
Reliable Edge

Thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science
in

Computer Science and Engineering
by Research

by

Jitender Grover
20162313

jitender.grover@research.iiit.ac.in

International Institute of Information Technology
(Deemed to be University)

Hyderabad - 500032, INDIA
June 2019

Copyright c© 2019 by Jitender Grover

All rights reserved. No part of this thesis may be reproduced, distributed, published or

transmitted in any form or by any means, including photocopying, recording, or other

electronic or mechanical methods, without the prior written permission of the author, except

in the case of brief quotations embodied in critical reviews and certain other noncommercial

uses permitted by copyright law. For permission requests, email to the author at

jitendergrover0101@gmail.com.

International Institute of Information Technology
Hyderabad, India

CERTIFICATE

It is certified that the work contained in this thesis, titled ”Reliable Edge” by Jitender Grover, has been
carried out under my supervision and is not submitted elsewhere for a degree.

29-June-2019
Date Adviser: Dr. Rama Murthy Garimella

To My Parents

Acknowledgments

First and foremost, I would like to thank my thesis advisor Dr. Rama Murthy Garimella. His guid-
ance, knowledge and support has helped me throughout my MS journey. I am grateful to him for
allowing me to work in a futuristic research area and helping me in contributing to the present set of
knowledge in this area. I count my decision to join IIIT-H under his guidance as one of the best deci-
sions of my lifetime. He has played a key role in moulding my personality and steering my thoughts in
the correct direction.

Next, I would like to acknowledge the contribution of Mr Rhishi with his valuable discussions and
suggestions on the part of research, we completed together. Special thanks to Mr Vikas Chouhan (IIT
Roorkee), Mr Suman (IIIT Hyderabad) and Ms Shivangi Katiyar for the fruitful discussions and valu-
able suggestions throughout this journey. I thank Prof. Atul Sharma (UIET, Kurukshetra University,
Kurukshetra) for his timely doses of motivation and encouragement.

Other than research contributors, I am thankful to my buddies Suman, Prateek, Durga, RK Syam,
Anish, Pulkit Verma, Pulkit Velani, Ganesh, Yaswanth, Mahesh, Zakir, Sukesh, Krishna, Jayanth, Huza-
ifa and Bhaskar for being an integral part of my life at IIIT-H. Thanks a lot for sharing joyful moments
throughout this tenure. While involved in extra-curricular activities and volunteering, I got great sup-
port from Prof. Syed, Prof. Rawat and Mr. Ramana (AR) for IEEE Students’ Branch; Prof. Suvarna
and Prof. Priyanka for Students’ Mental Health related issues; Prof. Avinash, Mr Srikanth, Mr Pulkit
Velani, Mr Pruthwik, Mr Suman and Mr Prateek for Yuktahar mess related issues; Prof. Radhika, Mr
Prabhakar M. and Mr Yaswanth Naidu for things related to campus and hostel life. I am thankful to all
of them for making my volunteering journey joyful and productive at IIIT. They have been a relentless
source of encouragement and motivation throughout. Thanks to Sailaja ma’am for her help and support
in administrative works.

I also thank Dr Debi Prasad Kanungo, Professor, CSIR-CBRI, Roorkee, India; Dr Rajib Panigrahi,
Associate Professor, ECE, IIT Roorkee, India; and Dr Sateesh K. Peddoju, Associate Professor, CSE,
IIT Roorkee, India for allowing me to work on the NMHS funded Landslide Early Waring System
project (Project ID: NMHS/2017-18/MG47/31) and for allowing me to utilize the SAI Lab facilities for
the implementation of the proposed work.

Last but not the least, I express my very profound gratitude to my parents and wife Ms Anjali Grover
for believing in me and supporting me to fulfill my dreams.

v

Abstract

IoT domains such as health-care, automation and control, augmented and virtual reality etc are incu-
bating novel applications and devices everyday. The data generated in these domains must be processed
under strict delay requirements. Beyond the processing deadlines, the information loses its value. Apart
from that, processing resources are required to be available all the time and Cloud’s or communication
failure must not hinder the services provided by such IoT applications. So, reliability is one of the ma-
jor concerns for all these IoT applications. Considering all these requirements, it is been observed that
instead of processing such data at the far Cloud, it is beneficial to process it closer to the source. This
led to a new paradigm called Edge Computing. Edge computing has emerged as an effective solution
for delay sensitive IoT applications. In the Edge-Cloud hierarchy, reliability and fault tolerance are the
major issues. This thesis proposes a novel fault-tolerant and reliable hierarchical IoT-Cloud architecture
which can survive the failures of the Cloud Server and the Edge Server(s).

In the proposed architecture, the sensed data processing is distributed over four levels (Cloud-Fog-
Mist-Dew) based on the level processing power and distance from the end IoT devices. This hierarchical
architecture is an advancement over the existing IoT-Cloud architecture. The proposed system becomes
reliable by replicating the model-files (generated after data training) and some relevant data at the Edge
Server from the Cloud. It allows the Edge to generate feedback after receiving the sensed data, in case
of any event happens. It indeed improves the reliability of IoT applications by providing them services
in the case of unavailability of the processing resources especially due to the communication failure
with the Cloud Server.

Although, hierarchical Edge-Cloud architecture resolves the problems of resource unavailability and
feedback delays, what if the Edge Server fails? It induces unheard issues of reliability and fault tolerance
at the Edge. The system can not be completely reliable until the reliability issues at the edge of the
network are resolved. This thesis proposes a novel mechanism using connection switching to deal
with Edge Servers’ failures. In case of an Edge failure, IoT application is redirected to an alternate
available Edge Server. If there are multiple alternate Edge Servers available, redirection to a new Edge
is decided based on the delay-tolerance of the IoT applications. It makes the entire system reliable and
fault-tolerant.

The proposed IoT-Cloud architecture with Reliable-Edge has been implemented as an extension of
Landslide Early Warning System (LEWS) to improve its reliability. LEWS is one of the most suitable
applications to apply the proposed mechanism(s). During laboratory experiments, results demonstrate

vi

that the system attains maximum availability of the computation resources. Along with this, results
prove its efficiency when the proposed system is analyzed theoretically and simulated using Matlab.

The thesis also contributes to the construction of a Reliable Edge Controller (EC) that reliably assigns
any type of computational resources available at the edge to the IoT applications. A variety of devices
available at the network access layer have been considered to be utilized to serve IoT applications. This
includes the use of devices available with private users, dedicated Edge Servers and Cloud infrastructure.
The proposed system learns the optimal operating parameters during initial runs. Using the knowledge
acquired in the learning phase, an integer linear programming problem is formulated to minimize the
Mean Time To Complete (MTTC) the request for all the IoT nodes. The solution of the formulated
problem provides optimized resource allocation for all the IoT nodes. Later, considering the unreliable
nature of the privately owned devices, the learning and formulation has been extended to incorporate
probability of failure of these devices. This evolves the EC into a reliable one.

Keywords: Internet of Things (IoT), Edge Computing, Real-time Applications, Reliability, Fault
Tolerance, Cloud Computing, SDN

Contents

Chapter Page

1 Introduction . 1
1.1 Motivation . 3
1.2 Thesis Contribution . 3
1.3 Thesis Outline . 4

2 Edge Computing - A Hierarchical Architecture . 5
2.1 IoT-Cloud Paradigm . 5
2.2 Edge Computing . 6

2.2.1 Hierarchical Edge : Fog - Mist - Dew . 6
2.2.2 Edge Computing for Reliability . 7
2.2.3 Edge Communication . 8
2.2.4 Edge Application . 9

2.3 Optimization in Edge Computing and Communication 10
2.3.1 Related Work . 11
2.3.2 Edge Deployment Optimization: Integer Linear Programming 12
2.3.3 Optimal Edge Communication Network: Integer Linear Programming 13

2.4 Summary . 17

3 Reliable and Fault-Tolerant Edge . 18
3.1 Related Work . 18
3.2 Reliability, Fault Tolerance and Fault Localization . 19
3.3 Proposed Architecture . 19

3.3.1 Reliability and Backup Policy . 19
3.3.2 Fault Tolerance and Agent . 21

3.4 Multi-queue Store and Forward Mechanism for Edge Server(s) 23
3.5 Analysis of Reliability and Availability in an Edge-based IoT Infrastructure 25

3.5.1 Availability . 25
3.5.2 Reliability . 26
3.5.3 Analysis of Reliability Performance . 26

3.6 Simulation Result and Analysis . 26
3.7 Summary . 27

4 Reliable Resource Allocation at Edge . 30
4.1 Related Work . 31
4.2 Proposed System for Resource Allocation with Request Completion Time Minimization 32

viii

4.2.1 Finding Available Resources . 33
4.2.2 Mapping Resources to IoT Nodes . 34

4.2.2.1 Learning Request Completion Time 35
4.2.2.2 Predicting the Number of Expected Requests 36

4.2.3 Resource allocation as an optimization problem 36
4.2.4 Results . 38

4.2.4.1 MATLAB results and analysis . 38
4.2.4.2 Mininet Analysis . 39

4.3 Proposed System for Resource Allocation with Reliability 41
4.3.1 Knowing Resource Reliability . 41
4.3.2 Resource allocation as multi-objective optimization problem 42
4.3.3 Results . 45

4.3.3.1 Varying probability of failure . 46
4.3.3.2 Varying Number of Expected Requests 47

5 Reliable Landslide Early Warning System - An Application 51
5.1 Background . 52

5.1.1 Overview of Landslide . 52
5.1.2 Why LEWS? . 53
5.1.3 Scope of LEWS . 55
5.1.4 Why Edge for LEWS? . 55

5.2 Reliable LEWS using Edge Computing : Experimental Setup 56
5.2.1 Cloud Layer . 57
5.2.2 Edge/Fog Layer . 59
5.2.3 Extreme Edge/Sensors’ Layer . 60
5.2.4 Communication and Data Transmission Technologies 60

5.3 Laboratory Experiments : Edge Reliability Test . 61
5.3.1 Case 1: Link Failure between Edge and Cloud 61
5.3.2 Case 2: Link Failure between Edge and Coordinator 62

5.4 Possible Results: 3 Landslide Locations . 63
5.4.1 Case: 1 . 64
5.4.2 Case: 2 . 64

5.4.2.1 Case: 2-a . 65
5.4.2.2 Case: 2-b . 65

5.4.3 Case: 3 . 65
5.4.3.1 Case: 3-a . 65
5.4.3.2 Case: 3-b . 66
5.4.3.3 Case: 3-c . 66

5.4.4 Case: 4 . 66
5.5 Summary . 67

6 Conclusions . 69
6.1 Conclusion . 69
6.2 Future perspectives . 70

Bibliography . 72

List of Abbreviations

IoT Internet of Things
LEWS Landslide Early Warning System
ILP Integer Linear Programming
EC Edge Controller
ISP Internet Service Provider
DCA Dynamic Channel Allocation
MA Mobile Agent
CAGR Compound Annual Growth Rate
ICU Intensive Care Unit
CH Cluster Head
P2P Peer-to-Peer
AR Augmented Reality
VR Virtual Reality
VANET Vehicular Ad-Hoc Network
SDN Software Defined Network
OF OpenFlow
ReST Representational State Transfer
MQTT Message Queuing Telemetry Transport
CoAP Constrained Application Protocol
5G Fifth Generation
API Application Program Interface
WAN Wide Area Network
FIFO First Come First Out
IP Internet Protocol
QoS Quality of Service
CN Core Network
AZ Availability Zone
GA Genetic Algorithm
CoRE Constrained ReSTful Environment
RDP Resource Discovery Protocol

x

RR Round Robin
MTTC Mean Time To Complete
HTTP HyperText Transfer Protocol
WLAN Wireless Local Area Network
4G Forth Generation
ML Machine Learning
GSM Global System for Mobile
LTE Long Term Evolution
OS Operating System
GB Gigabytes
GPU Graphics Processing Unit
GDDR Graphics Double Data Rate
RAM Random Access Memory
USB Universal Serial Bus
RPi Raspberry Pi
Wi-fi Wireless Fidelity

List of Symbols

Chapter 2
TypeA Type A Edge Computing Device
TypeA Type B Edge Computing Device
CA Cost of Type A Edge Computing Device
CB Cost of Type B Edge Computing Device
aij Existence of Type A Edge Computing Device at coordinates i, j
bij Existence of Type B Edge Computing Device at coordinates i, j
M Number of rows in rectangular grid
N Number of columns in rectangular grid
Dγ mutually disjoint sets to hold MxN locations on grid
S Number of high-end edge servers are required as a constraint for each set Dγ

S1 Number of Type A high-end edge servers are required as a constraint
S2 Number of Type B high-end edge servers are required as a constraint
Pi Probability Mass Function
n

′
is Historical traffic in the spectrum bands in cells {n1, n2, n3, ..., nM}
L Total number of available channels
Z Random variable associated with number of channels allocated per cell
E[Z] Expectation of Z that is required to be maximized
q1 ≤ q2 ≤ ... ≤ qM Order of Probabilities

Chapter 3
At Availability
R Reliability
Fp Failure Probability
N Number of total Edge Nodes
M Number of unavailable Edge Nodes
T Maximum Number of Trials

Chapter 4
m Number of serving nodes

xii

n Number of IoT nodes
ai Maximum serving capacity of serving node i
bj Maximum expected requests from IoT node j
tij Time Taken for processing a request between node i and request j

List of Figures

Figure Page

1.1 Connected devices’ growth by 2022 [2] . 2
1.2 IP traffic (per month) forecast by Cisco by 2022 [2] 2

2.1 IoT-Cloud Infrastructure . 5
2.2 Time Sensitivity in Real-time vs Non-Real-time Systems 6
2.3 Hierarchical Edge-Cloud Architecture . 7
2.4 Multi-tire Communication Networks . 9

3.1 IoT-Cloud Architecture with Edge Computing . 20
3.2 Edge Failure or Communication Link Failure between Coordinator Node and Edge Server 20
3.3 Communication Link Re-establishment between the Coordinator Node and an Alternate

Edge Server . 21
3.4 Agents Working during Faults . 22
3.5 Multi-queue Storage Mechanism with Data Aggregation 24
3.6 Comparison of Reliability Performances for a number of experiments 28
3.7 Comparison graph of Availability . 28
3.8 Comparison graph of application assignment during faults 29
3.9 CPU time unit consumption . 29

4.1 Software-defined IoT infrastructure. 31
4.2 System flow summary. 33
4.3 Learning resource availability and capability. 34
4.4 Learning request completion time (MTTC) from IoT node to the resources. 35
4.5 Predicting number of expected requests from IoT nodes. 36
4.6 The resource allocation problem and the system with acquired knowledge. 37
4.7 Comparison between round robin and MTTC methods. a) less no. of requests and less

MTTC difference, b) less no. of req. and high MTTC diff., c) more no. of req. and low
MTTC diff., d) more no. of req. and high MTTC diff., e) high req. diff and low MTTC
diff., f) low req. diff. and low MTTC diff. 39

4.8 The fairness comparison. MTTC values in the left figure vary in rangev(7 – 9) and in
range (7 – 17) in the right figure. 40

4.9 Mininet configuration. Hosts are generating requests and resources are responding. . . 41
4.10 Time saving in three different scenarios. 42
4.11 Predicting resource reliability. 43

xiv

4.12 Resource allocation problem and system with acquired knowledge with reliability infor-
mation. 43

4.13 System flow summary after resource reliability information. 44
4.14 Pareto front of a case. 45
4.15 Scenario under test. 47
4.16 Probability of failure of R2 and the number of allocated requests. 48
4.17 Number of requests allocated to an IoT node to resource with the varying reliability of

R2. The probability of failure for resources R1, R2 & R3 are (a) [.01 .1 .01] (b) [.01 .3
.01] (c) [.01 .5 .01] (d) [.01 .7 .01] (e) [.01 .8 .01] (f) [.01 .9 .01] 49

4.18 Overall resource utilization in case of variation in the number of expected requests. . . 49
4.19 Number of requests allocated to an IoT node to resource for varying expected number

of requests. The requests made from N1, N2 & N3 for respective cases are (a) [50 100
30] (b) [20 80 40] (c) [10 80 10] (d) [100 100 100] (e) [200 200 200] (f) [0 0 100] . . . 50

5.1 Tangni Landslide at Chamoli-Joshimath Corridor, Rishikesh-Badrinath Highway, Garhwal
Himalaya, Uttarakhand [56] . 52

5.2 Data Flow in a LEWS . 54
5.3 Hardware used to implement Basic LEWS . 55
5.4 Why Edge Server is Important? . 56
5.5 Block Diagram of LEWS with Edge Server . 57
5.6 LEWS Architecture with Edge Server . 58
5.7 LEWS implementation with Edge Server . 59
5.8 LEWS implementation if Cloud Fails or Communication between Edge and Cloud Fails 61
5.9 LEWS implementation if Edge Fails or Communication between Edge and Coordinator

Fails . 62
5.10 Comparison of Availability and Reliability for all the possible Cases with 3 Edge Servers 68

List of Tables

Table Page

3.1 Availability and Reliability Matrix for various Cases 27

4.1 MATLAB simulation parameters. 38
4.2 Mininet simulation parameters . 40
4.3 Initial parameters used in GA for a multi-objective optimization problem. 46

5.1 Cases and respective Number of Edge Node(s) Failures 63
5.2 Availability and Reliability Matrix for all the possible Cases with 3 Edge Servers . . . 67

xvi

Chapter 1

Introduction

Internet of Things (IoT) has the internet as a network of physical devices used in everyday life.
There is a wide range of IoT devices available such as blinds on your window, door locks, taps, machines
in the assembly line factory, traffic signals in Smart City etc. When physical things are augmented
with computing, connectivity, sensors and actuators, it can be called IoT. IoT allows us to connect and
monitor these physical devices 24x7, analyse their usage and conditions to control them in a better way.
It helps in creating more valuable output for the users.

Physical things can sense, communicate and collaborate together to create a greater intelligent out-
come to bring more value to the users of those things. The first class of beneficiaries is users. Users
can monitor and control devices remotely and efficiently. It increases the service life of the devices and
users can also view devices to be operated in an autonomous way. The second class of beneficiaries
manufacturers or administrators. They can get real-time insights to their devices’ location, condition,
usage and performance. It helps them to improve the quality of their future products. They can also take
decisions on upgrading the existing products in use to improve their lifetime and performance.

Broadly IoT can be classified into three categories namely Consumer IoT, Industrial IoT and Civic
IoT. Consumer IoT includes personal and pet monitoring, smart homes where everyday appliances such
as door locks, kitchen etc can be connected, smart buildings where electric metre, lights, elevators, water
supply etc can also be connected together. Whereas, in Industrial IoT different machines in a particular
factory can be connected together. One example can be a wind farm where wind turbines connected to
the internet being monitored remotely. Another example can be medical devices in the hospital which
are connected to manage patients in a better way. The third category is Civic IoT which includes which
includes smart public services such as rail, road, air transportation, electric supply grid, water supply
system or any other public services.

Cloud Computing [1] has been used for IoT data processing, storage, analytics and control actions
for the actuators. Cloud receives the sensed data through gateways via the core internet. A user can
control any of the connected IoT devices through the Cloud interface from any remote location. Secu-
rity, privacy, interoperability and availability to upgrade IoT devices over-the-air are some of the major
challenges related to IoT.

1

Apart from them, there are a few challenges which are going to be very critical in the near future.
These are huge data volumes, real-time actions requirement, complex event processing etc. With an
industry estimate, billions of IoT devices are going to be connected every year (refer figure 1.1). They
are estimated to be increased by CAGR1 of 10% every year.

Figure 1.1 Connected devices’ growth by 2022 [2]

Figure 1.2 IP traffic (per month) forecast by Cisco by 2022 [2]

It is expected that all the connected devices are going to generate Exabytes2 of data every month
by the year 2022 (refer figure 1.2). It is expected to rise by a high CAGR of 26% every year till the
year 2022. Considering this future scenario, for a limited number of IoT nodes, where strict delays are
not a constraint, IoT-Cloud model would work fine. However, for quite a few real-time IoT applica-

1https://en.wikipedia.org/wiki/Compound annual growth rate
21 EB = 10006 bytes = 1018 bytes

2

tions, this data requires near real-time complex event processing. Performing this task on Cloud can be
catastrophic for such applications as it increases transmission delays involved in end to end processing.
A few examples of real-time IoT applications are patient monitoring in ICU, automated cars, AR/VR,
VANETs, real-time crowd surveillance etc.

In the centralized Cloud scenario, sensors and gateways have limited computing resources to generate
insights from the sensed data. Most of the complex processing is done on Cloud and information/insight
are been extracted to generate knowledge. Doing data processing on The Cloud may have some issues
such as insufficient bandwidth, interrupted internet connection, high latency, security, delayed action
and no real time insights etc.

The solution to this issue is to have decentralized processing close to the origin of the data. Edge
computing is emerging as a solution to such scenarios [3]. The IoT application can survive using a local
Edge server even if there is any fault in core internet connectivity. After processing the data on the edge,
feedback can be sent to actuators in near real-time. After processing selected meta-data and insights
are transferred to the centralized cloud. Edge servers are usually few metres or hop(s) away from the
sensors. This resolves all the data processing issues discussed above such as insufficient bandwidth,
delayed actions, intermittent connection etc.

1.1 Motivation

The motivation behind this research work is the following questions related to reliable service to
real-time IoT applications:

• What if due to the network or Cloud fault, IoT device is unable to connect to the cloud server?

• What if any fault occurs on edge levels, either on middle edge or on extreme edge?

• How to reliably assign edge resources to the IoT applications in a dynamic scenario?

This piece of research work tries to solve all these foreseen issues which are the result of a solution
called Edge Computing.

1.2 Thesis Contribution

This research work presents

• A reliable hierarchical Cloud architecture to manage Cloud failures and/or communication fail-
ures between IoT device and Cloud.

• A reliable and fault-tolerant IoT-Edge architecture to manage Edge server failures with connection
switching and efficient data store-forward mechanism.

3

• An Edge Controller (EC) to assign Edge resources to the IoT applications reliably in a dynamic
scenario.

• Implementation of Reliable Edge in Landslide Early Warning System as an application.

1.3 Thesis Outline

Chapter 2 presents a hierarchical Edge Computing architecture as an advancement of the current
IoT-Cloud architecture. It describes how Edge Computing can benefit the IoT applications if the central
server or communication link to the server fails. This chapter also formulates and solve cost optimization
problem for Edge Servers’ deployment and optimal channel allocation in 5G’s small cell communication
networks.

In chapter 3, a reliable and fault-tolerant IoT Edge architecture is proposed and described. This
chapter includes a novel agent-based system to keep the system running in case of Edge Servers’ failures.
It also demonstrates a mechanism to preserve data using multiple queues on the Edge Server(s) if the
Cloud is unreachable. Further, analytical and simulation-based results are displayed in this chapter.

Chapter 4 proposes and describes a way to utilize privately owned and dedicated edge devices to
meet the demand for real-time IoT applications. It is realized using an Edge Controller that can allocate
edge resources reliably as per the delay tolerance of the applications. This chapter exemplifies and
simulate various scenarios, formulate and optimize resource allocation by minimizing total turnaround
time for all the tasks keeping reliability into consideration.

To realize the proposed mechanisms in this thesis especially in chapters 2 and 3 , chapter 5 displays
the implementation of Reliable Edge for Landslide Early Warning System as an IoT application. This
chapter applies the concepts of deploying an Edge Server between the Cloud and the Coordinator node
on landslide location. Further, 2 alternate edge nodes are deployed as the part of the LEWS to demon-
strate the scenario where the system can survive from a potential Edge failure if an alternate Edge Server
is available.

4

Chapter 2

Edge Computing - A Hierarchical Architecture

2.1 IoT-Cloud Paradigm

Distributed Computing paradigms like Cluster Computing, Grid Computing were innovated to meet
the increasing computing need of various applications. The culmination of such efforts is Cloud Com-
puting [4] paradigm enabled by data centres, distributed across the world and the internet. It is commer-
cially very successful.

Figure 2.1 IoT-Cloud Infrastructure

Presently, IoT devices are connected to the Cloud through some (wired/wireless) communication
medium. IoT-Cloud infrastructure is shown in figure 2.1. Sensed data reaches to the Cloud via core-
internet for processing. This leads to a high communication cost (in terms of time delay), which can be
catastrophic for many hard real-time delay-sensitive applications such as health monitoring, automated
vehicles, manufacturing systems/assembly lines, video surveillance etc (figure 2.2).

5

Figure 2.2 Time Sensitivity in Real-time vs Non-Real-time Systems

2.2 Edge Computing

2.2.1 Hierarchical Edge : Fog - Mist - Dew

It was realized that in context of technologies like IoT and CPS, the communication delay involved
in processing data using the Cloud resources will be high and it is necessary to perform computing,
communication and control (actuation) locally, near to the source of the sensed data. It is leading to the
idea of Edge Computing [5].

The amount of communication delay between the IoT devices and the Cloud, and the load on the
Cloud and core communication network during data transmission gave birth to the idea of computation
on the edge of the network [6][7]. Variations of Edge Computing led to paradigms such as Fog, Mist
and Dew Computing as shown in figure 2.3. It can be considered as a hierarchical Cloud where the Dew
has the least latency and processing power, and the Cloud has the highest latency and processing power.

Extreme Edge is called Dew. These are actually the end IoT devices. On Dew, the delay is almost
negligible as there is no communication required with any other node to take any decision. Dew comput-
ing is used when the application requires real-time decision making without any delay. It works well if
the requirement of computation power and previously sensed data is extremely low. In such cases, Dew
Computing is very effective and saves energy, bandwidth etc. An automatic honk system on mountains
for the drivers on U-turns is one of the examples of Dew Computing.

Mist (Roof) Computing also exists at the extreme edge of the network [8]. In Mist Computing, a
server is established very near to the IoT device. For a sensing region such as an institute, it is installed
usually in the same building and connected via a wired/wireless network. It is appropriate when the
processing power and the previously sensed data’s requirement is more than the capability of the Dew

6

Figure 2.3 Hierarchical Edge-Cloud Architecture

level. The delay is also very low in Mist. The communication distance varies from a few meters to a
few hundred meters.

Middle edge or Fog connects the extreme edge to the Cloud via the core network (WAN) [7]. Fog
can be as distant as a few kilometres from the IoT devices [9]. The Fog Server can exist with the BS of
an ISP or separately in the network. The computation power and the storage is higher in a Fog Server
as compared to the Mist. There can be many Mist connected to one Fog. The distance of the Fog from
the IoT devices is more than the Dew/Mist but it is still preferred due to its higher processing power and
least delay as compared to Mist and Dew [10].

The Core is the WAN, comprised of all the traditional network elements like routers, bridges etc. If
the Cloud is considered at the top, then it creates a hierarchy of networks with Fog, Mist and Dew on
the lower levels.

2.2.2 Edge Computing for Reliability

Edge Computing potentially addresses issues like latency concerns, limited processing/storage capa-
bilities of devices/things, battery life, network bandwidth constraints, security and privacy concerns etc.
Edge computing [10] paradigm enables allocation of computing resources to the tasks generated by IoT
applications depending upon their delay constraints.

Apart from the above mentioned issues, Edge Computing is capable of addressing one more issue
that is reliability in the case of unavailability of a Central Server. This is one of such issues related to the
Central Servers which hasn’t been taken into consideration during the evolution of Edge Computing in
last few years. Undoubtedly, Edge Computing and the Hierarchical Edge Architecture enables reliability
feature in the traditional IoT-Cloud architecture.

7

Although, the probability of failure of a Cloud Server is negligible, there are IoT setups where servers
are not as reliable as a Cloud data-centre with backups for computation resources, stored data, internet
connectivity and power supply etc. So, there are possibilities of Central Servers’ failures in such cases.
Apart from that the bigger factor behind the unavailability of the Cloud Server or a Central Server is
the network failure. Internet connectivity is one of the persistent problems in most of the developing
countries. A few IoT devices installed in rural areas, mountains or flood areas etc mostly face this issue.
Thus, irrespective of the reason, Edge Server(s) are a feasible alternate to the Central Server in the case
of a failure. Edge Server can be connected through a P2P wired/wireless connection with sensors/CHs .
These connections are highly reliable due to their adhoc nature and short range.

So, as far as reliability is concerned after the Central Server goes unavailable, an Edge Server

• may not be a true alternative of the Cloud Server, but certainly holds the potential to be a lighter
version of it with lesser processing power and storage capacity.

• may not be able to save sensed data for many years, but it can save some data in the case of the
unavailability of the Cloud and this data can be synchronized with the Cloud later on.

• may not be able to provide global access for long-term trends of data or responses based on years
of historic data, but it can generate quick responses locally based on the small recent data-set
available on the Edge.

Hence, Edge Computing is capable of converting the IoT-Cloud paradigm into a reliable one which
can be really helpful for the applications where server’s unavailability can be catastrophic.

2.2.3 Edge Communication

It is most likely that the edge wireless network is based on Micro/Pico/Femto cell infrastructure
(figure 2.4). A multi-tier communication network usually overlays multiple tiers of cells and potentially
share a common spectrum. A Macro-cell is usually a traditional cell tower which covers 15-30 kms but
small cells cover a smaller area with respect to Macro-cell. A Micro-cell covers 1-2 kms. They can be
used temporarily during the large events, or in heavy rush areas for additional coverage. Pico-cell can
manage up to 100 users and covers 250 meters. They are mostly installed indoor and used to improve
the coverage in an office or shopping area. Femto-cells are often self-installed and can manage a few
users only. Small cells increase frequency reuse multiple times and enable cellular networks to manage a
huge number of IoT devices on the edge. They can be installed at homes, offices etc to provide seamless
connectivity to all the available IoT devices.

In the most interesting Edge Computing applications (such as in IoT), the packet traffic on the net-
work has predictable patterns. Hence, Dynamic Channel Allocation (DCA) based on historical traffic
data ensures optimal utilization of available channels. It is natural to employ cognitive radio technology
to increase the spectrum utilization (as the demand for channels is sporadic by the devices). To facilitate

8

Figure 2.4 Multi-tire Communication Networks

cognition, wide-band spectrum sensing needs to be done in a time-optimal manner. Thus, it leads to a
design of optimal cellular, cognitive radio network (Femto/Pico cell).

2.2.4 Edge Application

From the above discussion, the need for Edge Computing and Edge Communication is clearly ev-
ident. In this section, an application as an example which highlights finer requirements on the Edge
Computing infrastructure.

Smart Hospital is one of the applications which require Edge Computing Infrastructure to deal with
the delay sensitive patient monitoring system. It should be kept in mind that critically ill patients,
effectively require real-time processing of the diagnostic data and real-time intervention by the doctor.
Some regular patients generate diagnostic data that leads to predictable demands of edge resources

9

(computation/communication). But some type of data generated by patients in unpredictable. Hence,
the Edge Computing paradigm needs to be flexible in provisioning edge resources based on demand.

In most hospitals, various types of data (example diagnostic data) with varied processing time con-
straints are generated. So, the data has features of Big Data. On the other hand, the storage of medical
records of past and present patients needs to be done. The processing of such medical records to mine
interesting patterns could be done using Cloud Computing resources. Thus, Cloud Computing and
Edge Computing complement each other. Effectively real-time/non-real-time processing of patient data
effectively aids medical diagnosis. The Edge Computing paradigm effectively has the following char-
acteristics needed by various applications.

• Upgradability of computing, communication, and control resources on demand.

• QoS provisioning for various applications.

• Security/Privacy of processed data etc.

It is crystal clear that there is a need for Edge Computing paradigms (such as Fog, Mist, Dew Com-
puting). The resources at the edge are mainly computational resources (example multi-core processor
based systems), communication/networking resources, control/actuation resources. These resources
must be deployed and shared in an optimal manner to meet the QoS constraints of applications and next
section focuses on it. Also, the cost of Edge Computing infrastructure needs to be minimized. [11]
Since the connectivity structure of Edge Computing infrastructure is under the control of the user, the
grid-based architecture provides a good approximation. Thus, it naturally leads to an interesting joint
optimization problem with cost, delay etc as the objective functions, formulated further in this chapter.

2.3 Optimization in Edge Computing and Communication

In this chapter, an interesting optimization problems arising in the design of Edge Computing and
Edge Communication network is formulated and solved witch is suitable for many applications. The
motivation behind Edge Computing optimization problem is to minimize the cost of Edge Servers’
deployment, taking location, type and cost of the servers into consideration. In a practical scenario, if
the industry tries to provide an Edge Computing solution and wants to decrease the deployment cost,
the proposed optimization solution can be used. The motivation behind small cell optimization problem
is to allocate channels dynamically to meet the future demands of IoT devices. Use of Micro, Pico
and even Femto cells is very much possible in the near future to provide seamless connectivity to IoT
devices. Optimization of Multilevel Dynamic Channel Allocation (DCA) can help ISPs to serve more
number of devices efficiently and provide better performance to end users.

10

2.3.1 Related Work

This section briefly describes the efforts made by the researchers to explain the need of Edge Comput-
ing. Further, the optimization strategies proposed for the Edge Servers’ deployment would be discussed
in this section. Amin et.al. [12] discussed the participatory Edge Computing for the local community
services. They used and proved that using the local server is better if we have a complex core network
available. They could successfully implement and provided third-party applications on local servers for
the community near to them. Kim et.al. [13] worked with IoT devices to offload their computation on
the Cloud. Based on the results, the authors found it better to offload and compute on the Cloud rather
than doing computation on the IoT device itself. Samie et.al. [14] described a way of distributed com-
putation offloading to many remote machines for distributed QoS for IoTs. It suggests decomposing the
problem into small processes among many resources. Dynamic programming is used for resource allo-
cation and the whole problem is solved using ILP. Mao et.al. [15] went one step further and offloaded
the computation data to the Edge Server which is nearer as compared to the Cloud. By many examples
it has been proved by the researchers that even though the machines on the edge have a lesser configura-
tion, still, the delay is higher while getting the computation results from the Cloud. It happens due to the
communication cost. In [16], the author proposed the optimizing solution by formulating it as an integer
nonlinear program four offloading and resource allocation in Mobile-Edge Computing. Author found
that due to the hardness of the problem, optimally solving it for the last scale network is impractical. To
solve it efficiently the problem is divided into resource allocation and task offloading. Resource alloca-
tion problem is further divided into two sub-problems uplink power allocation and computing resource
allocation. Convex and quasi-convex optimization techniques to solve these problems.

Now, this section briefly describes a few cases where researchers tried to optimize the Edge Server
deployment strategy. Qiang Fan et. al. [17] gave a strategy CAPABLE to optimize the cost of server
deployment and End to End delay between client devices and resources. The simulation results show
that the scheme can trade-off between deployment cost and delay. Qin et.al. [18] have proposed a
software-defined approach to manage heterogeneous IoT and sensor devices. This is done via providing
the best matching resource for different classes of IoT devices. Authors have utilized reflective middle-
ware with a layered IoT SDN controller for managing various IoT applications. It is the extension of
multi-network information architecture (MINA). Farah Slim et. al. [19] proposes a mechanism related to
the multi-dimensional Cloud. It gives an analytical model for blocking analysis. It also tried to find out
the best strategy for distributed edge placement. Further, a strategy is devised for resource allocation and
capacity planning on the edge network. So, the authors tried to optimize the limited resources available
at the edge network.

For achieving energy efficiency taking feedback latency into account, mobile units demand a com-
mon/different Cloud Server for processing [20]. The proposed algorithm gives good performance for
IoT with multi-small cells edge-computing and MIMO. The problem is formulated as the minimiza-
tion problem but doesn’t use learning methods to optimize the device-edge combinations. The proposed
framework also works for radio access point implemented in distributed and parallel manna with limited

11

signaling to the Cloud. It is compared with disjoint optimization algorithm and shows better results. In
IoT-Edge Computing scenario, it is very much necessary to learn the best combinations over the period
of time.

This section covers some of the related proposed solutions but it is very clear that very few re-
searchers are focusing on methods for optimizing the allocation of edge computation and communica-
tion resource to the IoT devices for their applications. Further, in the chapter, optimal allocation of edge
resources using Integer Linear Programming is shown.

2.3.2 Edge Deployment Optimization: Integer Linear Programming

Consider devices/things which are locally distributed in space with limited local computation/memory
resources (for example nodes in the Wireless Sensor Network). They require high-end Edge Computing
platforms to process data efficiently. Also, it is necessary to be able to schedule the computing tasks onto
a relatively high-end Edge Computing servers. The goal is to minimize the cost as well as the delay in
the processing of the tasks generated by the local devices/things. Now, detailed modelling assumptions
are given below.

• There are two types {TypeA, TypeB} of Edge Computing devices with costs {CA, CB} (model
can easily be generalized to the finite number of types of high-end computing devices).

• The devices/things are distributed in a rectangular grid (model can be generalized to an arbitrary
graph connectivity of devices)

The objective is to minimize the total cost of high-end computing platforms (required to process
the ”delay sensitive” tasks submitted by the devices/things) while at the same time ensuring that the
things distributed on the rectangular grid are able to schedule their tasks onto a certain minimum num-
ber of high-end Edge Computing platforms. We now formulate the optimization problem as a {0, 1}
(binary/integer) Linear Programming Problem.

Let the variable associated with the placement of high-end Edge Computing platforms on the rect-
angular grid be {aij , bij where 0 ≤ i ≤M, 0 ≤ j ≤ N} i.e.

aij = 1; if Type A Edge Server is placed at (i, j)

location on the rectangular grid

= 0; otherwise

(2.1)

bij = 1; if Type B Edge Server is placed at (i, j)

location on the rectangular grid

= 0; otherwise

(2.2)

12

Let the grid points on the rectangular grid (where devices/things, edge computers are located) i.e.
(M)(N) points be divided into mutually disjoint sets {Dγ : 1 ≤ γ ≤ L} i.e. those sets constitute a set
partition of all points on the rectangular grid. The constraint is that the points in each set Dγ (for all
j) are served by at least ”S” high-end Edge Computing platforms. Thus, the optimization problem has
Linear Objective Function

M∑
i=1

N∑
j=1

CAaij +

M∑
i=1

N∑
j=1

CBbij (2.3)

subject to the linear constraints∑
(i,j)∈DK

aij +
∑

(i,j)∈DK

bij ≥ S, for 1 ≤ K ≤ L (2.4)

This Integer ({0, 1}) Linear Programming problem is solved using well-known techniques. Efficient
algorithms exist for solving the problem.

An alternate formulation requires that every set Dδ (in the set partition of (M)(N) grid points) is
covered by at least S1, type A Edge Servers and by at least S2, type B Edge Servers. Thus, the constraints
in the above Linear Programming problem (Eq. 2.4) get modified in the following manner

{ ∑
(i,j)∈DK

aij ≥ S1;∑
(i,j)∈DK

bij ≥ S2;

}
for 1 ≤ K ≤ L (2.5)

2.3.3 Optimal Edge Communication Network: Integer Linear Programming

It is expected that small cells (Pico/Femto), enabling efficient frequency reuse, will be the impor-
tant innovation in the deployment of the 5G cellular network. We consider the case where the wireless
communication network which is providing connectivity between IoT devices/things at the edge is in-
frastructure based.

The goal is to make efficient utilization of channels available in the Pico/Femto cell. Thus, it nat-
urally leads to DCA based on historical traffic data (at the edge) in adjacent small cells. Further, a
dynamic spectrum access scheme based on time optimal spectrum sensing (using CR approach) is pro-
posed. These approaches are formulated as optimization problems. Reasoning below demonstrates that
these two optimization problems are related. In [21], the time-optimal spectrum sensing problem was
formulated and solved. The solution is utilized for the efficient spectrum sensing in small cells. Further,
the DCA problem in adjacent small cells is formulated and a solution is proposed.

Let there be M adjacent cells. Also, let the historical traffic (on some time unit example hour) in the
spectrum bands in those cells be {n1, n2, n3, ..., nM}. n

′
is are normalized to arrive at Probability Mass

Function i.e.

pi =
ni∑M
j=1 nj

; for1 ≤ i ≤M (2.6)

13

IDEA: In those bands where ’pi’ is small, allocate a small number of channels i.e. n
′
is. On the

contrary if pi is allocated a higher number of channels in such a way that

M∑
i=1

ni.pi = E[Z] (2.7)

subject to the constraint that
M∑
i=1

ni = L (2.8)

i.e. an average number of channels allocated to a small cell is maximized. It should be noted that ’Z’ is
the random variable associated with the number of channels allocated per cell.

It is reasoned below that, if there are no constraints imposed on n
′
is, the problem becomes trivial.

Problem formulation: Maximize E[Z]

Subject to the constraint that
M∑
i=1

ni = L (2.9)

Where L is the total number of available channels.
For instance, the probabilities can be ordered as

q1 ≤ q2 ≤ ... ≤ qM (2.10)

• Set nM = L and ni = 0 for i 6= M . Thus, L is the maximum attainable value for E[Z]. Thus, it
naturally leads to impose reasonable constraints on n

′
is motivated by practical considerations.

• n′
is are in A.P. i.e. n1, n2 = n1 + d, n3 = n1 + 2d, ..., nM = n1 + (M − 1)d

From the point of view of the allocation of channels, these constraints are very reasonable and imple-
mentable.

Now, the above precise optimization problem is solved. The case is considered where the number of
channels allocated per cell are in Arithmetic Progression. Thus, the constraint leads to

n1 + (n1 + d) + ...+ (n1 + (M − 1)d) = L (2.11)

Since {n1, d} are integers, it leads to the Linear Diophantine equation

2Mn1 + d(M)(M − 1) = 2L (2.12)

Thus, the solutions of the Eq. (2.12) is utilized to solve the stochastic optimization problem of maxi-
mizing E[Z].

First the probabilities are sorted i.e. p
′
is in increasing order resulting in relabelled probabilities q

′
is

that is
q1 ≤ q2 ≤ ... ≤ qM (2.13)

14

Thus, maximization of E[Z] requires that

ñ1 ≤ ñ2 ≤ ... ≤ ñM (2.14)

It can be readily seen that

E[Z] = ñ1 + (δ)d;where δ =

M∑
j=1

(j − 1)qj (2.15)

Also, computing variance of Z, it is

V ar[Z] = (α− δ2)d2;where α =
M∑
j=1

(j − 1)2qj (2.16)

The following theorem provides a unique solution to the above optimization problem.
Theorem: Assume that {(a1, d1), ..., (al, dl), ..., (ak, dk)} are the set of solutions of Linear Diophan-

tine Eq. (2.12) among the infinitely many solutions, which are positive real integers. If a1 < ... < al <

... < ak then d1 > ... > dl > ... > dk. In such a case, (a1, d1) is the best solution, which maximizes
the expected value E(Y).

Proof: To prove that (a1, d1) maximizes E(Y), expression in equation 2.17 is required to be proved.

al + δdl ≤ a1 + δd1 for l = 2, 3, ...,K (2.17)

i.e. al + δdl ≤ a1 + δd1 for l = 2, 3, ...,K (2.18)

i.e.
al − a1
d1 − dl

≤ δ for l = 2, 3, ...,K (2.19)

Since, (a1, d1) and (al, dl) both satisfy the Linear Diophantine equation (2.12). Therefore, it can be
written as

M × a1 +
(M − 1)M

2
× d1 = L (2.20)

M × a1 = L− (M − 1)M

2
× d1 (2.21)

M × al +
(M − 1)M

2
× dl = L (2.22)

M × al = L− (M − 1)M

2
× dl (2.23)

Multiplying Eq. (2.19) by M on both sides, it becomes

M × al − a1
d1 − dl

≤M × δ (2.24)

M × al −M × a1
(d1 − dl)

≤M × δ (2.25)

[L− (M−1)M
2 × dl]− [L− (M−1)M

2 × d1]
(d1 − dl)

≤M × δ (2.26)

15

(M−1)M
2 × (d1 − dl)
(d1 − dl)

≤M × δ (2.27)

(M − 1)

2
≤ δ (2.28)

Substituting the value of δ, the resultant is

(M − 1)

2
≤

M∑
j=1

((j − 1)pj (2.29)

Therefore, it is enough to prove the above expression in order to prove (a1, d1) is the best solution
which maximizes E(Y).
By the proof of contradiction, it can be proved that the equality in Eq. (2.29) holds only for uniform
distribution, i.e. p1 = p2 = ... = pM = 1

M . Therefore,

M∑
j=1

(j − 1)pj =
1

M

M∑
j=1

(j − 1) =
(M − 1)

2
(2.30)

For any other probability distribution, the equation would be

(M − 1)

2
<

M∑
j=1

(j − 1)pj (2.31)

Proof: To prove the minimum value of
∑M

j=1(j − 1)pj occurs only for uniform distribution, i.e.,
p1 = p2 = ... = pM = 1

M , proof through contradiction is used. Suppose that the probability masses
p1 = q − ε, p2 = p3 = ... = pM−1 = q = 1

M and pM = q + ε gives the minimum value of∑M
j=1(j − 1)pj , where ε > 0 is a small positive real number. Using the given probabilities, value of the

expression
∑M

j=1(j − 1)pj can be calculated as given below:

M∑
j=1

(j − 1)pj = 0× (q − ε) +
M∑
j=1

(j − 1)× q

+ (M − 1)× (q + ε)

(2.32)

M∑
j=1

(j − 1)pj =
M∑
j=1

(j − 1)× q + (M − 1)× (q + ε)

=

M∑
j=1

(j − 1)× q + (M − 1)× ε

=
1

M
×

M∑
j=1

(j − 1) + (M − 1)× ε

=
1

M
× (M − 1)M

2
+ (M − 1)× ε

=
(M − 1)

2
+ (M − 1)× ε

(2.33)

16

Since, ε > 0, it contradicts the supposition. Therefore, it can be concluded that the value of
∑M

j=1(j−
1)pj >

(M−1)
2 for any probability distribution and minimum value occurs for uniform distribution.

2.4 Summary

In this chapter, a hierarchical Edge-Cloud architecture as an extension of traditional IoT-Cloud ar-
chitecture has been demonstrated. It is valuable in many ways such as near real-time responses, energy
efficiency, and data security etc. Additionally, it can be extremely beneficial to provide reliability on
the case of unavailability of a Central Server due to any reason. Edge Server ensures that the IoT
applications keeps on working in case of a server’s failure. Furthermore, this chapter focuses on the
cost-effective Edge Server placement problem, considering the location of the Edge Servers are grid
points. This is solved using 2 types of Edge Servers that can easily be generalized to any number of
servers’ type. Along with this, the issue of optimal spectrum sensing and optimal dynamic channel
allocation problem arising in small cells based on historical traffic data is solved.

17

Chapter 3

Reliable and Fault-Tolerant Edge

Edge Computing [22] and Hierarchical-Cloud Architecture proposed in the last chapter seems to
solve the issue of delay, bandwidth and fault on Cloud level, but what if any fault occurs on edge levels,
either on middle edge or on extreme edge? In this chapter, a reliable and fault-tolerant architecture for
the IoT-Cloud hierarchy is proposed.

3.1 Related Work

Many researchers have proposed solutions for fault tolerance in IoT-Cloud infrastructure. Some of
the proposed solutions are given in this section. A framework for providing a hybrid fault tolerance in
Cloud computing [23] [24] [25] addressed the issues of fault tolerance that can cause the failure of the
Cloud.

In [26], the authors proposed a distributed Cloud storage architecture in which services or data is pro-
vided to the user in a manner that they can access it locally without having an internet connection. The
proposed architectures do not provide any solution to handle replicated data stored on users machines.
In [27], an algorithm is proposed to increase the reliability of the system by using virtual machines.
Virtual machines adapt changes of the system in every cycle and generate correct results. The drawback
of the proposed algorithm is that there is no schedule management system or a decision-making system.

In [28], the authors proposed a fault tolerance session layer to overcome the drawback of event-driven
communication. With the help of adding new layers and checkpoints, it maintains fault tolerance. This
mechanism uses a large number of threads that may reduce the performance of the server. A fault
tolerance framework based on the artificial neural network to detect faults and maintains a gap between
Cloud Servers and users is proposed in [29]. In [30][31], the authors presented an evaluation study
on different existing solutions for managing efficient Cloud storage and utilization of resources with
different quality assurance parameters. They proposed a scheduling mechanism in which user requests
and Clouds services are managed or scheduled efficiently but those algorithms work only with the
centralized environment but fails in a distributed environment. Also, the proposed framework works
based on static information of resources and users requests.

18

Leveraging Fog computing for scalable IoT data-centre, a mechanism to overcome latency and band-
width issues is proposed in [32]. In this mechanism, the concept of spin leaf helps to manage big data
on Cloud by offload and batch processing, but it does not support multi-node architecture. Also, it is not
so efficient for scheduling related problems.

3.2 Reliability, Fault Tolerance and Fault Localization

With the increase of IoT devices in the system, maximization of the computation on edge network
is required to minimize the communication cost. Self-managing and self-configuring solutions are also
required on edge network. The IoT application must be able to recover from any issues that arise during
its lifetime. Mist and Fog Computing should offer these features. So, in some sense, it has been believed
that Mist and Fog will address many of the challenges that are being faced in dealing with large-scale IoT
systems. Now, if this hierarchical architecture is adopted, some of the biggest concerns are reliability
and fault tolerance. There are several concerns listed below related to reliability and fault-tolerance that
need to be taken care of.

• The whole system architecture should be able to provide services even if any node (server) fails
on any level.

• The sensed data should be replicated and available on other parallel nodes to take over the control
in the case of a node failure.

• There should be an application interface available on the newly assigned alternate server. It should
be managed virtually without any inconvenience and knowledge to end user.

• The switching from one server to another should be automatic, and it could be based on priority.
For example, if one Fog fails then its IoT applications should be shifted to another Fog, Mist or to
Cloud (in the worst case), automatically. The decision depends upon the delay constraints of the
applications.

• The new servers reconfiguration and path redirection time should be minimal.

3.3 Proposed Architecture

3.3.1 Reliability and Backup Policy

To construct a reliable IoT-Cloud infrastructure, the replication of sensed data is very important.
The sensed data’s redundancy ensures the feedback for the actuators in case of any server-side failure.
[33][34] The backup system can take over the control in such cases. For Clouds, the mechanism of AZ
(Availability Zone) for the backup is used in case of any disaster or failure in the Cloud Server.

19

Figure 3.1 IoT-Cloud Architecture with Edge Computing

Figure 3.2 Edge Failure or Communication Link Failure between Coordinator Node and Edge Server

Now, while using the concept of Edge Computing, the focus is on running IoT applications from
the edge of the network rather than from the far Cloud. Figure 3.1 depicts the IoT-Cloud architecture in
reference with Edge Computing. There are one or more sensors connected to each of the N1 Coordinator
Nodes and these Coordinator Nodes are further connected to N2 number of Edge Servers. More than one
Coordinators can be connected to each of the Edge Servers. All the Edge Servers are further connected
to a Cloud Server to complete the hierarchy. Edge level servers should also have backup sibling servers
to keep the applications running in case of any Edge Servers failure as shown in figure 3.2. Figure 3.2
shows that if system does not have any alternate backup plan after any edge failure then the respective
zone can face a serious outage. So, to prevent the system from such failures, an alternate support scheme
has been presented as shown in figure 3.3. It shows that if any Edge Server (such as Edge Server-1) goes
down then its associated Coordinator Node-1 will look for any nearby available Edge Server. If any

20

Figure 3.3 Communication Link Re-establishment between the Coordinator Node and an Alternate
Edge Server

match is available (such as Edge Server-K in the figure) then this Edge Server will work as an alternate
Edge Server for the Coordinator Node-1. Alternate Edge Server concept will be used at the time of any
outage. With any outage of Edge Server, there can be only one associated alternate Edge Server with
the Coordinator Node. Coordinator Node has inbuilt search mechanism to find an alternate Edge Server
if its own Edge Server is unavailable. The alternate Edge Server then takes the responsibility to provide
services to the IoT application and to keep the communication continue. This is going to be an automatic
virtual process. The proposed multi-level architecture is reliable in the sense that even if there are no
alternative servers on the same level with sensed data replication, there is a guaranty of replication on
the higher level (refer figure 3.3). The volume of data for the same application may vary on Mist, Fog
and Cloud levels. But data would exist on all the levels to take over the control of the application in the
case of a servers failure.

3.3.2 Fault Tolerance and Agent

By definition, Mobile Agent (MA) is a special purpose software code that can transfer itself from
one machine to another. Practically, MA is the same code running in all the machines and transmits data
from one machine to another. MAs are very helpful in managing distributed systems. In the proposed
work, the faults in the entire hierarchy will be managed by MAs.

The MA works as a resource and network monitoring agent. It shares the application and link state
information with other agents on alternative servers in the hierarchy. Except for monitoring, they are
also responsible for assigning the priority to the IoT applications depending upon their delay-tolerance.
In the case of impacted failure or impacted scheduled shutdown, this priority information is used at the
time of load distribution [35] of a particular server. It also helps in new path discovery [36] after the

21

Figure 3.4 Agents Working during Faults

22

load distribution. It also keeps a check on the periodic monitoring and backup of data. Figure 3.4 shows
the recovery process in case of faults and scheduled shutdowns, reactively and proactively respectively.

Figure 3.4 depicts the complete fault tolerance cycle of the hierarchy between Dew, Mist, Fog and
Cloud. Here, the fault tolerance has been achieved by exploiting the capabilities and benefits of an
agent, which is basically a software program running on each server. At the time of any fault, the
whole responsibility is assigned to the same level agent via a higher level agent in the hierarchy. Agents
working is given below:

• As per assumption

– The reason behind any fault/shutdown can either be any scheduled activity or any sudden
activity.

– Any sudden or scheduled activity comes with two possibilities that either it is going to affect
respective server or no effect at all on it.

– If the ongoing activity has no effect then for a scheduled event, the agent will move with
proactive action which is basically to send notifications to all respective agents, whereas for
sudden activity agent will look for reactive action.

• For any sudden fault, the agent will fetch priority index for all applications running on the affected
server and it will immediately check if any other server is available on the same level via a higher-
level node in the hierarchy. After that, it will do application migration and connection redirection
and then will do the load transfer activity as per the sequence is given below:

Algorithm 1 Agents working on Edge
Total load = C

Load handling capacity of Server S = T

if T > 0 then
S ← T (load)

Upper level← (C − T) load

if T = 0 then
Upper level← Transfer whole load

• If no other same level server is available then application(s) will connect to the upper level com-
puting resource(s) to transfer the whole load.

3.4 Multi-queue Store and Forward Mechanism for Edge Server(s)

There is a possible scenario when Edge Servers are not connected to the Cloud Server. Yet, they are
able to receive data from the Coordinator Nodes located at the Extreme Edge. This duration of unavail-

23

Figure 3.5 Multi-queue Storage Mechanism with Data Aggregation

ability of the Cloud may vary from a small delay in transmission to a long period of disconnection. In
this scenario, a Reliable Edge Server needs to store the sensed data temporarily, but in an efficient man-
ner as they have very limited storage space. To decrease the possibility of loosing sensed data during
disconnection, an application of a multi-queue store and forward mechanism has been proposed here
for a Reliable Edge.

In the store and forward mechanism, data is transferred between one device to another but it has to
pass through an availability check. This availability check ensures that the data will remain in the queue
until the receiver connects back and the data is transferred to the intended receiver afterwards. After
transmitting the data, it is removed from the respective queue. This mechanism works fine when either
there is no issue with the storage space on the sender node or the data loss is not an issue if the queue
gets full. That is never the case with Edge Servers.

Due to the limited storage space on the Edge Servers, a single queue mechanism cannot work. If
a single queue gets full then data needs to be discarded to save new data or new data needs to be
dropped. A Reliable Edge cannot afford this. A better alternative is proposed here by using 3 queues
simultaneously. The working of these queues is discussed below (refer figure 3.5):

• All queues will work on First In First Out (FIFO) method. It means that the oldest data will pop
out first.

• It is assumed that the total storage capacity of the system is 100-units and it is divided into three
parts that are 70%, 20% and 10% for Queue-1, Queue-2 and Queue-3 respectively. Given these
conditions, all three queues work as follows:

24

– Queue-1: Queue-1 can consume 70% of the available storage space. This queue contains
the uncompressed sensed data which means that the sensed data is not aggregated and is
kept in the original form as it is supposed to be received by the Cloud.

– Queue-2: Queue-2 can consume 20% of the storage space for storing the older data. Queue-
2 contains Level-1 compressed/aggregated data. It receives data only if the Queue-1 touches
its 70% of the storage space or in other words it gets full. Queue-1 pops out its oldest data
and aggregates the sensed data to compress and shifts to Queue-2. For example Queue-1 is
receiving a sensor’s data with frequency 24/day. Level-1 compression aggregates the data
and converts it into frequency 6/day by combining 4 data values into 1 using the techniques
like average, max or min etc.

– Queue-3: Queue-3 consumes 10% of the total storage space to store the oldest data and the
most compressed one. Queue-3 will contain Level-2 compressed data. If the duration of
disconnection goes really long and Edge Server needs to store the data for the entire period,
Queue-3 is essential. If both Queue-1 and Queue-2 reach their thresholds, Queue-3 requires
to store highly compressed and oldest data. For this, oldest data from Queue-2 pops out and
aggregates to decrease the number of entries to store it in Queue-3. Following the example
given for Queue-2, data can be compressed further to make it 1/day by aggregating 6 data
values.

• Once the Cloud Server (receiver) successfully connects back, the most recent data is forwarded
first to the Cloud Server. After the transfer of most recent data from Queue-1, Queue-2 and
Queue-3 data is synchronized with the Cloud Server and all the Queues get empty.

3.5 Analysis of Reliability and Availability in an Edge-based IoT Infras-

tructure

In order to create a reliable system, the availability of the alternate Edge Nodes is analyzed to of-
fer the seamless transmission of the sensors data to the Cloud Servers. The proposed mechanism and
architecture attempts to make a system that ensures the availability and reliability during the process-
ing and transmission of the sensors’ data. So, it can be said that the system runs without failure and
unavailability of the intermediate devices and the Internet, respectively.

3.5.1 Availability

It is the ability to transfer the information or performed specified function even in case of failure
of some edges/devices. The availability will be measured in terms of probability at any time which
depends upon the Edge’s up-time and down-time. The availability (At) is defined as:

25

Availability (At) =
Uptime

(Uptime + Downtime)
(3.1)

3.5.2 Reliability

It is the ability of the system that consistently performs specified function even in case of failure of
some Edge Nodes. The reliability will be measured in terms of probability at any time which depends
upon the failure probability. Reliability is defined as:

Reliability (R) = 1− Failure Probability (Fp) (3.2)

The failure probability derives from the ratio of the number of failed trials and a total number of
trials during the transmission of the sensor data to the Edge Nodes. Failure probability is defined as:

Failure Probability (Fp) =
Number of Failed Trials

Number of Trials
(3.3)

3.5.3 Analysis of Reliability Performance

The failure frequency is used to measure the reliability of the proposed system.
Let us consider a scenario when a failure has occurred, the system pause and migrates the current

tasks to the neighbour Edge Server and resume them for seamless execution and transmission of the
information. The migration/switching time and tasks transfer time between Edges is neglected because
of all these operations are completed in constant time. The number of redundant nodes increases data
transfer availability and build a durable system. For example, simply using two alternate Edge Nodes
provides the 0.99 availability.

Considering an example scenario where the total number of existing Edge Nodes are N = 1000 and
M = 10% of them are currently unavailable with an approximate 23.5 hours of time Edge Nodes up.
Maximum T = 20 numbers of trials allow checking the working status of any Edge Nodes. Then the
average failure probability is 0.03 (= 0.6/20) with 3% failure trials. So, the probability of reliability is
0.97 (= 1-0.03). The probability of availability is 0.9791 (=23.5/23.5+0.5).

After considering multiple scenarios with different parameters to analyze the availability and relia-
bility based on Uptime, Downtime, Number of Trials, and Number of Failed Trials, their Availability
and Reliability matrix is given in table 3.1. Figure 3.6 and figure 3.7 displays the graphs based on the
table. Figure 3.6 shows the comparison of reliability performances for a number of experiments and fig-
ure 3.7 displays the comparison graph of availability for the better understanding of the results produced
after several experimentation cases.

3.6 Simulation Result and Analysis

Both agent-based and without-agent solutions are simulated using Matlab. Figure 3.8 shows the
application assignment efficiency of the system during faults with MAs in comparison to random as-

26

Table 3.1 Availability and Reliability Matrix for various Cases

Experiment No. Uptime Downtime No. of Trials (T) Number of Failed Trials Availability (A) Failure probability (Fp) Reliability (R)

1 22 2 17 3 0.91666667 0.17647059 0.82352941

2 22 2 18 2 0.91666667 0.11111111 0.88888889

3 22 2 19 1 0.91666667 0.05263158 0.94736842

4 23 1 17 3 0.95833333 0.17647059 0.82352941

5 23 1 18 2 0.95833333 0.11111111 0.88888889

6 23 1 19 1 0.95833333 0.05263158 0.94736842

7 23.05 0.95 17 3 0.96041667 0.17647059 0.82352941

8 23.05 0.95 18 2 0.96041667 0.11111111 0.88888889

9 23.05 0.95 19 1 0.96041667 0.05263158 0.94736842

10 23.08 0.92 100 3 0.96166667 0.03 0.97

11 23.08 0.92 100 2 0.96166667 0.02 0.98

12 23.09 0.91 100 1 0.96208333 0.01 0.99

signment. With the help of MAs, job distribution for the idle server is high in numbers and null for under
maintenance servers. While job distribution for busy and backup servers performed efficiently. If the
system proceeds without an agent then it distributed jobs randomly without acknowledging the servers
state. Figure 3.9 shows the CPU time unit consumption with the increase of server counts. When the
system proceeds with MAs then the performance is very high in spite of the the centralized server or the
Edge Server goes unavailable while serving IoT applications.

3.7 Summary

The proposed work in this chapter puts efforts for improving fault-tolerance and reliability of Edge
Computing with the help of an intelligent agent. The given novel architecture provides solutions for the
possible faults at any level of the Cloud-hierarchy especially at the edge. To deal with any fault or issue,
the proposed concept works with both types of solutions that are proactive and reactive. Results also
show the efficiency of the proposed architecture. This is a practical solution and tested by implementing
it for a suitable IoT application.

27

Figure 3.6 Comparison of Reliability Performances for a number of experiments

Figure 3.7 Comparison graph of Availability

28

Figure 3.8 Comparison graph of application assignment during faults

Figure 3.9 CPU time unit consumption

29

Chapter 4

Reliable Resource Allocation at Edge

As discussed in the earlier chapters, traditional IoT architectures connect the sensing devices to the
Internet and send the generated data to a Cloud resource for processing. This methodology works well
for the applications where the strict delay is not a concern. Cloud is not an ideal resource for the
applications which require real-time responses. This is the reason, domains such as telecommunication,
health care, real-time control etc. process the data closer to the origin [3]. This computational paradigm
is termed as Edge Computing. After accepting Edge Computing, the next questions to be consider are

• Are there sufficient Edge resources available to serve current and future IoT applications?

• Can privately owned devices be used as the Edge resources in a reliable and efficient manner?

Gaber et.al. [37] proposed that the Edge Computing needs to leverage all the resources connected
at the network edge such as laptop, tablets, desktops, smart-phones etc. Although, these devices are
not always connected to the Internet, they can still be used opportunistically for various computational
tasks. Nowadays, devices at the network edge such as laptops and desktop computers are being volun-
tarily offered by the owners for computational purposes. Efficient utilization of all these computational
resources enhance the overall capacity of the edge system and allow it to scale. The traffic towards the
core IP network can also be reduced significantly. In this regard, this chapter presents a self-organizing
edge infrastructure laid on the principles of SDN. To realize it, an intelligent software-defined Edge
Controller (EC) in the IoT environment is proposed, which configures the infrastructure to utilize all
the available resources efficiently for data processing. This EC learns various parameters for resource
optimization during initial runs. After acquiring sufficient information, an integer linear programming
problem for minimization of time to complete requests is formulated and solved. The solution ensures
fair allocation of the requests to various resources in such a way that the total time for request completion
is minimized for all the nodes.

The reliability of the voluntary resources is a substantial issue which is covered in this chapter. Many
times a computational resource accepts a request, but can not process it in a timely manner. It may hap-
pen because of the battery outage, scheduling of other higher priority tasks, connection re-establishment
due to mobility etc. Assigning latency sensitive tasks to such devices is a risk. The formulation done for

30

Figure 4.1 Software-defined IoT infrastructure.

minimization of time to complete requests has been extended to incorporate reliability measures on the
EC. A multi-objective optimization problem is formulated and solved using Genetic Algorithm (GA).
The solution to the problem provides the allocations which reliably forward the requests to the available
resources.

Here on-wards two kinds of nodes have been considered in this chapter. The first kind of nodes,
termed as IoT nodes, are the one which need to offload the computational tasks. These are sensing
devices, which sense a physical phenomenon and transmit it to a server for further processing. In
other words, IoT nodes are the clients looking for the servers. The second kind of nodes are termed as
resources. These are the servers which provide the APIs for computation. Using APIs provided by the
resources, IoT nodes request for various computation tasks.

4.1 Related Work

Resource allocation in edge and participatory computing has been studied by many researchers. In
this section, research work by a few authors have been presented. Authors in [38] have presented a
survey on emerging computing technologies such as cloudlet, fog computing and mobile Edge Comput-
ing. Importance of code mobility is discussed in [39]. The paper has emphasized to have a new mobile
Cloud Computing infrastructure in the IoT environment. The positive impact of using user-controlled
edge devices for the computation migration from the smartphone has been studied in [40]. Authors in

31

[41] have studied the computational offloading to the edge devices such as a router. Their proposed
algorithm allows efficient resource utilization. Researchers in [42] have proposed the use of cloudlets
on the edge of the network to assist IoT nodes in a better way compared to the clouds. Amin et.al. [12]
have presented their work on the participatory Edge Computing for the local community services. In
their work, they have achieved privacy of sensed data, data analytics, resilience and real-time response
using participatory Edge Computing. Resource allocation and task offloading in mobile Edge Com-
puting scenario is proposed by Tran et.al. [16]. A convex optimization technique is used for resource
allocation and a heuristic algorithm has been proposed for task offloading.

The possibility of inclusion of SDN in Edge Computing for the mobile users is shown by Ahmet et.al.
[43]. This review paper suggests the use of separate data and control planes to manage the movement of
mobile IoT devices using Cloudlets. Authors in [44] have proposed an energy efficient routing protocol
using the SDN controller. They have compared the proposed routing algorithm with the standard wire-
less sensor networks protocols such as Ad hoc On-Demand Distance Vector (AODV), Dynamic Source
Routing (DSR) and Destination-Sequenced Distance-Vector Routing (DSDV) on various parameters
such as throughput, end to end delay and packet delivery ratio. Qin et.al [18] have proposed a software-
defined approach to manage heterogeneous IoT and sensor devices. This is done by providing the best
matching resource for different classes of IoT devices.

Considering the aforesaid work, a novel software defined Edge Computing infrastructure has been
presented, where the computational resources of the voluntary devices are utilized along with the dedi-
cated edge and Cloud resources. This infrastructure allocates requests via learning different parameters
in software-defined paradigm. The problem formulation tackles important issues such as minimization
of request completion time and reliability of all the edge resources.

4.2 Proposed System for Resource Allocation with Request Completion

Time Minimization

Figure 4.1 shows the proposed system where the IoT nodes and the resources are connected via OF
switches at the data plane. OF switches are configured by the SDN controller at control plane using
OF protocol. On the top of the control plane, application plane resides. It communicates with SDN
controller using ReST APIs. Application plane gathers the data required for optimal resource allocation.
Using the stored data, it finds out the optimal resource allocation and communicates the same to EC.
Finally, EC pushes appropriate configurations to the OF switches. Figure 4.2 demonstrates the system
flow diagram. This flow diagram covers all the steps involved in learning and resource allocation.

Here, the goal is to design an infrastructure, where the total time to process the requests made by IoT
nodes can be minimized. In order to achieve this objective, the proposed system goes through a learning
phase. Learning starts with gathering information about available resources and their capabilities. Using
this information the EC configures the OF switches to forward all the requests made by IoT nodes to

32

Figure 4.2 System flow summary.

all the resources in a round robin (RR) fashion. In this process, EC identifies the delay involved in
completion of a request between an IoT node and a resource and expected number of requests from an
IoT node. Once, the system has gathers all the required information, EC starts forwarding the requests
in such a way that the total time to process the requests made by IoT nodes is minimized. This feature
makes our controller self-organizing. The steps involved in the learning process have been described in
detail, further in this section.

4.2.1 Finding Available Resources

The first step towards making the system self-organized is to gather complete information about the
available resources in the system. Before scheduling the requests, the EC must be aware of the available
resources for computation. In diverse IoT environment, different nodes may use different mechanisms
and protocols for service advertisement and discovery. Nodes may use centralized or distributed ap-
proaches for resource discovery. In a Constrained ReSTful Environment (CoRE) [45] the devices use

33

Figure 4.3 Learning resource availability and capability.

CoRE link format 1 for resource discovery. Nodes can also use the Resource Discovery Protocol (RDP)
[46]. Both the protocols support the server/client model for resource discovery. In such centralized
architecture, the RDP clients (or resources) send the resource information as a well-constructed query
to the RDP server and the server stores this information in a resource directory. The nodes looking for
resources send a query to RDP server and the server responds accordingly. A variety of other service
discovery protocols in IoT setting can be found in [47, 48]. It is assumed that the RDP query will contain
the maximum capability of the resource.

The information about service mechanisms and resource databases is provided as a configuration
to the proposed system. At start-up, it parses the configuration file and configures the OF based SDN
switches in the infrastructure to capture these resource information packets about the available resources.
For example, say the devices announce their capability via RDP and this information is mentioned in
the configuration. The switch flow tables are configured by the Edge Controller to receive an RDP
announcement flows on the mentioned protocol and port. The Edge Controller parses these flows and
updates its knowledge base about available resources. If there is an RDP server in the system, EC
sends the RDP query to receive information about available resources via the packet-out mechanism.
It is assumed that the entire system is also connected with the Cloud resources and the EC has this
information. Figure 4.3 depicts the same idea.

4.2.2 Mapping Resources to IoT Nodes

Once EC has the list of available resources and the maximum requests they can handle, it starts
forwarding requests coming from IoT nodes to the available resources in a RR manner. Before doing

1https://tools.ietf.org/html/draft-ietf-core-resource-directory-09

34

this, EC configures the SDN switches to announce the default resource address for all the available
services. IoT nodes looking for resources, receive these notifications and start sending requests to
announced default gateway. The EC configures the SDN switches in such a way that the requests go to
all the available service providers one by one. For redirecting the requests to other resources, switches
change the destination address of a request from default gateway to a selected resource.

For example, a camera-equipped IoT node wants the captured images to be classified. It receives the
default resource information and starts sending requests to the mentioned address. Due to the switch
configuration, the destination of the request changes and the first request is forwarded to first available
image classification service provider. The second request is forwarded to another service provider. This
process goes on for subsequent requests in a RR fashion. With the analysis of requests and responses
EC maps the IoT nodes to the resources with various metrics such as processing delay and the number
of expected requests from an IoT node.

Figure 4.4 Learning request completion time (MTTC) from IoT node to the resources.

4.2.2.1 Learning Request Completion Time

As discussed earlier that the IoT environment is heterogeneous. Service providing node can be con-
nected via different media access protocols. They can have different processing capabilities. They
can be static or mobile. All these situations change the time for processing a request. Via forwarding
requests to all the resources in a RR manner, our controller learns about the expected time taken for com-
pleting a request. Figure 4.4 explains the idea pictorially. In order to find the lapsed time in processing a
request, EC configures the switch to send notification packets to itself as soon as a request is forwarded
to a resource and resource sends the response back. Looking into the time difference, EC identifies the

35

delay involved. This delay is also termed as Mean Time to Complete (MTTC). This process is repeated
for every pair of IoT node and resource.

Figure 4.5 Predicting number of expected requests from IoT nodes.

4.2.2.2 Predicting the Number of Expected Requests

In the process of forwarding requests to all the available resources, the EC also determines the
number of expected requests from an IoT node in a duration. While forwarding requests in a RR
manner, the EC receives the request notification (as EC configured the switches for learning the MTTC,
mentioned in previous subsection 4.2.2.1). The EC saves these records with a time stamp. When
sufficient data is collected, the application plane analyzes the data and forecasts the expected number
of requests in future. Neural networks or deep learning based time series analysis techniques can be
employed by the application plane to predict the expected number of requests in the future. Figure 4.5
explains the same.

4.2.3 Resource allocation as an optimization problem

After going through the learning phase, the system acquires the information about the maximum
capacity of m service providing nodes represented as a vector [a1, a2, . . . , am]. It also gains knowledge
about number of expected requests from n IoT nodes, depicted as [b1, b2, . . . , bn]. It maintains a matrix
[tij] ∀ i = 1, 2, . . . ,m & j = 1, 2, . . . , n representing average time taken for completing requests of IoT
nodes to service proving nodes (refer figure 3.6). xij is the number of requests forwarded to a resource
i from an IoT node j. As resource scheduling techniques based on mean time to complete are more
effective than RR or random selection techniques [49], EC switches the allocation method from the RR
to the MTTC (or request completion time minimization) technique via the following formulation

36

Figure 4.6 The resource allocation problem and the system with acquired knowledge.

minimize
n∑
j=1

tijxij ∀ 1 ≤ i ≤ m (4.1)

subject to constraints
n∑
j=1

xij ≤ ai ∀ i = 1, 2, . . . ,m (4.2)

m∑
i=1

xij = bi ∀ j = 1, 2, . . . , n (4.3)

xij ≥ 0 ∀ i = 1, 2, . . . ,m & j = 1, 2, . . . , n (4.4)

Equation (4.1) is the objective function. It tries to minimize the total time taken for processing the
requests for all the available IoT nodes. Equation (4.2) ensures that the requests to a service providing
node is not more than its maximum capacity. Similarly, equation (4.3) divides the load from an IoT
node to service proving nodes. Equation (4.4) puts a lower bound on the allocations. Clearly, to have a
feasible solution following the condition must be satisfied

m∑
i=1

ai >=
n∑
j=1

bj (4.5)

If the above condition is not satisfied, more service providing nodes are required. The EC can request
neighbouring edge servers for more serving units or it can reserve the Cloud resources to accommodate
requests. This shows the proactive behaviour of the proposed system. The solution to the above opti-
mization problem provides flow allocation from IoT nodes to resources. This allocation scheme runs
at user-defined intervals and the application plane pushes new allocations to EC. EC changes switch
configurations accordingly.

37

4.2.4 Results

The analysis of the proposed system has been done by simulated it using MATLAB and mininet [50].
First, the formulated linear programming problem has been solved in MATLAB. Results are verified for
request completion time minimization and fairness. Later, a scenario is created in mininet and request
completion time minimization criterion is tested.

4.2.4.1 MATLAB results and analysis

The assignment problem has been solved using MATLAB function intlinprog [51] with different
values of requests and processing delay (or MTTC values). The function uses a dual-simplex algorithm
[52] for solving the problem.

Table 4.1 MATLAB simulation parameters.
Case Requests from IoT nodes Max Capacity of Resources MTTC(ms)

a 200-300 1000-2000 7-9
b 200-300 1000-2000 7-17
c 1000-2000 2000-4000 7-9
d 1000-2000 2000-4000 7-17
e 10-300 1000-2000 7-9
f 280-300 1000-2000 7-9

The information about the number of expected requests from IoT nodes, resource capabilities and
the MTTC values are randomly generated as per table 4.1. The table has six test cases. These cases
verify the system behaviour in different conditions such as low and high expected requests from the IoT
nodes, the low and the high difference in the MTTC values, and the low and the high difference in the
requests from the IoT nodes. The values mentioned in the tables are treated as knowledge gained by
the system over time. The program uses these values and computes the allocation. The test cases are
repeated for the number of IoT nodes (50, 100, 250, 300 and 500).

From results in figure 4.7, it is clear that the average response time in case of the MTTC is very
low as compare to RR. Until Edge Controller does not have a complete knowledge base, it uses the RR
technique to serve the IoT nodes. As soon as it acquires the information, flows are redirected using
the MTTC technique which reduces the time taken for request completion significantly. From plots, it
is clear that the MTTC method provides an output at a constant rate, independent of the difference in
the MTTC values. IoT nodes face equal delays for request processing in high as well as low differ-
ence MTTC values. The simulations are run with a combination of less/more number of requests and
low/high variance in the MTTC values.

For testing fairness, cases (a) and (b) from table 4.1 have been taken. In these cases all the IoT nodes
generate an equal number of requests (300). All the nodes in the RR method take different times for
completion of their requests, while the MTTC method takes an almost an equal amount of time. When
the difference in the MTTC values are low, the MTTC scheduling allocates resources in such a way

38

 (a) (b) (c)

 (d) (e) (f)

Figure 4.7 Comparison between round robin and MTTC methods. a) less no. of requests and less
MTTC difference, b) less no. of req. and high MTTC diff., c) more no. of req. and low MTTC diff., d)
more no. of req. and high MTTC diff., e) high req. diff and low MTTC diff., f) low req. diff. and low
MTTC diff.

that all the IoT nodes experience an equal amount of times for their request completion. Even in case
of high variation in the MTTC values, the majority of the IoT nodes have an equal amount of request
completion delays with the MTTC scheduling. In the RR allocation, the IoT nodes have different delays
for both the cases. Figure 4.8 confirms this behaviour.

4.2.4.2 Mininet Analysis

Mininet is a network emulator in which a network can be created with virtual hosts, switches, con-
trollers and links. The switches in mininet support OpenFlow. For our scenario, mininet is configured
with four IoT nodes (h1-h4), three resources (r1-r3) and one SDN controller as shown in figure 4.9. The
link delays for resources are configured to have different values. In the setup, r1, r2 and r3 are config-
ured to have 50ms, 200ms and 500ms of link delays respectively. It helps in creating different response
times for different resources. A concurrent hypertext transfer protocol (HTTP) server is run on all the
available resources. IoT nodes run an HTTP client, which periodically sends requests to the resources
as per the table 4.2.

39

0 20 40 60 80 100

Node Number

2100

2150

2200

2250

2300

2350

2400

2450

2500

2550

2600

T
o

ta
l
T

im
e
 S

p
e
n

t
in

 t
h

e
 s

y
s
te

m
 (

m
s
)

RR

MTTC

0 20 40 60 80 100

Node Number

2000

2500

3000

3500

4000

4500

T
o

ta
l
T

im
e
 S

p
e
n

t
in

 t
h

e
 s

y
s
te

m
 (

m
s
)

RR

MTTC

Figure 4.8 The fairness comparison. MTTC values in the left figure vary in rangev(7 – 9) and in range
(7 – 17) in the right figure.

Table 4.2 Mininet simulation parameters
Node Link Delay (ms) Request or Response (/scenario)

h1 100 14,15,30
h2 100 12,15,2
h3 100 20,15,8
h4 100 10,15,15
r1 50 20,20,20
r2 200 20,20,20
r3 500 20,20,20

First, the system looks for available resources. It captures the resource advertisement packets and
knows about the maximum capacity of available resources. With this information, the SDN controller
configures the switch with RR mechanism and learns other required parameters. For every forwarded
request it waits for the response and measures the MTTC values. In the simulation IoT nodes have
configured to send requests in a fixed interval. For simplicity, this information is communicated to
EC. Table 4.2 shows all the simulation parameters. Request or Response per scenario column tells the
number of requests sent by an IoT node (h1-h4) and maximum requests resources (r1-r3) can entertain
in three scenarios. Other columns are self-explanatory.

Once it has all the values, the data is fed to MATLAB to obtain allocations as per MTTC method.
The allocations received from the MATLAB are given to the controller and the controller configures the
switches to allocate resources accordingly. Figure 4.10 shows that the time taken for request completion
by the MTTC method is very less than RR method. It clearly shows that the proposed system minimizes
the delay.

40

Figure 4.9 Mininet configuration. Hosts are generating requests and resources are responding.

4.3 Proposed System for Resource Allocation with Reliability

In the previous section, the resources were allocated in such a way that the allocation is fair and
the total delay involved in processing is minimized. However, the formulation does not consider the
reliability of the edge resources. Majority of the resources at the network edge, which are provided vol-
untarily, are unreliable. Highly mobile resources are prone to drop the connection. These resources may
refuse to entertain requests due to the scheduling of high priority local tasks, connection unavailability
or low battery conditions. Hence, there is a need to update the system to incorporate resource reliability
information. In this section, the previously mentioned system is updated to forward the requests in such
a way that the total delay involved is minimized along with the minimization of allocated requests to the
resources with high probability of failure.

4.3.1 Knowing Resource Reliability

Multiple factors can decide the reliability of a resource. Mobility, power (battery), workload, security
etc. are few such parameters. The reliability of a resource goes down in case of low battery condition.
Similarly, if it is switching across access points or a user is running computational extensive application
at the moment, it is risky to forward a request to that resource. In our study, the reliability of a resource
is termed as the number of responses sent in a timely manner for each request. As mentioned in the
above section, the EC configures the switch to find out the processing delay involved in forwarding a

41

1 2 3

Scenario Numbers

0

0.002

0.004

0.006

0.008

0.01

0.012

T
o

ta
l
T

im
e

 t
a

k
e

n
 (

m
s
)

fo
r

c
o

m
p

le
ti
o

n
MTTC

Round Robin

Figure 4.10 Time saving in three different scenarios.

request from IoT node to a resource. EC uses this timing in realizing the reliability of a resource. If the
time difference between a request and response is more than a threshold, it is very unlikely to meet the
application requirements. Hence, the EC reduces the reliability of such a resource or in other words it
increases the probability of failure of that particular resource. Actual reliability value is calculated as
the ratio of timely sent responses (nres) to the total sent requests (nreq) i.e. nres/nreq (refer algorithm
4.3.1). The same idea is depicted in figure 4.11.

Algorithm 2 Pseudo-code for calculation of resource reliability.
for each IoT request do

Request Count = nreq ++ Timestamp of incoming request = t1 Timestamp of outgoing request =
t2 Processing Delay = t2 − t1 if Processing Delay <= Min Threshold then

Response Count = nres ++
else

/*No change in Response Count */
Reliability = nres/nreq

4.3.2 Resource allocation as multi-objective optimization problem

The application plane formulates a dual objective resource allocation optimization problem as per
figure 3.12. Form nodes it has probability of failure represented as [f1, f2, . . . , fm]. If xij be the number

42

Figure 4.11 Predicting resource reliability.

of allocated requests to a service proving node i from an IoT node j, multi-objective optimization
problem is formulated as following

minimize
n∑
j=1

tijxij ∀ 1 ≤ i ≤ m

and

minimize Πm
i=1f

∑n
j=1 xij

i

(4.6)

Figure 4.12 Resource allocation problem and system with acquired knowledge with reliability informa-
tion.

43

subject to constraints
n∑
j=1

xij ≤ ai ∀ i = 1, 2, . . . ,m (4.7)

m∑
i=1

xij = bi ∀ j = 1, 2, . . . , n (4.8)

xij ≥ 0 ∀ i = 1, 2, . . . ,m & j = 1, 2, . . . , n (4.9)

Figure 4.13 System flow summary after resource reliability information.

Equation (4.6) is the objective function. It tries to simultaneously minimize the total time taken for
processing the requests for all the nodes and the failure probability associated with that node. Constraints
are same as before. With the inclusion of resource reliability in learning steps, the updated system flow
diagram looks like figure 4.13.

44

109.996 109.998 110 110.002 110.004 110.006 110.008 110.01

Delay(f
1
)

9.88

9.9

9.92

9.94

9.96

9.98

10

10.02

10.04

10.06

10.08
P

ro
b

.
o
f

F
a
ilu

re
(f

2
)

×10 -201 Pareto front

Figure 4.14 Pareto front of a case.

4.3.3 Results

For solving the optimization problem formulated in section 4.2.3, Genetic Algorithm [53] has been
used. The problem has been coded and solved in MATLAB using function gamultiobj() [54]. The initial
configuration parameters can be found in table 4.3. The solution to the above optimization problem
gives multiple Pareto optimal solutions in terms of delay and probability of failure. The Pareto front
can be observed in figure 4.14. To narrow down our search to achieve the appropriate optimal values
of allocation, k-means clustering has been utilized. In this approach, the solutions are kept in three
clusters. The First cluster has values with low delay and high probability of failure. Contrary to that,
the third cluster has values with high delay and low probability of failure. Unlike first and third clusters,
the solutions in the second cluster are not extreme. Hence, a solution from cluster-2 is picked randomly
and the requests from the IoT node to the resources are allocated accordingly.

To verify the proposed allocation strategy, the scenario as per figure 4.15, has been kept under study.
N1, N2 and N3 are three data generating IoT nodes. Processing is required on the generated data.
For entertaining the requests coming from IoT nodes, resources R1, R2 and R3 are available in the
infrastructure. R1 is a dedicated edge resource and it can respond to 100 requests per unit time. It is
immobile and has connectivity via Ethernet. It has redundant power and storage. Hence, the probability
of failure is very low (.01). R3 is a cloud-connected resource. It is highly scalable and can process 500
requests per unit time. The probability of R3’s failure is also very low (.01). Resource R2 is a mobile
node. It is battery powered, connected via WLAN or 4G link. When R2 is mobile, it switches across

45

Table 4.3 Initial parameters used in GA for a multi-objective optimization problem.
Parameter Value Details

CreationFcn @gacreationuniform
Initial population is chosen with uni-
form distribution.

CrossoverFcn @crossoverintermediate
Children are created using weighted
average of parents.

CrossoverFraction 0.8 Next generation population fraction.

DistanceMeasureFcn @distancecrowding,’phenotype’
Measure the distance of individuals in
function space.

FunctionTolerance 10−4
If relative change is less than this
value, the algorithm stops.

MaxGenerations 1800 Maximum iterations.

MutationFcn @mutationadaptfeasible
Random changes in individu-
als depend upon last success-
ful/unsuccessful generation.

PopulationSize 200 Initial population size.

SelectionFcn @selectiontournament
Parents for the next generation are
chosen by a tournament of size 4.

access multiple points. Hence, the reliability of R3 is lesser than R1 and R3. The probability of failure
for R2 is 0.1 and it can process 20 requests per unit time. R1 is installed close to N1 and N2. Therefore,
N1 and N2 receive quick responses for the requests sent to R1. If the requests are sent to R2 or R3, the
time to receive the response increases. Similarly, N3 is closer to R2, so the delay involved in receiving
the responses for R1 & R3 is higher as compared to R2.

The system starts usually by collecting the available resource information. With available resource
information in hand, the EC configures the switches to forward the requests in a RR manner. In the
learning process the system not only learns about the mean time to complete requests and the expected
number of requests from each IoT node but also, it keeps track of the probability of failure of a re-
source using the algorithm 4.3.1. With this information, the application plane solves the multi-objective
optimization problem using GA and forwards the allocation to the EC. The EC receives the optimal
allocations from the application plane and configures the OF switches accordingly. For testing the for-
mulation following two conditions have been considered.

4.3.3.1 Varying probability of failure

In this case, the allocations are observed with a varying probability of failure of resource R2. As
discussed previously, R2 is a mobile resource and it may not be able to process allocated requests in
a timely manner due to conditions such as battery outage, change of access point etc. Hence, it is
necessary to understand the resource allocation changes with a varying probability of failure of resource
R2. The number of expected requests from N1, N2 and N3 are 50, 100, and 30 respectively. The R2’s

46

Figure 4.15 Scenario under test.

probability of failure is varied from 0.1 to 0.9. Figure 4.17 shows the various allocations with increasing
probability of failure of R2.

Intuitively, with the rise in the probability of failure of R2, the EC should forward less number of
requests to R2. Results in figure 4.17 confirm this behaviour. Further, EC transfers the allocations from
R2 to R3. R1 is fully utilized, so there are no request shifts from R2 to R1. Figure 4.16 depicts the
number of allocated requests to R2 and R3 with an increase in R2’s probability of failure. It is clearly
seen that the fall in the number of allocated requests to R2 is equal to allocations added to R3.

4.3.3.2 Varying Number of Expected Requests

As the expected number of requests from various IoT resources may vary over time, application plane
updates EC about optimal allocations for a given time duration. With this information, EC updates the
switch configurations and the SDN switches forward the requests accordingly. In this scenario, the value
of the probability of failure and delay for request completion do not change. Only the expected number
of requests from N1, N2 and N3 vary in given time duration. Figure 4.19 shows the allocated requests
from IoT nodes to resources. These values have been obtained from initial knowledge represented in
figure 4.15.

These results validate our formulation. As R1 is the best available resource, it is allocated the max-
imum number of requests. When total demand is less than or equal to R1’s capacity, all the requests
are assigned to R1 only. Case c and f in figure 4.19 confirm this behaviour. As demand increases and it

47

0 0.2 0.4 0.6 0.8 1

Prob. of Failure of R2

0

10

20

30

40

50

60

70

80

N
o

.
o

f
re

q
u

e
s

ts

Resource R3

Resource R2

Figure 4.16 Probability of failure of R2 and the number of allocated requests.

reaches beyond R1’s capacity, requests are forwarded to R2 and R3. Hence the best available resource
is highly utilized. Figure 4.18 shows resource utilization for the same scenario.

48

Figure 4.17 Number of requests allocated to an IoT node to resource with the varying reliability of R2.
The probability of failure for resources R1, R2 & R3 are (a) [.01 .1 .01] (b) [.01 .3 .01] (c) [.01 .5 .01]
(d) [.01 .7 .01] (e) [.01 .8 .01] (f) [.01 .9 .01]

R1 R2 R3

Resources

0

0.2

0.4

0.6

0.8

1

%
 U

ti
li
z
a
ti

o
n

Figure 4.18 Overall resource utilization in case of variation in the number of expected requests.

49

Figure 4.19 Number of requests allocated to an IoT node to resource for varying expected number of
requests. The requests made from N1, N2 & N3 for respective cases are (a) [50 100 30] (b) [20 80 40]
(c) [10 80 10] (d) [100 100 100] (e) [200 200 200] (f) [0 0 100]

50

Chapter 5

Reliable Landslide Early Warning System - An Application

In many parts of the world including south-east Asia, a lot of landslides occur every year. They
cause heavy loss to human lives and infrastructure. There are a few IoT technologies exist that al-
low landslides’ monitoring to save lives and money but there is a requirement of a reliable Landslide
Early Warning System (LEWS). The system must be reliable in terms of accurate alarm generation and
must not fail in any given situation. This chapter is focused on the development of a Reliable LEWS.
For achieving reliability, Machine Learning (ML)1 is used to analyze the sensed landslide data and to
generate reliable alarms. Along with the reliable alarms, the system must be reliable in terms of its
availability/up-time. The communication between the IoT nodes and the Cloud is vulnerable to link
failure due to various types of disruptions in mountainous regions. In real life scenarios, this connection
loss might hinder the decision making at the Cloud due to the non-reception of needed data at the right
time. This decreases the reliability of LEWS. With reliability, the system must be fault-tolerant as well.
This chapter demonstrate the implementation of reliable data processing so that even if the connection
is lost between the Source/Coordinator Node and the Cloud Server, the data can still be processed and
feedback are obtained. For this, Edge Computing has been proposed as a solution to complement Cloud
Computing. During implementation, the Edge Server has a limited computing and storage resources,
but enough to process and analyze landslide data such as rain-fall, pore pressure, moisture, and displace-
ment, to produce meaningful results similar to the Cloud. The system keeps on working even if there
is a network failure between Edge Server and Cloud Server or Cloud Server crashes. Furthermore, it
improves the availability of processing capabilities by switching to an alternate Edge Server in case of
an Edge failure at a landslide location to make the system fault-tolerant. This system is a considerable
improvement over any existing Landslide Warning Systems. It is very helpful in reliably and efficiently
detecting landslides with a mechanism to deal with faults.

1As it is out of the scope of this thesis, this chapter does not focus on the ML part of the implemented system.

51

5.1 Background

5.1.1 Overview of Landslide

Landslides are one of the most dangerous and destructive natural hazards that cause significant dam-
age to economic objects and human lives. The movement rate of landslides varies from the slow move-
ment of material in millimetres/centimetres range per year to a sudden avalanche of a large quantity of
debris [55].

Figure 5.1 Tangni Landslide at Chamoli-Joshimath Corridor, Rishikesh-Badrinath Highway, Garhwal
Himalaya, Uttarakhand [56]

There are many examples of the negative manifestations of landslides in various regions of India. In-
dia has witnessed ruinous landslides in the last few years. Listing from the year 2000, Amboori landslide
Kerala, Kedarnath landslide Uttarakhand, Malin landslide Maharashtra are among the most destructive
ones where thousands of people lost their lives and some also got missing. The landslide in Chamoli
district of Uttarakhand is also causing huge discomfort and lose. Northwest Himalaya including Ut-
tarakhand, Himachal Pradesh and Jammu & Kashmir has emerged as highest landslide hazard-prone

52

regions according to a 2report submitted in the Parliament of India on July 27, 2016, by the Minister of
State for Earth Sciences, Science and Technology. Bhagirathi valley in the Uttarkashi district, Uttarak-
hand (India) has 235 unstable zones, the largest number among all landslide-prone regions. Every year,
landslides are generally triggered by heavy rainfall in this valley. Uttarakhand state has 24 areas spread
in 344 locations including Bhagirathi valley and Kedarnath township which falls under very unstable
zones. Here, the recurrent landslide problem has been witnessed over the years.

There are mainly two causes for a landslide. First is a natural (inevitable) cause which is beyond
human control and order. Second is human triggered landslide caused by increasing pressure on the
environment in the form of construction work, unlawful mining, heavy machine vibrations in ground and
hill-cutting. All these mentioned activities can cause instability of the soil and slope surface which is the
reason behind slope movement and displacement. Earthquakes, heavy rainfall, groundwater disbalance,
soil erosion are a few factors which affect the stability of the slope naturally. Landslides might often
lead to another natural calamity like floods to further worsen the living conditions.

Figure 5.1 shows the Tangni Landslide for the 3, 4 implementation of LEWS which is situated at
Chamoli-Joshimath Corridor, Rishikesh-Badrinath Highway, Garhwal, Himalaya, Uttarakhand. Cur-
rently, the site is under preparation for the installation of the sensors.

5.1.2 Why LEWS?

Almost any area in the world can experience a landslide. Landslides cannot be stopped at times, be
it a shallow landslide or large landslide. But the tremendous loss to the ecosystem can be somewhat
brought down by employing Landslide Early Warning System (LEWS) which alerts the local people
and administration, prior to the start of a landslide. Landslide monitoring is generally not practiced in
India and an effective warning system is required to help the people get evacuated in such conditions.

Keeping in view the societal and strategic relevance of landslide disasters, the replication of the
LEWS in landslide-prone states will help the respective State Disaster Management authorities in the
landslide risk reduction. It will help the administration to prepare emergency services in advance and
to plan out some strategy to lessen the threat. LEWS is a system which records and analyzes the slopes
changing characteristics in real time and is able to predict the occurrence of landslides with various
warning levels in real-time. Data flow diagram of a LEWS is given in figure 5.2. It shows how various
parts of the LEWS are connected to each other and how the data flows in the system.

Figure 5.3 vividly demonstrates the hardware components and the architecture used for the develop-
ment of LEWS for Tangni Landslide. It includes an IoT Node or a Coordinator Node with the ability

2https://timesofindia.indiatimes.com/city/dehradun/Ukhand-has-maximum-landslide-prone-areas-among-north-
Himalayan-states-claims-min-of-earth-sciences-report/articleshow/53512570.cms

3NMHS funded project Evaluation and Design of Low-Cost Ground Instrumentation with Real Time Monitoring for
the Development of Landslide Early Warning System; Project ID: NMHS/2017-18/MG47/31; Grant: 2.13 Cr.; Weblink:
http://nmhs.org.in/MG 30 2017 18.php

4Author is working on the implementation of the project which involves the developments related to IoT Messaging Pro-
tocol, Database, Machine Learning based Data Analysis and Warning System and Web Interface implementation of LEWS.

53

Figure 5.2 Data Flow in a LEWS

54

Figure 5.3 Hardware used to implement Basic LEWS

to transmit data through GSM/LTE. One Coordinator Node covers and represents a landslide location.
It captures data from a number of Sensors Nodes and the number depends upon the size of the land-
slide as each node is installed at a distance of 30-50 Meters from each other. One Sensor Node is the
collection of three types of sensors that are Displacement Sensor, Pore Pressure Sensor and Moisture
Sensor. Each of the Coordinator Nodes holds a Rain-gauge Sensor for the entire landslide location as it
can measure the rain intensity for a few miles. The Coordinator Node is connected to a Cloud/Central
Server which can receive, store, analyze and display sensed data and notify the subscribers regarding a
landslide situation.

5.1.3 Scope of LEWS

LEWS is focused on decreasing the impact of landslides in hilly areas. As landslide is a natural
hazard and can not be stopped from happening in most of the cases, it is essential to warn people in
its range. So, the scope of this research ranges from learning landslide process and available solution
of landslide warning. Based on that, a reliable and fault-tolerant version of Landslide Early Warning
System is under development and will be tested for different landslide locations.

5.1.4 Why Edge for LEWS?

LEWS requires high reliability and near real-time response for any emergency to alert nearby resi-
dents in time. In the case of a natural disaster like landslide or earthquake, there are high chances of the

55

Figure 5.4 Why Edge Server is Important?

loss of network connectivity between sensors and server. Hence, to generate accurate early warnings for
a possible landslide, computing resources are required to be up and running all the time. In the event of
non-availability of computing resources, the system cannot predict the landslide event and fails. All the
available landslide warning systems lack any mechanism to deal with Cloud failure or communication
failure between IoT node and Cloud Server as shown in figure 5.4. If any such event happens, Coordi-
nator Nodes can not share sensed data with the Cloud. Considering the computation power and storage
capacity of usual Coordinator Nodes, neither they are able to store much of sensed data, nor they can
process the data to generate a warning. Hence, the architecture is highly unreliable. Edge Computing
is emerging as a complement to Cloud Computing to deal with such scenarios. It motivates to resolve
connection failure and reliability issues.

Hence, LEWS is one of the perfectly tailored applications for the implementation of the proposed
solution(s) in this thesis especially in Chapters 2 and 3.

5.2 Reliable LEWS using Edge Computing : Experimental Setup

LEWS is an IoT based landslide monitoring system which consists of data acquisition and analysis
unit to predict the occurrence of landslides with various warning levels in near real-time. The proposed
Reliable LEWS enrols Edge Computing paradigm in its architecture. Figure 5.5 demonstrates the block
diagram and figure 5.6 demonstrates the architecture of LEWS with Edge Computing. The sensors data
is transmitted to a Cloud Server from the Coordinator Node through an Edge Server in the middle.

56

Figure 5.5 Block Diagram of LEWS with Edge Server

The proposed mechanism using Edge Server along with its working and importance for a Reliable
LEWS is explained further in this section. Figure 5.7 exemplifies the proposed architecture for Reliable
LEWS after the inclusion of Edge Server between Coordinator Node and Cloud Server. It also presents
the control and computation devices used for the development of the system. It divides the entire archi-
tecture into three layers namely Cloud Layer, Edge Layer and Extreme Edge/Sensors’ Layer. Further
this section describes the functionality, devices/equipment and communication technologies used on
these layers, as per the laboratory experimental setup.

5.2.1 Cloud Layer

Cloud Layer holds two high-end computer servers clustered together as master-slave. These servers
are powered by 5Ubuntu Server 18.04 LTS as an OS.

Task of Master Server is to receive and transmit data, to and from external devices respectively. It
also hosts the landslide website to display sensed data trends. 6Django framework is used to develop
the landslide website.

5http://releases.ubuntu.com/18.04/
6https://www.djangoproject.com/

57

Figure 5.6 LEWS Architecture with Edge Server

58

Figure 5.7 LEWS implementation with Edge Server

The major task of Slave Server involves storage and computation. It helps in securing data from
unauthorized external access as only Master Server is accessible from outside. 7PostgreSQL DB stores
the sensed data. Major computation task involves training of sensed data for applying Machine Learning
to generate landslide warnings. Model-file is created periodically after receiving new data. A fresh copy
of The Model-file is shared with the Edge Server whenever Cloud Server generates it again.

Each of the servers is equipped with 4 Nvidia GTX 1080 TI 11GB GDDR5X GPUs, 128 GB
RAM, AMD Ryzen Threadripper 1950X Processor, and ASRock X399 Gaming sTR4 SATA 6Gb/s
USB 3.1/3.0 ATX AMD Motherboard. This configuration makes it capable of doing heavy processing
in near real-time.

5.2.2 Edge/Fog Layer

The Edge Server has its own database and processing capacity. The complexity of services provided
by the Edge Server is generally lower in comparison to the Cloud Server. It can be placed at any safe

7https://www.postgresql.org/

59

location near to the Coordinator Node, which is less prone to network and connection failures. The
Edge Server on a landslide location can be located a few metres to a few kilometres away depending
upon the availability of a secure location from where uninterrupted communication can be established
between the Edge and the Cloud. Nearby villages or residential areas are some of the most appropriate
locations for deploying an Edge Server. Edge mostly has lesser computation resources while compared
to the Cloud Server but can generate alert/warning quicker than the Cloud. It is feasible because of the
reduction of communication cost during data transmission through the core network. Even though the
Edge Server is unable to train ML models using the sensed data, it is able to utilize the Cloud generated
model(s) to analyze recent data and initiate warnings for the nearby areas. If the communication between
the Edge and the Cloud is lost, still, the system stays operational due to the Edge Server.

To create an Edge Server, 3 Raspberry Pi 8(RPi) 3B+ are used with WLAN, Ethernet facility and
ability to connect SIM900A GSM to transmit data to the Cloud Server. RPi receive sensors’ data from
the Sensors’ Layer and after prepossessing forward it to the Cloud Server. It can trigger a number of
actuators for the nearby residents such as alarm or traffic lights in case of a landslide situation. It stores
the Modelfile shared by the Cloud Server for generating landslide warning.

5.2.3 Extreme Edge/Sensors’ Layer

Extreme Edge or Sensors’ Layer is implemented using 9NodeMCU that collects data from the Sensor
Nodes and a Rain-gauge sensor located on landslide location. Though, a Sensor Node is the combination
of 3 sensors that are Moisture, Pore-pressure and Displacement Sensors, a dummy data generator is used
during experimentation as these sensors are yet to be deployed on the landslide for our project. There can
be more than one Coordinators connected to the Edge Server but during experimentation 1 NodeMCU
is connected to 1 RPi assuming that each landslide has a coordinator and a dedicated Edge Server as
RPi.

5.2.4 Communication and Data Transmission Technologies

To transmit data between the Edge Server and the Cloud Server, GSM is used for communication
as it is one of the most suitable options for landslide areas. The RPis’ built-in wi-fi is used for the
experiment for transmitting sensed data from the Coordinator Node on Sensors’ Layer.

As far as communication protocols are concerned, the MQTT protocol is used for real-time streaming
of data between NodeMCU at Sensors’ Layer and RPi at Edge Layer. For data transmission between
RPi and Cloud Server, Java Client-Server Socket is implemented.

The codes on NodeMCU and RPi holds the conditions to test the connects and alternate actions in
case of connection fails. For instance, NodeMCU starts searching for an alternate wi-fi connection to
transmit data to the Cloud. For security, RPis matches a key before allowing any new device to connect.

8https://www.raspberrypi.org/documentation/configuration/
9https://www.nodemcu.com/index en.html

60

Similarly, if there is no connection between RPi and Cloud, RPi triggers a python script to access the
Model-file and analyze the incoming sensors’ data.

5.3 Laboratory Experiments : Edge Reliability Test

5.3.1 Case 1: Link Failure between Edge and Cloud

Figure 5.8 LEWS implementation if Cloud Fails or Communication between Edge and Cloud Fails

When the link between the RPi on Edge and the Cloud Server breaks due to any kind of error then
RPi works as the mini-Cloud and completes the processing needs (refer figure 5.8). RPi can manage
light computations, but complex algorithms running on the Cloud such as data training cannot run on
RPi due to its resource constraints.

Cloud continuously runs training and testing procedures on the sensed data, it receives. During ML-
based data training at the Cloud, a Model-file is generated. Cloud refreshes this Model-file on RPi,

61

whenever a new one is available. This file is extremely crucial to analyze data in the absence of the
Cloud. So, whenever the Cloud goes down or the connection between RPi and the Cloud breaks, RPi
utilizes the latest Model-file to process the incoming data from NodeMCU at a lower layer. If after
processing, RPi finds an anomaly, it raises an alarm through actuator for the people in its locality and
further actions can be taken. When the connection to the Cloud is regained then the procedure will be
back to normal and processing will be carried in Cloud. In this way, even if the services from the Cloud
are not accessible, an Edge Server is up and running for desired computations.

5.3.2 Case 2: Link Failure between Edge and Coordinator

Figure 5.9 LEWS implementation if Edge Fails or Communication between Edge and Coordinator Fails

The next and bigger thing to worry about is what would happen when the Edge Server itself fails or
the link between the Edge and Coordinator gets broken. One of such scenarios is shown in figure 5.9.

62

To ensure the reliability at Edge level, the concept of switching and replication is introduced in the
system. As described in the experimental setup, there is an RPi for each of the 3 landslide locations,
which collects the data from the NodeMCU located at that landslide. It is been assumed that for a
landslide location, other RPi(s) are in range as an alternate Edge Server. If that is not the case and no
alternate Edge is in range then this scenario is not different than the one shown in figure 5.4 where
the Coordinator node was the IoT node and if that node fails, the system fails. But, with the proposed
mechanism, that is the worst case scenario and the overall system is considerably beneficial for the
LEWS.

Considering the availability of an alternate RPi in range of the NodeMCU for which its own RPi is
unavailable, it can switch its connection to an alternate RPi through wi-fi scanning and pairing. After
the completion of switching between NodeMCU and alternate RPi, RPi will receive and forward data
from two landslide locations, until the old connections resume. Replication takes place as Cloud shares
the Model-file of the newly connected landslide location to the alternate RPi. Now, this RPi can trigger
actuators for both the landslide locations, it is connected to. Of course, the proposed switching and
replication mechanism is an overhead for the system performance. However, for keeping the system
reliable and running all the time, a small degradation in the system’s performance is acceptable for
LEWS.

5.4 Possible Results: 3 Landslide Locations

During experimentation, it was assumed that there are alternatives available at Edge Layer. That
makes the system availability almost 100%. But, this may not be the case all the time. This section is
dedicated to theoretically demonstrate all the possible scenarios with 3 landslide locations.

The reliability analysis consists of multiple cases which are based on the number of Edge Nodes’
failure at a particular instance. In our experimental setup, we considered the 3 Edge Nodes to offer the
seamless transmission of the sensors’ data to the Cloud Servers. Our analysis recognizes four possible
cases based on the number of Edge Nodes’ failures.

Table 5.1 Cases and respective Number of Edge Node(s) Failures
Case No. of Edge Node Fails

1 0
2 1
3 2
4 3

Evaluations of each case are discussed as follows:

63

5.4.1 Case: 1

In this case, all the 3 Edge Nodes are always available without failure and the user gets access to the
working Edge Node in maximum 1 trial.

• Number of Edge Node Fails = 0

• Number of up/available Edge Nodes = 3

• Number of down/unavailable nodes = 0

• Total Number of Trials = 1

• Number of Failed Trials = 0

Now, we find out the ability to transfer the information or to perform a specific task even in case of
failure of some edges/components.

The probability of availability (At) is defined as

Probability of Availability (At) =
Number of up Edge Nodes

(Number of up Edge Nodes + Number of down Edge Nodes)
(5.1)

So, At =
3

(3 + 0)
= 1

The failure frequency is used to measure the reliability of the proposed system. Failure probability
is defined as:

Failure Probability (Fp) =
Number of failed trials
Total number of trials

(5.2)

So, Fp =
0

1
= 0

The failure frequency is used to measure the reliability of the proposed system. Reliability is defined
as:

Probability of Reliability (R) = 1− Failure Probability(Fp) (5.3)

So, R = 1− Fp = 1− 0 = 1

5.4.2 Case: 2

In this case, two Edge Nodes are always available without failure then the user gets access to the
working Edge Node in maximum 2 trials.

• Number of Edge Node Fails = 1

• Number of up/available Edge Nodes = 2

64

• Number of down/unavailable nodes = 1

Probability of Availability, (At) =
2

(2 + 1)
= 0.66666667 (5.4)

5.4.2.1 Case: 2-a

If the Total Number of Trials = 1 then the Number of Failed Trials = 0

Failure probability, (Fp) =
0

1
= 0 (5.5)

Probability of Reliability, (R) = 1− Fp = 1− 0 = 1 (5.6)

5.4.2.2 Case: 2-b

If the Total Number of Trials = 2 then the Number of Failed Trials = 1

Failure probability, (Fp) =
1

2
= 0.5 (5.7)

Probability of Reliability, (R) = 1− Fp = 1− 0.5 = 0.5 (5.8)

5.4.3 Case: 3

In this case, one Edge Node is always available without failure then the user gets access of working
Edge Node in maximum 1 trial.

• Number of Edge Node Fails = 2

• Number of up/available Edge Nodes = 1

• Number of down/unavailable nodes = 2

Probability of Availability, (At) =
1

(1 + 2)
= 0.33333333 (5.9)

5.4.3.1 Case: 3-a

If the Total Number of Trials = 1 then the Number of Failed Trials = 0

Failure probability, (Fp) =
0

1
= 0 (5.10)

Probability of Reliability, (R) = 1− Fp = 1− 0 = 1 (5.11)

65

5.4.3.2 Case: 3-b

If the Total Number of Trials = 2 then the Number of Failed Trials = 1

Failure probability, (Fp) =
1

2
= 0.5 (5.12)

Probability of Reliability, (R) = 1− Fp = 1− 0.5 = 0.5 (5.13)

5.4.3.3 Case: 3-c

If the Total Number of Trials = 3 then the Number of Failed Trials = 2

Failure probability, (Fp) =
2

3
= 0.66666667 (5.14)

Probability of Reliability, (R) = 1− Fp = 1− 0.66666667 = 0.3333333 (5.15)

5.4.4 Case: 4

In this case, all the Edge Nodes are unavailable then the user unable to access the Edge Node.

• Number of Edge Node Fails = 3

• Number of up/available Edge Nodes = 0

• Number of down/unavailable nodes = 3

Probability of Availability, (At) =
0

(0 + 3)
= 0 (5.16)

If the Total Number of Trials = 3 then the Number of Failed Trials = 3

Failure probability, (Fp) =
3

3
= 1 (5.17)

Probability of Reliability, (R) = 1− Fp = 1− 1 = 0 (5.18)

The availability and reliability in all the discussed cases has been observed and the corresponding
results are summarized in Table 5.2

Figure 5.10 pictorially summaries the comparison of Availability and Reliability for all the possible
cases with 3 Edge Servers used in experimentation. Case 1 achieves the highest probability of avail-
ability and reliability in the experimental setup. Also, average availability i achieved in Case 2 with a
probability of reliability up to 1. The worst case scenario is presented in Case 4 when Edge Nodes are
unavailable for seamless transmission of the sensors’ data to the Cloud Server.

66

Table 5.2 Availability and Reliability Matrix for all the possible Cases with 3 Edge Servers

Case No. of Edge Node Fails Up Nodes Down Nodes Total No. of Trials Number of Failed Trials Availability Failure probability Reliability

1 0 3 0 1 0 1 0 1

2a 1 2 1 1 0 0.66666667 0 1

2b 1 2 1 2 1 0.66666667 0.5 0.5

3a 2 1 2 1 0 0.33333333 0 1

3b 2 1 2 2 1 0.33333333 0.5 0.5

3c 2 1 2 3 2 0.33333333 0.66666667 0.3333333

4 3 0 3 3 3 0 1 0

5.5 Summary

The proposed Reliable LEWS using Edge Computing is expected to convert the whole IoT Cloud
architecture as reliable as possible. Even if the connection to Cloud Server would be down for a cer-
tain period of time, the Edge Server would be readily available for the processing the current incoming
sensed data from the Coordinator Node and raise warning alarms, if required. The system is also ex-
pected to handle Edge Server failure by introducing replication of the Model-files after training and link
switching from the failed Edge to an alternate nearest available Edge Server. In this way, the compu-
tation of the sensed data takes place both at the Cloud and the Edge, according to the circumstances.
Hence, it increases the LEWS’s reliability.

67

Figure 5.10 Comparison of Availability and Reliability for all the possible Cases with 3 Edge Servers

68

Chapter 6

Conclusions

This chapter, concludes this thesis with a summary of contributions and the directions for the future
researches.

6.1 Conclusion

Evolution of Cloud Computing facilitated the development of N number of IoT applications in var-
ious sectors. Many of the recent applications are delay sensitive with high requirements of reliability.
So, latency, reliability and fault-tolerance are some of the major concerns in the IoT-Cloud infrastruc-
ture primarily for the delay sensitive IoT applications. To resolve these issues, solutions are divided into
three parts which are focused on providing reliable services to the IoT applications when either Cloud
resources are unavailable, Edge resources are unavailable or applications require resource allocation at
the edge in dynamic environment.

The first part provides a solution to real-time IoT applications with low latency and high reliability
requirements. A hierarchical Edge-Cloud architecture is presented as an advancement of current IoT
architecture. With the inclusion of multiple layers of processing, applications keep on providing services
to the users even if the resources at higher layers either gets fail or disconnect. Newly introduced
layers work on the edge or the extreme edge of the network and provide near real-time responses to the
IoT devices. So, Edge Computing fixes the issues related to unavailability of high layer computation
resources and latency.

After introducing edge devices with the Cloud, IoT applications can use Edge Servers to get feed-
back. It improves the reliability of the application if the Cloud gets disconnected. However, there can
be a case that any of the serving edge devices may also get unavailable. So, the second part deal with
the reliability and fault-tolerance at the edge of the network. This part ensures that the system is capable
to deal with Edge Servers’ failures. A switching and replication mechanism is used to sort this situation
out. This is helpful in searching and reconnecting to an alternate Edge Server, if available. Simultane-
ously, Cloud shares important information of the IoT application to the alternate serving Edge Server, if
required.

69

The third part presents an Edge Controller that allocates edge computational resources to a large
number of IoT applications in a reliable manner. Due to the unavailability of enough edge resources,
privately owned or any other type of devices are considered to be used, if available. As privately owned
devices are highly dynamic in nature, Edge Controller needs to allocate such devices reliably to the IoT
applications. It is done by prioritizing the available edge resources for the IoT applications.

The proposed reliable and fault-tolerant architecture using Edge Computing is implemented as a part
of Landslide Early Warning System. The efficiency and utility of the proposed mechanisms have been
proved using theoretical analysis and simulations too.

6.2 Future perspectives

As an extension, there is scope to investigate this research work further. Edge Controller has the
potential to be the part of Edge Computing in the near future. Though, its simulation proved its worth,
its real life implementation is required to be done to test its performance and applicability. On the other
hand, until now Edge Servers have been created using existing general purpose devices such as RPis.
To improve the performance of IoT applications using Edge, research is required to be done to develop
application specific edge devices with inbuilt fault tolerance mechanisms.

70

Publications

1. Jitender Grover and Ram Murthy Garimella, ”Concurrency and Synchronization in Structured
Cyber Physical Systems”, book chapter in CyberPhysical Systems: Architecture, Security and
Application, EAI/Springer Innovations in Communications and Computing, Editors: Song Guo,
The Hong Kong Polytechnic University; Hong Kong & Deze Zeng, China University of Geo-
sciences, China, pp. 73-99, 2019. doi. https://doi.org/10.1007/978-3-319-92564-6 5

2. Jitender Grover and Ram Murthy Garimella, ”Optimized Edge Computing and Small-Cell Net-
works”, book chapter in Edge Computing: From Hype to Reality, EAI/Springer Innovations in
Communications and Computing, Editors: Fadi Al-Turjman, Middle East Technical University,
Turkey, pp. 17-31, Nov 2018. doi. https://doi.org/10.1007/978-3-319-99061-3 2

3. Jitender Grover, Garimella Rama Murthy, Reliable and Fault Tolerant IoT-Edge Architecture,
IEEE SENSORS 2018 (a flagship conference of IEEE Sensors Council), Pullman Aerocity, New
Delhi, India, October 28-31, 2018.

4. Jitender Grover, Rhishi Pratap Singh, Garimella Rama Murthy, Reliability based Resource Al-
location in Software Defined Edge Controller for IoT Infrastructure, Poster in IEEE SENSORS
2018 (a flagship conference of IEEE Sensors Council), Pullman Aerocity, New Delhi, India, Oc-
tober 28-31, 2018.

5. Rhishi Pratap Singh, Jitender Grover, Rama Murthy Garimella, Software Defined Cognitive Edge
Controller in IoT Infrastructure, submitted in International Journal of Network Management,
ISSN: 1099-1190.

6. Rhishi Pratap Singh, Jitender Grover, Garimella Rama Murthy, Self Organizing Software De-
fined Edge Controller in IoT Infrastructure, International Conference on Internet of Things and
Machine Learning (IML17), Article No. 31, doi: 10.1145/3109761.3158390, pp. 1-7, Liverpool
John Moores University, United Kingdom, October 17-18, 2017.

7. Gadiraju Divija Swetha, Jitender Grover, Garimella Rama Murthy, Dynamic Channel Allocation
in Small Cells, IEEE 7th International Conference On Reliability, Infocom Technologies And
Optimization (ICRITO’2018), Amity University, Noida, India, August 29-31, 2018.

71

Bibliography

[1] J. Wan and M. Xia, “Cloud-assisted cyber-physical systems for the implementation of industry
4.0,” Mobile Networks and Applications, vol. 22, no. 6, pp. 1157–1158, 2017.

[2] “Cisco visual networking index: Forecast and trends, 20172022,” White Paper, Cisco, Feb. 2019.

[3] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and challenges,” IEEE
Internet of Things Journal, vol. 3, no. 5, pp. 637–646, 2016.

[4] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud computing and emerging it
platforms: Vision, hype, and reality for delivering computing as the 5th utility,” Future Generation
computer systems, vol. 25, no. 6, pp. 599–616, 2009.

[5] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for vm-based cloudlets in
mobile computing,” IEEE Pervasive Computing, vol. 8, no. 4, pp. 14–23, Oct 2009.

[6] R. Mahmud, R. Kotagiri, and R. Buyya, “Fog computing: A taxonomy, survey and future direc-
tions,” in Internet of everything. Springer, 2018, pp. 103–130.

[7] P. Mach and Z. Becvar, “Mobile edge computing: A survey on architecture and computation of-
floading,” IEEE Communications Surveys & Tutorials, vol. 19, no. 3, pp. 1628–1656, 2017.

[8] M. Satyanarayanan, P. Simoens, Y. Xiao, P. Pillai, Z. Chen, K. Ha, W. Hu, and B. Amos, “Edge
analytics in the internet of things,” IEEE Pervasive Computing, vol. 14, no. 2, pp. 24–31, 2015.

[9] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role in the internet of
things,” in Proceedings of the first edition of the MCC workshop on Mobile cloud computing.
ACM, 2012, pp. 13–16.

[10] M. Satyanarayanan, “The emergence of edge computing,” Computer, vol. 50, no. 1, pp. 30–39, Jan
2017.

[11] S. Sardellitti, G. Scutari, and S. Barbarossa, “Joint optimization of radio and computational re-
sources for multicell mobile-edge computing,” IEEE Transactions on Signal and Information Pro-
cessing over Networks, vol. 1, no. 2, pp. 89–103, June 2015.

72

[12] A. M. Khan and F. Freitag, “On participatory service provision at the network edge with commu-
nity home gateways,” Procedia Computer Science, vol. 109, pp. 311–318, 2017.

[13] S. Kim, “Nested game-based computation offloading scheme for mobile cloud IoT systems,”
EURASIP Journal on Wireless Communications and Networking, vol. 2015, no. 1, p. 229, 2015.

[14] F. Samie, V. Tsoutsouras, S. Xydis, L. Bauer, D. Soudris, and J. Henkel, “Distributed qos man-
agement for internet of things under resource constraints,” in Hardware/Software Codesign and
System Synthesis (CODES+ ISSS), 2016 International Conference on. IEEE, 2016, pp. 1–10.

[15] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading for mobile-edge computing
with energy harvesting devices,” IEEE Journal on Selected Areas in Communications, vol. 34,
no. 12, pp. 3590–3605, 2016.

[16] T. X. Tran and D. Pompili, “Joint Task Offloading and Resource Allocation for Multi-Server
Mobile-Edge Computing Networks,” arXiv preprint arXiv:1705.00704, 2017.

[17] Q. Fan and N. Ansari, “Cost aware cloudlet placement for big data processing at the edge,” in 2017
IEEE International Conference on Communications (ICC), May 2017, pp. 1–6.

[18] Z. Qin, G. Denker, C. Giannelli, P. Bellavista, and N. Venkatasubramanian, “A software defined
networking architecture for the internet-of-things,” in Network Operations and Management Sym-
posium (NOMS), 2014 IEEE. IEEE, 2014, pp. 1–9.

[19] F. Slim, F. Guillemin, and Y. Hadjadj-Aoul, “On virtual network functions’ placement in future
distributed edge cloud,” in 2017 IEEE 6th International Conference on Cloud Networking (Cloud-
Net), Sept 2017, pp. 1–4.

[20] S. Sardellitti, G. Scutari, and S. Barbarossa, “Joint optimization of radio and computational re-
sources for multicell mobile-edge computing,” IEEE Transactions on Signal and Information Pro-
cessing over Networks, vol. 1, no. 2, pp. 89–103, 2015.

[21] G. R. Murthy and R. P. Singh, “Time optimization in spectrum sensing: Interesting cases,” in 2017
6th International Conference on Reliability, Infocom Technologies and Optimization (Trends and
Future Directions)(ICRITO). IEEE, 2017, pp. 487–492.

[22] S. K. Datta, C. Bonnet, and J. Haerri, “Fog computing architecture to enable consumer centric
internet of things services,” in 2015 International Symposium on Consumer Electronics (ISCE).
IEEE, 2015, pp. 1–2.

[23] M. Amoon, “A framework for providing a hybrid fault tolerance in cloud computing,” in 2015
Science and Information Conference (SAI). IEEE, 2015, pp. 844–849.

73

[24] T. J. Charity and G. C. Hua, “Resource reliability using fault tolerance in cloud computing,” in
2016 2nd International Conference on Next Generation Computing Technologies (NGCT). IEEE,
2016, pp. 65–71.

[25] N. Mohamed and J. Al-Jaroodi, “A collaborative fault-tolerant transfer protocol for replicated data
in the cloud,” in 2012 International Conference on Collaboration Technologies and Systems (CTS).
IEEE, 2012, pp. 203–210.

[26] Y. Wang and Y. Pan, “Cloud-dew architecture: realizing the potential of distributed database sys-
tems in unreliable networks,” in Proceedings of the International Conference on Parallel and Dis-
tributed Processing Techniques and Applications (PDPTA), 2015, pp. 85–89.

[27] S. Malik and F. Huet, “Adaptive fault tolerance in real time cloud computing,” in 2011 IEEE World
Congress on Services. IEEE, 2011, pp. 280–287.

[28] N. Ivaki, S. Boychenko, and F. Araujo, “A fault-tolerant session layer with reliable one-way mes-
saging and server migration facility,” in 2014 IEEE 3rd Symposium on Network Cloud Computing
and Applications (ncca 2014). IEEE, 2014, pp. 75–82.

[29] Z. Amin, H. Singh, and N. Sethi, “Review on fault tolerance techniques in cloud computing,”
International Journal of Computer Applications, vol. 116, no. 18, 2015.

[30] H. Madsen, B. Burtschy, G. Albeanu, and F. Popentiu-Vladicescu, “Reliability in the utility com-
puting era: Towards reliable fog computing,” in 2013 20th International Conference on Systems,
Signals and Image Processing (IWSSIP). IEEE, 2013, pp. 43–46.

[31] V. Cardellini, V. Grassi, F. L. Presti, and M. Nardelli, “On qos-aware scheduling of data stream
applications over fog computing infrastructures,” in 2015 IEEE Symposium on Computers and
Communication (ISCC). IEEE, 2015, pp. 271–276.

[32] K. C. Okafor, I. E. Achumba, G. A. Chukwudebe, and G. C. Ononiwu, “Leveraging fog computing
for scalable iot datacenter using spine-leaf network topology,” Journal of Electrical and Computer
Engineering, vol. 2017, 2017.

[33] A. Martin, C. Fetzer, and A. Brito, “Active replication at (almost) no cost,” in 2011 IEEE 30th
International Symposium on Reliable Distributed Systems. IEEE, 2011, pp. 21–30.

[34] M. Shen, A. D. Kshemkalyani, and T.-Y. Hsu, “Causal consistency for geo-replicated cloud stor-
age under partial replication,” in 2015 IEEE International Parallel and Distributed Processing
Symposium Workshop. IEEE, 2015, pp. 509–518.

[35] P. Skobelev and D. Trentesaux, “Disruptions are the norm: cyber-physical multi-agent systems for
autonomous real-time resource management,” in International Workshop on Service Orientation
in Holonic and Multi-Agent Manufacturing. Springer, 2016, pp. 287–294.

74

[36] L. F. Bittencourt, J. Diaz-Montes, R. Buyya, O. F. Rana, and M. Parashar, “Mobility-aware appli-
cation scheduling in fog computing,” IEEE Cloud Computing, vol. 4, no. 2, pp. 26–35, 2017.

[37] M. M. Gaber, J. B. Gomes, and F. Stahl, “Pocket data mining,” Big Data on Small Devices. Series:
Studies in Big Data, 2014.

[38] Y. Ai, M. Peng, and K. Zhang, “Edge cloud computing technologies for internet of things: A
primer,” Digital Communications and Networks, 2017.

[39] P. Patil, A. Hakiri, and A. Gokhale, “Cyber foraging and offloading framework for internet of
things,” in Computer Software and Applications Conference (COMPSAC), 2016 IEEE 40th An-
nual, vol. 1. IEEE, 2016, pp. 359–368.

[40] A. Bhattcharya and P. De, “Computation offloading from mobile devices: Can edge devices per-
form better than the cloud?” in Proceedings of the Third International Workshop on Adaptive
Resource Management and Scheduling for Cloud Computing. ACM, 2016, pp. 1–6.

[41] F. Samie, V. Tsoutsouras, L. Bauer, S. Xydis, D. Soudris, and J. Henkel, “Computation offloading
and resource allocation for low-power IoT edge devices,” in Internet of Things (WF-IoT), 2016
IEEE 3rd World Forum on. IEEE, 2016, pp. 7–12.

[42] M. Satyanarayanan, “The emergence of edge computing,” Computer, vol. 50, no. 1, pp. 30–39,
2017.

[43] A. C. Baktir, A. Ozgovde, and C. Ersoy, “How Can Edge Computing Benefit from Software-
Defined Networking: A Survey, Use Cases & Future Directions,” IEEE Communications Surveys
& Tutorials, 2017.

[44] C. Kharkongor, T. Chithralekha, and R. Varghese, “A SDN Controller with Energy Efficient Rout-
ing in the Internet of Things (IoT),” Procedia Computer Science, vol. 89, pp. 218–227, 2016.

[45] Zach Shelby, “Constrained RESTful Environments (CoRE) Link Format,” Internet Re-
quests for Comments, RFC Editor, RFC 6690, August 2012. [Online]. Available:
https://tools.ietf.org/rfc/rfc6690.txt

[46] C. Perkins and H. Harjono, Resource Discovery Protocol for Mobile Computing. Boston, MA:
Springer US, 1996, pp. 219–236. [Online]. Available: https://doi.org/10.1007/978-0-387-34980-
0 22

[47] C. Cabrera, A. Palade, and S. Clarke, “An evaluation of service discovery protocols in the internet
of things,” in Proceedings of the Symposium on Applied Computing. ACM, 2017, pp. 469–476.

[48] J. Quevedo, C. Guimarães, R. Ferreira, D. Corujo, and R. L. Aguiar, “ICN as Network Infrastruc-
ture for Multi-Sensory Devices: Local Domain Service Discovery for ICN-based IoT Environ-
ments,” Wireless Personal Communications, pp. 1–20, 2017.

75

[49] H. Bryhni, E. Klovning, and O. Kure, “A comparison of load balancing techniques for scalable
web servers,” IEEE network, vol. 14, no. 4, pp. 58–64, 2000.

[50] B. Lantz, B. Heller, and N. McKeown, “A Network in a Laptop: Rapid Prototyping for
Software-defined Networks,” in Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics
in Networks, ser. Hotnets-IX. New York, NY, USA: ACM, 2010, pp. 19:1–19:6. [Online].
Available: http://doi.acm.org/10.1145/1868447.1868466

[51] , “intlinprog,” https://in.mathworks.com/help/optim/ug/intlinprog.html.

[52] A. Schrijver, Theory of linear and integer programming. John Wiley & Sons, 1998.

[53] A. Konak, D. W. Coit, and A. E. Smith, “Multi-objective optimization using genetic algorithms:
A tutorial,” Reliability Engineering & System Safety, vol. 91, no. 9, pp. 992–1007, 2006.

[54] , “gamultiobj,” http://in.mathworks.com/help/gads/gamultiobj.html.

[55] S. P. Pradhan, V. Vishal, and T. N. Singh, Landslides: Theory, Practice and Modelling. Springer,
2019, vol. 50.

[56] D. P. Kanungo and S. Sharma, “Rainfall thresholds for prediction of shallow landslides around
chamoli-joshimath region, garhwal himalayas, india,” Landslides, vol. 11, no. 4, pp. 629–638,
2014.

76

