Using Domain Knowledge to Improve Machine Translation in
Indian Languages

Thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science
m
Computational Linguistics by Research

by

Akshat Gahoi
2018114012

akshat.gahoi@research.iiit.ac.in

International Institute of Information Technology

Hyderabad - 500 032, INDIA
June 2023

Copyright © Akshat Gahoi, 2023
All Rights Reserved

International Institute of Information Technology
Hyderabad, India

CERTIFICATE

It is certified that the work contained in this thesis, titled “Using Domain Knowledge to
Improve Machine Translation in Indian Languages” by Akshat Gahoi, has been carried

out under my supervision and is not submitted elsewhere for a degree.

Date Adviser: Prof. Dipti Misra Sharma

To my Grandfather

Acknowledgments

I started my IIIT journey 5 years ago, which had many ups and downs. Throughout my 5
years, I learned a lot and had a fair share of fun with my friends, who are now family to me.

I would like to thank Prof. Dipti Misra Sharma for her support over all these years. She
became my advisor in my 3rd year, but even in the first two years, she helped any CLD student
that went to her with any issues. We can go and talk to her even if we have personal issues, and
she is there to listen. When it comes to research, she helped in opening our thought process for
a research problem. Due to weekly meetings, there were constant discussions, and she always
pushed us to think like a researcher and not just take a problem and start coding around it.
She always cares for the wellbeing of students around her and that made my 5 years quite easy.
After my advisor, I would like to thank Vandan Sir, Arafat Sir, and Pruthwik Sir who helped
me constantly throughout my research projects.

My research partners Akshat and Saransh who are my close friends too made my life easier
in the lab as I shared many of my projects with these two guys. Our discussions on every topic
that Ma’am sent our way made this thesis possible.

I would like to thank my friend group "Daddycated” without whom I can not imagine my
life now. Starting with Anirudh for being the best roommate possible in college and one of the
best guys to share any problem with. Anshul with whom I have almost spent every minute of
my college life. Risubh, Tiwary, Pranav, Karra, Reddy, Duneja, and Mangle, without you guys,
it would have been impossible to get out of this college. Avlok, Mohla, Ista, Shourja, Sumba,
Ainsley, Winter, and Maharana, I know I can’t have fun on that energy level, but thanks for
making my life in college full of entertainment. Tanvi for supporting me in not eating mess
food. Nikki, and Baz, for making my life easier with gaming. Chan and Chaitanya for helping
out whenever I faced any issue related to research.

At the end, I would like to thank my family. My parents and my sister who has supported
me all my life. Jijaji who entered my life when half of my college was over but he made sure he
was there for me whenever I need him. My grandmother whose daily calls helped me overcome
any tension that I had in the day. Phuphaji and Bua whose constant efforts in my education
have resulted in what I am right now. Both of my elder first cousins who made me believe
that all these things can be achieved. Chacha chachi and rest of family whose constant support

made me overcome any challenge that I faced.

Abstract

In this modern world, due to the increased mobility of humans, encountering a foreign
language has become a common challenge for many people around the world. This causes a
language barrier in their regular lives, which makes communication quite difficult. This makes
machine translation a facility that helps people to overcome this language barrier. Research on
machine translation has been going on for many decades, and there are many MT models that
give good-quality translations, but even the best of these models fail to produce quality output
when a domain-specific input is given to them. These models are trained on large general
domain data, which makes their domain-specific translations not up to par. This brings up the
issue of domain adaptation for different areas. For Indian languages, the issue arises with the
lack of domain-specific data and good baseline models. This thesis will try to put forward an
approach to improving the scores of domain-specific translations with efficient use of domain
data.

Before getting into domain adaptation, this thesis will try to understand how a domain
is defined and how domain information is stored in these documents or sentences. For this
study, we will discuss two tasks that will help us to understand the importance of domain
terminologies. The first one discussed fine-grained domain classification as a task. It tries to
get information out of similar domains and what makes those domains different by classifying
an unknown document into a similar set of domains. The other task helps to find domain terms
in a document in an unsupervised manner. It used an improved TextRank approach, where
n-grams are used to get the most important terms in a document. Both of these approaches

helped in understanding domain terms and their importance in defining a domain.

After understanding domains, we detail different approaches done for domain adaptation and
give a comparative analysis of them. We started with a very basic domain adaptation approach
that gave us a good result but proved to be an inefficient task for multiple domains. All
the approaches were for the English-Hindi language pairs, but the basic domain adaptation of
individual domains was also done for the English-Telugu and English-Bengali language pairs.
After multiple experiments, we show in this thesis how we can get better performances in
an efficient manner when we use the domain knowledge of different domains in the task of
domain adaptation. Different approaches will be discussed for all the domains to create different

translation models for our task of domain adaptation.

vi

vii

The work done in this thesis will try to solve the above-mentioned problems and give us
a better understanding of the world of domains by tackling the tasks of fine-grained domain
classification, domain terminology extraction, and, most importantly, efficient domain adapta-

tion.

Contents

Chapter Page
1 Introduction 1
1.1 Overview e e e e 1

1.2 Machine Translation for Indian Languages 1

1.3 Domain Adaptation 2
1.3.1 Domain Identification and Domain Terms 4

1.3.2 Approaches for Domain Adaptation 5

1.4 Thesis Contribution e 6
1.5 Workflow of the Thesis 6

2 Related Work 8
2.1 Approaches for MT in Indian Languages 8
2.1.1 SMT . . . 8

2.1.2 NMT . . 10

2.2 LLMs in Machine Translation 10
2.3 Domain Classification and Domain Term Extraction 12
2.4 Domain Adaptation 14

3 Machine Translation for Indian Languages 16
3.1 Introduction e e e 16
3.2 Transformers and attention for MT 17
3.3 Subword e e 19
3.4 Fairseq Toolkit 20
3.5 Experimental Setup and Training L. 21
3.5.1 Datasets 21

3.5.2 Hyper-parameterso 22

3.5.3 Subword Preprocessing o 22

3.6 Results and Observations e 23
3.7 Discussion e e e e 24
3.8 Conclusion e e 25

4 Domain and Domain Adaptation 26
4.1 Introduction e e e 26
4.2 What is a Domain? 27
4.2.1 Issue with No Domain Adaptation 27

4.2.2 Domain Classification 28

CONTENTS ix

4.2.3 Domain Term Extraction, 29
4.2.3.1 Pre-processing and Data 29
4.23.2 TextRank o 29
4.2.3.3 Implementation 0. 30
4.2.3.4 Results and Evaluation, 31
4.2.3.5 Discussion 32
4.3 Domain Adaptation for Different Domains 33
4.4 Data Extraction e 33
4.4.1 Data Distribution for Each Domain 33
4.4.2 Hyper-parameters L 34
4.5 General Fine-Tuning Results on Bengali and Telugu 35
4.6 Fine-Tuning on Hindi and Creating Domain-Specific Models 36
4.6.1 Discussion 36

4.7 Fine-Tuning on Hindi and Creating Single Models for n Domains(Taken To-
gether) 38
471 Discussion Lo 39

4.8 Fine-Tuning on Hindi and Creating Single Models for n Domains(Stacking One
After Another) 39
4.8.1 Discussion e e e e 40
4.9 Conclusion 40
5 Efficient Domain Adaptation in Indian Languages 41
5.1 Imtroduction e 41
5.2 Using Domain Similarity for Domain Adaptation 42
5.2.1 Sentence Embeddings For Different Domains 42
5.2.1.1 Centroid Distance, 42
5.2.1.2 Unlabelled Clustering of the Domain Data 44
5.2.2 Domain Adaptation and Results 44
5.3 Discussion Lo 46
5.4 Conclusion e 46
6 Conclusion and Future Work oo 47
6.1 Conclusion e 47
6.2 Future Work e 48
6.2.1 Fine-Grained Domain Classification 48
6.2.2 Unsupervised Domain Terminology Extraction 49
6.2.3 Domain Adaptation in Indian Languages 49

Bibliography L 51

Figure

1.1
1.2

2.1
2.2
2.3
2.4
2.5

3.1

3.2

4.1
4.2
4.3
4.4
4.5

5.1
5.2
5.3

List of Figures

Page
Basic SMT Model 3
Different characteristics of a domain o Lo 4
Log-Linear Model for SMT[3] 9
Word-Level SMT (left) Phrase-Level SMT (right)[3] 9
NMT Architecture[60] 11
GNMT Architecture [75] 11
Domain Classification Task L oL 13
Basic Transformer Architecture [70] (left) Scaled Dot-Product Attention which
takes Query, Key, and Value (center) Multi-Head Attention helps to complete
steps in a parallel (right) Lo L o 18
An example of subword 20
Issue without Domain Adaptation 28
An example of TextRank Algorithm 30
n-domain n-model methodo oo Lo 37
n-domain 1-model taken together method 38
n-domain 1-model stacking method o oL 39
Sentence Embeddings on a Small Dataset 42
Sentence Embeddings of the Whole Dataset 43
Clustering Similar Domain method, 45

Table

2.1

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3
4.4
4.5
4.6
4.7

4.8

4.9
4.10
4.11

5.1
5.2
5.3
5.4
9.5
5.6

List of Tables

Page
ATE Datasets 13
Hindi Dataset Distribution o 0. 21
Telugu Dataset Distribution 21
Bengali Dataset Distribution o 00, 22
Number of Subwords for Different Languages 23
Results for English-Hindi Translation 24
Results for English-Bengali and English-Telugu Translation 24
Results for different N-gram Weights 32
Different weights foreachrun o oo o 32
Data Extracted from Different Domains 34
Data Distribution for English-Bengali Information Sheet Data 34
Data Distribution for English-Telugu Information Sheet Data 34
Data Distribution for English-Hindi across different domains 34
Results of Fine-Tuning on Information Sheets and Consent Forms Domain for
English-Telugu 0 o 35
Results of Fine-Tuning on Information Sheets and Consent Forms Domain for
English-Bengali 36
Result of Domain-Specific Fine-Tuning for English-Hindi across different domains 37
Result of Exp-2 Fine-Tuning for English-Hindi across different domains 38

Result of Exp-3 (Stacking) Fine-Tuning for English-Hindi across different domains 40

Distance of Centroid of other Domains from Centroid of Medical Domain 43
Distance of Centroid of other Domains from Centroid of Governance Domain . . 43
Distance of Centroid of other Domains from Centroid of Chemistry Domain . . . 43
Silhouette Score for k=2to k=5. 44
Results of Fine-Tuning on Governance and Corporate Law Together 45
Results of Fine-Tuning on Medical, Information Sheets and Consent Forms and,

Chemistry Together 45

xi

Chapter 1

Introduction

1.1 Overview

In this thesis, we will try to tackle the problem of domain adaptation for domain-specific
translations by studying different approaches to fine-tuning a baseline model over a domain.
These approaches will try to improve the translation quality for each domain. The problem of
domain adaptation arises when a general machine translation model is given a domain-specific
input. Most of the models that are trained on the general domain start giving noisy outputs
for these inputs due to a lack of domain knowledge.

To understand the concept of domain adaptation, we will first try to understand how a
baseline machine translation model is created for different Indian languages and how we identify
what features are used to identify the domain of a phrase or a document. This will help us to
understand how we can reduce the number of models that we are going to adapt when we are
dealing with multiple domains and also to understand low-resource languages and how they
work when it comes to the task of machine translation.

This thesis is mainly divided into three parts. In the first part, we will talk about how we
created baseline models for different Indian languages. This will include a brief introduction to
transformers[70] and what difference different parameters make in different Indian languages.

The second part of the thesis deals with domain knowledge. It will deal briefly with domain
terminologies and how domains are identified. Different basic domain adaptation techniques
will also be discussed here.

The third part of the thesis takes this identified domain knowledge from different domains

and discusses the approach devised to improve the performance of the baseline model.

1.2 Machine Translation for Indian Languages

Language plays an important role in any society. All the ideas and other related information

of a community/region are encoded by the language that is used in that region. It passes on

from generation to generation, which changes the language with time. As a group of people
moves from one place to another, a mode of communication is always needed, resulting in a
change of language for the set of people. If a person does not understand a language that is
being spoken or written around her, she cannot complete their day-to-day activities and fulfill
her basic needs. Here comes the concept of translation, where a person does not need to learn
a language that is foreign to them and just has to understand its meaning and its translation
in a language that is known to her.

Machine translation has become one of the most common applications of NLP and machine
learning. There is no single solution for this task, as it is dependent on different characteristics
of the data used. The first and most important part of this task is the language pair used.
Machine translation as a task becomes quite different for different language pairs. This is
because of the idiosyncrasies of these languages. The quality and quantity of the data used to
determine the output quality change significantly.

Machine translation and the solution to it have changed significantly with time. It started
with a rule-based approach dating back to the 1950s. After some time, basic Statistical Machine
Translation! (SMT)[10] method took over, where a sentence is broken down into phrases. Then,
for each phrase, the most probable translation is identified from the parallel corpora. Another
model is then used to reorder these translated phrases to make a complete sentence in the target
language.

Neural Machine Translation (NMT') comes after it. DeepL and Google Neural Machine Trans-
lation[75] were a few of the starting key milestones. A Sequence-to-Sequence architecture[68]
was introduced to produce basic translations. This is made by RNN/LSTM]15] encoder-decoder
model. A seq2seq model takes the input in the encoder layer sequentially and then tries to pre-
dict the next word in the output according to the probability likelihood.

This was followed by a major breakthrough with the introduction of Transformers[70] and
the concept of attention. A transformer deals with quite a lot of different parts. From positional
encoding to finally getting embeddings from the final softmax layer[73]. With time NMT was
mixed with reinforcement learning (RL) methods, where the BLEU score of the translation
acted as the reward. We will go deep into how transformers are used in machine translation in

Chapter 3.

1.3 Domain Adaptation

Before going into domain adaptation, one has to understand what someone means by “do-
main.” It’s a field or branch to which a particular text or document belongs to. A piece of
text can belong to multiple domains according to the context. Domains can differ from each

other where they are not at all similar, i.e., Medicine and governance are two completely dif-

'https://kantanmtblog.com/2019/04/02/a-short-introduction-to-the-statistical-machine-translation-model/

https://kantanmtblog.com/2019/04/02/a-short-introduction-to-the-statistical-machine-translation-model/

|’ He | ‘ goes ‘ | to | ‘ the | | children | ‘ park

| He | ‘ goes ‘ | to | ‘ the children park

:| \: T :\ [= :| \: o= & fam

& le———| 2l le

[= L= (e

Figure 1.1 Basic SMT Model

ferent domains, and they can also differ on a shallow level, i.e., Artificial Intelligence and Data
Analytics are two different domains under a broader category of Computer Science.

Domain Adaptation comes into play when we want our Machine Translation model, which is
trained on a general dataset, to perform equally well and give great results on different domains.
This challenge is quite common in Machine Translation tasks, as every model faces a challenge
when input is given from an unrelated domain and not that of the general domain that it is
trained on. As the baseline models are created on a wide variety of domains, it becomes a task

to make them perform on a specific topic.

A general idea can be made that domain adaptation is just fine-tuning a model for a spe-
cific domain, but the problem can be approached differently to get better results. A better
understanding of each domain can help us to get better results. These results, obtained by ex-
perimenting with the domain data, make the approach data-centric. Model-centric approaches
in domain adaptation play with the configuration of the model and how one can get the best
out of it.

One of the biggest challenges, when we talk about domain adaptation, is the quality and

quantity of the domain-specific data. This problem is faced in Indian languages, where domain-

specific data is not readily available. For example, one has to collect a lot of medical data,

which is a parallel corpus for any Indian language, to create a medicine domain-specific model
for machine translation. One other challenge is the number of models that are created, i.e.,
one has to optimize the number of models that are being created, as one can not just create
a domain-specific model for every domain out there. So these are the two major challenges in
the case of Indian languages.

When a machine has to understand what a domain is, it has to learn about many different
things related to it. A domain can be identified by the terms that are used in it and how the
language acts in that particular domain, i.e., the style of the language also changes from domain
to domain. This can be seen in the way how it is written or the grammar that is being used.

So the data and these features of a domain contribute most to the task of domain adaptation.

Domain Knowledge

Domain specific

terminologies SRR

Figure 1.2 Different characteristics of a domain

1.3.1 Domain Identification and Domain Terms

Before getting into domain adaptation, one has to first identify the domain of a particular
text. This is a classification task in itself. Domain identification in machine translation helps
when we get an unknown document that we have to translate. After identifying the domain, we
can give the document or the piece of text to that domain-specific machine translation model
and get a better translation. There are many ways to identify the domain of a document, as it
is a classification task. Most of the ways take domain terminologies into account, as the most
important thing that defines a domain or a field is the terms that are used when a document
is written. Experiments are done on BERT embeddings to get the same result.

Domain terms play a very important role in any problem related to domain adaptation.
Domain term extraction from a document is a task of its own. There are many supervised and
unsupervised solutions for the same. A domain can be very terminology intensive, like medical
or corporate law. All these observations can be made linguistically by taking the number of
nouns and verbs used per sentence by each domain. All these linguistic features, like grammar

and the style of the language, also differ among them. For example, when we see a domain

like governance, we see a change in language and how formally each sentence is written for
this domain when compared to a general domain. One such example of a sentence related to
governance domain will be ”"Under the special scheme 2,22,692 house site pattas were issued
from 01 . 01 . 2007 to 31 . 03 . 2010 . Under the regular scheme, 5,01,635 house site pattas
were issued from 01 . 04 . 2006 to 31 . 03 . 2010 .” which can be compared to an example
sentence from a general domain ”So children who have not attended their school reqularly have
less chance of getting a good job.” Like this example, all the domains differ from each other in

many linguistic features, including the style of the language.

1.3.2 Approaches for Domain Adaptation

There are four different approaches that we will be taking to tackle the problem of domain

adaptation:

1. The first one will be the basic approach of fine-tuning for every domain separately, which
will provide us with the results of the most basic approach used for this problem and what

are the issues it creates.

2. The second approach tries to tackle the problem by making only a single model for all
the domains by taking all the domains together.

3. In the third approach, we will still make only a single model, but with domains stacked

over each other instead of taking knowledge of all the domains together.

4. The fourth approach will be our final approach, which will help us to understand how
clustering can be done on similar domains and how their shared knowledge can be used

to improve the translation quality of the output for each domain.

5. Domains can be seen in a hierarchical form where the root is the whole language and
different domains branch out of it. Here, the first layer out of the root is the broadest
category when we think of a language, and the lower we go in the branch, we get shallower
domains that are more interrelated to each other. For example, Biology and Computer
Science are two different domains, but there are finer domains like Cardiology and Osteol-
ogy under Biology and Artificial Intelligence and Software Development under Computer

science.

6. This tells us how we can cluster some similar domains and use the common knowledge
among those domains for domain adaptation. These similarities between different domains

will again come down to knowledge of different domains and their linguistic features.

1.4 Thesis Contribution

This thesis will contribute in the following ways:

1. Through domain classification and domain terminology extraction, this thesis will try to

understand the components of a domain and how a domain is defined.

2. A new approach for domain terminology extraction is introduced. TextRank approach of

unsupervised term extraction is modified to get better terms for a specified domain.

3. A systematic study of domain knowledge will help us to cluster domains on the basis of

similarity and their shared knowledge.

4. Different approaches of domain adaptation for different domains will be discussed, and
using the clustering done for similar domains, an efficient approach for domain adapta-
tion using clustering will be introduced, which will improve the output quality for every

domain.

1.5 Workflow of the Thesis

In this thesis, the discussion will be divided into five chapters. The description of each

chapter is given below:-

e Chapter 1 - It has a brief introduction for all the topics that this thesis is going to cover.
A brief discussion of Machine Translation, Domain Adaptation, and Domain Knowledge

is present in this chapter.

e Chapter 2 - All the related work related to this thesis will be discussed in this chapter. It

will be a short chapter discussing previous work in the related field.

e Chapter 3 - This will cover the basic baseline of Machine Translation for Indian languages,
where the models and their configuration will be discussed in detail. How subwords and
their length affect the results of different Indian languages will also be discussed for the

baseline models.

e Chapter 4 - This chapter will discuss the definition of domain and the basic approaches
of domain adaptation. It will try to cover the same using domain identification and
domain terms and how these make each domain different from the others. All the different
linguistic aspects of each domain will be covered in this chapter. After this, three basic
approaches of domain adaptation will be discussed on the domains that we will be dealing

with, and their issues will be discussed in this chapter.

e Chapter 5 - The domain knowledge will be further discussed using sentence embeddings,
and how we can use it to make domain adaptation better will be discussed in this chapter.
This chapter will discuss how similar domains can be used to make the number of models

and the results of these machine translation models more efficient.

e Chapter 6 will be the conclusion of the thesis, which will discuss all the results that this
thesis achieved and also will try to look into all the future problems that might be solved

using the same.

Chapter 2

Related Work

In this chapter, we will discuss the work which is relevant to machine translation in Indian
Languages, domain terms, and domain adaptation which will help us to understand the following

three chapters of the thesis in a better way.

2.1 Approaches for MT in Indian Languages

There are both SMT (Statistical Machine Translation) and NMT (Neural Machine Trans-
lation) models for the task. We will discuss two approaches in this part and the common

transformer approach over which we are building our baseline model in the next chapter.

2.1.1 SMT

SMT, as described by its name, uses statistics of the source and target sentences to predict
the translations. It uses the Bayes decision rule along with statistical decision theory to give
the best possible translations. It can be explained through the below-given mathematical
expressions, where the translations are calculated through probabilities of the occurrence of

words and the language model created by the target language.

hpest = p(h|€)
= argmaxpp(hle)

= argmazx.p(elh) "Pra(h)

IBM started the research[9] and proposed a detailed study on SMT again once a large corpora
parallel corpus started to become available. This model can also be explained by a log-linear
model, where it uses different feature functions for predicting the translations by the use of

some random variables.

Source Language Text

o

Fre-processing

Models

Glokal Search £ Aaufile h)
Maximize
N % Y
Z AL k) “ 1 A fale i)
=1
Cwerall e and b P Ay Fa(Eait)
Post SrOLERSITNE

T

Target Language Text

Figure 2.1 Log-Linear Model for SMT|3]

Basic SMT models are divided into two types. The first uses basic word-level translation
and then alignment to produce translations. In the second approach, the translation is done on

a phrase level, and this helps to get a better quality translation linguistically.

i 2 3 4 5 & 1 2 3 4
| She | save " i a | wailch ||:| | She | 15 B0 Young || to g0 b0 school ||:|
-;: P . d _
W I o TE—s ¥ —u N
[z 1= (== (=][] (= |[=ms |[otmee][,
i 2 3] i A ! 2 3 4

Figure 2.2 Word-Level SMT (left) Phrase-Level SMT (right)|[3]

In the paper [41], a model was proposed that produced phrase alignment using phrase-
based joint probability. This helped in skipping the step of creating word-level alignment.
The paper[71] restricted the window size of the reordering of phrases during alignment. This
produced better performance results for Chinese-English translations. There is also a different
approach that uses syntax for the SMT model. In the paper[76], the authors proposed a method
of transforming the parse tree of one language to another. This method tried to use the linguistic
features of syntax, like word order.

A new architecture was discussed in [55]. Here they try to solve the morphological and
structural divergence[40]. They used suffix separation and compound splitting to achieve the

same. Through suffix separation, the longest matching suffix is taken from the list of all suffixes.

In compound splitting, all the compound words are divided into their constituents. Both the
phrase-based models and factored models were used as baseline models. Stem from both the

source and target side was used as an alignment factor when factored SMT training was done.

2.1.2 NMT

Basic NMT models * use LSTM][28] for tackling the task of translation. One such architecture
was provided by [56], where the encoder is divided into two layers. Bi-LSTM is present in the
first layer. The second layer has an LSTM. Both the LSTM are basic LSTMs in the decoder.
Residual connections help to put the output of one layer and the input of the next layer
together to make a new input. In the paper [4], the authors claimed that the bottleneck of
quality translation is due to the fixed-length vector that an encoder creates for the decoder to
translate and proposed a model '"RNNSearch’ So they proposed a method where the model
focused on words that are relevant in the source text for predicting the next word and searched
for it on its own. This removed the dependency on the fixed length of the vector and gave better-
quality translations. Focusing on select parts of sentences was extended after the introduction
of attention by the paper [39]. They provided both a global approach where all words were
considered and a local approach where only a select few in a window size is considered, and it
gave state-of-the-art results in WMT 14.

[75] introduced GNMT, which provided faster translation with a better performance. They
introduced beam search, which helps the output to consider all the words in the source text
at the time of translation. Wordpiece and other techniques like length normalization helped
this model to achieve such great performance. Through the paper [14], the authors provided
a comparative study between RNN and Recursive convolutional neural networks. It discussed
how architectures like these perform in different settings and their degrading performance on
the length of the input sentence. Subwords were introduced in the paper [63]. This helped in
removing the issue of out-of-vocabulary words as it considers different subwords in making up
the vocabulary of the data, and subwords can make a new word that is not yet seen by the
model. The issue of large target vocabulary is solved by the paper [29], as the authors proposed
an approach of taking only a subset of large vocabulary on each update. This helped in solving

the issue of large vocabulary and also improving the translation quality in many cases.

2.2 LLMs in Machine Translation

With the introduction of GPT-4[50], one has to talk about different Large Language Models
that are present for Machine Translation. XLM-R[17] is one such model which is developed by

Facebook. They used a corpus of over 100 languages to train a translational model, which helped

'https://galhever.medium.com/neural-machine-translation-with-transformers-69d4bf918299

10

https://galhever.medium.com/neural-machine-translation-with-transformers-69d4bf918299

_, Encoder

i L7 Dgtoder LSTME .

sglayers

GPU3

GPU2
GPUZ

GRUL |

fis — oy =

Figure 2.4 GNMT Architecture [75]

11

GRUI |
GPUzZ |

GRyl |

to get translations for many language pairs. MASS[66] is another such model developed by Mi-
crosoft, which has cross-lingual translation capabilities. mBART[36] was developed by Facebook
AT to handle multiple languages with low resources. It was developed on language-specific em-
beddings, which help it to get good quality translations for all the languages. UniLM[21] was
developed by Microsoft and takes care of translations through multimodal inputs. It can be
used for training multiple tasks at a time which helps in learning the syntactic and semantic
meaning in a better way. GPT-3[11] and GPT-4 are not specifically designed for these tasks
but they can be fine-tuned on the data to get translations of a language pair. All of these
LLMs gave high-quality results on WMT19[6] and WMT20[5|benchmarks and are based on

transformer architecture which will be discussed in the next chapter.

2.3 Domain Classification and Domain Term Extraction

In our fourth chapter, we will talk about domain identification and domain term extraction.
To understand the same, this section will discuss some related work in that direction.

Domain classification? can be treated as a very basic classification problem, but it is one
of the first steps when tackling several other problems. For example, knowing the domain
beforehand can help us to choose the best model from a pool of models if we have a number
of models to choose from to get the best results. Domain term extraction as a task helps us to
define what a domain is as the terms used in a domain become its representation.

This classification problem is tackled through three different types of approaches. These
are machine learning models, a rule-based approach, and third which is a hybrid of both. In
the rule-based approach, linguistic rules are made on the basis of knowledge of the domains,
and that particular language and a rigid structure of rules are made for the same to classify
a text into a particular domain. For domain classification, these rules are generally a list of
words that are made for every domain that we want to classify a document in, and then the
frequency of different terms determines the same. For example, for a domain like Computer
Science, terms like Artificial intelligence, Big data, Machine Learning, etc, will make up the
list. To form better rules which follow more linguistic patterns, a person with vast domain
knowledge is needed.

By the use of supervised machine learning techniques, different associations are learned
between all the data points (domain terms) and their respective labels. For example, an ML
system can be trained to correctly identify the topic of a news article by presenting the model
with thousands or millions of examples from different categories. This learned “knowledge” is
either based on intentionally selected features such as bag-of-words representations or tf-idf[78]
or on properties of the data discovered by the model itself. It can predict the label for unseen

examples as well. Support vector machines, neural networks, and deep learning can be used

*https://www.taus.net/resources/blog/domain-classification-with-natural-language-processing

12

https://www.taus.net/resources/blog/domain-classification-with-natural-language-processing

HEALTHCARE LEGAL

TOURISM PHARMACEUTICAL

.
B™ e

CLASSIFICATION

Figure 2.5 Domain Classification Task

for the same. Authors in [33] used attention weights to classify domains as attention scores for
each word can give very much information about a domain.

On the other hand, when we see unsupervised systems, the training set does not have any
labels which can connect each data point to a domain. Because of this, the model has to learn
all the internal features that are seen in the whole dataset. Clustering is one of the main ways
of doing domain classification, where sentence embeddings of a text are separated according to
different clustering techniques. BERTtopic[25] is one such topic modeling model which helps
in identifying topics using sentence embeddings. Latent Dirichlet Allocation[8] is also one such
thing where patterns among the words are seen to extract the topics out of many documents.
When semi-supervised machine learning ways are discussed, both labeled and unlabeled data
points are taken together.

There are many easy-to-use libraries to carry out the above. Scikit-learn[57] gives many
options to choose from. Different classifier models and different techniques are well documented
and listed to help with the same. When one is using a deep learning technique, it can be carried
out using TensorFlow[1] and PyTorch[54].

Automated Term Extraction takes a domain-specific corpus and tries to get domain-specific
words out of the same. When handling tasks for knowledge discovery, word extraction methods
have the biggest problems with generalization across domains, and there is very less annotated

data for the same. Some of the popular datasets for this task are provided below.

Datasets Number of documents | Number of Words | Number of Terms
GENIA 193 436967 93294

ACL RD-TEC v1.0 | 10922 36729513 82000

ACL RD-TEC v2.0 | 300 33216 6818

RSDO5 12 257029 37985

Table 2.1 ATE Datasets

The unsupervised approach of TextRank will be discussed in detail in Chapter 4. There
are few machine learning and deep learning approaches. In [77] the classifier was made after

extracting features like term frequency with the help of n-grams[12] and stopwords exclusion.

13

The same approach was put forward by the authors of [18], where they experimented with both
linguistic and statistical features. They tried to get information from features like the head of
phrases, nouns, n-gram length, term frequency, and domain frequency before putting the data
into a classifier.

Authors of [7] used word embeddings in domain-specific medical documents. They tried to
stack similar words with similar properties and then use this similarity with a list of technical
terms to extract out domain terminologies. [27] used different BERT models to make a simple
classifier of term prediction. They took sentences as input and used BERT and other models
to predict for each n-gram whether it is a domain term or not, and this became a binary

classification problem that outperformed all the other teams in the task.

2.4 Domain Adaptation

Domain adaptation has been tackled in many different ways in recent years. In most ways,
the paper tries to modify the basic fine-tuning at some level of architecture. It is generally done
in two ways: data-centric and model-centric.

When it comes to data-centric architecture, the best example for multiple domains is [16],
where tags of domains were introduced at the time of fine-tuning. This was first introduced
in [62] where politeness was given as a tag, and translation was changed according to the tags
that were given. The paper [61] discussed three approaches of stacking, concatenating data,
and model ensemble, which help to understand the efficiency of various approaches.

When it comes to model-centric domain adaptation, fine-tuning was first introduced by the
paper [38]. Through this paper, it was introduced that after training on a general domain,
domain adaptation can be done by fine-tuning the same model on a small dataset of an individ-
ual domain. Knowledge distillation was used in the paper [19] to keep the score of the general
domain high even after fine-tuning the model on a domain.

Mixed domain fine-tuning is another technique that is quite talked about in this area. In
this technique, the model is trained on the general domain, and then it is fine-tuned on the
data, which is achieved by mixing the domain-specific data and the general domain data. This
was shown by [19]. It gives faster training than the multi-domain model with better results
than normal fine-tuning on a general domain test set.

One more type of domain adaptation is architecture-centric. Some of the common approaches
are fusion techniques in which, apart from a translation model, an LM model is trained for the
target language, and the result translation is made through the use of both of these models,
which gives a better result for a domain. This was done by [26]. Some other approaches include
the one that we discussed earlier, in which domain is specified while training for all sentences,
which is considered domain control. In a domain discriminator approach, above the encoder, a

domain classifier is built that first verifies the domain and then makes the translations.

14

Using all the above-related work, we tried to discuss four different approaches for domain
adaptation. This will include normal fine-tuning techniques, taking data together, stacking the
knowledge, and creating domain similarity clusters to create the best scores.

The above-mentioned approaches for all three tasks will help to understand how these tasks
have been solved in the previous times. The aim of the next three chapters will be to provide
a new solution for all of these three tasks that are related to domain-specific issues. In the
next chapter, we will discuss on building the baseline NMT models for English-Hindi, English-
Bengali, and English-Telugu language pairs.

15

Chapter 3

Machine Translation for Indian Languages

Machine translation makes it easier for people with different language backgrounds to ac-
cess information and communicate with one another. This is particularly important in global
businesses, where employees, customers, and partners may come from different countries and
speak different languages. Machine translation technology can also help in accessing documents
in different domains such as Science, Technology, Law, Health, etc. It is well known that the
performance of a model trained on generic data drops substantially when a domain-specific
document is passed through it. Our primary goal is to create a domain-adapted model for dif-
ferent domains Before jumping to our task of domain adaptation, our goal was to create a good
baseline model for an Indian language that gives us good results for sentences that belong to a
general domain. There are multiple architectures that deal with training a machine translation
model from scratch, and we will study and use transformers for the same. The aim will be to
develop a baseline model, and the results will be compared to the Himangy model [45][44][46]

so that we can see if our baseline model is giving acceptable scores for an Indian language.

3.1 Introduction

Machine Translation as a task has become one of the biggest challenges for a country like
India, where there are so many languages and the sources for the parallel corpus are very few.
The efficient translation of most of the content available online for any language will help convey
ideas throughout a large and diverse country like India. Machine translation is a critical task in
India, where linguistic diversity proves to be a significant challenge. If we can make an efficient
machine translation system, it can help break down language barriers and make information

more accessible, which is vital in a country as varied as India.

Parallel corpora are the first problem that one faces when dealing with low-resource lan-
guages. Our aim was to get as much corpus as possible for machine translation from various

domains, which can be used further down the line after our baseline model is created.

16

Machine translation can be used to train language models and improve the accuracy of
translations over time. This is particularly useful in industries where terminology and jargon
are constantly evolving, such as the medical, legal, and financial sectors. Machine translation
can be programmed to consider cultural nuances and differences, ensuring that translations
are not only accurate but also appropriate for the target audience. In this chapter, we build

baseline translation models for three Indian languages- Hindi, Bengali, and Telugu.

3.2 Transformers and attention for MT

RNN-based machine translation models gave good baseline models, but they had two ma-
jor limitations. Firstly, they were not able to tackle the problem of long-range context, and
secondly, the dependence of each hidden state on the previous state made it difficult to do
the computation in parallel, and this made the training part inefficient. The decoder in this
architecture was not able to get all the hidden information out of the processed vector that
was made, This issue brings in the concept of attention, where the decoder is able to look at
the whole input sequence before generating a word and get the information accordingly. The
main issue with all the architectures before the introduction of transformers was that the model

worked on the input key-wise individually and not the whole sequence altogether.

In transformers, self-attention[30] is applied between all the words at each step, which helps
to extract information and relation between all the words in the sequence input. The basic

architecture of the same is given below.

The encoder helps in taking each token in a sequence and comparing it with each and every
other word in the same sequence after getting its representation. This gives us an attention
score for each word in a sequence. These scores are treated as the weights which will be
given to a fully connected network to generate a specific representation for each word. These

representations are then used by the decoder to predict every next word in the translation.

So the encoder consists mainly of two things i.e. a self-attention mechanism and a fully
connected feed-forward network. All the other hyper-parameters of the same will be discussed
later in this chapter.

The decoder tries to predict the next word in every step as it has all the information that
is being stored in all hidden states of the encoder. The decoder is mainly divided into three
parts. Two things are similar to the encoder i.e., a fully-connected feed-forward network and
multi-head self-attention. But in the decoder, this attention is added with masking. When
the training is done, it helps to hide the words that have not yet come. So attention score is
calculated among the words which are predicted till that step, and all other words after that
point are masked so that we can hide this information from the decoder. This helps the decoder

to learn the information and not just give out the target sentence again and again.

17

Quitput
Probabilities

Feed
Forward
[} J
/_(_\ | Add & Norm |<\
rUddthom) | (| S
Feed Attention
Forward T Nx
L Scaled Dot-Product Attention Multi-Head Attention
N Add & Norm
r’| Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
) T
— 1)
Positional 3 Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right) v K Q

Figure 3.1 Basic Transformer Architecture [70] (left) Scaled Dot-Product Attention which
takes Query, Key, and Value (center) Multi-Head Attention helps to complete steps in a parallel

(right)

Transformers process the input as a single piece, so the positions of the words in an input can
lose their meaning if not preserved. Here the concept of Positional Encoding[13] was introduced.
This is made up of sine and cosine functions, and it helps to store the index of each and ev-

ery word. This helps both the encoder and decoder to maintain the exact location of each word.

18

To calculate attention ', one needs to get three things :

e A query vector is a word vector and also the representation in the decoder’s hidden states.

e A key vector is for all the words in an input and also the representation in the encoder’s
hidden states.

e A value vector that gives the attention weights in the hidden states of the encoder.

o The attention score can then be calculated between each word using

Attention(Q, K, V') = soft <QKT>V (3.1)

ention(Q, K, V) = softmax .
Vi,

MultiHead(Q, K, V) = Concat(heady, . . ., heady,)W©° (3.2)

At the start, the transformer creates embeddings for each word. After that calculation of
key, query, and value vectors are done to get the attention scores that create a relation between
every word. The decoder then takes the representations generated by the encoder and the last

output word of the decoder to generate the next output word of the translation.

3.3 Subword

This section is being discussed separately because subword tokenization played a huge role in
the score of baseline models for Indian Languages. Byte Pair Encoding[63] (subword tokeniza-
tion) is a technique used so that one can tackle the problem of out-of-vocabulary words. BPE
was initially used as a data compression algorithm for images. With time the idea was adopted
in NLP. Adjacent characters are taken from the text, and the ones with the most frequency
after merging are taken as the list of reduced vocabulary. The idea is that this list can act as a
better generalization, and most of the words can be made by using this list of subwords[72]. So
even if an unknown word is seen by the model, it is not treated as an out-of-vocabulary word.

If there are many subwords, it can increase the complexity of the model. This will show an
effect on the training time and also the results. So the number of subwords becomes a very big
factor for different languages. This is due to the number of merge operations being different in
different languages to form a complete word.

If the number of subwords is kept very less, it can lead to a list that can not form all the words
that are going to be encountered during the training. So that language will face a huge case of
out-of-vocabulary words. If the number of words is increased beyond a certain number, then
the words will start losing their contextual meaning, and languages that have many compound
words will start to get affected. As the properties of Indian Languages change from language

to language, we will see how the length of subwords changes for different languages.

'https://galhever.medium.com/neural-machine-translation-with-transformers-69d4bf918299

19

https://galhever.medium.com/neural-machine-translation-with-transformers-69d4bf918299

Unrelated

] T
relat ed

Figure 3.2 An example of subword

In the figure below, one can see if we have Un, relate, and ed in the list of our subwords.
When the word Unrelated is encountered in a sentence, it can be seen as a word made up of
these different subwords. The generalization part of the subwords can also be seen through
the same as we can see that many words do have these subwords in them, and they will be

recreated using one of these subwords with the others present in the list.

The above-mentioned issue with the subwords will be discussed later in this chapter when

we will discuss baseline models for different Indian Languages.

3.4 Fairseq Toolkit

Fairseq toolkit[51] is being discussed in this thesis as all the approaches discussed related to
machine translation are done using this toolkit. It is an open-source toolkit made for seq-to-seq
models. It is developed by Facebook Al research and can be used for many applications. Some

of its key features are:-

e The main benefit of using this toolkit is the command line support that it provides for

different approaches from training to evaluation.

o It provides optimized training on multiple GPUs, which is a very big advantage for a task
like Machine Translation where a model is trying to learn representations from scratch

from a very big dataset.

o It provides an easy approach for subword tokenization and a modular code base where

we can make our changes according to our approach.

20

3.5 Experimental Setup and Training

In this section, we will discuss all the parameters and the training details for our baseline
machine translation models. We will first talk about the datasets used for all four languages,
i.e., English, Hindi, Bengali, and Telugu. After that, the basic parameters that are set for
training will be discussed, along with what different subword lengths were set for different
languages. Finally, we will have three models which perform decently on a general domain for
machine translation tasks. These models will then be used for domain adaptation and for other

approaches that will be discussed in Chapter 5.

3.5.1 Datasets

Three languages were chosen to create a basic machine translation model from the English
Language. These were Hindi, Telugu, and Bengali. The Hindi dataset was taken from WAT
2021 task [2]. The other two were a result of online scraping and cleaning. The key points

regarding these three datasets were:-

e The dataset used for English-Hindi translations was part of IITP-MT at WAT2021. It
had a total of 3,069,725 parallel sentences.

e These translations were compiled from different datasets, from open subtitles to II'T Bom-

bay dataset[35] it had a diverse list of sources.
o For the Bengali dataset, there were 62,07,556 parallel sentences for creating the baseline.
e For the Telugu dataset, there were 40,29,431 parallel sentences for creating the baseline.

o The test data was kept constant for all three languages,i.e., 2500 sentences.

Number of Sentences | Number of Tokens

Train | 3069364 67454966
Valid | 1500 21528
Test 2500 51536

Table 3.1 Hindi Dataset Distribution

Number of Sentences | Number of Tokens

Train | 4025431 54636143
Valid | 1500 20177
Test 2500 34413

Table 3.2 Telugu Dataset Distribution

21

Number of Sentences | Number of Tokens

Train | 6203056 77357991
Valid | 1500 23988
Test 2500 31322

Table 3.3 Bengali Dataset Distribution

3.5.2 Hyper-parameters

There are many different parameters when it comes to training a transformer a scratch. A

few important ones are discussed below :

e The model was trained for 20 epochs for all three languages. Max tokens were kept as

4000, after which we were facing memory issues.

o Dropout[67] was kept at 0.5 to avoid overfitting on the training data. Attention dropout

was kept at 0.1 for the same reason.

e Dimensionality of the input embeddings for both encoder and decoder was kept as 512.
It was the same for the output. The dimensionality of the feed-forward network was kept
as 2048 for both the encoder and decoder.

e Number of the encoder and decoder attention heads was kept at 8.

o Adam optimizer[34] was used for its less memory usage and adaptive learning rate. Ini-
tially, the learning rate was defined as 0.0005. The loss function used was LabelSmoothed-

CrossEntropy[48], which is a normal cross-entropy loss.

o Warmup(23] was used to make the model more familiar with weights when the training

starts initially. Patience was also used for

o 4 NVidia GeForce 2080 Ti GPUs were used on the college server to perform these training
tasks.

3.5.3 Subword Preprocessing

In preprocessing, subword tokenization was carried out. It helped to break the training data
into characters which can be later used to rebuild words so that we can tackle the problem of
out-of-vocabulary words. For English, Hindi, and Bengali, the number of subwords was kept
at 30,000. But the issue arises as we bring Telugu into account. As Telugu is an agglutinative
language, there are many words that are taken together and form one complete token. So we
discussed different approaches by varying the subword vocabulary size in the Telugu language,

the first one where the number of subwords is same as the other two languages and the second

22

one in which there were only 9000 subwords. This drop in the number of subwords was captured
in the final scores, which help us to understand how different properties of a language can change

the quality of results in machine translation.

Language Number of Subwords
English 30000
Hindi 30000
Bengali 30000

Telugu (Exp-1) | 30000

Telugu (Exp-2) | 9000

Table 3.4 Number of Subwords for Different Languages

3.6 Results and Observations

Testing for all three language pairs was done on 2500 sentences. The metric for testing
was BLEU score[53]. It’s a very common metric in the task of Machine Translation where the
number of matching n-grams between predicted output and reference output is used to give the
score. The higher the score better is the translation quality. Following are the other key details

regarding the results

o Himangy model of Language Technologies Research Center (LTRC) - IIIT Hyderabad
was used to compare results for Hindi. Himangy model is trained on more data, so our

aim is to get comparative results so that we can do domain adaptation on our model.

o FLoRes Dataset[24] was also used to evaluate the models as for Hindi we didn’t want any
bias created by WAT dataset over which it was trained. There were total 1012 sentences

in this test set.

¢ On the WAT test set, our model gave similar results to the Himangy Model and gave
BLEU score of 29.53 in comparison to 31.29. The same was the case with the Flores

dataset, where our model gave a score of 25.63, and Himangy gave 26.56.

¢ Bengali and Telugu didn’t give results as good as Hindi. This is due to the lack of quality
in the training data. Bengali gave a BLEU score of 20.1 and Telugu gave BLEU score of
19.2 .

e The main difference that the subwords bring for Telugu was the jump that it gave from
the first baseline model. When we used 30000 as our number of subwords the score was
15.3 . It jumped to 19.2 when we decreased the number to 9000. This tells us the property

of Telugu is an agglutinative language. Where the words from different categories fuse

23

together to make one token. Breaking the vocab into many subwords was just increasing
the complexity for the model and not helping with the language as the tokens stick

together in this language.

e As Hindi doesn’t follow the same, it gave great results even on 30000 subword length.

Now these models will be used to infer results in other domains.

Model Dataset | BLEU Score
Himangy Model WAT 31.29
English-Hindi Baseline | WAT 29.53
Himangy Model FLoRes 26.56
English-Hindi Baseline | FLoRes 25.63

Table 3.5 Results for English-Hindi Translation

Model BLEU Score

English-Bengali Baseline 20.1

English-Telugu Baseline (Subwords=30000) | 15.3

English-Telugu Baseline (Subwords=9000) 19.2

Table 3.6 Results for English-Bengali and English-Telugu Translation

3.7 Discussion

Before starting the training of the baseline models, it was found that the quantity of data is
a big factor in the quality of output in machine translation. To check the pipeline, the English-
Hindi model was first trained on only 3 lakh sentences. The model was not able to learn
anything and gave a random word as its output. So, the final English-Hindi baseline model was
built on around 3 million sentences. The output quality of the English-Hindi language pair was
high, but when we jumped to English-Telugu, we found out that it was not only the quantity
of data that made the quality of output better as the quantity of English-Telugu sentences was
more than English-Hindi. Different numbers of subword tokenization were discussed to improve
these results. Telugu being an agglutinative language, was not giving good results on a high
number of subwords as the words were getting split into more subwords for the Telugu language
due to its agglutinative nature, and increasing the number of subwords was only increasing the
complexity of the model. We reduced the number of subwords to take the nature of the language
into account. This change in the number of subwords resulted in an improvement in translation
quality.

English-Bengali gave the best quality in the same experimental setup as English-Hindi, but
the difference in the quality for both languages came due to the high quality of the English-Hindi

24

dataset. This quality drop is due to the presence of symbols at the time of subword tokenization.
So this helped us to understand that the translation quality of a machine translation model

depends on the quantity and quality of the dataset along with the nature of a language.

3.8 Conclusion

In this chapter of the thesis, we discussed how to make a machine translation model from
scratch. We did the same for three language pairs,i.e., English-Hindi, English-Bengali, and
English-Telugu. We observed that the English-Telugu model performed differently than the
other two models on a different number of subword tokenization. The one with lesser subwords
was taken as a better model. English-Hindi baseline gave very good results, so most of the
approaches in the next two chapters will be carried out on the same. The other two models
will be used to create a fine-tuned model on a single domain to observe the effects of the same
on these languages. In the next chapter, we will discuss domain knowledge and basic domain
adaptation before going into our approach of domain adaptation in Chapter 4. This will be

done using the knowledge of domain terms and domain identification tasks.

25

Chapter 4

Domain and Domain Adaptation

In this chapter, using the baseline models created in the previous chapter, we will try to
get a basic understanding of domain adaptation. We will define what a domain is and how
domain terminologies play a role in a specific domain. The issues in using the baseline models
will be discussed for a domain-specific translation. To solve this issue, we will discuss two
domain-related tasks: Domain Classification and Domain Term Extraction, which will help
us to understand the basic definition of a domain through its properties. Basic techniques of
domain adaptation will be discussed to help our baseline model to give better performance
on domain-specific translations. Through both of these approaches, we will try to understand
how different domains can affect language, and then we will dive into the discussion related to

domain adaptation in these domains.

4.1 Introduction

As mentioned earlier, when a translation model is trained, it is able to learn basic language
rules and representations, but if the model is given a domain-specific document, the performance
is bound to drop. The goal of these approaches discussed in this chapter is to translate a domain-
specific document with great performance without affecting the performance of other domains.
As the domains start to increase, the complexity of this problem starts increasing.

In this section, we will first discuss the domains and the dataset that we are going to use.
Domain-specific data extraction is also done. Data preparation for different domains was an
important part of the experiment, as there is a lack of parallel data for Indian Languages when
it comes to specific domains. To understand the domain, we will try to extract terminologies
related to each domain. In this chapter, we will discuss an approach that solves the issue of
domain term extraction. The approach is a modified version of the TextRank[42] algorithm,
which is based on the PageRank([52] algorithm. We will also modify the TextRank approach,
which will help us to take the domain knowledge into account while tackling this problem. After

understanding the importance of terms in translation, we will start the discussion related to

26

basic approaches for domain adaptation. Our basic domain adaptation techniques will be able
to solve the problems faced by our baseline model, but we will face some other issues with each

of these techniques. Some important points related to this setup are:

1. The domains that we focused on were: Governance, Chemistry, Artificial Intelli-

gence, Corporate Law, Medical, Information Sheets, and Consent Forms.

2. For English-Bengali and English-Telugu, only Information sheets and consent forms were
used to validate the fine-tuning process. All the other domains were used for English-
Hindi translations. This chapter will try to understand the quality of output after each
approach is discussed and will address the issues in the next approach. We explored three

approaches for domain adaptation :

e Fine-tuning every domain separately, creating n different domains for n different
models, which is inefficient when we address multiple domains, but it helps us to get
domain-specific models.

e In the second approach, we try to create only one model for multiple domains by
taking all the data together.

— The above approach was carried forward by stacking up the domain knowledge
one after the other instead of taking all the domain data together. These ap-
proaches had issues like catastrophic forgetting, which affected the output qual-

ity of earlier domains.

We will look into the questions like What do we mean by “domain” and how domain termi-
nology plays a role in this? After that, we will explain how different approaches can be used to
carry out the task of domain adaptation in Indian languages and what are the different ways

to make domain-specific models and only a single model for all the domains.

4.2 What is a Domain?

A domain is a distinct subset of sentences that belong to a particular field of study. As
every word is given its meaning through embeddings in a model, the sentence embeddings
which we have can be grouped into different domains. So when a model is trying to give better
performance over a domain, it is trying to learn the translations of these embeddings when that

domain is given as its context.

4.2.1 Issue with No Domain Adaptation

When we try to use only a baseline model for a domain-specific task, the main issue that our
model faces is the issue of domain-specific terminologies. One such example of the chemistry

domain can be seen below:

27

English: The separation is based upon the partition coefficients of the volatilized analytes, which means that the time that the volatilized analytes will spend between the
stationary and the mobile phase will decide which compound will be carried faster by the carrier gas.

Baseline Translation: &G 3fWT SfAT - ST favaN®! & fAueH uie W ameivd ¢ forger onf § & o o iR fawdwm @1 opf § & R Sk e =0 & &9 @ g ,
a8 0 BN & a”S 9 R dfe del § g™ A |

Finetune Translation : QUG®RU AIclipd UHIAIZCH & fAHGH qoid X mid giar 8 e onf 3 6 99 wma afia wiferce R oiv wifveliar siaen & 9 ordia & , @5 @@
B 6 aR® 9 gRT Aifie dol W SF Serr Sme |

Figure 4.1 Issue without Domain Adaptation

Our model is able to form a representation for these domain terms after domain adaptation.
Through the next section, we will be able to see how a domain is defined. Through the task of
domain classification using the domain terms, we will show how a domain is defined due to its
terminologies, and through domain term extraction, we will be able to show how under different
domains, terminologies have different properties. Using the embeddings of these terms, we will

propose a new method of domain adaptation.

4.2.2 Domain Classification

On several distinct natural language processing (NLP) benchmarks, the transformer-based
language models have been making encouraging progress. Modern NLP is increasingly using
transfer learning techniques in conjunction with large-scale transformer language models, which
has produced a number of cutting-edge models. The main limitation of a biLSTM is the lack of
parallel training due to its sequential nature. The attention mechanism in transformers takes
care of this issue. This helps in creating better representations in a model. Text-Classification is
a very general task in NLP. This helps in providing the document-level metadata automatically.
We will discuss the task if Fine-Grained Domain Classification. This task deals with domains
that are closely related to each other and lie within a particular domain, for example classifying
between mechanics, relativity, and rotational mechanics inside physics. We will deal with this
task. In this task, a model can get confused between two domains as they are very closely

related to each other.

This approach[22] discusses the use of transformers and provides a comparative study be-
tween BERT[20] and RoBERTa[37] performance for the task of fine-grained domain classifica-
tion. The pre-processing of data proved to be a major difference for a task like fine-grained
classification compared to the coarse-grained one. Shared vocab among the domains was re-
moved along with stopwords which helped in the removal of a lot of terms. Removal of these
terms, which were common in these similar domains, helped the model to differentiate between
the closely related domains. On a blind test corpus, the proposed model gave an F1 score of
0.824. The test was done on 1929 samples, and the model outperformed all the other submitted

models.

28

4.2.3 Domain Term Extraction

Ranking algorithms that use graphs are used quite frequently for ranking/ordering task.
Ranking webpages or even analyzing citations are examples of these tasks. PageRank was
developed by a team at Google and is one such thing that helps rank webpage searches. Global
knowledge is used to make local decisions to make up a graph and get information out of it.
The importance of a node is determined by recursively going through other nodes and gaining
information. This graph-based approach is now applied in other areas as well. In Natural
Language Processing, this has been introduced as TextRank. It is used for different tasks like
summarisation and word sense disambiguation. We will discuss the approach for domain term
extraction and modify the algorithm to get better results. The whole text will be considered
while making this graph.

Through this approach[58], we introduced a new step in the TextRank algorithm. This
helped us to complete the task of domain term extraction in an unsupervised manner. We
consider the fact that domain terms can be multi-word, so we introduced bigrams and trigrams
with a weighted approach to the TextRank algorithm. POS tagging filter was also used to get

better results.

4.2.3.1 Pre-processing and Data

We applied this method to 800 domain-specific documents. This was provided to us by ICON
TermTraction 2020[65]. There were in total four domains: Bio-Chemistry, Communication,
Computer Science, and Law. The aim was to get a list of domain terms out of all these
documents for each domain.

Standard pre-processing was done as an initial step. Documents were tokenized and non-
essential punctuations were removed. POS tagging was an important step in this approach.
Only Nouns and Verbs were kept in the document because it was taken as an assumption that
domain terminologies are either a Noun or a Verb. This helped us to increase the F-1 score

significantly.

4.2.3.2 TextRank

Just like HITS[43], TextRank is a ranking model which is based on graphs. It can be used
to process text and find the most relevant keywords in a document. This algorithm is based on
PageRank.

PageRank is used to find relevant importance among some webpages by ranking all the
webpages linked together by making a graph. All web pages are taken as a directed graph,
where each web page act as a node. If webpage A is linked to Web page B, a directed edge
is considered between A to B. The following formulae are used to assign weights to each node

after constructing the whole graph :

29

S(Vj)

SV =(L-d)+dx 3 o

j€In(v;)

(4.1)

In the above equation, S is the weight of each webpage, and d is the damping factor for a
node. In(V;) and Out(V;) represent all the incoming edges and outgoing edges, respectively,

for anode Vj .

Figure 4.2 An example of TextRank Algorithm

TextRank ! is similar to the PageRank algorithm. Here the nodes are words of a document
instead of webpages. A word graph is created to find important keywords from a document.
Consecutive words are taken to make a directed graph. If a word lies in a window size (that we
provide) of another word, there is a directed edge between those two words. The more frequent
the connection higher will be the weight. The results can be skewed because of many common

words among documents. This made the preprocessing step very important.

4.2.3.3 Implementation

The following steps were taken to extract domain-specific keywords from the documents in

an unsupervised way :

'https://derwen.ai/docs/ptr/explain_algo/

30

https://derwen.ai/docs/ptr/explain_algo/

e Documents were split into sentences on the basis of end-of-sentence punctuations and
then further tokenized using SpaCy tokenizer. Stop words were removed to make the list

of extracted words more specific.

o In the next step, all the sentences were POS tagged for filtering out irrelevant words. The
assumption behind the same was that in any domain, the domain terminologies are either

Nouns or Verbs. So only these two tags were kept to make the list more exclusive.

o From these tokenized sentences, we made a list of Unigrams, Bigrams, and Trigrams, and
each of the n-grams was treated as a different node. We started our experiment with a
window size of 4. So for every n-gram, four words are considered around it. Increasing the
window size to a big number increased the execution time and did not affect the results.

Two unrelated words were also getting an edge due to the larger window size.

e Damping factor was kept at 0.85, which determines how much importance is given to the

weight.

e Once the graph is built, weights are calculated for each node. The weight represents how

important the word is in a document.

e There are many domains where multi-word terms are the domain terminologies. So to
consider this factor, weights were given to Unigram, Bigram, and Trigram nodes i.e. if
we think that the domain contains more bigrams terms, we can change the calculation
just by changing the importance of Unigram, Bigram, and Trigram nodes. This weighting
system was introduced to the TextRank algorithm in this paper. This improved the results

drastically for bigrams and trigrams terms.

o If we have a domain expert, these weights can be played around with to get a better

understanding of Unigram, Bigram, and Trigram distribution.

4.2.3.4 Results and Evaluation

We were given 10 documents from each domain - Bio-Chemistry, Computer Science, Com-
munication, and Law. Three different runs of experiments were done for the same. The weights
for each run are given below.

We returned only 20 results for each document, due to which our recall was low. Increasing
the number of results will increase the recall, but we wanted to stick to only the top 20 terms
for each domain. The low recall was also noticed for domains like Computer science and Bio-
Chemistry, where the length of the documents was greater than the other domains.

Our model attained the best scores in the task for the Law domain. If more experiments are
done with the weights and length of the document, then high scores can be achieved for other

domains as well. For domains having longer documents, lemmatization[32] improved the score

31

Domain Run Precision Recall F-1
Law Runl 0.4 0.32 0.355
Run2 0.266 0.32 0.29
Run3 0.133 0.285 0.181
Communication| Runl 0.25 0.208 0.227
Run2 0.233 0.291 0.259
Run3 0.1 0.125 0.111
Computer Runl 0.251 0.13 0.174
Science Run?2 0.3 0.134 0.185
Run3 0.466 0.152 0.229
Bio Runl 0.501 0.131 0.208
Chemistry Run2 0.3 0.173 0.219
Run3 0.466 0.184 0.264

in Run3 of this approach. The negative impact of lemmatization is on those domains where the

Table 4.1 Results for different N-gram Weights

Runs Bigram Weight | Trigram Weight
Runl 1.8 1.5
Run2 1.8 2.5
Run3 with lemmatization | 1.8 2.5

Table 4.2 Different weights for each run

same root words are used differently in different places.

4.2.3.5 Discussion

From the above two tasks, we found out the following things :

1. By addressing the issue of shared vocabulary in fine-grained domain classification, we
observed how a domain is defined by the terms it uses. Keeping those shared terminologies

aside helped to define a domain without them and helped in the classification of domains

in a better way.

2. When it came to domain terminology identification, we are able to understand how dif-

ferent domains have different properties. The distribution of these terms is different for

different domains.

3. For a domain like law, a lower trigram weight helped in getting the best output. This

shows a lack of trigram of terminologies in this domain.

32

4. For domains like Communication, Computer Science, and Bio-Chemistry, higher trigram
weights helped in the output. This shows us the importance of multiword terms in these

domains.

5. Lemmatization helped in domains like Computer Science and Bio-Chemistry, but it re-
duced the resulting quality a lot in Communication. This shows the use of the same root
word in a different context is more in domains like Communication. On the other hand,
lemmatization helped in reducing similar terms in Computer Science and Bio-Chemistry,

which helped us to extract more domain-related terminologies.

6. Both of these tasks helped us to understand how a domain is defined and the importance

of domain terminologies for each domain.

Now that we have seen that domains are defined by the terms used in the sentences of that
domain, we will try to discuss some basic domain adaptation techniques and what are the issues
with these techniques. Through this knowledge of term embeddings and domain adaptation,

we will propose a new technique of domain adaptation for multiple domains.

4.3 Domain Adaptation for Different Domains

We will start this section with a discussion of data from different domains. As our aim is
to carry out domain adaptation on different domains together, we had to extract some data
from different sources to complete the experiments. This extracted data was augmented to the

already present domain-specific data.

4.4 Data Extraction

Only medical and governance domains were focused on when extracting the data. All the
other data were taken from other sources where domain-specific data was present. Governance
data is extracted from government magazines that discuss different government policies and
IAS coaching center study material related to the same. Medical domain data is extracted from
government medical websites and other information sheets related to different diseases. The

distribution is given in the table below:

4.4.1 Data Distribution for Each Domain

Finally, all the approaches were discussed in six different domains,i.e., Governance, Chem-
istry, Artificial Intelligence, Corporate Law, Medical, Information Sheets, and Consent Forms.
Training points were kept similar for each domain so we don’t face any bias for different do-

mains. The subword tokenization was kept the same as the baseline. For Bengali and Telugu,

33

Domain Number of Sentences
Governance Magazines (Translations created through Himangy) | 11,149

Medical Websites 1000

Medical Information Sheets (Cleaning) 3000

Governance Related PDFs 2000

IAS Study Material 1000

all these data is given below:

Table 4.4 Data Distribution for English-Bengali Information Sheet Data

Table 4.5 Data Distribution for English-Telugu Information Sheet Data

Table 4.3 Data Extracted from Different Domains

Set-Split Number of Sentences
Training Set | 2525
Dev Set 300
Test Set 500

Set-Split Number of Sentences
Training Set | 4722
Dev Set 300
Test Set 500

fine-tuning was done only on the Information Sheets and Consent Forms. The distribution of

Domain Training Set | Dev Set | Test Set
Artificial Intelligence 4762 400 500
Chemistry 4884 300 495
Corporate Law 4807 300 500
Medical 4599 301 500
Governance 4200 354 600
Information Sheets and Consent Forms | 5000 400 490

Table 4.6 Data Distribution for English-Hindi across different domains

Mostly all the parameters were kept the same as the baseline model. The main parameters

are mentioned below:

e The model was fine-tuned for 10 epochs, and the max token was kept as 4000.

4.4.2 Hyper-parameters

34

e Dropout was kept the same as the training phase, i.e., 0.5. The same is the case with

attention dropout at 01.

e Input embeddings of the encoder and decoder had 512 as their dimensionality. Feed-

forward network had a dimensionality of 2048.
o Attention heads for both encoder and decoder were kept as 8.

e Optimizer, initial learning rate, and the loss function remained the same, i.e., Adam,

0.0005, and LabelSmoothedCrossEntropy, respectively.

¢ Fine-tune model was loaded with the same vocabulary and subwords tokenization was
used to tackle the issue of out-of-vocabulary words of new domains. For the same reason,

the same subword list was used at the time of pre-processing the data for the transformer.

4 GPUs were used, and the fine-tuning was done on NVidia GeForce 2080 Ti.

4.5 General Fine-Tuning Results on Bengali and Telugu

We will first check the effects of fine-tuning on Bengali and Telugu languages. Some points

that were noticed during the fine-tuning were :

e The data that we are fine-tuning are consent forms and information sheets of the Medical

area. It is taken at the time of admission or when tests are conducted.

o For Telugu, the Himangy model was also considered in this test set of forms and sheets.
It gave a BLEU score of 20.79.

e BLEU score for Telugu increased by almost 10 points from 15.9 to 25.47.
o For Bengali, this increase was also similar, i.e., from 16.8 to 26.64.

¢ Fine-tuning both models helped us to get a better score than the Himangy model.

Model BLEU Score

Baseline 19.2

Fine-Tuned Model | 25.47

Himangy Model 20.79

Table 4.7 Results of Fine-Tuning on Information Sheets and Consent Forms Domain for

English-Telugu

35

Model BLEU Score

Baseline 16.8
Fine-Tuned Model | 26.64

Table 4.8 Results of Fine-Tuning on Information Sheets and Consent Forms Domain for

English-Bengali

Fine-tuning for English-Bengali and English-Telugu models gave us good-quality outputs on
the domain-specific test set. This shows that for a single domain, fine-tuning proves to be a
successful method to get better quality results. We will carry out the same method in the next
section for 6 different domains for the English-Hindi pair and build on different approaches on

its basis.

4.6 Fine-Tuning on Hindi and Creating Domain-Specific Mod-
els

As mentioned earlier, the first approach is to create n different models for n different domains.
This provides us with domain-specific models for use but is very inefficient for training and
memory as we are making new models for any new domain that we encounter. The results of

the same are as follows:

o Each model is compared with the results of the Himangy Model for every domain. All our
fine-tuned models outperformed the Himangy model except in the domain of Artificial

Intelligence.

e The highest increase is seen in the score of the Medical domain. The score jumped by 24

points.
e On the other hand, Corporate Law had the score increase by 3 points only.

o This approach resulted in us making 6 models for 6 domains. If we increase our domains

with time, this method will become very inefficient.

e In the next approach, we will try another method by creating only a single model for all

the domains.

4.6.1 Discussion

We observed better-quality outputs for each domain and were able to outperform the Hi-
mangy model in most of the cases. But, this is a highly inefficient method as we are increasing

our number of models with every domain, which is not a memory-efficient technique. This

36

i [

Baselin
Model

]

N
M (I [fw
B D D DB

Domains Fi:;:::r:d
Figure 4.3 n-domain n-model method

Domain Himangy | Baseline | Fine-Tune Model(Exp-1)
Artificial Intelligence 40.03 28.22 36.57

Chemistry 27.77 21.8 29.84

Corporate Law 21.18 23.52 27.33

Medical 32.52 21.1 45.21

Governance 44.96 38 50.18

Information Sheets and Consent Forms | 21.7 23.58 41.7

Table 4.9 Result of Domain-Specific Fine-Tuning for English-Hindi across different domains

technique is also highly dependent on the domain classification task. If a document is classified
in the wrong category, its translation quality will be very poor because we have a model for
each domain, and there is a chance that the document is translated using a different model.
The quality of the output after fine-tuning does not outperform the Himangy model in a huge
way, so our aim in the next approach was to tackle the issues that we talked about above and

also increase the quality of the output.

37

4.7 Fine-Tuning on Hindi and Creating Single Models for n
Domains(Taken Together)

Through this method, we take all the domain data together and fine-tune a single model

over it. The results of this approach were worse than single fine-tuning:

o For most of the models, we were able to able to get a better score than the Himangy model.

For the corporate law domain, the score slightly decreased from the baseline model.

e This time, the highest jump was for the Medical domain. The score went from 21.1 to
36.94.

e The results were worse than the last method for every domain, but in this way, we are
able to limit our number of models to 1, which makes this type of domain adaptation

very efficient.

e In the next approach also, we will not use all the domain data together and will try to

stack up the information one after the other and see the results.

E E

B

E E

Baseline
Model

Fine-Tuned
Model

Domains

Figure 4.4 n-domain 1-model taken together method

Domain Himangy | Baseline | Fine-Tune Model(Exp-2)
Artificial Intelligence 40.03 28.22 29.67

Chemistry 27.77 21.8 28

Corporate Law 21.18 23.52 23.26

Medical 32.52 21.22 36.94

Governance 44.96 38 45.26

Information Sheets and Consent Forms | 21.7 23.58 33.3

Table 4.10 Result of Exp-2 Fine-Tuning for English-Hindi across different domains

38

4.7.1 Discussion

Through this method, we were able to tackle the main issues in the first approach. We created
only one model, which made the process memory-efficient, and by this approach, dependence
on domain classification became minimal as all the documents will be translated through only
one model, and misclassification will not affect the translations. There are two issue that arises
in this type of setup. First, the translation quality drops if compared with when each domain
was given individual models. The other issue is whenever a new domain will come, the data
will be augmented with other domain data, and the fine-tuning is done on the baseline model

again. The next method tried to see through these issues.

4.8 Fine-Tuning on Hindi and Creating Single Models for n
Domains(Stacking One After Another)

In this approach, we create a single model only, but instead of taking all the domains together,
we stack the domains one after another on the model and see the results on the domain test

data on each iteration:
o Flores dataset is also taken in this approach as the test set.

o In this method, we faced the issue of catastrophic forgetting[31]. After adding a new layer
of information on the model of a new domain, the translation quality of the domains that
it learned beforehand reduced very much. This is an issue of deep learning where the
model starts to forget old information when it starts to learn new information after each

iteration of fine-tuning.

e This approach is very bad for the domain that is used at the start. As the translation

quality started to degrade, this method was only carried out for six domains.

& ¢ @ @

Baseline

Model E
E =
& & @

Fine-Tuned
Models

Figure 4.5 n-domain 1-model stacking method

39

Domain Base | Gov Gov-Chem | Gov-Chem-AlI | Gov-Chem-AI-Corp-Law | Gov-Chem-AI-CorpLaw-Med
Flores 25.63 | 23.73 | 19.71 18.56 19.97 18.4

Gov 38 50.18 | 35.97 31.07 36.25 34.42

Chem 21.8 20.93 | 30.6 28.41 27.51 26.58

Al 28.22 28.06 | 28.31 35.45 29.42 31.92

Corp-Law | 23.52 | 22.31 | 20.09 17.86 25.72 23.43

Medical 21.1 26.23 | 24.13 23.37 23.66 41.93

Table 4.11 Result of Exp-3 (Stacking) Fine-Tuning for English-Hindi across different domains

4.8.1 Discussion

This approach showed that we can tackle the issue of the introduction of the new domain.
As the domain is stacked upon each other, a new domain can be fine-tuned directly on the
latest model. Through this approach, we faced the issue of catastrophic forgetting. This makes
the model forget the initial domain knowledge that it has learned, and for those domains, the
translation quality drops drastically with every new layer of a domain.

The above three approaches gave us some points to think about. We had to find a way
in between the two approaches,i.e., between having n models among n domains and having a
single model among n domains. We had to find an approach so that we have fewer models,
but our translation quality is increased with the help of similar domains. The next method is
the final approach that we are going to propose for the domain adaptation in English-Hindi
Language Pair. Before going to the approach, the next chapter will discuss how domains can

be similar to each other and how we see which domains are related to which other domains.

4.9 Conclusion

In this chapter, we explored the definition of a domain. Before jumping into domain adap-
tation, we saw how a baseline model is not able to learn the representation of domain-specific
terminologies. To understand it in detail, through the task of fine-grained domain classification,
we see how dependent each domain is on these terms. Through the method of domain term
extraction, we understand how in different domains, these terms have different properties. Both
of these methods can be easily extended to Indian Languages. There are some limitations in
the unsupervised approach to finding out important words, but that can be tackled with better
data and more experimentation with weights of the n-gram and the length of the documents.

We also discussed some basic techniques and the challenges that they put forward. Through
the knowledge of these techniques and domain-related sentence embeddings, we will propose a

new method in the next chapter that will try to solve all of these issues.

40

Chapter 5

Efficient Domain Adaptation in Indian Languages

After setting the background in the previous chapters, this chapter will focus on how to tackle
many domains together when we are doing the task of domain adaptation. The approach will
be discussed on the English-Hindi language pair, and it will use the knowledge of sentence
embeddings that are given to us by the domain terms and help us to get an efficient way to

produce better-quality translations.

5.1 Introduction

Sentence embeddings are representations of a sentence and the meaning that it carries. These
embeddings are calculated using the word embeddings of the words used in those sentences. As
it was seen in the last chapter that a domain is defined by the terms it uses, our approach takes
these sentence embeddings and tries to cluster them in a way so that our machine translation
model can give better translations. The idea behind this approach is that similar domains will
have similar domain-specific vocabulary and will help each other in translations when they are

taken together in a cluster.

We will start by getting these representations and then clustering them on the basis of
distances from the centroid of a domain. After this clustering, we will apply the fine-tuning

approach to get results on these clustered models.

The major question that we will be looking at is how we can use domain knowledge and
get a method that will solve the issues discussed in the last chapter and not create only one
model for all domains or individual models for each domain. We will also see how sentence

embeddings can be used in this task to get good-quality translations for each domain.

41

5.2 Using Domain Similarity for Domain Adaptation

In this approach, we will first discuss how to define similar domains, and will the approach of
grouping similar domains help us in increasing the score of each domain. Sentence embeddings

will be introduced before we start the discussion on our approach to domain adaptation.

5.2.1 Sentence Embeddings For Different Domains

Sentence Transformers from the Hugging Face library|[74] were used to get sentence embed-
dings. 7all-mpnet-base-v2”[59] gives an embedding of size 768, which encodes all the information
regarding the sentence. These embeddings can be used for semantic search[47] and clustering.
t-distributed stochastic neighbor embedding(t-SNE)[69] is used to get these high-dimensional
embeddings to a 2-Dimensional space where we can analyze the same. t-SNE tries to maintain

similarity between two points in two different dimension spaces.

Sentence Embeddings of different domains

80 label

® CHEM

Al

Gav
GENERAL

60

-40

-60

Figure 5.1 Sentence Embeddings on a Small Dataset

Around 30,000 data points were used to plot these sentence embeddings. After plotting these
points, two experiments were conducted on these embeddings. The first one gave us a way to
cluster these domains to get better results. The second approach verified the cluster we made

without taking in labels as input.

5.2.1.1 Centroid Distance

Centroid was calculated for each cluster through all the points. After getting a centroid

for each cluster, those centroids were considered as representations of each domain. Distances

42

Sentence Embeddings of different domains

label
CHEM
avc
corp
Gov
MEDICAL

100

-100

-100 -50 0 50 100

Figure 5.2 Sentence Embeddings of the Whole Dataset

between these centroids were calculated, and domains that are closest to each other were taken

together for domain adaptation. The closest distances are shared in the table below:

Domains Distance

Information Sheets and Consent Forms | 58.2

Chem 85.52
Corp-Law 126.96
Governance 113.14

Table 5.1 Distance of Centroid of other Domains from Centroid of Medical Domain

Domains Distance

Information Sheets and Consent Forms | 79.63

Medical 113.14
Corp-Law 60.19
Chem 71.89

Table 5.2 Distance of Centroid of other Domains from Centroid of Governance Domain

Domains Distance

Information Sheets and Consent Forms | 95.67

Medical 85.52
Corp-Law 123.3
Governance 71.89

Table 5.3 Distance of Centroid of other Domains from Centroid of Chemistry Domain

From the above tables, one can see that Corporate Law and Governance are domains that

are very close to each other. The cluster of the Medical domain is also surrounded by the

43

cluster of Chemistry and Information sheets domains. So now the approach will be to carry out
domain adaptation for these two clusters to see will these common clusters help each to increase
their translation quality and will domains that are separated as Chemistry and Information
Sheets, can be taken together without dropping their translation quality. Before doing domain

adaptation, we are going to verify our cluster through an unsupervised technique of clustering.

5.2.1.2 Unlabelled Clustering of the Domain Data

This is a small step just to see how good centroid distances hold when it comes to clustering.
We took all the domain labels out of the data and tried to do simple Kmeans[49] clustering
where the embeddings are divided into k clusters according to the density around the centroid
clusters that are created. As we have 5 domains in hand, we did clustering from k=5 to k=1, as
we want to get how many models we have to make from 1 to n if we have n domains. Silhouette
score[64] is calculated for each k from 2 to 5. This score gives us the quality of clustering as
it calculates both the intercluster and intracluster distance of data points. Higher the score

better the clustering quality. The scores are given below:

k-value | Silhouette Score
2 0.366

3 0.396

4 0.376

5 0.381

Table 5.4 Silhouette Score for k=2 to k=5

For k=3, we get the best clustering, and when we give back the labels to the clustered data,
we see that the medical domain is clustered with domain sentences of Information Sheets and
Chemistry. The same is the case for the clustering of corporate law and governance. The third
cluster was of general domain points mixed with some data points from all the other domains.
As this was unlabelled clustering, all the clusters had some domain points of all the domains

but the main distribution was as we discussed above.

5.2.2 Domain Adaptation and Results

Two groups were made before doing fine-tuning. First was Governance and Corporate Law.
Second was Medical and Chemistry, along with Information Sheets and Consent Forms. The
results of the same are shown below:

When we look at the first clustered model of Governance and Corporate Law, we see that
common knowledge of these domains has given us the best score for these two domains. This

shows us how different domains can help each other in getting better translations.

44

Baseline

Model

i

=
Tl

_
i

/

Similar Domains
Clustered

F
|

&

Fine-Tuned
Models

Figure 5.3 Clustering Similar Domain method

Governance Test Set | Corporate Law Test Set
Baseline 38.8 24.35
Fine-Tuned Individually | 49.56 27.33
Fine-Tuned Together 45.27 23.26
Fine-Tuned GoCorp 50.73 27.4

Table 5.5 Results of Fine-Tuning on Governance and Corporate Law Together

InfoSheet-Consent Forms Test Set | Medical Test Set | Chemistry Test Set
Baseline 23.58 21.1 21.8
Individually 41.7 45.21 29.84
Together 33.3 36.94 28
Med-Info Sheets+Consent Form 43.73 47.45 23.25
Med-Info Sheets+Consent Form - Chem | 42.31 48.74 30.11

Table 5.6 Results of Fine-Tuning on Medical, Information Sheets and Consent Forms and,

Chemistry Together

In the second cluster model, we see that the Medical domain gets the best result due to

shared knowledge with Information Sheets and Chemistry. As we saw that Information Sheet

45

is far from Chemistry, its scores slightly decreased due to the introduction of Chemistry, but the
decrease is so less that we can argue that’s it better to decrease our models by one by taking
both Information Sheets and Chemistry with Medical than clustering only a single domain
with Medical. The increase in the translation quality other two domains outweighs the slight

decrease in the quality of Information Sheets and Consent Forms.

5.3 Discussion

Through the last approach, we were able to find an efficient method of domain adaptation
for multiple domains. The number of models was reduced from five to two, and we got the best
quality translation through this approach. Domains that were similar to each other helped to
improve the knowledge gained by the model, which resulted in better translations.

If a new domain is introduced, we have to first check in which cluster the domain will lie,
and then it can be grouped together in that cluster. The current approach of calculating the
distance between the centroids be applied to any set of domains to get the best output. As we
saw while comparing the Med-Info Sheets+Consent Form and Med-Info Sheets+Consent Form
- Chem model the quality can be slightly better for a model with a smaller set, but decreasing
the number of models is a very important step. This approach also does not depend on domain
classification very much as a classifier mostly confuses similar domains, and similar domains
are given the same models in this approach so there is less chance of bad quality translation

due to misclassification of a document.

5.4 Conclusion

In this chapter, we used domain knowledge to get the best results out of domain adaptation.
We tried different approaches to get an efficient way of training models where we are not wasting
memory with great scores. We started with n different models and ended up with 2 models at
the end.

The domain adaptation models were based on how close the domains were. This was calcu-
lated through centroids of these domain representations. After getting these two models, we
also saw how we increased the score by using common knowledge among these domains. This
technique can easily be applied to new domains when they are introduced just by calculating

the distance of new domains with models that are built previously.

46

Chapter 6

Conclusion and Future Work

6.1 Conclusion

From the start of this thesis, we tried to tackle the issue of machine translation and domain
adaptation in Indian languages. We mainly focused on the English-Hindi language pair, but
through the baseline and normal fine-tuning on English-Telugu and English-Bengali, we saw
that these approaches can be extended to other Indian languages too. We also tackled the issue
of fine-grained domain classification and domain terminology extraction, which helped us to
understand more about how a domain is defined and how domain terminologies weigh the most
in the same.

Chapter 2 was a brief discussion of work that has been done in the field of domain adaptation
and other domain-related tasks. This chapter gave us a basic understanding of how these tasks
have been tackled in recent times.

In Chapter 3, we started building baseline translation models for three language pairs. The
end goal of this chapter was to get a model that gave comparable results with the Himangy
model, which has been trained on. We achieved the same for all three models with some initial
problems of subword lengths for the Telugu language. It was increased after some experiments
with subword length. The models achieved in this chapter were used for domain adaptation
experiments in future chapters.

Chapter 4 talked about domain adaptation and how it is important for domain-specific
translations. To understand this importance, we first defined a domain. This was defined
through the two experiments of fine-grained domain classification and domain term extraction.
We saw how domain terms are the building blocks of a domain. Domain adaptation experiments
that we did were based on similar domains, and the domain classification on a fine-grained scale
helped us to differentiate between these domains, which are very similar to each other. Apart
from that, an unsupervised experiment related to domain term extraction was done, which
helped us to understand how different domain terms are in different types of domains. This

chapter helped us to understand what it means when we define different domains. After that,

47

we started a discussion on our basic approaches for domain adaptation. We discussed how the
data is distributed throughout the domains. At the start, we tested our fine-tuning by doing it
on English-Telugu and English-Bengali pairs for the domain of Information Sheets and Consent
Forms. After that, our first experiment involved a specific fine-tuned model for each domain.
This presented acceptable results but proved to be quite an inefficient method. Then we did
two experiments on single model domain adaptation, the first being taking all the data together
and the second being stacking the domain one after the other. Taking all the data together did
not give as good results as individual fine-tuning and stacking the domain one after another
resulting in the issue of catastrophic forgetting. The domains that are getting stacked earlier
on were getting forgotten by the model with each iteration. So the aim was to get a way to get
fewer models than the number of domains and have a better performance.

Chapter 5 discusses the new approach that is proposed for domain adaptation across mul-
tiple domains. At the start of the chapter, this was tackled by getting sentence embeddings
representation of each domain and then clustering domains related to their similarity. Through
this, we were able to create a cluster where domain terms from different domains helped in
translations. This helped us not only in reducing the number of models but also giving us the
best results, as similar domains were helping each other in learning better translations. At the
end of the chapter, we got an approach that not only help us to do domain adaptation in a
structured manner but also get the best scores out of it.

This thesis provided three techniques to get results in three different domain-related tasks,

which can be extended to get better results in the future in some different domains.

6.2 Future Work

This thesis discussed fine-grained domain classification, unsupervised domain term extrac-
tion, and domain adaptation as three tasks. All these three tasks can be extended in the

following ways.

6.2.1 Fine-Grained Domain Classification

The approach that was discussed helped in domain classification for domains that are closely
related to each other. The word embeddings that were used to differentiate between similar
domains were the key to getting better results. If word embeddings of good quality for all
Indian Languages can be made, this approach can be extended to all Indian Languages easily.
Better embeddings will help in distinguishing the uncommon knowledge better between similar
domains and getting higher scores. The technique of removing common knowledge between

sentences can help in some other NLP tasks also.

48

6.2.2 Unsupervised Domain Terminology Extraction

This method also can be easily extended to Indian Languages as it is an unsupervised
approach and does not depend on sentence embedding quality and other data-related issues.
Apart from Indian languages also, this approach can be easily used for other languages too. The
issue here arises with the introduction of n-grams, and that has to be experimented with for
different languages due to the different structures of each language. Apart from that, there can
be a study on achieving the best n-gram weights automatically by studying all the documents

of a domain.

6.2.3 Domain Adaptation in Indian Languages

The method discussed in the last chapter can be used for different language pairs. Finding
data from different domains and the availability of baseline models will be a challenge for this
task for different language pairs. Once both of them are available, this clustering method can
be applied without any issue. Apart from that, the technique of getting domain clusters can
be improved to see if there is any other way to group these domains to get even better results.

Better distribution of these clusters will make our results better for each translation.

49

Related Publications

1. Saransh Rajput, Akshat Gahoi , Dipti Mishra Sharma N-Grams TextRank A Novel
Domain Keyword Extraction Technique. Proceedings of the 17th International

Conference on Natural Language Processing (ICON): TermTraction 2020.

Other Publications

1. Akshat Gahoi, Akshat Chhajer, Dipti Mishra Sharma Fine-grained domain clas-
sification using Transformers. Proceedings of the 17th International Conference on
Natural Language Processing (ICON): TechDOfication 2020 Shared Task.

50

Bibliography

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving,
M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker,
V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng. Tensorflow: A system for large-scale
machine learning. In 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16), pages 265-283, 2016.

[2] R. Appicharla, K. K. Gupta, A. Ekbal, and P. Bhattacharyya. IITP-MT at WAT2021: Indic-
English multilingual neural machine translation using Romanized vocabulary. In Proceedings of the
8th Workshop on Asian Translation (WAT2021), pages 238-243, Online, Aug. 2021. Association for
Computational Linguistics.

A. Babhulgaonkar and S. Bharad. Statistical machine translation. pages 62-67, 10 2017.

ESCS)

D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align and

translate, 2016.

[5] L. Barrault, M. Biesialska, O. Bojar, M. R. Costa-jussa, C. Federmann, Y. Graham, R. Grund-
kiewicz, B. Haddow, M. Huck, E. Joanis, T. Kocmi, P. Koehn, C.-k. Lo, N. Ljubesi¢, C. Monz,
M. Morishita, M. Nagata, T. Nakazawa, S. Pal, M. Post, and M. Zampieri. Findings of the 2020
conference on machine translation (WMT20). In Proceedings of the Fifth Conference on Machine
Translation, pages 1-55, Online, Nov. 2020. Association for Computational Linguistics.

[6] L. Barrault, O. Bojar, M. R. Costa-jussa, C. Federmann, M. Fishel, Y. Graham, B. Haddow,
M. Huck, P. Koehn, S. Malmasi, C. Monz, M. Miiller, S. Pal, M. Post, and M. Zampieri. Findings
of the 2019 conference on machine translation (WMT19). In Proceedings of the Fourth Conference
on Machine Translation (Volume 2: Shared Task Papers, Day 1), pages 1-61, Florence, Italy, Aug.
2019. Association for Computational Linguistics.

[7] M. Bay, D. Brunef, M. Herold, C. Schulze, M. Guckert, and M. Minor. Term extraction from
medical documents using word embeddings. In 2020 6th IEEE Congress on Information Science
and Technology (CiSt), pages 328-333, 2020.

[8] D. Blei, A. Ng, and M. Jordan. Latent dirichlet allocation. volume 3, pages 601-608, 01 2001.

[9] P.F.Brown, S. A. Della Pietra, V. J. Della Pietra, and R. L. Mercer. The mathematics of statistical

machine translation: Parameter estimation. Computational Linguistics, 19(2):263-311, 1993.

o1

[10]

[11]

[17]

(18]

P. F. Brown, V. J. D. Pietra, S. A. D. Pietra, and R. L. Mercer. The mathematics of statistical
machine translation: Parameter estimation. Comput. Linguist., 19(2):263-311, jun 1993.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh,
D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess,
J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei. Language models
are few-shot learners, 2020.

W. Cavnar and J. Trenkle. N-gram-based text categorization. Proceedings of the Third Annual
Symposium on Document Analysis and Information Retrieval, 05 2001.

P.-C. Chen, H. Tsai, S. Bhojanapalli, H. W. Chung, Y.-W. Chang, and C.-S. Ferng. A simple and
effective positional encoding for transformers, 2021.

K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio. On the properties of neural machine
translation: Encoder-decoder approaches, 2014.

K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio.
Learning phrase representations using rnn encoder-decoder for statistical machine translation, 2014.
C. Chu, R. Dabre, and S. Kurohashi. An empirical comparison of domain adaptation methods
for neural machine translation. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), pages 385-391, Vancouver, Canada, July
2017. Association for Computational Linguistics.

A. Conneau, K. Khandelwal, N. Goyal, V. Chaudhary, G. Wenzek, F. Guzméan, E. Grave, M. Ott,
L. Zettlemoyer, and V. Stoyanov. Unsupervised cross-lingual representation learning at scale, 2020.
M. Conrado, T. Pardo, and S. Rezende. A machine learning approach to automatic term extraction
using a rich feature set. In Proceedings of the 2013 NAACL HLT Student Research Workshop, pages
1623, Atlanta, Georgia, June 2013. Association for Computational Linguistics.

P. Dakwale and C. Monz. Fine-tuning for neural machine translation with limited degradation
across in- and out-of-domain data. In Proceedings of Machine Translation Summit XVI: Research
Track, pages 156-169, Nagoya Japan, Sept. 18 — Sept. 22 2017.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding, 2019.

L. Dong, N. Yang, W. Wang, F. Wei, X. Liu, Y. Wang, J. Gao, M. Zhou, and H.-W. Hon. Unified
language model pre-training for natural language understanding and generation, 2019.

A. Gahoi, A. Chhajer, and D. Mishra Sharma. Fine-grained domain classification using transform-
ers. In Proceedings of the 17th International Conference on Natural Language Processing (ICON):
TechDOfication 2020 Shared Task, pages 31-34, Patna, India, Dec. 2020. NLP Association of India
(NLPAI).

02

23]

[24]

[30]

[31]

32]

A. Gotmare, N. S. Keskar, C. Xiong, and R. Socher. A closer look at deep learning heuristics:
Learning rate restarts, warmup and distillation, 2018.

N. Goyal, C. Gao, V. Chaudhary, P.-J. Chen, G. Wenzek, D. Ju, S. Krishnan, M. Ranzato, F. Guz-
man, and A. Fan. The flores-101 evaluation benchmark for low-resource and multilingual machine
translation, 2021.

M. Grootendorst. Bertopic: Neural topic modeling with a class-based tf-idf procedure, 2022.

C. Gulcehre, O. Firat, K. Xu, K. Cho, L. Barrault, H.-C. Lin, F. Bougares, H. Schwenk, and
Y. Bengio. On using monolingual corpora in neural machine translation, 2015.

A. Hazem, M. Bouhandi, F. Boudin, and B. Daille. TermEval 2020: TALN-LS2N system for
automatic term extraction. In Proceedings of the 6th International Workshop on Computational
Terminology, pages 95-100, Marseille, France, May 2020. European Language Resources Associa-
tion.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9:1735-80, 12
1997.

S. Jean, K. Cho, R. Memisevic, and Y. Bengio. On using very large target vocabulary for neural
machine translation, 2015.

B. Jung, Y. Mukuta, and T. Harada. Grouped self-attention mechanism for a memory-efficient
transformer, 2022.

P. Kaushik, A. Gain, A. Kortylewski, and A. Yuille. Understanding catastrophic forgetting and
remembering in continual learning with optimal relevance mapping, 2021.

D. Khyani and S. B S. An interpretation of lemmatization and stemming in natural language
processing. Shanghai Ligong Dazue Xuebao/Journal of University of Shanghai for Science and
Technology, 22:350-357, 01 2021.

J.-K. Kim and Y.-B. Kim. Supervised domain enablement attention for personalized domain clas-
sification. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, pages 894-899, Brussels, Belgium, Oct.-Nov. 2018. Association for Computational Lin-
guistics.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization, 2017.

A. Kunchukuttan, P. Mehta, and P. Bhattacharyya. The IIT Bombay English-Hindi parallel corpus.
In Proceedings of the Eleventh International Conference on Language Resources and FEvaluation
(LREC 2018), Miyazaki, Japan, May 2018. European Language Resources Association (ELRA).
Y. Liu, J. Gu, N. Goyal, X. Li, S. Edunov, M. Ghazvininejad, M. Lewis, and L. Zettlemoyer.
Multilingual denoising pre-training for neural machine translation, 2020.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and
V. Stoyanov. Roberta: A robustly optimized bert pretraining approach, 2019.

93

(38]

[42]

[45]

=
it

=
X,

i~

M.-T. Luong and C. Manning. Stanford neural machine translation systems for spoken language
domains. In Proceedings of the 12th International Workshop on Spoken Language Translation:
Evaluation Campaign, pages 76—79, Da Nang, Vietnam, Dec. 3-4 2015.

M.-T. Luong, H. Pham, and C. D. Manning. Effective approaches to attention-based neural machine
translation, 2015.

K. Manger. Morphological divergence in hindinepali language pair. 03 2023.

D. Marcu and W. Wong. A phrase-based, joint probability model for statistical machine translation.
In Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing -
Volume 10, EMNLP ’02, page 133-139, USA, 2002. Association for Computational Linguistics.

R. Mihalcea and P. Tarau. TextRank: Bringing order into text. In Proceedings of the 2004
Conference on Empirical Methods in Natural Language Processing, pages 404-411, Barcelona, Spain,
July 2004. Association for Computational Linguistics.

A. Mirzal and M. Furukawa. A method for accelerating the hits algorithm paper: A method for
accelerating the hits algorithm. Journal of Advanced Computational Intelligence and Intelligent
Informatics, 14, 09 2009.

V. Mujadia and D. Sharma. Low resource similar language neural machine translation for Tamil-
Telugu. In Proceedings of the Sixth Conference on Machine Translation, pages 288-291, Online,
Nov. 2021. Association for Computational Linguistics.

V. Mujadia and D. Sharma. The LTRC Hindi-Telugu parallel corpus. In Proceedings of the
Thirteenth Language Resources and FEwvaluation Conference, pages 3417-3424, Marseille, France,
June 2022. European Language Resources Association.

V. Mujadia and D. M. Sharma. English-Marathi neural machine translation for LoResMT
2021. In Proceedings of the 4th Workshop on Technologies for MT of Low Resource Languages
(LoResMT2021), pages 151-157, Virtual, Aug. 2021. Association for Machine Translation in the
Americas.

E. Mikela. Survey of semantic search research. 07 2008.

R. Miiller, S. Kornblith, and G. Hinton. When does label smoothing help?, 2020.

S. Na, L. Xumin, and G. Yong. Research on k-means clustering algorithm: An improved k-means
clustering algorithm. In 2010 Third International Symposium on Intelligent Information Technology
and Security Informatics, pages 63—67, 2010.

OpenAl. Gpt-4 technical report, 2023.

M. Ott, S. Edunov, A. Baevski, A. Fan, S. Gross, N. Ng, D. Grangier, and M. Auli. fairseq: A fast,
extensible toolkit for sequence modeling, 2019.

L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking : Bringing order
to the web. In The Web Conference, 1999.

o4

[53]

[54]

[58]

[64]

[65]

K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. Bleu: a method for automatic evaluation of
machine translation. In Proceedings of the 40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311-318, Philadelphia, Pennsylvania, USA, July 2002. Association for
Computational Linguistics.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style, high-performance deep
learning library, 2019.

R. N. Patel, P. B. Pimpale, and S. M. Statistical machine translation for indian languages: Mission
hindi, 2016.

A. Pathak and P. Pakray. Neural machine translation for indian languages. Journal of Intelligent
Systems, 28(3):465-477, 2019.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, A. Miiller,
J. Nothman, G. Louppe, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and Edouard Duchesnay. Scikit-learn: Machine learning in python,
2018.

S. Rajput, A. Gahoi, M. Reddy, and D. Mishra Sharma. N-grams TextRank a novel domain
keyword extraction technique. In Proceedings of the 17th International Conference on Natural
Language Processing (ICON): TermTraction 2020 Shared Task, pages 9-12, Patna, India, Dec.
2020. NLP Association of India (NLPATI).

N. Reimers and I. Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks,
2019.

K. Revanuru, K. Turlapaty, and S. Rao. Neural machine translation of indian languages. 11 2017.
H. Sajjad, N. Durrani, F. Dalvi, Y. Belinkov, and S. Vogel. Neural machine translation training in
a multi-domain scenario, 2018.

R. Sennrich, B. Haddow, and A. Birch. Controlling politeness in neural machine translation via side
constraints. In Proceedings of the 2016 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pages 35—40, San Diego, California,
June 2016. Association for Computational Linguistics.

R. Sennrich, B. Haddow, and A. Birch. Neural machine translation of rare words with subword
units, 2016.

K. R. Shahapure and C. Nicholas. Cluster quality analysis using silhouette score. In 2020 IEEE 7th
International Conference on Data Science and Advanced Analytics (DSAA), pages 747-748, 2020.
D. M. Sharma, A. Ekbal, K. Arora, S. K. Naskar, D. Ganguly, S. L, R. Mamidi, S. Arora, P. Mishra,

and V. Mujadia, editors. Proceedings of the 17th International Conference on Natural Language

95

[66]

(67]

[74]

Processing (ICON): TermTraction 2020 Shared Task, Patna, India, Dec. 2020. NLP Association of
India (NLPAI).

K. Song, X. Tan, T. Qin, J. Lu, and T.-Y. Liu. Mass: Masked sequence to sequence pre-training
for language generation, 2019.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A sim-
ple way to prevent neural networks from overfitting. Journal of Machine Learning Research,
15(56):1929-1958, 2014.

I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks, 2014.
L. van der Maaten and G. Hinton. Visualizing data using t-sne. Journal of Machine Learning
Research, 9(86):2579-2605, 2008.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polo-
sukhin. Attention is all you need, 2017.

S. Vogel. Smt decoder dissected: word reordering. In International Conference on Natural Language
Processing and Knowledge Engineering, 2003. Proceedings. 2003, pages 561-566, 2003.

C. Wang, K. Cho, and J. Gu. Neural machine translation with byte-level subwords, 2019.

M. Wang, S. Lu, D. Zhu, J. Lin, and Z. Wang. A high-speed and low-complexity architecture for
softmax function in deep learning. In 2018 IEEE Asia Pacific Conference on Circuits and Systems
(APCCAS), pages 223-226, 2018.

T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf,
M. Funtowicz, J. Davison, S. Shleifer, P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. L. Scao,
S. Gugger, M. Drame, Q. Lhoest, and A. M. Rush. Huggingface’s transformers: State-of-the-art
natural language processing, 2020.

Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao, Q. Gao,
K. Macherey, J. Klingner, A. Shah, M. Johnson, X. Liu, L.ukasz Kaiser, S. Gouws, Y. Kato, T. Kudo,
H. Kazawa, K. Stevens, G. Kurian, N. Patil, W. Wang, C. Young, J. Smith, J. Riesa, A. Rudnick,
O. Vinyals, G. Corrado, M. Hughes, and J. Dean. Google’s neural machine translation system:
Bridging the gap between human and machine translation, 2016.

K. Yamada and K. Knight. A syntax-based statistical translation model. In Proceedings of the 39th
Annual Meeting on Association for Computational Linguistics, ACL ’01, page 523-530, USA, 2001.
Association for Computational Linguistics.

Y. Yuan, J. Gao, and Y. Zhang. Supervised learning for robust term extraction. In 2017 Interna-
tional Conference on Asian Language Processing (IALP), pages 302-305, 2017.

W. Zhang, T. Yoshida, and X. Tang. A comparative study of tf*idf, Isi and multi-words for text
classification. Expert Syst. Appl., 38:2758-2765, 03 2011.

o6

	Introduction
	Overview
	Machine Translation for Indian Languages
	Domain Adaptation
	Domain Identification and Domain Terms
	Approaches for Domain Adaptation

	Thesis Contribution
	Workflow of the Thesis

	Related Work
	Approaches for MT in Indian Languages
	SMT
	NMT

	LLMs in Machine Translation
	Domain Classification and Domain Term Extraction
	Domain Adaptation

	Machine Translation for Indian Languages
	Introduction
	Transformers and attention for MT
	Subword
	Fairseq Toolkit
	Experimental Setup and Training
	Datasets
	Hyper-parameters
	Subword Preprocessing

	Results and Observations
	Discussion
	Conclusion

	Domain and Domain Adaptation
	Introduction
	What is a Domain?
	Issue with No Domain Adaptation
	Domain Classification
	Domain Term Extraction
	Pre-processing and Data
	TextRank
	Implementation
	Results and Evaluation
	Discussion

	Domain Adaptation for Different Domains
	Data Extraction
	Data Distribution for Each Domain
	Hyper-parameters

	General Fine-Tuning Results on Bengali and Telugu
	Fine-Tuning on Hindi and Creating Domain-Specific Models
	Discussion

	Fine-Tuning on Hindi and Creating Single Models for n Domains(Taken Together)
	Discussion

	Fine-Tuning on Hindi and Creating Single Models for n Domains(Stacking One After Another)
	Discussion

	Conclusion

	Efficient Domain Adaptation in Indian Languages
	Introduction
	Using Domain Similarity for Domain Adaptation
	Sentence Embeddings For Different Domains
	Centroid Distance
	Unlabelled Clustering of the Domain Data

	Domain Adaptation and Results

	Discussion
	Conclusion

	Conclusion and Future Work
	Conclusion
	Future Work
	Fine-Grained Domain Classification
	Unsupervised Domain Terminology Extraction
	Domain Adaptation in Indian Languages

	Bibliography

