning from each other’s experiences.

The key challenges in cooperative MARL include learning effective communication and coordina-
tion strategies, dealing with the curse of dimensionality as the number of agents increases, handling
partial observability, non-stationarity due to multiple learning agents, and addressing issues of coordi-
nation and cooperation in dynamic and uncertain environments.

Researchers in cooperative MARL [50, 46, 34, 57] propose various algorithms and techniques to
tackle these challenges, such as centralized training with decentralized execution, decentralized learning
with communication protocols, and hierarchical approaches. These algorithms aim to optimize the joint
behavior of the agents by learning individual policies that align with the global objective or by learning
a joint policy directly.

A fully cooperative multi-agent reinforcement learning task can be modeled as a decentralized par-
tially observable MDP (Dec-POMDP). The Dec-POMDP can be defined by the tuple {S,U, P, r, Z,O, n, γ},
where:

• S is the state space of the environment

• zi ∈ Z is the local observation of each agent sampled according to the observation function
O(s, i) : S ×A → Z

• The action-observation history for an agent i is denoted as τ i ∈ T ≡ (Z × U)∗, and the policy
πi(ui|τ i) : T × U → [0, 1] of each agent is conditioned on it

• At each time step t, every agent i ∈ A ≡ {1, . . . , n} chooses an action ui ∈ U with a decentral-
ized policy πi(·|τ i) using only its local action-observation history τ i

• The agents jointly optimize the discounted accumulated reward

J = Est,ut

[∑
t

γtr(s,u)

]
,

where the joint action space u ∈ U ≡ Un can be denoted as a tuple u = (u1, . . . , un). When
n = 1, the problem becomes a POMDP and is significantly easier to solve

• P (s′|s,u) : S ×U× S → [0, 1] is the state transition function

• r(s,u) : S ×U→ R is the reward function shared by all agents

• γ ∈ [0, 1) is the discount factor

The state-value function conditioned on the joint policy π is defined as:

V π(st) = Eu∼π

[ ∞∑
k=0

γkrt+k | s

]
.

A collaborative team aims to learn an optimal joint policy π = Πn
i=1π

i that maximizes the accumu-
lated reward J .
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2.2.3.2 Competitive Setting

Fully competitive multi-agent environments in reinforcement learning are typically characterized as
zero-sum games. In zero-sum games, the total utility or reward available in the environment remains
constant, meaning that any gain by one agent comes at the expense of another agent. This zero-sum
nature adds an extra layer of complexity to the competitive setting, as the success of one agent is directly
tied to the failure or reduced performance of other agents.

In fully competitive environments, the pursuit of individual rewards by each agent creates a com-
petitive landscape where agents must strategically allocate their resources, make tactical decisions, and
engage in adversarial interactions to gain an advantage over their opponents. Agents aim to maximize
their own utility or minimize their opponents’ utility, resulting in a dynamic and intense competitive
scenario.

The zero-sum nature of fully competitive environments poses unique challenges for reinforcement
learning algorithms. Agents must not only learn effective policies to achieve their objectives but also
anticipate and counter the strategies employed by their opponents. This requires agents to engage in
sophisticated decision-making, exploitation of weaknesses in opponents’ policies, and adaptive learning
to stay competitive in the environment.

2.2.3.3 Mixed Setting

Mixed setting environments in reinforcement learning refer to scenarios where the environment ex-
hibits both cooperative and competitive aspects, requiring agents to balance their focus between co-
operation and competition. In these environments, agents must navigate a complex landscape where
collaboration with some agents is beneficial, while simultaneously competing against others.

In mixed settings, agents encounter situations where cooperation with certain agents can lead to
mutually beneficial outcomes or shared rewards. At the same time, they must be cautious of other agents
who may have conflicting objectives and pose a competitive threat. This combination of cooperative and
competitive aspects introduces additional strategic considerations and decision-making challenges for
the agents.

2.3 Spectral Normalization

A function is k−Lipschitz continuous in l2-norm if

‖f(x1)− f(x2)‖2 ≤ k‖x1 − x2‖2. (2.19)

Considering a feed-forward layer, the Lipschitz constant of the layer is defined as the largest singular
value of the weight matrix of that layer. Spectral normalization normalizes the weight matrix by its
largest spectral value, constraining that layer to be 1−Lipschitz smooth.

Ŵ =
W

‖W‖
=

W

σmax(W )
. (2.20)
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We can also control the smoothness of the function to be k Lipschitz smooth by adding an extra param-
eter k which can be tuned.

Ŵ =
W

max(σmax(W ), k)
. (2.21)

The Lipschitz constant of a composite of two functions f1 and f2 with Lipschitz constant k1 and k2
will be bounded by k1 · k2. Similarly the Lipschitz constant of a neural network can be bounded by the
product of Lipschitz constant of each layer. For more details on Lipschitz constant of various layers and
activation functions, we refer to [17].

2.3.1 Optimization effects of Spectral Normalization

Let us analyze the activation calculation of a feed-forward layer with and without spectral normal-
ization. The equation for a layer i without spectral normalization can be written as:

zi = Wiai−1 + bi (2.22)

ai = ReLU(zi), (2.23)

where a0 , x is the input to the network.
Now let us look at the equations when we apply spectral normalization to a feed-forward layer.

ẑi = Ŵiai−1 + bi (2.24)

âi = ReLU(ẑi), (2.25)

Here Ŵi = k−1i Wi is the weight matrix after applying spectral normalization. Here ki is the largest
singular value of the weight matrix. Comparing the above equations, we can observe that only the
weight matrix is scaled using the largest singular value, whereas the bias is unchanged. Due to this, the
sign of the pre-activations z is not preserved ([zi > 0] 6= [ẑi > 0]). Hence we cannot write a direct
relation between ∂L

∂Wi
and ∂L̂

∂Wi

For simplicity of analysis let us consider the network without bias. So the equation for a specific
layer i can be written as follows:

zi = Wiai−1 (2.26)

ai = ReLU(zi), (2.27)

where a0 , x is the input to the network.
Let a subset of layer S ⊆ {1, 2, . . . , L} are spectral normalized and are individually 1-Lipschitz

continuous. The weight matrix of the regularised layers can be defined as ∀i ∈ S : Ŵi = 〈k−1i 〉Wi

where ki = σmax(Wi) is the largest singular value of that weight matrix. Here 〈·〉 is the gradient stop
operator and hence back-propagation is not applied through the singular value calculations.

Now let us update the equations for the above described feed-forward network when applying spec-
tral normalization to it.

ẑi = k−1i Wiâi−1 (2.28)
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âi = ReLU(ẑi), (2.29)

where k−1i:j ,
∏
i≤l≤j∧l∈S k

−1
l . We can write eq. 2.28 in terms of non-regularised activation as follows

ẑi = k−11:iWiai−1. (2.30)

The above equation is valid as spectral normalization is scaling operation and hence the sign of the
activation will be preserved ([ai > 0] = [âi > 0]).

The loss is calculated on the final layer of the network and hence can be written as L , loss(zL).
The loss calculation for the regularised network will be updated to L̂ , loss(ẑL) = loss(k−11:LzL).

MLP SN-MLP (2.31)

L , loss(zL) L̂ , loss(ẑL) (2.32)

∂L
∂Wi

= JiδLa
T
i−1

∂L̂
∂Wi

= k−1Jiδ̂Lâ
T
i−1, (2.33)

where k−1 = Πi∈Sk
−1
i , δL , ∂L

∂zL
is the Jacobian w.r.t. the network’s output and similarly δ̂L , ∂L̂

∂ẑL
is

the Jacobian with respect to the regularised network’s output and

Ji , ΠL−1
j=i [diag([zj ] > 0)W T

j+1].

Based on the above equations, it is evident that applying spectral normalization leads to gradient
scaling by k−1. This shows that the optimization step of the regularised network is scheduled based
on the product of largest spectral values of the normalized layers. For detailed analysis of how spectral
normalization effects various layers, activation and the bias terms, we refer to [16, 17]. We also note
here that spectral normalization is a form of preconditioning [6, 22, 12, 11, 27, 25, 26, 28, 42].
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Chapter 3

Effects of Spectral Normalization in Multi-Agent Reinforcement

Learning

In this section we focus on learning under sparse rewards in on-policy cooperative multi-agent rein-
forcement learning algorithms. We hypothesize that by introducing sparsity in the reward, critic learning
gets affected and propose to regularise critic with spectral normalization to aid the critic to learn. Ap-
plying spectral normalization constraints the Lipschitz constant of the layers.

We empirically study the effects of reward sparsity on critic learning in MAPPO on two different
cooperative multi-agent benchmarks: StarCraft multi-agent challenge (SMAC) [47] and multi-robot
warehouse (RWARE) [39]. We start by comparing the performance of MAPPO with critic regularised
MAPPO. We then analyze the critic learning by comparing the logarithm of the gradient norms of the
critic of the two variants and show how applying spectral normalization on the critic helps stabilize
its gradients. Our results help us understand the importance of critic learning in multi-agent scenarios
under sparse rewards.

Our contributions can be summarised as follows:

• We introduce a sparse reward configuration for SMAC and show that it is difficult to learn when
compared to standard reward configuration

• We propose to regularise the critic with spectral normalization and show that it helps learn better
policies under sparse rewards

• We analyse the effects of applying spectral normalization and show that it helps 1) stabilise the
critic gradients and 2) has an optimization effect of scaling the gradients of the entire critic by the
product of the largest spectral value of the weight matrices

3.1 Related Works

There has been considerable development in cooperative multi-agent reinforcement learning in recent
years[46, 50, 34, 57, 36]. Value-based as well as policy-based CTDE-MARL algorithms are effective
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in cooperative tasks. But these works do not focus on the sparse reward scenarios and mainly address
learning decentralized agents with factored value functions or policies.

Spectral Normalization has been used in GANs[37], as a regularizer which leads to better sample
efficiency [17] or to improve robustness of uncertainty estimates [31]. In the context of RL, SN has
been used in model-based RL in uncertainty estimation [58] to enable deeper networks [3] and to also
show that SN regularised networks can compete with algorithmic innovations [16]. Tesseract [36] uses
tensor decompositions to learn robust estimates for the underlying MDP dynamics and action-value
function with provable sample efficiency in multi agent setting.

To the best of our knowledge, we are the first to apply SN in the context of multi-agent RL. Our
work differs from the previous works in the sense that we show that SN can be used to make critic more
robust to the noise induced by sparse rewards under multi-agent scenarios. Previous works have shown
that adding SN to the value function estimator helps stabilize its learning by stabilizing its gradients [3]
as well as act as an update-step scheduler [16]. In our work, we observe that applying SN in multi-agent
scenarios leads to both of these benefits.

3.2 Experimental Setup

We use MAPPO as our on-policy multi-agent algorithm to perform all the evaluations. Implemen-
tation and configuration from [39] are used for all our experiments. The actor consists of 3 layers with
GRU as the middle layer, and the critic uses 3 layered feed-forward network. All the layers have 64 neu-
rons, and the hidden dimension of GRU is 64. Adam [23] optimizer with a learning rate of 5× 10−4 is
used for updating the network weights. Gradient clipping is applied to both the actor and critic gradients
with a gradient norm 10. The weights of the actor and critic are shared across all agents[57].

For learning the critic we use 10-step temporal difference learning rule. The actor is optimized using
the standard PPO objective. We normalize the returns for critic for two of our variants, FullSN-MAPPO
and LastSN-MAPPO.

We test three different variants with spectral normalization on critic and a standard MAPPO:

• FullSN-MAPPO: Spectral Normalization (SN) is applied on all critic layers

• MidSN-MAPPO: SN only applied on the second layer or the middle layer of the critic

• LastSN-MAPPO: SN applied to the final layer of the critic

• MAPPO: Standard MAPPO implementation with no spectral normalization
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Figure 3.1 Illustration of an RWARE environment and a SMAC map

3.3 Results

We empirically evaluate our results on two cooperative multi-agent benchmarks, multi-robot ware-
house (RWARE) and starcraft multi-agent challenge (SMAC). We report our scores averaged across four
seeds.

3.3.1 RWARE Environment

RWARE is a partially observable sparse reward benchmark introduced in [39]. It is a grid-world en-
vironment where the agents are rewarded for delivering the requested shelf from the warehouse. Agents
can only observe a 3 × 3 grid surrounding themselves. We consider three different tasks which vary
the grid size and the number of agents. This is a relatively simpler environment where a single agent
can complete the task without any help from the other agents in the environment. This reflects in our
results in Fig. 3.2 where two variants, MAPPO and MidSN-MAPPO, show similar final performance,
with MidSN-MAPPO being quicker to converge.

We compare three different RWARE environments with a varying number of agents and environment
sizes.

• tiny-2ag is the smallest map with two agents. We observe that the spectral normalized variant
converges a bit faster comparatively

• tiny-4ag is the same as the previous map but with four agents. In this case, we do not see any
significant difference between the two variants. Though our variant with normalized critic seems
to converge a bit faster again

• small-2ag is a larger map with almost double the number of shelves in the environment with only
two agents

Overall in all three environments, we observe our variant to converge early, but the final performance is
almost the same.
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Figure 3.2 Learning curves on RWARE comparing MAPPO and MidSN-MAPPO. As RWARE is a
relatively simple environment where explicit coordination is not necessary, the final performance of
both variants is almost the same. However, we can observe that MidSN-MAPPO converges a bit faster.

3.3.2 SMAC Environment

SMAC is a benchmark based on the Starcraft II game. This environment consists of battle scenarios
where a team of agents is controlled to defeat the enemy team, which uses fixed policies. This is
also a partially observable environment where each agent only observes a fixed around itself for other
agents. Here too, we consider three different tasks with a varying number of agents and unit types.
The primary challenge in these tasks is learning optimal behaviour under partial observability and the
large joint action space growing based on the number of agents. As we specifically wanted to evaluate
the performance on sparse rewards, we propose a custom reward configuration where the agents are
awarded rewards only in cases of death and win/loss. For each death in the ally team, a reward of−10 is
awarded, and for each kill in the enemy team, a reward of +10 is awarded. Along with the death reward,
a reward of +200 is awarded for winning the battle, killing all the enemy units, and similarly, a reward
of −200 is awarded if all the units in the ally team die. We do not use rewards based on health loss due
to attacks which are usually used.

We consider three super-hard scenarios from Starcraft Multi-Agent Challenge (SMAC) for our com-
parisons. Each scenario evaluates different aspects of the environment. 3s5z vs 3s6z helps us evaluate
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Figure 3.3 Average battles won on various SMAC maps averaged across several seeds. SMAC is a very
challenging benchmark where each map requires a specific skill to be acquired to win. We observe that
LastSN-MAPPO shows much better and more stable final performance than MAPPO when evaluating
under sparse reward configuration. However, the results on Corridor are a bit surprising. We talk about
that in more detail in Section 3.3.2

the performance of imbalanced teams. We can observe that variants with spectral normalized critic gain
significant performance compared to the standard critic variant. 27m vs 30m has the largest ally team of
27 marines. In this scenario as well, we observe that our variant performs significantly better. This shows
that our method can scale to a large number of agents. Even though spectral normalization constraints
the critic, the shared weights can learn representation for many agents. corridor requires effective use of
terrain features and block the choke point to avoid attacks from different directions. Subtle tactics like
blocking the choke point to avoid attack from different directions as there is a considerable imbalance
in the team since six friendly Zealots face 24 enemy Zerglings. All variants find it challenging to solve
this environment consistently under sparse rewards. But still, the convergence of MidSN-MAPPO with
normalized critic is quick compared to the standard variant. When we compare the number of dead
enemies in Fig. 3.4, we can see that MidSN-MAPPO is performing relatively better. Even though both
the algorithms fail to have high win-rates due to slow regenerative ability of enemy Zerglings, which
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Figure 3.4 Comparing dead enemies through the training shows that MidSN-MAPPO is always ahead
of MAPPO even though the final win rate is the same for the two variants, MidSN-MAPPO is able to
kill more enemies even in the battles which are not a conclusive win.
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Figure 3.5 Gradient norm of the critic throughout the training. Even though MidSN-MAPPO shows
improvement over MAPPO in both the environments, the reason for this performance gain is different
in the two maps. In 27m vs 30m, the critic gradients are stable for both the variants, still MidSN-
MAPPO is better. In this case, the performance gain can be attributed to the optimization effects of SN
on the critic. While in corridor, SN helps stabilise the critic gradients, directly correlating to overall
performance gain.
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makes it difficult to kill them unless attacked continuously, we observe that MidSN-MAPPO is able to
kill more enemies than MAPPO.

Fig. 3.3 compares the win rate on different SMAC scenarios under sparse rewards. We can observe
that all three SN variants perform better than the normal MAPPO on 3s5z vs 3s6z and 27m vs 30m.
LastSN-MAPPO achieves the best final win-rate consistently across various seeds. This shows that reg-
ularizing the critic with spectral normalization does indeed help to learn under sparse reward scenarios.
However, the results on corridor paint a different picture. We observe that both the variants where SN
is applied on the last layer of the critic underperform compared to the other two scenarios.

Applying SN on the last layer of critic causes its output to be smooth [16]. However, the value
function doesn’t need to be smooth. That is, when the focal agent has more health and the enemy agent
has relatively less health, the return will be highly positive, but just a slight difference in the health of
the two agents leading to an enemy agent having higher health would lead to highly negative reward.
The scenarios 3s5z vs 3s6z and 27m vs 30m where FullSN-MAPPO and LastSN-MAPPO perform well
have open maps and there is a lot of place for the agents to move around. Hence the value function would
be smooth. However, in corridor, there are choke points that constraint the movements of the agents.
This leads to non-smooth value function, which ultimately causes the failure of FullSN-MAPPO and
LastSN-MAPPO on this scenario. It would be safe to conclude that applying SN on the final layer only
helps when the value function is smooth. Otherwise, we have to restrict ourselves to not apply SN on
the final layer of the critic.

3.3.2.1 Effects of Normalizing the Critic

To understand more about the effects of normalizing critic, we analyze the norm of the gradients of
critic. Fig. 3.5 compares the gradient norm on two SMAC scenarios, 27m vs 30m and corridor. We
observe that learning happens in both the maps, but there is a critic gradient explosion in the normal
variant on corridor. Notice that the plots are in log scale. This shows that regularising critic with
spectral norm helps stabilize the learning in critic by stabilizing its gradients.

But another question that remains is what exactly causes the performance gain in 27m vs 30m? As
we observe, the gradient norm of both variants is almost in the same range. The performance gain,
even when the gradient norm is not exploding, can be explained based on the effects of SN discussed in
section 2.3.1. Let’s look at the output and gradient equations of a three-layered fully-connected network.
We observe that applying spectral normalization on a layer is equivalent to scaling the gradients of the
complete network by the inverse of maximum spectral value ρ−1. This scaling of the gradient effect acts
as a step-size scheduler based on the spectral values of the regularised layers. Hence the performance
gain in 27m vs 30m can be attributed to the gradient scaling effect of SN.

We can conclude from the above analysis that the benefits of applying spectral normalization to the
critic are as follows

• Stabilise critic by constraining the gradients
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• Optimization effect by scaling the gradient by the inverse of the maximum spectral value

• Better learning of smooth value functions by applying SN on the last critic layer

3.4 Limitations

It is important to note that even though SN can help in stabilizing the critic learning, it can only help
up to an extent and under the conditions that the agent is able to reach some rewarding state by random
exploration. In case of extremely sparse rewards, e.g., only win/loss reward in SMAC, it is extremely
unlikely that the team of agents randomly stumbles upon a winning situation. As there is a very slim
chance of getting an actual positive reward, there is no information presented to the critic that it can
leverage. Hence stable critic helps only under the condition that the agent is able to reach rewarding
states, but the reward signal might get suppressed by the noise from the untrained critic.
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Chapter 4

marl-jax

Multi-agent reinforcement learning (MARL) is an important framework for training autonomous
agents that operate in dynamic environments with multiple learning agents. Many potential real-world
applications require the trained agents to cooperate with humans or agents not seen during training.
That is, they should be able to zero-shot generalize to novel social partners. Most of the existing MARL
frameworks [48, 40, 49, 59, 20] are either designed for cooperative MARL research or naively extend
existing single-agent RL frameworks to work with multiple agents.

On the contrary, marl-jax is designed specifically for multi-agent research and facilitate the training
and assessment of the generalization capacities of multi-agent reinforcement learning (MARL) algo-
rithms when facing new social partners. We utilize the functionalities of JAX [4] including autograd,
vectorization through vmap, parallel processing through pmap, and compilation through jit, resulting in
highly optimized training for multiple agents.

Inspired by Acme [19], we share a lot of design philosophies with it. Reverb [8] is used as a data-
store server for the replay buffer. Launchpad [56] is used for distributed computing. We use JAX [4]
as the numerical computation backend for neural networks. We use dm-env API as our environment
interaction API and extend it for multi-agent environments.

4.1 Reproducibility in Reinforcement Learning

The RL community has developed several frameworks targeting various aspects such as implemen-
tation simplicity, ease of adaptation and scaling deep RL agents. In marl-jax, we focus on ease of
experimentation and adaption for training a population of agents in multi-agent environments.

A number of libraries that concentrate on single-agent reinforcement learning have been created,
such as stable-baselines3 [44], dopamine [9], acme [19], RLlib [29], and CleanRL [21]. These libraries
prioritize features like modularity by providing useful abstractions, ease of use by requiring minimal
code to get started, distributed training and ease of comprehension and reproducibility. Other libraries
such as Reverb [8], rlax [2], and launchpad [56] concentrate on specific components of an RL system.

24



Learner
(update parameters)

Train using batch of trajectory

Collect batch of step

Action selected from policy

Environment state to policy

Policy

Batch of
trajectory

Environment

Figure 4.1 Single-threaded RL training pipeline

For multi-agent reinforcement learning, several libraries have been developed, including PyMARL [48],
epymarl [40], RLlib [29], Mava [41], and PantheonRL [49]. RLlib and PantheonRL enhance existing
single-agent RL algorithms to enable multi-agent training, while Mava, PyMARL, and epymarl are
specifically designed for MARL but only support cooperative environments.

The advancements of Reinforcement Learning (RL) algorithms have been greatly influenced by li-
braries providing a range of environments. Single agent RL has been aided by libraries such as OpenAI
Gym [5] and dm-env [38], which established the framework for environment interactions. Multi-agent
RL has been supported by SMAC [48] and PettingZoo [54]. Recently, DeepMind has contributed to the
field by open-sourcing MeltingPot [1], a library for evaluating multi-agent generalization to new social
partners at scale. Similarly, efforts for measuring generalization in cooperative multi-agent settings [35]
are being supported by libraries like [13].

Several recent works [19, 21, 2, 41] have begun utilizing JAX [4] due to its various benefits. These
benefits include auto-vectorization, just-in-time compilation, and easy multi-GPU scaling. Therefore,
we have selected JAX as the framework for our library based on its demonstrated advantages and ability
to meet the computational needs of MARL.

4.2 System Architecture

We implement four different training architectures

4.2.1 Single Threaded

Figure 4.1 illustrates the sequential flow of operations in a single-threaded RL training process.
At each step, the agent receives an observation from the environment, selects an action based on its
policy, interacts with the environment, and receives a reward. The observation, action, reward, and next
observation are collected to form a batch and then used to update agent’s policy and value function using
gradient descent. This process continues iteratively until the desired convergence or a specified number
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of iterations is reached. Algorithm 1 describes the pseudocode for training a policy in singe-threaded
manner.

1: repeat
2: params = initialize params for the policy and value function
3: sequence = [ ]
4: timestep = environment.reset()
5: repeat
6: actions = predict actions(params, timestep.observation)
7: new timestep = environment.step(actions)
8: sequence.append((timestep, actions))
9: timestep = new timestep

10: until not timestep.last() or len(sequence) < MAX BATCH SIZE
11: params, logs = sgd step(params, sequence)
12: logger.write(logs)
13: until actor steps < MAX STEPS

Algorithm 1: Single-threaded RL training

4.2.2 Synchronous Distributed

The synchronous distributed architecture builds upon the single-threaded architecture by utilizing
multiple environment instances running in parallel processes to collect a batch of experiences simul-
taneously. Each environment synchronously interacts with a common policy, generating sequences of
states, actions, rewards, and next observations. This batch of sequences is used to update the policy
and value function weights through gradient descent. By leveraging parallelization, the synchronous
distributed architecture enables more efficient data collection and faster updates, leading to accelerated
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training and improved convergence in reinforcement learning. Fig.4.2 illustrates how synchronous par-
allelization is achieved by running each environment instance in a separate process. The pseudocode is
similar to that described in algorithm 1, with the main difference being that each interaction with the
environment results in a batch of data collected from environments across all processes.

4.2.3 IMPALA-style Asynchronous Distributed

In the IMPALA-style asynchronous distributed training architecture, multiple actors run in parallel
and interact with their respective environments asynchronously. Each actor collects trajectories of expe-
rience by executing its own copy of the current policy. The three main components running in parallel
as separate processes are described below

• Environment Loop: The environment loop process interacts with the environment using the
available policy and adds the collected experience to the replay buffer. Multiple parallel environ-
ment loop processes are run, each with its own copy of the environment and policy parameters.
We use CPU inference for action selection on each process. To keep the policy parameters in sync
with the learner process, the parameters are periodically fetched from the learner process. The
action selection step is optimized using vamp auto-vectorization to select the action for all agents
in the environment. Algorithm 2 shows the pseudocode for this process.
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• Learner: The actual policy learning happens in this process. The learner fetches experience from
the replay buffer and performs the optimization step on policy and value function parameters. We
use pmap to auto-scale the optimization step to multiple GPUs and vmap based auto-vectorization
to perform the optimization step for all agents in parallel. Algorithm 3 shows the pseudocode for
this process.

• Replay Buffer: A separate process with reverb [8] server is used as a replay buffer. All the
actors add experience to this server, and the learner process samples experience from the server
to optimize for policy and value function parameters.

Figure 4.3 illustrates the how data flows between different components enabling asynchronous expe-
rience collection and training of the RL agent.

1: repeat
2: params = fetch latest params from learner
3: episode = [ ]
4: timestep = environment.reset()
5: repeat
6: actions = predict actions(params, timestep.observation)
7: new timestep = environment.step(actions)
8: episode.append((timestep, actions))
9: timestep = new timestep

10: until not timestep.last()
11: replay buffer.write(episode)
12: logger.write(logs)
13: until actor steps < MAX STEPS

Algorithm 2: Asynchronous Environment loop

1: repeat
2: batch = replay buffer.sample()
3: new params, logs = sgd step(params, batch)
4: logger.write(logs)
5: until actor steps < MAX STEPS

Algorithm 3: Asynchronous Learner

4.2.4 Sebulba: Asynchronous Distributed with Inference Server

Inspired by Sebulba architecture from Podracer [18] and seed-rl [14], this architecture uses a com-
mon inference server in the asynchronous distributed architecture. When a common inference server is
used in the asynchronous distributed architecture for RL training, the architecture is further enhanced
to centralize the inference process. In this setup, multiple actors interact with their respective environ-
ments asynchronously, collecting trajectories of experience as before. However, instead of each actor
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performing its own inference, they send their collected experiences to a common inference server which
usually has access to hardware-accelerator such as GPU.

By utilizing a common inference server, several advantages can be achieved. First, it reduces the
computational load on the individual actors, as they no longer need to perform their own inference. This
enables the actors to focus on data collection, resulting in more efficient and faster interaction with the
environment. Second, the use of a shared policy network ensures that all actors are making decisions
based on the same set of parameters. This improves the consistency and stability of the training process,
as it prevents any discrepancies that may arise from differences in local copies of the policy network.

Figure 4.4 shows the block-diagram and data-flow in asynchronous architecture with inference server.
The pseudocode for learner will be exactly the same as the Algorithm 3 and for actor it is same as Algo-
rithm 2 where the predict actions functions will be a call to the inference server instead of local policy
network.

4.3 Supported Environments

We support two multi-agent environment suits, which consist of simultaneous acting homogeneous
agents.
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4.3.1 Overcooked

The Overcooked environment [7] is a popular benchmark in the field of Multi-Agent Reinforcement
Learning (MARL) that simulates a cooperative cooking scenario based on the popular game Over-
cooked. It provides a challenging and interactive environment where multiple agents collaborate to
prepare dishes in a virtual kitchen.

In Overcooked, the goal is to efficiently work together as a team to prepare and serve a variety of
meals. The agents control different characters within the kitchen and must coordinate their actions
to complete tasks such as chopping ingredients, cooking, and delivering finished dishes to customers.
Collaboration and coordination are essential to maximize efficiency and achieve high scores.

The environment features various elements that add complexity to the task. For example, the kitchen
layout may include obstacles that require agents to navigate around, limited resources like cutting boards
and stoves that need to be shared, and time-sensitive customer orders that must be fulfilled promptly.
Additionally, agents need to strategize and communicate effectively to optimize their actions and avoid
potential bottlenecks or collisions.

Overcooked is designed to test the ability of MARL algorithms to solve cooperative tasks in dy-
namic and complex environments. It challenges agents to exhibit skills such as coordination, planning,
communication, and adaptive decision-making.

4.3.2 Melting Pot

Melting Pot [1] suite designed with the objective of evaluating generalization to novel situations and
coplayers. The Melting Pot 2.0 suite consists of 50 different environments and over 256 unique test
scenarios to evaluate the trained population of agents on broad range of topics such as social dilemmas,
task partioning, resource sharing, etc

Melting Pot evaluation methodology is captured by the following equation:

Substrate + Background Population = Scenario

• Substrate: The term ”substrate” refers to the static or physical aspects of the environment in a
simulation. It encompasses elements such as the layout of the map, the placement of objects,
the rules governing their movement, and the physics involved. In essence, the substrate defines
the stationary or unchanging components of the environment’s dynamics. It sets the foundation
and structure upon which other dynamic elements and interactions can take place. By defining the
substrate, the simulation establishes the framework for how the environment behaves and provides
a stable backdrop against which other entities and events can unfold.

• Background Population: The term ”background population” refers to a group of simulated enti-
ties within a simulation that have their own agency or ability to take actions and make decisions.
In other words, these entities are not passive or static; they actively participate in the simulation
and contribute to its dynamics. They can interact with other entities, respond to stimuli or events,
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Figure 4.5 marl-jax supports two major environment suits, Meltingpot [1] and Overcooked [7]

and potentially influence the overall behavior and outcomes of the simulation. The background
population adds an element of realism and complexity to the simulation, making it more dynamic
and reflective of real-world scenarios.

• Scenario: In the context of simulation or modeling, a scenario is created by combining the sub-
strate and the background population. The substrate refers to the static or physical part of the
environment, such as the layout, objects, and physics rules. On the other hand, the background
population consists of simulated entities with agency, meaning they can take actions and make
decisions within the simulation.

By integrating the substrate and the background population, a scenario is formed that represents a
specific setting or situation within the simulation. The substrate provides the foundation, defining
the physical attributes and constraints of the environment. This includes factors like the terrain,
structures, objects, and their spatial arrangement. The substrate sets the stage for interactions and
events to occur.

The background population adds a dynamic aspect to the scenario. These simulated entities have
their own behaviors, goals, and decision-making processes. They can interact with each other,
respond to stimuli or events in the environment, and potentially influence the overall dynamics
of the scenario. The actions and interactions of the background population create a realistic and
evolving simulation environment.

Together, the substrate and background population create a scenario that encapsulates a particular
context or situation within the simulation. This scenario can be designed to simulate real-world
scenarios, test hypotheses, study the behavior of complex systems, or provide a platform for
experimentation and analysis. By carefully defining the substrate and background population,
researchers and practitioners can create meaningful and informative scenarios that capture the
intricacies of the system being studied.
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Figure 4.6 Options as Responses Architecture

4.4 Algorithms Implemented

We currently support two major algorithms

• IMPALA: A standard actor-critic based independent learning algorithm using V-trace [15] for
off-policy corrections

• OPRE: Options as Responses [55] follows actor-critic based learning but its objective is specifi-
cally designed to generalize to novel partners. It is used as one of the baseline in MeltingPot [1].
We are the first to provide an open-source implementation of OPRE. The architecture illustration
is shown in figure 4.6

4.5 Utilities

We provide three major utilities 1) train.py, 2) evaluate.py and 3) evaluation results.py

• train.py: The entry point for training a population of agents in the given environment

• evaluate.py: Used to evaluate the generalization performance on with various partner agents

• evaluation results.py: Aggregates the evaluation results by averaging across multiple seeds and
presents a table

32



0M 50M 100M 150M 200M 250M 300M
Actor Steps

0

10

20
Ep

iso
de

 R
et

ur
n

running_with_scissors
IMPALA
OPRE

Figure 4.7 Training Plot on Running with Scissors in the matrix
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Figure 4.8 Training Plot on Prisoners Dilemma in the Matrix
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Figure 4.9 Training Plot on Daycare
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34



OPRE IMPALA
Substrate 0.00 0.00
Scenario 0 4.91 -7.10
Scenario 1 3.79 -2.65
Scenario 2 10.52 5.97
Scenario 3 13.52 11.52
Scenario 4 6.60 0.66

Table 4.1 Evaluation on Running with Scissors in the matrix

IMPALA OPRE
Substrate 106.85 38.18
Scenario 0 131.00 59.71
Scenario 1 176.54 114.69
Scenario 2 79.58 27.97
Scenario 3 62.80 41.76
Scenario 4 48.63 38.75
Scenario 5 65.82 47.66
Scenario 6 101.83 40.34
Scenario 7 83.33 49.82
Scenario 8 77.75 32.59
Scenario 9 78.41 74.62

Table 4.2 Evaluation on Prisoners Dilemma in the Matrix

4.6 Results

We evaluate our implementation in two environments to assess its performance and generalization
capabilities across different types of multi-agent scenarios. The first environment, Meltingpot, encom-
passes a wide range of game types, including cooperative, competitive, and general-sum games. In
Meltingpot, agents interact with each other to achieve various objectives, which can involve cooper-
ation, competition, or a combination of both. This environment allows us to examine how well our
implementation handles different types of interactions and strategies, evaluating its performance in co-
operative, competitive, and general-sum settings.

The second environment, Overcooked, focuses specifically on cooperative multi-agent scenarios.
In Overcooked, agents work together in a shared kitchen to prepare meals and serve customers. The
emphasis in this environment is on effective coordination, communication, and cooperation among the
agents to maximize efficiency and customer satisfaction. By evaluating our implementation in Over-
cooked, we can specifically assess its performance and effectiveness in cooperative multi-agent settings,
where collaboration and teamwork are crucial for success.
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IMPALA OPRE
Substrate 65.94 67.83
Scenario 0 0.89 0.33
Scenario 1 109.11 126.00
Scenario 2 0.22 0.00
Scenario 3 154.56 171.33

Table 4.3 Evaluation on Daycare

IMPALA
Scenario 0 547.70
Scenario 1 13.21
Scenario 2 293.02
Scenario 3 38.04
Substrate 91.56

Table 4.4 Evaluation on Externality Mushrooms

By evaluating our implementation in both Meltingpot and Overcooked, we gain a comprehensive un-
derstanding of its performance in a range of multi-agent scenarios. This evaluation enables us to analyze
how well our approach adapts to different types of interactions, strategies, and objectives, and provides
valuable insights into its strengths and limitations. The findings from these evaluations contribute to
advancing our understanding of multi-agent reinforcement learning and inform further research and
development in this field.

4.6.1 MeltingPot

We conduct evaluations on four distinct environments from the Meltingpot-v1 and Meltingpot-v2
domains.

In Meltingpot-v1, we evaluate our approach on two environments:

• Running with Scissors in the Matrix: The training progress is visualized in Figure 4.7, and the
evaluation scores across different episodes are provided in Table 4.1

• Prisoners’ Dilemma in the Matrix: The training progress is depicted in Figure 4.8, and the
evaluation scores for various scenarios are presented in Table 4.2

In Meltingpot-v2, we assess our approach on two additional environments:

• Daycare: The training progress is shown in Figure 4.9, and the evaluation scores for different
scenarios are summarized in Table 4.3
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Figure 4.11 Training Plot on Cramped Room

• Externality Mushrooms Dense: The training progress is illustrated in Figure 4.10, and the eval-
uation scores for various scenarios are provided in Table 4.4

These evaluations allow us to analyze the performance of our approach across different environments
and scenarios within the Meltingpot framework. The training plots provide insights into the learning
progress, while the evaluation scores offer quantitative measures of the agent’s performance in various
scenarios.

4.6.2 Overcooked

We evaluate the performance of the algorithms on the Cramped Room environment from the Over-
cooked domain. The training progress of the algorithms is visualized in Figure 4.11, providing insights
into their learning dynamics and convergence behavior.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In the first part of this thesis, we have addressed the challenging problem of learning a reliable
critic in multi-agent sparse reward scenarios. The exponential growth of the joint action space with the
number of agents, combined with reward sparsity and environmental noise, presents significant obstacles
to achieving accurate learning. To overcome these challenges, we have proposed a novel approach of
regularizing the critic with spectral normalization (SN). Our experimental results demonstrate that the
regularized critic exhibits enhanced robustness, enabling faster learning even in complex multi-agent
scenarios. These findings underscore the crucial role of critic regularization in achieving stable learning
outcomes and provide valuable insights for future research in the field of multi-agent reinforcement
learning.

In the second part of this thesis, we introduced marl-jax, a comprehensive software package specif-
ically designed for Multi-Agent Reinforcement Learning (MARL). By leveraging DeepMind’s JAX
ecosystem and their RL framework, marl-jax provides a powerful and flexible platform for training and
evaluating the social generalization capabilities of agents. It supports cooperative and competitive en-
vironments with multiple agents acting simultaneously, enabling researchers to study the dynamics of
social interactions in complex multi-agent scenarios.

With marl-jax, researchers can easily train agent populations and evaluate their generalization per-
formance using an intuitive command-line interface. The package offers a range of functionalities,
including data collection, training, and evaluation, allowing for efficient experimentation and compari-
son of different MARL algorithms. By providing a reliable and standardized baseline, marl-jax serves
as a valuable tool for researchers interested in investigating social generalization in MARL.

The introduction of marl-jax fills a crucial gap in the field of MARL, offering a unified and acces-
sible framework for studying social behaviors and generalization capabilities of agents. By providing a
solid foundation for further research, marl-jax contributes to the advancement of MARL algorithms and
methodologies, fostering innovation and progress in the exciting field of multi-agent learning.
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5.2 Future Work

In the first part of our research, we have focused on the on-policy algorithm MAPPO for sparse
reward learning. However, there are opportunities to extend our work to off-policy algorithms, which
could provide further insights into the challenges and potential solutions in handling sparse reward
scenarios.

While our work has successfully addressed moderately sparse reward scenarios, it would be inter-
esting to investigate the effects of highly sparse rewards where the reward signal is only obtained at the
end of an episode. Exploring the applicability of our approach in such settings could provide valuable
insights into handling extreme sparsity and designing more efficient learning algorithms.

Furthermore, our research has primarily focused on cooperative multi-agent reinforcement learning
(MARL). It would be beneficial to extend our investigations to competitive games and general-sum
games to understand how our methods and techniques translate to different types of MARL environ-
ments.

While we have evaluated the effectiveness of spectral normalization as a regularizer in our work,
there is still room for exploring other regularization techniques and their impacts on MARL. Investigat-
ing alternative regularization methods could provide further improvements in stability and performance,
leading to more robust learning in multi-agent scenarios.

Additionally, we would like to delve deeper into the analytical relationship between sample effi-
ciency in reinforcement learning and the degree of spectral normalization applied. Understanding the
theoretical foundations of spectral normalization and its impact on the sample complexity of MARL
algorithms could provide valuable insights into the trade-offs involved in regularization.

In the second part of our research, we have developed a well-tested codebase that focuses on the
reproducibility and scalability of training architectures in MARL. However, our codebase can serve
as a strong foundation for further research on generalization to novel co-players in multi-agent rein-
forcement learning. Researchers can leverage our codebase to explore and evaluate novel generalization
techniques, facilitating advancements in the field of MARL and its application in complex environments.

By addressing these future research directions, we can further enhance our understanding of sparse
reward learning, regularization techniques in MARL, and the generalization capabilities of multi-agent
systems.
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Chapter 6

Publications

6.1 Relevant Publications

1. Kinal Mehta et al., ”Effects of Spectral Normalization in Multi-agent Reinforcement Learning”,
International Joint Conference on Neural Networks (IJCNN), 2023

2. Kinal Mehta et al., ”marl-jax: Multi-agent Reinforcement Leaning Framework for Social Gen-
eralization”, European Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases (ECML PKDD) - Demo Track, 2023
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