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Abstract

Decision-making is hard when presented with a large set of similar options that insignificantly trade-
off amongst a range of attributes. This phenomenon is encountered within the skyline set because no
skyline point is strictly better than any other skyline point, and therefore, every skyline point can excel
ever so slightly in some subspace of attributes. The objective of this work is to determine the set of all
sets of skyline points that are hard to choose from and hence all points in a set compete for attention
from the same type of consumer (such sets are called competitive skyline cliques)

In this work, two skyline points are defined to be competitive if the differences between the two
points across each attribute are bounded by specified thresholds. We introduce maximal competitive
skyline cliques (MCSCs) – maximal sets of mutually competitive skyline points and provide algorithms
that enumerate all MCSCs. While the problem of enumerating all MCSCs is structurally similar to
the NP-Hard problem of enumerating all maximal cliques in a graph, because of properties exhibited
by our competitiveness metric, we show that enumerating all MCSCs can be performed efficiently in
polynomial time. Furthermore, in 2D space, we provide an optimal linear-time sweepline algorithm.
We also provide a bounded approximation for MCSCs that are easier to enumerate. Our extensive
experiments using both synthetic and real (UCars, FIFA22 and Pokémon) datasets demonstrate the
efficacy of MCSCs and the efficiency of our algorithms.
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Chapter 1

Introduction

1.1 Overchoice Effect

In market research, it is generally believed that consumers prefer having a large set of options (called
choice sets) to choose from. However, experiments conducted by [Iyengar and Lepper, 2001] showed
that large choice sets do not always lead to higher consumer satisfaction. In fact, in their experiments,
they found that consumers who chose from large choice sets were often less satisfied than consumers
who chose from smaller ones. This phenomenon is called the overchoice or the choice overload ef-
fect. [Greifeneder et al., 2010] credited this phenomenon to increase choice complexity. The choice
complexity of a choice set is a measure of how difficult picking within a choice set is. The choice
complexity is characterised by three properties of the choice set.

1. Choice set cardinality: The number of options in the choice set.

2. Amount of information: The number of attributes that are recorded for each option in the set. If there
are a large number of attributes, the choice set is termed to suffer from too-much-information.

3. Similarity between options: If two options are practically indiscernible, then it is hard to pick be-
tween them. This effect gets increasingly complex when there are a large number of similar options.

A choice set is said to have a high choice complexity if it is large, has many attributes and has large
clusters of highly similar options. The overchoice effect that occurs as a result of increased choice
complexity is attributed to three factors that add to decreased consumer satisfaction.

1. A consumer’s final choice may be suboptimal. If one product is picked, all other products, possibly
including the optimal, are eliminated from choice.

2. Consumers may need a long time to search through the choice set. This adversely affects consumer
satisfaction.

3. Irrespective of whether the final choice is optimal, consumers may be left feeling uncertain about
their choice.
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The objective of this work is to identify subsets of a given choice set where the overchoice effect is
most likely to occur. It is important to note that we do not provide any guidance on which choice to
make; that is completely up to the consumer.

1.2 The Skyline Operator

The skyline operator[Borzsony et al., 2001] is a popular solution to the multi-objective optimisation-
problem. The skyline operator is popular because it is fairly intuitive and easy to implement: Given a
dataset of products/options/points D, the skyline operator eliminates strictly suboptimal points. Con-
sider the constructed hotels dataset shown in Fig. 1.1. The dataset consists of ten hotels with two
attributes – (1) the cost per night (Cost) and (2) the distance of the hotel from the beach (Distance). Ho-
tels that are cheaper and closer to the beach are preferred. In this dataset, the skyline operator eliminates
hotels p9 and p10 because there exist strictly superior hotels. For instance, hotel p7 is both cheaper and
closer to the beach than hotels p9 and p10.

Formally, given a d-dimensional dataset D and a preference over the set of dimensions (MIN, MAX),
the skyline set (S) is the set of all points in D that are not dominated by other points in D. A d-
dimensional point p dominates another point q (p ≺ q) if p is at least as good as q in all dimensions
(∀d p[d] ⪯d q[a]) and p is strictly better than q in at least one dimension (∃d p[d] ≺ q[d]).

p ≺ q ⇐⇒ (∀d p[d] ⪯ q[d]) ∧ (∃d p[d] ≺ q[d])

Where p[d] ⪯ q[d] denotes that the value of p[d] is better than or equal to q[d] and p[d] ≺ q[d]

denotes that the value of p[d] is strictly better than q[d]. A point p is a skyline point if it is not dominated
by any other point in the dataset. The skyline set is the set of all skyline points.

S = {p | p ∈ D,¬∃q∈D q ≺ p}

The skyline operator is a popular precursor in decision-making systems. Restricting the search space
to the skyline set provides many advantages – (1) The skyline set is a subset of the dataset, the choice
set is smaller (reduced choice complexity) and (2) the consumer will not pick a non-skyline point and
hence does not make a suboptimal choice. If a consumer picks a skyline point, then they are guaranteed
to know that there exists no strictly superior alternative in the dataset.

While the ordinary skyline operator attempts to tackle the choice set cardinality, variations of the
skyline query can address the problem of too-much-information. For instance,

1. Subspace Skylines[Tao, 2006] – Frequently, the consumer is only interested in a subset of the at-
tributes and not all of them. The skyline is then computed only for a specified subspace of interest.
For instance, the consumer may not be interested in being close to the beach; then the consumer picks

2
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Figure 1.1: Sample hotels dataset. The skyline set is computed by minimising accross both Price and
Distance. The red region depicts the dominance region of hotel p7. Four competitive skyline cliques
(CSC1–CSC4) have been identified (in blue).

the cheapest hotel. Reducing the dimensionality of the space of the dataset also typically reduces the
size of the skyline set[Borzsony et al., 2001].

2. Constrained Skylines[Papadias et al., 2003a] – The consumer will likely have hard constraints on
some attributes. For instance, the consumer may have a budget constraint to satisfy when picking a
hotel. If the budget is 20$, then hotels p7 and p8 are eliminated, and the consumer can pick the best
hotel from those remaining, p1–p6 (likely hotel p6)

Despite the existence of many variants of the skyline operator, picking between skyline points can
be challenging. No skyline point dominates any other skyline point; every skyline point excels in some
subspace of attributes. Therefore, when making a choice, the consumer has to rationalize over the
presented tradeoffs. These tradeoffs can get complicated when the number of attributes and options
are large and when these quantified tradeoffs are practically insignificant. This work introduces a new
skyline variant that generates sets of skyline points that are similar and hard to choose from.

1.3 Motivation and Contributions

Picking amongst hotels in the skyline set can be challenging. When comparing any two skyline
points, the consumer has to decide between the presented tradeoffs. Consider hotels p1 and p8 – hotel
p1 is the cheapest hotel in the dataset, and hotel p8 is closest to the beach. These hotels are polarising;

3



they differ prominently by a 10$ cost difference and a 23km distance difference. On the other hand,
consider hotels p7 and p8 – they are both expensive and close to the beach. They differ insignificantly
by a 2$ cost and 0.5km distance difference. Picking between hotels p7 and p8 is harder than picking
between hotels p1 and p8. Making this choice becomes significantly harder when the tourist is presented
with a large set of similar hotels and more attributes [Iyengar and Lepper, 2001, Greifeneder et al., 2010,
Scheibehenne, 2008].

CSC Car ID Name Year Selling 
Price

($)

Driven
(km)

Fuel Transmission # Owners Mileage
(kmpl)

Engine
(CC)

Max Power
(bhp)

Seats

1

1
Audi A4 35 TDI 
Premium Plus

2018 38600 15000 Diesel Automatic 1 18.25 1968 187.74 5

2
Audi Q3 2.0 TDI 
Quattro Premium Plus

2017 37600 22000 Diesel Automatic 1 15.73 1968 174.33 5

3
BMW 5 Series 520d 
Luxury Line

2016 38600 12000 Diesel Automatic 1 18.12 1995 190 5

2

4
Ford Figo 1.2P 
Ambiente MT

2011 3200 25000 Petrol Manual 1 18.16 1196 86.8 5

5 Ford Figo Petrol EXI 2011 3000 15000 Petrol Manual 1 15.6 1196 70 5

6 Hyundai i10 Era 2010 2800 20000 Petrol Manual 1 19.81 1086 68.05 5

7 Maruti Ritz VXi 2011 3000 18500 Petrol Manual 1 18.5 1197 85.8 5

8 Maruti Swift VXI 2011 3700 20000 Petrol Manual 2 18.6 1197 85.8 5

3 9
Tata Winger Deluxe - 
Flat Roof (Non-AC)

2010 3100 50000 Diesel Manual 1 10.71 1948 90 14

Figure 1.2: Sample CSCs of UCars dataset

As another example, consider a sample from the skyline set of a Used Cars (UCars) dataset shown
in Fig. 1.2. This sample consists of nine used cars with eleven attributes. Picking between the first and
ninth cars is easy – these cars clearly target different audiences. The first car, an Audi, is an expensive,
powerful, high-end car that seats five people. Whereas, the last car, a Tata MPV (Multipurpose utility
Vehicle) is a much bigger car that seats fourteen people. On the other hand, picking between the sixth (a
Hyundai i10) and the eighth (a Maruti Swift) cars is clearly much harder — where one (the Hyundai i10)
is cheaper and has better mileage, the other (the Maruti Swift) was manufactured more recently and is
more powerful. Furthermore, these differences are insignificant; how much should the consumer value
a 1.2 kmpl mileage difference? The Hyundai i10 and the Maruti Swift target the same set of consumers.

In the hotels example, hotels p7 and p8 are similar and compete for attention from the same kinds of
consumers, i.e. those that prefer hotels closest to the beach. In this work, we define two skyline points to
be competitive if the differences between the attributes of the two points are at most ε, a user-specified
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threshold. For instance, if ε = 0.05, then hotels p7 and p8 are competitive and hotels p1 and p8 are not.

|p1.price− p8.price| = |0.15− 0.25| = 0.1 > ε(0.05)

|p1.distance− p8.distance| = |0.400− 0.17| = 0.23 > ε(0.05)

|p7.price− p8.price| = |0.23− 0.25| = 0.02 ≤ ε(0.05)

|p7.distance− p8.distance| = |0.185− 0.17| = 0.015 ≤ ε(0.05)

The objective of our work is to generate sets of mutually competitive skyline points (called compet-
itive skyline cliques). For instance, in Fig. 1.1, four competitive skyline cliques have been identified
(CSC1–CSC4). Each of these cliques is a set of similar hotels that are hard to compare and select from.

Contributions

The contributions of this thesis are summarised below.

1. We formally define competitive skyline cliques (CSC) and maximal competitive skyline cliques
(MCSC) (Chapter 2) and adapt an output-sensitive maximal clique enumeration algorithm to enu-
merate all MCSCs (Chapter 4).

2. We provide optimisationsthat improve the implementation efficiency of the proposed algorithm (Chap-
ter 5).

3. We derive theoretical bounds on the number of CSCs (O(2|S|)) and MCSCs (O(|S|d)) (Chapter 6).

4. Due to properties exhibited by the 2D skyline set, we provide an optimal bound on the number of 2D
MCSCs and an optimal algorithm that enumerates all 2D MCSCs (Chapter 8).

5. Since enumerating all MCSCs can be computationally expensive, we provide an approximation for
MCSCs (AMCSC) that are fewer in number and easier to enumerate (Chapter 9).

6. Finally, we experimentally analyse MCSCs of real datasets (UCars, FIFA22 and Pokémon) and the
effect of the dimensionality (d), cardinality(n) and threshold (ε) on MCSCs of synthetically gener-
ated datasets (Chapter 7)
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Chapter 2

Competitive Skyline Cliques

Notation and Assumptions. In this thesis, we use D = {p1, p2, . . . , pn} to denote a d-dimensional
n-sized dataset,A = {a1, a2, . . . , ad} to denote the set of d attributes or dimensions and S to denote the
skyline set. Unless otherwise specified, points p and q denote d-dimensional data points and p[a] or p.a
denote the value of attribute a (a ∈ A) of point p. Additionally, without loss of generality, we assume
that the domain of every attribute is [0, 1] and that smaller values of attributes are better, i.e. the skyline
set is obtained by minimising across all attributes. The notations used in this thesis are summarised in
Table 2.1

Table 2.1: Summary of notations

Notation Definition

p, q skyline points
S skyline set
s, s′ subsets of skyline set
c competitive skyline clique (abbrev. CSC)
C set of all competitive skyline cliques
m maximal competitive skyline clique (abbrev. MCSC)
M set of all maximal competitive skyline cliques
ε specified threshold in range [0, 1]
comp(p, q) p and q are competitive (||p− q||∞ ≤ ε)
comp(p, s) p is competitive with all points in s (competitors(p, s) = s)
competitors(p, s) set of points in s that are competitive with p
competitors(s′, s) set of points in s that competitive with all points in s′

parcomp(p, s) p is competitive with at least one point in s
¬parcomp(p, s) p is not competitive with any point in s (competitors(p, s) = ∅)
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Definition 2.1

Two skyline points p and q are defined to be competitive (comp(p, q)) if the Chebyshev distance
(or infinity norm distance) between points p and q is at most ε, a specified threshold in the range
[0, 1].

comp(p, q) ⇐⇒ ||p− q||∞ ≤ ε

The Chebyshev distance is calculated as follows: maxa∈A |p[a] − q[a]|. Notation ¬comp(p, q)

is used to denote that skyline points p and q are not competitive.

The use of the Chebyshev distance metric implies that for two skyline points p and q to be com-
petitive, the difference between points p and q across all attributes must be bound by ε. While in this
document, a single value of ε bounds the difference across all attributes, all definitions, properties and
algorithms presented as part of this thesis can be extended for when different thresholds are provided for
each attribute. Given the competitiveness metric, we can construct a graph that represents competitive
relationships between skyline points (called competitiveness graph or comp graph for short). The
comp graph is the graph G[V,E] where the vertices V and the edges E are:

V = S

E = {(u, v) | u, v ∈ S and comp(u, v)}

An edge exists between two vertices if and only if the corresponding skyline points are competitive.
The comp graph of the hotels dataset when ε = 0.05 is shown in Fig. 2.1. The comp graph is expected
to be sparse since ε, the specified threshold, is assumed to be small.

MCSC4MCSC3MCSC2

1 2

3

4

5

6

7

8
MCSC1

Figure 2.1: competitiveness graph of hotels dataset when ε = 0.05

Given a skyline point p and a subset of skyline set s, competitors(p, s) is the set of all points in s

that are competitive with p. Consequently, competitors(p,S) is the set of all skyline points that are
competitive with skyline point p (including p). From this point forward in the document, when we refer
to a point p, we implicitly mean we are referring to a skyline point p.

Example. In the hotels dataset, when ε = 0.05, hotels p2 and p3 are competitive (||p2 − p3||∞ =

0.02 ≤ 0.05 = ε). For the rest of this paper, we assume ε = 0.05 for the hotels dataset unless otherwise
specified. Hotels p1 and p8 are not competitive, denoted by ¬comp(p1, p8). The set of all competitors
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of hotel p3 is
competitors(p3,S) = {p2, p3, p4, p5}

In this document, specifically for the hotels dataset, we use a concise notation to represent sets: set
{p6, p7, p8} is represented as 678. Therefore, competitors(p3,S) = 2345 and competitors(p2, 2345) =

23.

We extend notations comp(, ) and competitors(, ) to sets — given a skyline point p and subsets
of the skyline set s and s′, comp(p, s) denotes that point p is competitive with all points in set s and
competitors(s′, s) is the set of all points in s that are competitive with all points in set s′. Furthermore,
we use notation parcomp(p, s) to denote that skyline point p is competitive with at least one point in s,
a subset of skyline set. Consequently, ¬parcomp(p, s) denotes that point p is not competitive with any
point in set s.

Example. Hotel p3 is competitive with all hotels in set 2345 – comp(p3, 2345). Hotel p3 is the
only hotel that is competitive with both hotels p2 and p4 from set 2345 – competitors(24, 2345) = 3.
Hotel p2 is competitive with at least one hotel in set 2345 – parcomp(p2, 2345) whereas hotel p1 is not
competitive with any hotel in 2345 – ¬parcomp(p1, 2345).

Definition 2.2

Competitive skyline cliques (CSCs) are sets of mutually competitive skyline points. Formally,
a subset of the skyline set (c ⊆ S) is defined to be competitive (also called a competitive
skyline clique or CSC for short) if every point in c is competitive with every other point in c

Furthermore, a CSC m is defined to be maximal (also called a maximal competitive skyline
cliques or MCSC for short) if no other skyline point is competitive with all points in m

C andM denote the set of all CSCs and MCSCs respectively.

A clique in a graph is a subset of vertices such that every pair of vertices in the clique is connected
by an edge. A clique is maximal if it is not a subset of any other clique. Equivalently, each CSC is a
clique in the comp graph and, each MCSC is a maximal clique in the comp graph. Note that CSCs and
MCSCs are not exclusive, i.e. they can overlap. For instance MCSCs 23 and 345 overlap.

Example. The following are all valid CSCs of the hotels dataset: 6, 68, 678. The set of all CSC of
the hotels dataset (denoted by C) is

C = {1, 2, 3, 4, 5, 23, 34, 35, 45, 345, 6, 7, 8, 67, 68, 78, 678}

CSCs can be redundant, for instance CSCs 68 and 678 practically target the same consumers but CSC
678 correctly quantifies the competition for the target consumers. MCSCs eliminate these redundant
CSCs. The set of all MCSCs of the hotels dataset (denoted byM) is

M = {1, 23, 345, 678}
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MCSCs of the hotels dataset are depicted in Fig. 2.1 as equivalent maximal cliques.

We detail two interesting properties of CSCs — (1) the Apriori property (Property 2.1): all subsets
of CSCs are CSCs and (2) the maximality condition (Property 2.2): a CSC m is maximal if and only if
the set of competitors of m in the skyline set is m.

Property 2.1 (Apriori Property). If c is a CSC then all subsets of c are CSCs

Proof. We use a proof by contradiction. Let c be a CSC and c′ be a subset of c such that c′ is not
competitive.

c′ is not competitive ⇐⇒ ∃p,q∈c′ ¬comp(p, q)

⇐⇒ p, q ∈ c ∧ ¬comp(p, q)

⇐⇒ c is not competitive (contradiction)

2

The Apriori property only provides a necessary condition (single direction implication) when, in
fact, CSCs also satisfy the sufficiency condition (double direction implication). If all subsets of a set of
skyline points c are competitive, then c is competitive.

Property 2.2 (Maximality Condition). A CSC m is maximal if and only if

m = competitors(m,S)

Proof. We use a proof by contradiction. Let m be a MCSC and let m and competitors(m,S) be
unequal. There are two cases: there exists a skyline point that is in m but not in competitors(m,S)
or there exists a skyline point that is in competitors(m,S) but not in m. Let p be a skyline point such
that

• p ∈m; p /∈ competitors(m,S)

p /∈ competitors(m,S) ⇐⇒ ∃q∈m ¬comp(p, q)

⇐⇒ p, q ∈m ∧ ¬comp(p, q)

⇐⇒ m is not competitive (contradiction)

• p /∈m; p ∈ competitors(m,S)

p ∈ competitors(m,S) ∧ p /∈m ⇐⇒ ∃p ∈ S \m comp(p,m)

⇐⇒ m is not maximal (contradiction)

9



2

These properties are utilised when enumerating all MCSCs. We restrict our attention to MCSCs
because CSCs can be (1) redundant and (2) large in number (Chapter 6).
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Chapter 3

Related Work

3.1 Skyline Query Processing

In this work, we assume that the skyline set has been computed. There exist several efficient compu-
tation algorithms — BNL [Borzsony et al., 2001], D&C [Borzsony et al., 2001], bitmap [Tan et al., 2001],
index [Tan et al., 2001], NN [Kossmann et al., 2002], BBS [Papadias et al., 2003a], and SFS [Chomicki et al., 2003]
to name a few.

3.2 Frequent Itemset Mining

The problems of enumerating CSCs and MCSCs are algorithmically similar to the problem of mining
frequent (FIM) and maximal (and closed) frequent itemsets (MFIM), respectively. Let I be a universal
set of items, and T be a set of transactions where each transaction t is a subset of I (called an itemset),
then an itemset I is defined to be frequent if the support of I is at least equal to min sup, a specified
threshold. The support of an itemset I (denoted by support(I)) is the number of transactions in T that
contain itemset I .

support(I) = |{t ∈ T | I ⊆ t}|

A frequent itemset I is defined to be maximal if every strict superset of I is not frequent. Frequent
itemsets sets also satisfy the Apriori property:

Property 3.1 (Apriori Property). If an itemset I is not frequent, all supersets of I are not frequent

The Apriori property is used by many algorithms to compute frequent itemsets that can consequently
enumerate all CSCs: For instance, both the Apriori [Agrawal et al., 1994] and the Eclat [Zaki et al., 1997]
algorithms can be used to enumerate all CSCs. By definition, maximal frequent itemsets are analogous
to MCSCs. Most MFIM algorithms such as MAFIA [Burdick et al., 2005], GenMax [Gouda and Zaki, 2005],
and LCMax [Uno et al., 2003] can be used to enumerate all MCSCs. The analog of a “transaction” is a
set of skyline points that are contained in a box of size at most ε. We opted for a sparse maximal clique
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enumeration since FIM algorithms are optimised to reduce the number of scans over the transaction
database and not the universal set of items. Furthermore, most general-purpose FIM algorithms are not
optimised for sparse patterns.

3.3 Maximal Clique Enumeration

Any maximal clique enumeration (MCE) algorithm can be adapted to enumerate all MCSCs. Fur-
thermore, we can utilise existing MCE algorithms that are optimized for sparse graphs. For instance the
classical Bron-Kerbosch [Bron and Kerbosch, 1973] or the matrix multiplication algorithm presented
by [Makino and Uno, 2004] (sparse graphs). Furthermore, MCSCs can overlap significantly in certain
cases, if the objective is to generate near mutually exclusive cliques of competitive products, then meth-
ods proposed by [Wang et al., 2013] that generates a subset of maximal cliques that maximise the over-
lap of non-represented maximal cliques or by [Sade and Cohen, 2020] that performs diverse maximal
clique enumeration can be used.

3.4 Clustering

This work can be construed as a form of overlapping density-based clustering over the skyline set.
But this work differs from clustering in the objective and consequently in the intention behind the
choosing of threshold ε. The objective of clustering is to group points into clusters such that points in
a cluster are more similar to points in the same cluster when compared to points in a different cluster.
Clustering aims at identifying inherent groups present in the dataset; thresholds are picked to fit the
dataset. Whereas in this work, the results returned are indications of how the dataset fits the provided
thresholds and not the other way around. Thresholds are picked independently of the distribution of the
data. Furthermore, clustering sacrifices granularity for better summarization; clustering algorithms can
group two non-competitive products together if they are densely connected.
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Chapter 4

Enumerating Competitive Skyline Cliques

Fig. 4.1 illustrates the flowchart that enumerates all MCSCs of a given dataset. The skyline of the
dataset is computed using some popular skyline computation algorithm (in this work, we opted to use the
Branch and Bound Skyline Computation algorithm (BBS) [Papadias et al., 2003b]). Then we attempt
to partition the skyline set into disjoint and mutually exclusive sets of skyline points such that no point
in one partition set is competitive with any other point in any other partition set (Section 5.1). Finally,
we enumerate all MCSCs of each partition using the Output-Sentitive MCSC Enumeration (OMCE)
algorithm that we present in this section.

Dataset
Skyline 

Computation

Partition 
Skyline 
R-Tree

Partitioning OMCE

Partition 
MCSC 
R-Tree

Figure 4.1: MCSC Enumeration Flowchart

The algorithm we develop in this work is inspired by the output-sensitive maximal independent set
enumeration algorithm proposed by [Tsukiyama et al., 1977].

4.1 Overview

The algorithm by [Tsukiyama et al., 1977] computes all maximal cliques of graph G from all maxi-
mal cliques of graph G \ v, i.e. subgraph of G with vertex v and all its incident edges removed. We use
a similar paradigm and generate all MCSCs of a set of skyline points S from all MCSCs of set S \ {p}
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where p is a skyline point in S. Let m be a MCSC of S \ {p}, then one of the three following cases
(illustrated in Fig. 4.2) occur:

p1

p2

p3 p1

p2

p3 p1

p2

p3

p p p

case 1 case 2 case 3

MCSC MCSC MCSC

Figure 4.2: Output-sensitive clique enumeration cases

case 1 comp(p,m): If p is competitive with every point in m, then m ∪ {p} is a MCSC of S (m is
updated to include point p).

case 2 parcomp(p,m): If p is competitive with at least one point in m, then (1) m is a MCSC of S and
(2) competitors(p,m) ∪ {p} is a CSC and a potential MCSC of S. competitors(p,m) ∪ {p}
could be subsumed by some other MCSC of S. To verify maximality, we use Property 2.2.

case 3 ¬parcomp(p, cc): If p is not competitive with any point in m then m is a MCSC of S.

Additionally, note that if point p is not competitive with any point in S\{p}, then set {p} is a MCSC
of S. There has been a huge body of work dedicated to the computation of the skyline set (Chapter 3);
therefore, in our work, we assume that the skyline set is precomputed and provided as input to our
algorithm.

4.2 Output-Sensitive Maximal Competitive Skyline Clique Enumeration

The output-sensitive maximal clique enumeration algorithm (Algorithm 1) generates all MCSC of
set S from those of set S \ {p}. The algorithm iterates through the skyline set in line 3. For each
skyline point, line 5 iterates through MCSCs identified by processing skyline points until point p(i−1);
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all MCSCs identified before processing pi only contain points from the set {p1, . . . , p(i−1)}. If pi

is competitive with CSC m, then clique m is expanded to include point pi (case 1). No new set is
generated. Else if pi is competitive with some points in m, then a candidate is generated by including pi

and the points in m that are competitive with pi (case 2). This candidate CSC (called cand) may not be
maximal within set {p1, . . . , pi}. Therefore, we perform a maximality check based on Property 2.2 in
line 13. Note that it is possible for the same MCSC to be generated multiple times in lines 13-14 from
different CSCs. Therefore, duplicates need to be eliminated. They can be eliminated by using a hash
table to store the set of candidates or by sorting the candidates and removing duplicates. Finally, all
remaining candidates are maximal and can be included inM. If point pi is not competitive with any
points in set {p1, . . . , pi}, then singleton CSC {pi} is maximal and is added toM in lines 18-19.

Algorithm 1 Output-Sensitive Maximal Competitive Skyline Clique Enumeration Algorithm (OMCE)
1: Input: S = {p1, p2, . . . , pm}, ε ∈ [0, 1]
2: M←− ∅
3: for each pi ∈ S do
4: candidates←− ∅
5: for each m ∈M do
6: // ▷ case 1
7: if comp(pi,m) then
8: m.insert(pi)
9: // ▷ case 2

10: else if parcomp(pi,m) then
11: cand←− competitors(pi,m) ∪ {pi}
12: // ▷ maximality check (Property 2.2)
13: if cand = competitors(cand, {p1, . . . , pi}) then
14: candidates.insert(cand)

15: // ▷ implicit case 3
16: remove duplicates from candidates
17: M←−M∪ candidates

// ▷ pi is not competitive with any of {p1, . . . , p(i−1)}
18: if pi not included in any clique so far then
19: M.insert({pi})

Example. Hotel p1 is processed first, sinceM is empty, singleton CSC {p1} is added toM in lines
18-19. Hotel p2 is not compeitive with any CSC inM, singleton CSC {p2} is inserted in lines 18-19.
Hotel p3 is competitive with CSC 2 and not partially competitive with CSC 1. CSC 2 is updated to
include hotel p3 (M = {1, 23}). Hotel p4 is not competitive with CSC 1 and is partially competitive
with CSC 23. In line 11, a new candidate CSC, 34 (competitors(p4, 23) ∪ {p4} = 3 ∪ 4) is generated.
CSC 34 is maximal within set 1234 (verified in lines 13-14) and is hence included in candidates. There
are no duplicate sets in candidates (M = {1, 23, 34}). Hotel p5 is partially competitive with CSC 23

and competitive with CSC 34. CSC 34 is extended to include hotel p5. When processing set 23, a new
candidate CSC 35 is generated (competitors(p5, 23)∪{p5} = 3∪5 = 35). CSC 35 fails the maximality
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Table 4.1: Run of OMCE Algorithm on hotels dataset

pi candidates M

p1 ∅ { 1 }
p2 ∅ {1, 2 }
p3 ∅ {1, 23 }
p4 {34} {1, 23, 34 }
p5 {35} {1, 23, 345 }
p6 ∅ {1, 23, 345, 6 }
p7 ∅ {1, 23, 345, 67 }
p8 ∅ {1, 23, 345, 678 }

check in line 13 since CSC 35 can be extended by including hotel p4 and is hence not included in the
candidate set. The run of the OMCE algorithm on the hotels dataset is detailed in Table 4.1.

Theorem 4.1

Given a threshold ε and the skyline set S, the OMCE algorithm (Algorithm 1) enumerates all
MCSCs (M) of S in time O(d|S|2|M|)

Proof. To prove the correctness of the OMCE algorithm, we prove that all MCSCs of a set of skyline
points S can be generated from the set of MCSCs of set of skyline points S \ {p} where p is a skyline
point in S using the OMCE algorithm, specifically following the three cases identified in Section 4.1
(illustrated in Fig. 4.2). Let m be a MCSC of set S and let p be a skyline point in S. There are two
scenarios

• p /∈ m: If p is not included in m, then m only contains mutually competitive skyline points from
S \ {p}. Furthermore, m is maximal within S \ {p} since if it were not maximal, then it would not
be maximal in set S. Therefore, the OMCE algorithm generates all MCSCs of S that do not include
p by processing MCSCs of set S \ {p} that fall under case 3 (Fig. 4.2).

• p ∈ m: Set m \ {p} consists of a set of mutually competitive skyline points in S \ {p}. Therefore,
set m \ {p} is either a MCSC of set S \ {p} or it is a subset of some MCSC of set S \ {p}. Cases 1
and 2 (Fig. 4.2) are capable of generating all MCSCs of set S that contain p from all MCSCs of set
S \ {p}.

This concludes the proof of correctness. In the outer loop, the algorithm iterates over all points
in the skyline set (|S|) and the inner loop iterates over all MCSCs |M|. Within each iteration, the
algorithm performs competitiveness and maximality checks (d.|S|). Duplicate elimination in line 16 can
be performed by using a hash table to store candidates1. Therefore, the time complexity of Algorithm 1
is O(d|S|2|MC|). 2

1Hashing can also be performed efficiently by storing just the lower bounds of the mbbs of the MCSCs (Lemma 6.1)
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Chapter 5

Optimisations and Pruning

The algorithm in [Tsukiyama et al., 1977] eliminated duplicate and non-maximal cliques by enforc-
ing a partial order over maximal cliques. In the next section, we detail how we instead use spatial
information of our data and provide optimisationsthat (1) address the efficiency of the competitiveness
metric and maximality check (line 13) and (2) that prune the number of CSCs that we have to process
given a skyline point pi in line 5 of Algorithm 1.

5.1 Partitioning

It may be possible to partition the skyline set into a family of subsets P = {s1, . . . , sk} such that no
point in one subset (si) is competitive with any other point in the other subsets. This can be achieved
using the following theorem (Theorem 5.1).

Theorem 5.1

If S = {p1, . . . , pm} is the set of skyline points sorted by some dimension (say a) i.e. p1[a] ≤
p2[a] ≤ . . . ≤ pm[a], then for all points pi (1 ≤ i < m)

|pi[a]− pi+1[a]| > ε =⇒ ∀i1≤i
i2>i
¬comp(pi1 , pi2)

Proof. Let S = {p1, p2, p3, . . . , pm} be the set of skyline points sorted by dimension a, i.e. p1[a] ≤
p2[a] ≤ p3[a] ≤ . . . ≤ pm[a]. Let pi (1 ≤ i < m) be a skyline point such that |pi[a] − pi+1[a]| > ε,
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then

|pi[a]− pi+1[a]| > ε ⇐⇒ pi+1[a]− pi[a] > ε (sorted)

⇐⇒ ∀i2>i pi2 [a]− pi[a] > ε ∧ ∀i1<i pi+1[a]− pi1 [a] > ε

⇐⇒ ∀i1≤<i2 pi2 [a]− pi1 [a] > ε

⇐⇒ ∀i1≤i<i2 ¬comp(pi1 , pi2)

2

Theorem 5.1 states that if the skyline points are sorted on some dimension (say a) and there exist
two consecutive points in the sorted set such that the difference between those two points in dimension
a is greater than ε, then the set can be partitioned into two subsets (split between the two consecutive
points) such that no point in the first subset is competitive with any other point in the second subset. If
C(s) is the set of all CSCs of the points in the subset s and the skyline set is partitioned into a family of
subsets P = {s1, . . . , sk} using Theorem 5.1 then,

C(S) =
⋃
si∈P
C(si)

A similar statement can be made for MCSCs. Effectively, each subset of the partition can be treated as
an independent problem. To partition the dataset, we first sort the skyline set by the first dimension and
then partition the skyline set into a family of subsets using Theorem 5.1. Then, we repeat the partitioning
on each of the subsets sorting by the second dimension and so on.

Example. The skyline set of the hotels dataset is sorted by the first dimension (Price) yielding order:
12345678. Theorem 5.1 is not applicable within this set since no two consecutive points differ by more
than ε accross Price. The resulting partition after processing the first dimension is {S}. Next, each
subset of the partition is sorted by the second dimension (Distance). There is only one subset in the
partition (i.e. S); this subset is sorted by attribute Distance yielding the order: 87654321. Consecutive
points (p6, p5) and (p2, p1) differ by more than ε across the second dimension. This set is then partitioned
into subsets: {876, 5432, 1}. Each of these three subsets can be treated as independent datasets when
applying the OMCE algorithm.

The cost of sorting an n-sized set of points using one dimension is O(n log n). Therefore, the time
complexity for partitioning is O(d|S| log|S|). Note that in the description of the Partitioning algorithm,
we stop when one iteration through each dimension has finished, when in fact, it is also possible to keep
partitioning the skyline set until the partition sets have converged. For instance, assume a skyline set
has been partitioned using the first dimension; when the subsequent partition sets are partitioned using
the other dimensions, points are eliminated from the partition set. Therefore, consecutive points (when
sorted by the first dimension) whose difference across the first dimension was less than ε in the partition
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Algorithm 2 Partitioning Algorithm
1: Input: S = {p1, p2, . . . , pm}, ε
2: P ←− PARTITION({S}, 1)
3:

4: function PARTITION(P = {s1, . . . , sp}, a)
5: if a > d then return P
6: new P ←− {}
7: for all s ∈ P do
8: sort(s, a) // ▷ sort by dimension a
9: new P ←− new P ∪ THEOREM 5.1(s, a)

10: return PARTITION(new P, a+ 1)
11:

12: // ▷ Iteratively partitions s using Theorem 5.1
13: function THEOREM 5.1(s = {pi1 , . . . , pik}, d)
14: if s is empty then return {}
15: j ←− minj |pij [d]− pi(j+1)

[d]| > ε if exists else ik
16: return {s[: j]} ∪ THEOREM 5.1(s[j + 1 :], d)

set may not appear in the same partition set after other dimensions have been processed. The new pairs
of consecutive points may differ by more than ε across the first dimension. In the theoretical worst
case, to achieve convergence (no change in partition sets upon further application of the partitioning
algorithm), the partition algorithm may need to be applied |S| times. Therefore, the time complexity of
the partitioning algorithm till convergence is O(d|S|2 log|S|). However, in practice, we found that the
partition sets converge in a couple of iterations (Subsection 7.4.4).

Partitioning can decrease space requirements by the OMCE algorithm since only the fraction of the
skyline set and MCSCs that correspond to the partition set being processed need to be stored in the main
memory. Furthermore, each partition can be processed in parallel.

5.2 Minimum Bounding Boxes

The efficiency of the algorithms proposed in the previous section rely on the implementation of
the comp(, ) and parcomp(, ) operators. To improve efficiency, we utilize the well-known concept of
axis-parallel minimum bounding boxes (mbb).

Definition 5.1: Minimum Bounding Box

The minimum bounding box of a set of d-dimensional points s (mbb(s)) is the smallest d-
dimensional axis-parallel box that contains all points in set s. This bounding box is characterized
by two d-dimensional points - lower (lb) and upper (ub) bounds. These bounds are given by the
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Sorted by Price

Sorted by Distance

Point 8 7 6 5 4 3 2 1

Distance 0.17 0.185 0.20 0.26 0.28 0.31 0.34 0.40

Price 0.25 0.23 0.20 0.19 0.18 0.17 0.16 0.15

Point 1 2 3 4 5 6 7 8

Price 0.15 0.16 0.17 0.18 0.19 0.20 0.23 0.25

Distance 0.40 0.34 0.31 0.28 0.26 0.20 0.185 0.17

Figure 5.1: Partitioning hotels dataset using Theorem 5.1

following equations:

∀a∈A mbb(s).lb[a] = min
p∈s

p[a]

mbb(s).ub[a] = max
p∈s

p[a]

Additionally, we define the size of a bounding box (mbb.size) to be the Chebyshev distance between
the upper and lower bounds of the box. The minimum bounding box of a set s and the Chebyshev
distances between points in s have an interesting relation (Property 5.1): the size of the bounding box
of set s is the Chebyshev distance between the farthest pair of possible points in the box.

Property 5.1. Let s be a set of d-dimensional points, then

max
pi,pj∈s

||pi − pj ||∞ = mbb(s).size

Proof. Let s be a CSC and x be the size of the mbb of s (mbb(s).size = x), then

mbb(s).size = max
a∈A

mbb(s).ub−mbb(s).lb

= max
a∈A

max
pi,pj∈s

|pi[a]− pj [a]|

= max
pi,pj∈s

max
a∈A
|pi[a]− pj [a]|

= max
pi,pj∈s

||pi − pj ||∞

2
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An important corollary of Property 5.1 is: A subset of the skyline set s is competitive if and only if
the size of its mbb is at most ε. The bounding box can be used to determine if the set is competitive
(Corollary 5.1).

Corollary 5.1. A subset of the skyline set c is competitive if and only if

mbb(c).size ≤ ε

Proof. The proof follows from Property 5.1. Let c be a CSC. Then,

mbb(c).size = max
pi,pj∈c

||pi − pj ||∞ ≤ ε

2

Property 5.1 and Corollary 5.1 lead to the following corollaries that can be used to efficiently imple-
ment the comp(p, c) and parcomp(p, c) operators

Corollary 5.2. A skyline point p is competitive with CSC c if and only if the size of the mbb of set

c ∪ {p} is at most ε

comp(p, c) ⇐⇒ mbb(c ∪ {p}).size ≤ ε

Proof. The proof follows from Property 5.1. Let c be a CSC. Then,

mbb(c).size = max
pi,pj∈c

||pi − pj ||∞ ≤ ε

2

Corollary 5.3. If a skyline point p is partially competitive with CSC c then the size of the mbb of set

c ∪ {p} is at most 2ε

parcomp(p, cc) =⇒ mbb(c ∪ {p}).size ≤ 2ε

Proof. The proof of this property relies on proving the following statement: Let p, q, r be three
skyline points such that comp(p, q) and comp(q, r), then ||p − r||∞ ≤ 2ε (we call this statement the
transitive bound property.)

comp(p, q) ⇐⇒ ∀a∈A |p[a]− q[a]| ≤ ε

comp(q, r) ⇐⇒ ∀a∈A |q[a]− r[a]| ≤ ε

The projections of points p, q, r on dimension a are collinear and can have at most six configurations.
These six possible permutations of the projects of points p, q, r on dimension a are shown in Fig. 5.2.
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In four of the six cases ((b)–(d)), points p and r differ by at most ε, and in the remaining two cases ((a),
(f)) they differ by at most 2ε. Therefore, for any given dimension a, when comp(p, q) and comp(q, r),
points p and r differ by at most 2ε. We have hence ascertained that ||p − r||∞ ≤ 2ε. The rest of the
proof follows from Corollary 5.1.

(a)

(c)

(e) (f)

(d)

(b)

Figure 5.2: Projections of skyline points p, q, r on dimension a where comp(p, q) and comp(q, r). In
cases (b)–(d), p[a] and r[a] differ by at mos ε and in cases (a) and (f), p[a] and r[a] differ by at most 2ε.

parcomp(p, c) ⇐⇒ ∃q∈c comp(p, q) (by definition)

⇐⇒ ∀r∈c ∃q∈c comp(p, q) ∧ comp(q, r)

=⇒ ∀r∈c ||p− r||∞ ≤ 2ε (transitive bound property)

=⇒ ∀x,y∈c∪{p} ||x− y||∞ ≤ 2ε (c is competitive)

=⇒ mbb(c ∪ {p}).size ≤ 2ε (Corollary 5.1)

2

Notice the single direction of the implication in Corollary 5.3. The proofs for Corollaries 5.2 and 5.3
follow from Corollary 5.1. The corollaries (Corollaries 5.2 and 5.3) are used to implement the case
logic, specifically case 1 and case 2 in the algorithm. Let p be a skyline point and c be a CSC, then:
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case 1 comp(p, c): To check if p is competitive with c, it is sufficient to check if mbb(c∪{p}).size ≤ ε

(Corollary 5.2).

case 2 parcomp(p, c): If mbb(c ∪ {p}).size > 2ε, then point p is not competitive with any point in
CSC c (Corollary 5.3). However, if mbb(c ∪ {p}).size ≤ 2ε, then p may be competitive with
some point in c, a brute force check is necessary to ascertain partial competitiveness. Corol-
lary 5.3 helps prune case 2.

Using mbbs reduces the number of distance computations performed. For instance, to check if a
point p is competitive with a CSC c of cardinality n, the brute force method is to perform n distance
computations. The time complexity is O(nd). When using mbbs, we only need one distance computa-
tion leading toO(d) time complexity. Using mbbs reduces the complexity of the OMCE algorithm by a
factor of |S|. Furthermore, when we partition the dataset, we can establish early on if the parition set is
competitive — If the size of the mbb of the partition set is at most ε, then the partition set is a MCSC.
Then there is no need to run the OMCE algorithm on the partition set.

5.3 Indexing

Bounding boxes also provide other advantages. For instance, we use crange(p) to denote the com-
petitive range of point p. crange(p) is a d-dimensional box that contains all the points competitive with
p. crange(p) is given by the following equation:

crange(p).lb[a] = max(0, p[a]− ε)

crange(p).ub[a] = min(1, p[a] + ε)

In other words competitors(p,S) = {p′|p′ ∈ S and p′ ∈ crange(p)}. Similarly, the notation can
be extended to work for CSCs. Let c be a CSC, then crange(c) is given by:

crange(c).lb[a] = max(0,mbb(c).ub[a]− ε)

crange(c).ub[a] = min(1,mbb(c).lb[a] + ε)

We use pcrange(p) to denote the partial competitive range of p. pcrange(p) is given by the follow-
ing equation:

pcrange(p).lb[a] = max(0, p[a]− 2ε)

pcrange(p).ub[a] = min(1, p[a] + 2ε)
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Figure 5.3: Example demonstrates utility of crange() boxes. (a) Hotel p5 if competitive with both
hotels in set 34. Hotel 34 lies within crange(p5). (b) Hotels p2 is competitive with hotel p3 but not with
hotel p4, therefore set 34 intersects crange(p2) and lies within pcrange(p2) (pcrange(p2) not shown)

If a CSC c is partially competitive with p, then it is contained in pcrange(p). But a stricter condition
for partial competitiveness is: If a CSC c is partially competitive with skyline point p, then it intersects
crange(p). Given the spatial nature of our data and the introduction of mbbs, it is possible to use a
spatial index to store both the skyline set and the MCSCs. In this thesis, we assume that the MCSCs are
stored in an R-Tree, indexed by their mbbs.

In the OMCE algorithm (Algorithm 1), we are only interested in processing cliques that are partially
competitive with point p. Instead of iterating through all the MCSCs, we can use a range query on
the R-Tree that stores the MCSCs to retrieve only those sets that intersect box crange(p) (strict) or
are contained in box pcrange(p) (lose). All sets that fall within crange(p) are extended (case 1), and
all other sets are further processed in lines 10-14. Additionally, in line 13, a maximality check needs
to be performed. We optimize this operation by using a range query on the R-Tree storing skyline
points using range box crange(cand). Furthermore, MCSCs can be uniquely determined by their mbbs
(Lemma 6.1, Chapter 6); therefore, to eliminate duplicates in the candidates set, we can hash the mbbs
of the MCSCs instead of the points in the cliques.
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Chapter 6

Complexity Analysis

In this section, we attempt to bound the number of CSCs and MCSCs (|C| and |M| respectively). The
worst case cardinality of C is O(2|S|). This worst case occurs when every skyline point is competitive
with every other skyline point. The worst case cardinality ofM is harder to bound. [Moon and Moser, 1965]
showed that for any n-vertex graph, the number of maximal cliques is at most O(3n/3), exponential in
n. However, we show that the worst-case number of MCSCs is O(|S|d), polynomial in the number of
skyline points.

Theorem 6.1

The worst-case number of MCSCs (|M|) is O(|S|d).

Proof. To derive this bound, we first prove the following lemma.

Lemma 6.1

Let m1 and m2 be two distinct MCSCs. Then, the lower (and upper) bounds of the mbbs
containing the two MCSCs are not equal.

∀m1,m2∈M
m1 ̸=m2

mbb(m1).lb ̸= mbb(m2).lb

mbb(m1).ub ̸= mbb(m2).ub

Proof. We prove this lemma by assuming the opposite is true. Let m1 and m2 be two distinct
maximal competitive cliques and lb be the d-dimensional point that is the lower bound of the minimum
bounding boxes of the two sets.

lb = mbb(m1).lb = mbb(m2).lb
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Let bb be the ε-sized box with lb as the lower bound such that the width of the box across every dimen-
sion is ε i.e.

∀a∈A bb.lb[a] = lb[a]

bb.ub[a] = lb[a] + ε

Then, according to Property 5.1 and Corollary 5.1,

mbb(m1) ∈ bb ∧mbb(m2) ∈ bb

⇐⇒ (mbb(m1) ∪mbb(m2)) ∈ bb

⇐⇒ (m1 ∪m2) ∈ bb

⇐⇒ mbb(m1 ∪m2).size ≤ ε

⇐⇒ m1 ∪m2 is a CSC

This is a contradiction. If m1 ∪m2 is competitive and m1 and m2 are distinct, then neither m1 nor m2

can be maximal. 2

From Lemma 6.1, it follows that the number of MCSCs is therefore upper bounded by the number
of possible lower bounds of mbbs containing subsets of the skyline set. The number of possible lower
bounds is upper bounded by |S|d since the lower bound is a d-dimensional point, and any of the skyline
points can contribute to the lower bound in each dimension. This concludes the proof of Theorem 6.1.
2

The result of Theorem 6.1 can also independently be derived as a result of a property exhibited by
competitiveness graphs: competitiveness graphs have a bounded boxicity of d where d is the dimension-
ality of the dataset. The boxicity [Roberts, 1969] of a graph is the minimum dimensionality of the space
in which each vertex can be represented as an axis-parallel rectangle/box, and an edge exists between
two vertices iff their corresponding boxes intersect. In our case, the vertices are skyline points, and the
box corresponding to a skyline point is an ε-sized axis-parallel d-dimensional cube centred at the point.
The boxed representation of the hotels dataset is shown in Fig. 6.1. [Spinrad, 2003] showed that graphs
with a bounded boxicity of b (boxicity is at most b) have at most O((2n)b) maximal cliques where n is
the number of vertices.

Note that the proof of Theorem 6.1 and Lemma 6.1 do not take into account the fact that all the points
in question are skyline points. We show that the bound derived in Theorem 6.1 is reasonably tight for
skyline points by constructing a skyline set such that the number of MCSCs is Ω

(
(|S|/2(d− 1))d−1

)
Theorem 6.2

The worst case number of MCSCs (|M|) is Ω
((

|S|
2(d−1)

)d−1
)
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Figure 6.1: Boxed representation of hotels dataset. Note that the boxes are squares.

Proof. To prove Theorem 6.2, (1) we first construct a n-sized (d − 1)-dimensional dataset such
the number of MCSCs is (n/2(d− 1))d−1 when competitiveness is not limited to just skyline points
and (2) then show that any general n-sized (d − 1)-dimensional dataset can be converted to an n-sized
d-dimensional dataset of only skyline points with the Chebyshev distances conserved.

Consider a set of n (d− 1)-dimensional points (D) constructed using multiples of unit vectors along
each of the (d−1) dimensions. Along each dimension, there are n/(d−1) points equally spaced between
[−ε, ε]. For instance, when n = 8 and d = 3, we construct the following set of 8 2-dimensional points.

D =
{
−εe1,−

ε

3
e1,+

ε

3
e1,+εe1,−εe2,−

ε

3
e2,+

ε

3
e2,+εe2

}
where,

e1 =

(
1

0

)
and e2 =

(
0

1

)
This dataset can be transformed into an n-sized d-dimensional dataset of only skyline points by adding
another dimension such that the Chebyshev distances between every pair of points are conserved. To
perform this transformation, we partition the dataset into layers of skyline points[Liu et al., 2015] where
the first layer is the skyline set of D (S), the second layer is the skyline of (D − S) and so on. This
provides a partial ordering of the points in D. Every point in the same skyline layer is provided with the
same value of the dth dimension, and points in higher skyline layers are provided with smaller values to
ensure that they are not dominated. Finally, all the values of the dth dimension range within the smallest
Chebyshev distance between any two points in D. When n = 8 and d = 3, the transformed dataset
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The first skyline layer of D is 15, the second is 26, the third is 37, and the final layer is 48. The shortest
Chebyshev distance is 2ε/3; the 3rd dimension is provided values amongst ε/4, ε/5, ε/6 or ε/7 based
on the layer of the point. Note that the maximum Chebyshev distance across the 3rd dimension is
3ε/28, which conserves the Chebyshev distances between all the points in D. This dataset satisfies the
following properties:

1. Every point along one of the first d − 1 dimensions is competitive with all points along all other
dimensions, i.e. the distance between any two points along different dimensions is at most ε.

2. Within the set of points along a particular dimension (among the first d − 1 dimensions), there are
n/2(d− 1) MCSCs.

Using points (1) and (2), there are a total of (n/2(d−1))d−1 MCSCs each of size n/2 in this constructed
dataset. This concludes the proof of Theorem 6.2. 2
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Chapter 7

Experimental Analysis

Because of the extent of redundancy amongst CSCs, we restrict our attention to MCSCs. We demon-
strate the utility of MCSCs using three real datasets — UCars (Section 7.1), FIFA22 (Section 7.2) and
Pokémon (Section 7.3). Then, we empirically analyse the effects of the dataset dimensionality (d), car-
dinality (n) and threshold (ε) on three aspects of MCSCs: (1) the number of MCSCs (|M|), (2) the
cardinality or size of MCSCs and (3) the overlap or visibility coefficient of MCSCs1. We measure the
overlap of a MCSC (m) by adapting the definition of visibility from [Wang et al., 2013]:

overlap(m,M) = max
m′∈M

|m ∩m′|
|m|

The overlap of a MCSC is a measure of the redundancy of a MCSC. If a MCSC has high overlap, it
indicates that another MCSC exists that contains most points within the MCSC.

1The codebase is public and open source [Source Code].

29

https://github.com/Jayitha/CSC


7.1 Case Study: Used Cars

The vehicles dataset is a set of 8K used cars scraped from the used cars website https://www.
cardekho.com [Birla, 2021]. For each car, the dataset records 11 different attributes – make and
model (Name), year of purchase (Year), Selling Price ($), number of kms driven (Driven (km)), Fuel
(diesel/petrol), Transmission (manual/automatic), number of previous owners (# Owners), Mileage
(kmpl), Engine (CC), Max Power (bhp) and the number of seats (Seats).
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Figure 7.1: Distribution of Chebyshev distances between pairs of skyline points in the UCars dataset
accorss each attribute. The red line indicates the threshold ε used for each attribute

Not all attributes are relevant when computing the skyline. For instance, the better of petrol and diesel
is subjective. However, these attributes can be incorporated when computing MCSCs. For instance, in
this experiment, the Chebyshev distance between Petrol and Diesel is 1, i.e. petrol and diesel cars are
incomparable. The distribution of pairwise Chebyshev distances between skyline points across each

30

https://www.cardekho.com
https://www.cardekho.com


attribute is shown in Fig. 7.1. Attributes like Transmission, Fuel and Seats partition the dataset. As
discussed in Chapter 2, a different ε is specified for each attribute. Picking thresholds can be challenging;
ε should be set to a value that a consumer might find insignificant. For instance, in the case of cars, a
consumer might find a 20 bhp difference in power insignificant. Overall, the dataset has 2K skyline
points and 1.2K MCSCs. A sample of MCSCs of the UCars dataset is shown in Fig. 7.3.

1. Notice that no two cars in the same MCSC have different transmissions, fuel types and the number
of seats. These three attributes partition the dataset. For instance, set 14 consists of exactly one
14-seater car and set 2 consists of automatic, diesel-based 5-seater cars.

2. Additionally, the cliques have grouped cars in a logically pleasing way. For instance, clique 1 consists
of the only vintage skyline car. Clique 2 consists of higher-end expensive, and powerful sport cars.
Clique 3 consists of cars in the cheaper range that were manufactured around ten years ago with
pretty good mileage. Clique 4 consists of popular classic oldies – old, cheap petrol-based cars with
good mileage and little power. And so on.

Fig. 7.2a and Fig. 7.2b plot the distribution of cardinalities and overlaps of MCSCs respectively.
Notice that a majority of the MCSCs are small and have almost zero overlap.
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Figure 7.2: Properties of MCSCs of the UCars dataset
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MCSC ID Name Year Selling Price
($)

Driven
(km)

Fuel Transmission # Owners Mileage
(kmpl)

Engine
(CC)

Max Power
(bhp)

Seats

1 Ambassador Classic 2000 DSZ AC PS 1994 1300 100000 Diesel Manual 2 12.8 1995 52 5

2

Audi A4 35 TDI Premium Plus 2018 38600 15000 Diesel Automatic 1 18.25 1968 187.74 5

Audi Q3 2.0 TDI Quattro Premium 
Plus 2017 37600 22000 Diesel Automatic 1 15.73 1968 174.33 5

BMW 5 Series 520d Luxury Line 2016 38600 12000 Diesel Automatic 1 18.12 1995 190 5

3

Chevrolet Sail Hatchback LT ABS 2013 2600 70000 Diesel Manual 1 22.1 1248 76.9 5

Fiat Grande Punto Active (Diesel) 2012 2200 60000 Diesel Manual 2 20.3 1248 75 5

Ford Classic 1.4 Duratorq CLXI 2013 2600 70000 Diesel Manual 2 19.68 1399 67 5

Ford Figo Diesel Celebration Edition 2013 3000 70000 Diesel Manual 1 20 1399 68.1 5

Ford Figo Diesel LXI 2012 3000 60000 Diesel Manual 1 20 1399 68 5

Ford Figo Diesel ZXI 2011 2200 70000 Diesel Manual 2 20 1399 68 5

Maruti Ritz VDi 2012 2900 70000 Diesel Manual 2 23.2 1248 73.94 5

Tata Indica Vista TDI LX 2013 3000 70000 Diesel Manual 2 19.4 1405 70 5

Tata Indigo CS LS (TDI) BS-III 2014 2900 65000 Diesel Manual 1 19.09 1405 69.01 5

4
Maruti Alto LX 2006 800 100000 Petrol Manual 2 19.7 796 46.3 5

Maruti Wagon R LX BSIII 2008 1000 100000 Petrol Manual 3 17.3 1061 64 5

5
Force One EX 2018 11300 120000 Diesel Manual 2 17 2650 80.84 7

Mahindra Scorpio S2 7 Seater 2017 11300 110000 Diesel Manual 1 15.4 2523 75 7

6

Ford EcoSport 1.5 Petrol Titanium 
BSIV 2019 11800 10000 Petrol Manual 2 17 1497 121.31 5

Ford EcoSport 1.5 Petrol Titanium 
Plus BSIV 2018 12100 15000 Petrol Manual 1 17 1497 121.36 5

Honda City i VTEC V 2017 11300 11688 Petrol Manual 1 17.8 1497 117.3 5

Hyundai Verna VTVT 1.6 SX 2017 12000 20000 Petrol Manual 1 17 1591 121.3 5

Nissan Kicks XL BSIV 2019 11400 14317 Petrol Manual 1 14.23 1498 104.55 5

7

Ford Figo 1.2P Ambiente MT 2011 3200 25000 Petrol Manual 1 18.16 1196 86.8 5

Ford Figo Petrol EXI 2011 3000 15000 Petrol Manual 1 15.6 1196 70 5

Hyundai i10 Era 2010 2800 20000 Petrol Manual 1 19.81 1086 68.05 5

Maruti Ritz VXi 2011 3000 18500 Petrol Manual 1 18.5 1197 85.8 5

Maruti Swift VXI 2011 3700 20000 Petrol Manual 2 18.6 1197 85.8 5

8
Ford Figo 1.5D Trend MT 2017 6600 56000 Diesel Manual 1 25.83 1498 99 5

Honda Amaze S Option i-DTEC 2018 7400 50000 Diesel Manual 1 25.8 1498 98.6 5

Maruti Ciaz VDi Plus SHVS 2015 7300 50000 Diesel Manual 2 28.09 1248 88.5 5

9
Ford Figo Diesel LXI 2012 1800 70000 Diesel Manual 4 20 1399 68 5

Ford Figo Diesel Titanium 2011 2000 80000 Diesel Manual 3 20 1399 68 5

10
Ford Freestyle Titanium Petrol BSIV 2020 5300 5000 Petrol Manual 2 19 1194 94.68 5

Honda Brio 1.2 VX MT 2017 6000 6750 Petrol Manual 1 18.5 1198 86.8 5

Maruti Swift LXI 2020 5900 1000 Petrol Manual 1 21.21 1197 81.8 5

11
Maruti Baleno Delta 1.3 2017 8000 20000 Diesel Manual 1 27.39 1248 74 5

Maruti Swift Dzire VDI 2017 8600 20000 Diesel Manual 1 28.4 1248 74.02 5

Maruti Swift VDI 2019 8400 15000 Diesel Manual 2 28.4 1248 74 5

12
Ford Aspire Titanium BSIV 2019 7600 20000 Petrol Manual 1 19.4 1194 94.93 5

Ford Aspire Trend Plus 2018 8200 15000 Petrol Manual 1 20.4 1194 94.93 5

Maruti Dzire LXI 2020 7300 15000 Petrol Manual 1 23.26 1197 88.5 5

13
Tata Indica V2 DLE BSII 2009 600 100000 Diesel Manual 2 17.2 1396 53.5 5

Tata Indica Vista TDI LS 2012 1500 95000 Diesel Manual 2 19.4 1405 70 5

14
Tata Winger Deluxe - Flat Roof 
(Non-AC) 2010 3100 50000 Diesel Manual 1 10.71 1948 90 14

15

Hyundai Xcent 1.2 CRDi E Plus 2018 6200 25000 Diesel Manual 1 25.4 1186 73.97 5

Maruti Swift DDiS LDI 2017 6600 35000 Diesel Manual 1 28.4 1248 74 5

Maruti Swift Dzire Tour LDI 2017 6900 28832 Diesel Manual 1 23.4 1248 74 5

Maruti Swift Dzire VDI 2015 6400 30000 Diesel Manual 1 26.59 1248 74 5

Toyota Etios Liva GD 2015 6000 25000 Diesel Manual 1 23.59 1364 67.04 5

Figure 7.3: Sample MCSCs of the UCars dataset
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7.2 Case Study: FIFA Dataset

We study MCSCs of a dataset of football players scraped from https://sofifa.com [Leone, 2021].
The dataset consists of 19K football players rated out of 100 across 34 different attributes. The website
partitions these attributes into seven categories — Attacking, Skill, Movement, Power, Mentality and
Goalkeeping. The skyline set is computed by maximising across all seven attributes. There are 80 sky-
line football players. The Sofifa website statistics are commonly used when playing Fantasy Football.
Building a team can be challenging when trying to fill a position. For this dataset, we set ε = 5%. Fur-
thermore, we use a custom competitiveness metric for the Position attribute that records the positions
that each player plays. Two players are considered to be competitive if and only if they are competi-
tive across all numerical attributes and play at least one common position. A sample of MCSCs of the
FIFA22 dataset is shown in Fig. 7.4.

MCSC ID  Name Positions Attacking Skill Movement Power Mentality Goalkeeping

1
 A. Griezmann ST, LW, RW 84 85.4 84.8 80.8 77.5 12.6

 H. Son LM, CF, LW 80.2 80.8 86 77.8 72.83 10.6

2
 Cristiano 
Ronaldo

ST, LW 87.6 83.6 85.4 87.2 74.33 11.6

3

 E. Can
CM, CB, 
CDM

76.2 77 76.4 85.4 77.67 10.8

 L. Goretzka CM, CDM 79.6 81.2 79.2 85.2 79.67 11.2

 M. Sabitzer
CM, CDM, 
CAM

76.2 79.2 79.4 81.6 76.83 13.2

 Paulinho
CM, CAM, 
CDM

78.4 76.4 76.6 85.6 79.67 11.4

4
 F. Muslera GK 18.2 24.6 66 51.2 35.67 78.2

 Jordi Masip GK 21.2 24.2 69.4 47.8 31.16 73.8

5  M. Neuer GK 24.8 33.8 57.4 56.8 43 88.8

6  Neymar Jr LW, CAM 80.6 89.2 90.2 71.8 77 11.8

7  Sergio Ramos CB 74.8 76.2 75 79.6 83.5 9.2

Figure 7.4: Sample MCSCs of the FIFA22 dataset

Fig. 7.5a plots the distribution of Chebyshev distances between pairs of skyline players. Notice
that the number of competitive relationships is few. The dataset generates 65 MCSCs. Figs. 7.5b
and 7.5c plots the distribution of MCSC cardinalities and overlaps. Most MCSCs are small and have low
overlaps. In fact, most MCSCs are singletons and the few that are larger have players with indiscernible
differences.

33

https://sofifa.com


ε

0.00

0.01

0.02

0.03

0 20 40 60 80
Chebyshev distance

de
ns

ity

(a) Distribution of distances

0

10

20

30

40

1 2 3 4
size of MCSC

co
un

t

(b) MCSC cardinalities

0

1

2

3

4

5

0.0 0.1 0.2 0.3 0.4 0.5
overlap

de
ns

ity

(c) overlaps of MCSCs

Figure 7.5: Properties of MCSCs and skyline set of the FIFA22 dataset. The red line in (a) depicts the
value of ε used for FIFA22 dataset
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7.3 Case Study: Pokémon Dataset

The Pokémon game franchise is based in a fictional universe where players are Pokémon Trainers
— people who collect Pokémon, train them and battle each other using their Pokémon. Pokémon are
unique creatures in this fictional universe that have supernatural abilities or moves based on the type (or
types) of Pokémon they are. There are 18 different possible types, for instance Water, Electric, Fire,
Bug. The moves that a Pokémon can have or learn are dependent on the type of the Pokémon. Fig. 7.6
shows the description of one Pokémon, Swampert. Swampert is both a water-type and a ground-type
Pokémon. Therefore, all the moves that Swampert has are either water-type or ground-type moves.

Figure 7.6: Pokémon move types. Swampert is a dual-type Pokémon (Ground + Water). Therefore, it is
capable of learning most Ground and Water type moves. For instance, SURF is a water-type move, and
EARTHQUAKE is a ground-type move. Source: www.wikihow.com

When a battle between two trainers begins, each trainer picks one Pokémon. Then, in turn, each
trainer can either choose to switch out their Pokémon to a different one having seen the opponent’s
Pokémon or can pick a move that their chosen Pokémon has. The objective is to pick moves that
can effectively inflict damage, i.e. reduce the health points (HP) of the opponent’s Pokémon. The
effectiveness of a Pokémon is dependent on its type — A water-type Pokémon is strong against Fire-
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type Pokémon but weak against Grass-type and Electric-type Pokémon. The incentive to switch your
Pokémon is to pick a Pokémon that is strong against the opponent’s Pokémon. When a Pokémon gets
knocked out (HP = 0), the trainer is forced to switch out their Pokémon to a different one. The game
ends when one of the trainers has no Pokémon left. Therefore, the meta-objective of the game is to build
a team of Pokémon of diverse types that are cumulatively effective against all types.

Figure 7.7: A Pokémon battle UI. Blaziken is a Fire-type Pokémon. The player has to pick amongst one
of four moves

While the factors of the game are nuanced and the amount of damage that a Pokémon inflicts is
dependent on a variety of factors2, we use a dataset of all 800 Pokémon scraped from a variety of
sources[Barradas, 2016]. For each Pokémon, the dataset records seven attributes — (1) the type(s) of
the pokemon (Type 1, Type 2 if dual), (2) the maximum health points a Pokémon can have (HP), (3) the
base attack power (Attack), (4) the base defence power (Defense), (5) the base special attack power (Sp.
Atk), (6) the base special defence power (Sp. Def), and (7) the speed which determines which Pokémon
attacks first (Speed). All the numerical attributes are given integer values less than 300. A Pokémon
dominates another Pokémon if they share at least one type in common and the first Pokémon is stronger
wrt all numerical attributes.

2To read about how damage is calculated, please see https://bulbapedia.bulbagarden.net/wiki/Damage
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This dataset consists of 168 skyline Pokémon. Fig. 7.8a plots the distribution of Chebyshev distances
between all pairs of skyline Pokémon. We compute all MCSCs where we set the threshold to ε. Similar
to the FIFA22 dataset, we modify the competitiveness metric, two Pokémon are competitive only if they
share at least one type in common. A sample of the MCSCs of the Pokémon dataset is shown in Fig. 7.9.
A total of 142 MCSCs are generated. Most MCSCs are singletons (Fig. 7.8b), and all but one MCSC
have an overlap of zero.

ε = 20
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Figure 7.8: Properties of MCSCs and skyline set of the Pokémon dataset. The red line in (a) depicts the
value of ε used for Pokémon dataset

Our work has managed to identify most legendary Pokémon. To put it mildly, legendary Pokémon
are considered to be the strongest Pokémon in the franchise. We attribute this advantage to the skyline
operator. Because of the non-existent overlap between MCSCs, the cliques group skyline Pokémon
predominantly based on their types and strength.

Not all Pokémon are easy to come by, specifically the legendary Pokémon. Therefore, players have
to make do with other Pokémon hoping their alternative Pokémon offer comparative performance. We
attempt to evaluate our MCSCs as good alternative recommenders. To do this, we use a Pokémon
battle predictor that learns from a large dataset of battles[Challenge, 2017]. Given two Pokémon, the
predictor predicts the winner of the battle. We show that the outcomes of using competitive Pokémon
are almost the same. In Fig. 7.10, we visualize a matrix with a set of Pokémon along the rows and
columns. A −1 red cell (+1 blue cell) indicates that the row Pokémon typically loses (wins) against the
column Pokémon. The rows have been grouped into MCSCs (except the last group of non-competitive
Pokémon). We observe that in most cases, the performance of Pokémon within the same MCSC are
similar. The existence of the similarities is evidenced when contrasted against the last group of non-
competitive Pokémon rows. However, there are exceptions: for instance, the performance of Mega
Garchomp and Zekrom are different; this is because Zekrom is a legendary Pokémon and, as a result, is
a lot stronger.
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MCSC ID Name Type 1 Type 2 HP Attack Defense Sp. Atk Sp. Def Speed Generation Legendary

1 Mega Venusaur Grass Poison 80 100 123 122 120 80 1 FALSE

2
Mega Charizard X Fire Dragon 78 130 111 130 85 100 1 FALSE
Mega Altaria Dragon Fairy 75 110 110 110 105 80 3 FALSE

3
Arcanine Fire 90 110 80 100 80 95 1 FALSE
Simisear Fire 75 98 63 98 63 101 5 FALSE

4
Rapidash Fire 65 100 70 80 80 105 1 FALSE
Simisear Fire 75 98 63 98 63 101 5 FALSE

5
Muk Poison 105 105 75 65 100 50 1 FALSE
Amoonguss Grass Poison 114 85 70 85 80 30 5 FALSE

6 Articuno Ice Flying 90 85 100 95 125 85 1 TRUE
7 Mega Mewtwo X Psychic Fighting 106 190 100 154 100 130 1 TRUE

8
Mega Steelix Steel Ground 75 125 230 55 95 30 2 FALSE
Mega Aggron Steel 70 140 230 60 80 50 3 FALSE

9
Mega Houndoom Dark Fire 75 90 90 140 90 115 2 FALSE
Darkrai Dark 70 90 90 135 90 125 4 TRUE

10
Raikou Electric 90 85 75 115 100 115 2 TRUE
Mega Manectric Electric 70 75 80 135 80 135 3 FALSE

11 Suicune Water 100 75 115 90 115 85 2 TRUE
12 Hariyama Fighting 144 120 60 40 60 50 3 FALSE

13
Mega Sharpedo Water Dark 70 140 70 110 65 105 3 FALSE
Mega Absol Dark 65 150 60 115 60 115 3 FALSE

14

Mega Latios Dragon Psychic 80 130 100 160 120 110 3 TRUE
Dialga Steel Dragon 100 120 120 150 100 90 4 TRUE
Palkia Water Dragon 90 120 100 150 120 100 4 TRUE
Reshiram Dragon Fire 100 120 100 150 120 90 5 TRUE

15
Mega Garchomp Dragon Ground 108 170 115 120 95 92 4 FALSE
Zekrom Dragon Electric 100 150 120 120 100 90 5 TRUE

16
Leafeon Grass 65 110 130 60 65 95 4 FALSE
Gourgeist Average Size Ghost Grass 65 90 122 58 75 84 6 FALSE

17 Heatran Fire Steel 91 90 106 130 106 77 4 TRUE
18 Regigigas Normal 110 160 110 80 110 100 4 TRUE

19
Giratina Altered Forme Ghost Dragon 150 100 120 100 120 90 4 TRUE
Giratina Origin Forme Ghost Dragon 150 120 100 120 100 90 4 TRUE

20
Serperior Grass 75 75 95 75 95 113 5 FALSE
Whimsicott Grass Fairy 60 67 85 77 75 116 5 FALSE

21
Leavanny Bug Grass 75 103 80 70 80 92 5 FALSE
Scolipede Bug Poison 60 100 89 55 69 112 5 FALSE

22
Zoroark Dark 60 105 60 120 60 105 5 FALSE
Greninja Water Dark 72 95 67 103 71 122 6 FALSE

23 Diancie Rock Fairy 50 100 150 100 150 50 6 TRUE

Figure 7.9: Sample MCSCs of the Pokémon dataset
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Mega Charizard X 0 -1 -1 -1 1 -1 -1 1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 1

Mega Altaria 1 0 1 1 1 1 1 1 1 1 -1 -1 1 1 1 -1 -1 1 -1 1 -1 1 -1 -1 1 1 1 1 1 1 1 1 -1 1

Arcanine 1 -1 0 1 1 1 1 1 1 -1 -1 -1 -1 1 1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 1 1 1 1 1 1 1 -1 1

Simisear 1 -1 -1 0 1 1 1 1 1 -1 -1 -1 -1 1 1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 1 1 1 -1 1 1 -1 1

Rapidash -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

Muk 1 -1 -1 -1 1 0 -1 1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 1

Amoonguss 1 -1 -1 -1 1 1 0 1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 1 1 -1 -1 -1 -1 -1 1

Mega Steelix -1 -1 -1 -1 1 -1 -1 0 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 1

Mega Aggron 1 -1 -1 -1 1 1 -1 1 0 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 1 -1 -1 -1 -1 -1 -1 1

Mega Houndoom 1 -1 1 1 1 1 1 1 1 0 -1 -1 -1 1 1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 1 1 1 1 1 1 1 -1 1

Darkrai 1 1 1 1 1 1 1 1 1 1 0 -1 1 1 1 1 1 1 1 1 -1 1 -1 1 1 1 1 1 1 1 1 1 -1 1

Raikou 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 -1 1 -1 -1 1 1 1 1 1 1 1 1 -1 1

Mega Manectric 1 -1 1 1 1 1 1 1 1 1 -1 -1 0 1 1 -1 -1 1 -1 1 -1 1 -1 -1 1 1 1 1 1 1 1 1 -1 1

Mega Sharpedo 1 -1 -1 -1 1 1 1 1 1 -1 -1 -1 -1 0 1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 1 1 1 -1 1 1 -1 1

Mega Absol -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1

Mega Latios 1 1 1 1 1 1 1 1 1 1 -1 -1 1 1 1 0 -1 1 -1 1 -1 1 -1 -1 1 1 1 1 1 1 1 1 -1 1

Dialga 1 1 1 1 1 1 1 1 1 1 -1 -1 1 1 1 1 0 1 1 1 -1 1 -1 -1 1 1 1 1 1 1 1 1 -1 1

Palkia 1 -1 1 1 1 1 1 1 1 1 -1 -1 -1 1 1 -1 -1 0 -1 1 -1 1 -1 -1 -1 1 1 1 1 1 1 1 -1 1

Reshiram 1 1 1 1 1 1 1 1 1 1 -1 -1 1 1 1 1 -1 1 0 1 -1 1 -1 1 1 1 1 1 1 1 1 1 -1 1

Mega Garchomp -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1

Zekrom 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 -1 1 1 1 1 1 1 1 1 1 -1 1

Leafeon 1 -1 -1 1 1 1 1 1 1 -1 -1 -1 -1 1 1 -1 -1 -1 -1 1 -1 0 -1 -1 -1 1 1 1 1 -1 1 1 -1 1

Gourgeist Average Size 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 -1 1

Giratina Altered Forme 1 1 1 1 1 1 1 1 1 1 -1 1 1 1 1 1 1 1 -1 1 -1 1 -1 0 -1 1 1 1 1 1 1 1 -1 1

Giratina Origin Forme 1 -1 1 1 1 1 1 1 1 1 -1 -1 -1 1 1 -1 -1 1 -1 1 -1 1 -1 1 0 1 1 1 1 1 1 1 -1 1

Serperior 1 -1 -1 -1 1 1 -1 1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 0 1 -1 -1 -1 -1 -1 -1 1

Whimsicott -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 1

Leavanny 1 -1 -1 -1 1 1 -1 1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 1 0 -1 -1 -1 -1 -1 1

Scolipede 1 -1 -1 -1 1 1 1 1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 1 1 0 -1 1 -1 -1 1

Zoroark 1 -1 -1 1 1 1 1 1 1 -1 -1 -1 -1 1 1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 1 1 1 1 0 1 1 -1 1

Greninja 1 -1 -1 -1 1 1 1 1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 1 1 -1 -1 0 -1 -1 1

Mega Venusaur 1 -1 -1 -1 1 1 1 1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 1 1 1 -1 1 0 -1 1

Mega Mewtwo X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1

Hariyama -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0

Articuno 1 1 1 1 1 1 1 1 1 1 1 -1 1 1 1 1 1 1 1 1 -1 1 -1 -1 1 1 1 1 1 1 1 1 -1 1

Suicune 1 -1 -1 -1 1 1 -1 1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 1

Figure 7.10: Sample MCSCs of the Pokémon dataset. The matrix consists of skyline Pokémon on the
rows and columns; A red (blue) cell indicates that the row Pokémon loses (wins) against the column
Pokémon. All grouped rows save the last group are MCSCs
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7.4 Synthetic Datasets

Experiments are performed using synthetic datasets generated as specified by [Borzsony et al., 2001]
using the generator built by [Eder, 2008]. Three types of datasets are generated — (1) CORR - all
attributes are correlated, (2) INDEP - all attributes are independent and (3) ANTI - points that are good
in one attribute are bad in at least one other attribute. We sample cardinalities from the range [100, 1M ],
dimensionalities from range [2, 20] and ε from [0.1%, 20%]. Unless otherwise specified, the default
dataset used is of type ANTI with four attributes, 10K points and threshold 5%.
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Figure 7.11: Properties of skyline set of synthetic datasets – (a) distribution of skyline cardinalities when
n = 10K and (2) distribution of Chebyshev distances between pairs of skyline points when d = 4 and
n = 10K.

MCSCs are dependent on the properties of the skyline set. Fig. 7.11 depicts properties of the skyline
set of the generated synthetic datasets. Fig. 7.11a plots the number of skyline points in datasets with
n = 10K as the number of dimensions increases. As described in [Borzsony et al., 2001], the size
of the skyline set grows with the dimensionality of the dataset. Additionally, ANTI datasets generally
have larger skyline sets than INDEP datasets, and INDEP datasets generally have larger skyline sets
than CORR datasets. Notice that as the dimensionality increases, the sparsity of the dataset increases as
well, causing the saturation of the skyline set to the whole dataset. Fig. 7.11b plots the distribution of
Chebyshev distances between pairs of skyline points of the three dataset types. Note that skyline points
of the CORR datasets tend to be close, unlike the ANTI or INDEP datasets. The skyline sets of the
INDEP and ANTI datasets are relatively sparse, with high inter-point distances.

The experimental results are summarised in Figs. 7.12 to 7.15. Unless otherwise specified, the
cardinality of the datasets is 10K, the dimensionality is four and threshold ε = 0.05. We report the
run time of our algorithms on these generated datasets in Fig. 7.15; we average the time taken over 10
iterations of the algorithms.

7.4.1 Number of MCSCs

Fig. 7.12 measures the effect of varying number of dimensions (Fig. 7.12a), cardinality (Fig. 7.12b)
and threshold (Fig. 7.12c) on the number of MCSCs generated.
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1. As the number of dimensions increase, the skyline sets tend to get increasingly sparse. When d = 20,
the MCSCs converge to non-overlapping singleton skyline point sets.

2. As the number of points increase, the density of the skyline set tends to increase. New competitive
relations are introduced, leading to more and larger MCSCs. This result is corroborated in Fig. 7.13b.

3. The effect of increasing the threshold ε is split across datasets — the number of MCSCs tend to
decrease in CORR datasets since CORR skyline points tend to be densely packed; an increase in ε

causes smaller MCSCs to merge creating larger and fewer MCSCs. However, this is not the case
with the ANTI dataset; ANTI skyline points are sparse; an increase in ε introduces more competitive
relationships; however, ε will have to be considerably large for small MCSCs to merge. Instead,
MCSCs tend to grow in size, and new MCSCs are generated.
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Figure 7.12: Number of MCSCs generated when varying (a) the number of dimensions d (n = 10K, ε =
0.05), (b) cardinality n (d = 4, ε = 0.05) and (c) threshold ε (d = 4, n = 10K). The dashed lines
represent the size of the skyline set.

7.4.2 Cardinalities and overlaps of MCSCs

Figs. 7.13 and 7.14 measures the effect of varying number of dimensions (Figs. 7.13a and 7.14a), car-
dinality (Figs. 7.13b and 7.14b) and threshold (Figs. 7.13c and 7.14c) on the cardinalities and overlaps
of the generated MCSCs respectively.

1. As the number of dimensions increase, the skyline sets tend to get increasingly sparse, creating
smaller less-overlapping MCSCs converging to singleton cliques.

2. As the number of points increases, the density of the skyline set and consequently the cardinalities
of MCSCs increase. This also consequently increases overlaps between MCSCs.

3. As is expected, the cardinality and overlaps of MCSCs increase with the threshold ε. This is a natural
result – if two skyline points are competitive when ε = ε′, then they remain competitive for all values
of ε > ε′.
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Figure 7.13: Size of MCSCs or number of points in MCSCs when varying (a) the number of dimensions
d (n = 10K, ε = 0.05), (b) cardinality n (d = 4, ε = 0.05) and (c) threshold ε (d = 4, n = 10K).
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Figure 7.14: Overlap of MCSCs when varying (a) the number of dimensions d (n = 10K, ε = 0.05),
(b) cardinality n (d = 4, ε = 0.05) and (c) threshold ε (d = 4, n = 10K).

7.4.3 Performance of OMCE algorithm

Fig. 7.15 measures the effect of varying number of dimensions (Fig. 7.15a), cardinality (Fig. 7.15b)
and threshold (Fig. 7.15c) on the performance of the OMCE algorithm. Furthermore, the plots also
compare the performance of our OMCE algorithm against the popular maximal clique enumeration
algorithm titled the Bron-Kerbosch algorithm (BK) proposed by [Bron and Kerbosch, 1973]. This al-
gorithm is known to be theoretically optimal in the worst case, i.e. its run time complexity is O(3n/3)
where n is the number of vertices. The run time of the BK algorithm is shown Fig. 7.15 in faded colours.
The OMCE algorithm tends to perform well on sparse comp graphs. Therefore, the OMCE algorithm
outperforms the BK algorithm when the number of dimensions is large. In other cases, the performance
of the OMCE algorithm is comparable to that of the BK algorithm. Furthermore, the plots in Fig. 7.15
resemble those of Fig. 7.12, and the performance of the OMCE algorithm depends on the number of
MCSCs.
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Figure 7.15: Performance of the OMCE algorithm when varying (a) the number of dimensions d (n =
10K, ε = 0.05), (b) cardinality n (d = 4, ε = 0.05) and (c) threshold ε (d = 4, n = 10K). In each
plot, the translucent or faded line plots indicate the performance of the BK algorithm for the same
configurations.

7.4.4 Partitioning
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Figure 7.16: Properties of skyline partition sets: We plot the (a) number of partition sets, (b) the average
size of each partition set and (c) the distribution of partition set sizes as the partition algorithm is run
multiple times till convergence. The synthetic datasets have configuration cardinality n = 10K, dimen-
sionality d = 4 and threshold ε = 0.05.

In Section 5.1, we introduce the partitioning algorithm as a preprocessing step. In this section, we
empirically demonstrate that performing many iterations of the partitioning algorithm is not necessary
and that convergence occurs after a few iterations. We ran the partitioning algorithm on all synthetic
dataset configurations until convergence. We observed that the maximum number of iterations was 6

and that the average number of iterations necessary for convergence is 1.7857. Figs. 7.16a to 7.16c
plot the number of partition sets, the average size of each partition set and the distribution of sizes of
partition sets, respectively as the partition algorithm is applied multiple times. The partition algorithm is
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not always effective; in both the INDEP and CORR cases, the partition algorithm effectively partitions
the dataset but not in the ANTI case. The partition algorithm is most effective when the threshold ε is
small.
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Chapter 8

2D Competitive Skyline Cliques

We treat the 2D case differently because of an interesting property exhibited by 2D skyline sets. In
this section, we assume that the two dimensions (or attributes) are a1 and a2 and that the points in the
skyline set S = {p1, p2, . . . , pm} are implicitly sorted by the first attribute a1 in ascending order as is
the case for the hotels dataset (Fig. 1.1).

Property 8.1. If S is a 2D skyline set and the points in S are sorted in ascending order based on one

attribute (say a1), then they are simultaneously sorted in descending order by the other attribute (a2)

Proof. Although this property has been proposed by [Borzsony et al., 2001], we provide a proof for
completeness. We use a proof by contradiction. Let pi and pj be two skyline points such that i < j.
This implies that pi[a1] ≤ pj [a1] (skyline set is sorted) and pi[a2] < pj [a2].

pi[a1] ≤ pj [a1] ∧ pi[a2] < pj [a2] =⇒ pi ⪯ pj

=⇒ pj is not a skyline point (contradiction)

2

This property has two important consequences: Corollary 8.1 and Corollary 8.2

Corollary 8.1. If 2D skyline points are sorted by some attribute (say a1) and pi and pj are two skyline

points such that i < j, then

1. If pi is not competitive with pj then for all integers k ≥ j, pi is not competitive with pk

¬comp(pi, pj) =⇒ ∀k≥j¬comp(pi, pk)

2. If pi is competitive with pj then for all integers i ≤ k ≤ j, pi is competitive with pk

comp(pi, pj) =⇒ ∀i≤k≤jcomp(pi, pk)
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Proof. We first prove the former statement: Let pi and pj be two skyline points such that i < j and
pi is not competitive with pj . Then,

i < j ∧ ¬comp(pi, pj) =⇒ max(pj [a1]− pi[a1], pi[a2]− pj [a2]) > ε

=⇒ ∀k≥j max(pk[a1]− pi[a1], pi[a2]− pk[a2]) > ε

(∀k≥j pk[a1] > pj [a1] ∧ pj [a2] > pk[a2])

=⇒ ∀k≥j ¬comp(pi, pk)

We now prove the latter statement: Let pi and pj be two skyline points such that i < j and pi is
competitive with pj . Then,

i < j ∧ comp(pi, pj) =⇒ max(pj [a1]− pi[a1], pi[a2]− pj [a2]) ≤ ε

=⇒ ∀i≤k≤j max(pk[a1]− pi[a1], pi[a2]− pk[a2]) ≤ ε

(∀i≤k≤j pi[a1] ≤ pk[a1] ≤ pj [a1] ∧ pj [a2] ≤ pk[a2] ≤ pi[a2])

=⇒ ∀i≤k≤j comp(pi, pk)

2

Corollary 8.2. The mbb of a set of 2D skyline points is characterised by at most two points in the set.

If s is a set of 2D skyline points and if pmin, pmax ∈ s are the points with the smallest and largest values

of the first dimension a1 in s respectively, then mbb(s) is given by

mbb(s).lb = (pmin[a1], pmax[a2])

mbb(s).ub = (pmax[a1], pmin[a2])

Proof. Let s = {p1, . . . , pk} be a sorted set of 2D skyline points sorted by the first dimension (a1)
p1[a1] ≤ p2[a1] ≤ . . . ≤ pk[a1]. Then, according to Property 8.1, s is also sorted by the second dimen-
sion but in descending order p1[a2] ≥ p2[a2] ≥ . . . ≥ pk[a2]. Then the mbb (defined in Section 5.2) is
given by the following equations

mbb(s).lb[a1] = min
p∈s

p[a1] = p1[a1] mbb(s).lb[a2] = min
p∈s

p[a1] = pk[a1]

mbb(s).ub[a1] = max
p∈s

p[a1] = pk[a1] mbb(s).ub[a2] = max
p∈s

p[a1] = p1[a1]

2
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An implication of the two corollaries is that there are at most |S|MCSCs. 2D bounding boxes of subsets
of the skyline set are characterised by 2 points (Corollary 8.2). If point p is chosen as the point having
the minimum value of dimension a1 (and consequently the maximum value of the other dimension a2)
in the MCSC being constructed, then the MCSC is given by the set of all skyline points in box bb where
bb is defined by the following equations (Lemma 6.1)

bb.lb = (p[a1], p[a2]− ε)

bb.ub = (p[a1] + ε, p[a2] )

While the worst-case number of CSCs of the 2D skyline remains the same, the properties exhib-
ited by 2D MCSCs allow for a faster and optimal enumeration algorithm. We present an O(n) time
sweep-line algorithm (Algorithm 3) that enumerates all 2D MCSCs. The sweepline algorithm as-
sumes that the skyline set has already been computed and sorted, without loss of generality, by the
first dimension a1. This assumption is practical since the optimal O(n) time 2D skyline computation
algorithm[Borzsony et al., 2001] generates the skyline set sorted by the first attribute.

Algorithm 3 2D Sweepline Maximal Competitive Skyline Clique Enumeration Algorithm (2DSMCE)
1: Input: S = {p1, p2, . . . , pm} sorted by a1, ε

2: M←− ϕ; pmin ←− p1; pmax ←− p1

3: while pmin ∈ S and pmax ∈ S do

4: while ¬comp(pmin, pmax) do

5: pmin ←− pmin+1

6: while pmax+1 ∈ S and comp(pmin, pmax+1) do

7: pmax ←− pmax+1

8: m←− {pi | min ≤ i ≤ max}

9: M←−M∪ {mcc}

10: pmax ←− pmax+1

11: Return: M

The sweep-line algorithm work by moving a variable-sized window through the sorted skyline set.
Points pmin and pmax define the smallest and largest values of attribute a1 in the MCSC being con-
structed. Each value of pmin results in one MCSC. The loop defined in lines 4–5 generates a viable
pmin, lines 6–7 determine the corresponding value of pmax (Corollary 5.2) and line 8 construct the new
MCSC. Note that not every pmin generates a MCSC; for instance, if pmin = p3, the generated clique is
3, which is not maximal because it is contained in 123. To circumvent this, we use line 10 to ensure the
constructed clique is not contained in any other maximal clique.
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Example. The hotels dataset is sorted by attribute Price. The algorithm starts by processing p1 in
line 1. Lines 6–7 compute the appropriate pmax which is p1. MCSC 1 is included in M . pmax is updated
to p2. Lines 4-5 updates pmin to p2 and consequently lines 6–7 update pmax to p3. MCSC 23 is added
to M. Line 10 updates pmax to p4. Lines 4–5 update pmin to p3 and lines 6–7 consequently update
pmax to p5. MCSC 345 is included inM. The run of the algorithm is demonstrated in Fig. 8.1.

Point 1 2 3 4 5 6 7 8

Price 0.15 0.16 0.17 0.18 0.19 0.20 0.23 0.25

Distance 0.40 0.34 0.31 0.28 0.26 0.20 0.185 0.17

1

23

345

678

Figure 8.1: Run of Algorithm 3 on hotels dataset.

Experimental Analysis

In Fig. 8.2a, we plot the number of 2DMCSCs generated as the cardinality of the underlying dataset
is varied. We create plots for multiple values of ε. The black dashed line represents the cardinal-
ity of the skyline set. This plot empirically verifies our claim: there are at most |S| 2DMCSCs. In
Figs. 8.2b and 8.2c, we compare the performance of the 2DSMCE, and the OMCE algorithms as the
dataset cardinality and threshold are varied, respectively. As the cardinality of the dataset increases, so
does the cardinality of the skyline set, consequently, the runtime of the 2DSMCE algorithm. On the
other hand, the performance of the 2DSMCE algorithm is independent of the threshold ε. In both cases,
the 2DSMCE outperforms the OMCE algorithm.
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Figure 8.2: Experimental results on 2D ANTI datasets. (a) The number of 2D MCSCs generated as both
cardinality and threshold are varied. The black dashed line represents the cardinality of the skyline set.
(b),(c) Performance of 2DSMCE in comparision to the OMCE algorithm as the cardinality (ε = 0.05)
and threshold (n = 10K) are varied respectively.
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Chapter 9

Approximate Competitive Skyline Cliques

The number of MCSCs can be large, and enumerating MCSCs can be expensive. We propose an
approximation that consists of O(|S|) cliques and can be computed in O(|S|2) time.

Definition 9.1

An approximate competitive skyline clique (ACSC for short) consists of a skyline point p and
all of its competitors (ε-neighborhood). AC denotes the set of all ACSCs.

AC = {competitors(p,S) | p ∈ S}

The approximation is bounded by Theorem 9.1.

Theorem 9.1

Let p be a skyline point, then the Chebyshev distance between any two points in set
competitors(p,S) is at most 2ε

Proof. The proof relies on the transitive bound property (see proof of Corollary 5.3): If p, q, r be
three skyline points such that comp(p, q) and comp(q, r), then ||p− r||∞ ≤ 2ε. Let p be a skyline point
and let q1 and q2 be points in competitors(p,S), then comp(q1, p) and comp(p, q2). By the transitive
bound property, ||q1 − q2||∞ ≤ 2ε. 2

Example. For example, the ACSCs of the hotels dataset are

AC = {1, 23, 2345, 345, 678}

For the hotels dataset, ε = 0.05 = 5%. Therefore, any two points in any ACSC differ by at most 10%
across any attribute.
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As an optimization, subsumed ACSCs like 23 can be eliminated (called approximate maximal
competitive cliques (AMCSC)). The set of all AMCSCs is denoted by AMC.

AMC = {1, 2345, 678}

To enumerate ACSCs, we can iterate through the skyline set and perform a range query for each skyline
point. The range query can be implemented efficiently as detailed in Chapter 5.

Experimental Analysis

In this section, we demonstrate the utility and practicality of AMCSCs. Note that in Fig. 7.12c, the
number of MCSCs of the ANTI dataset are much larger than the number of skyline points. Specifically,
the dataset consists of at most 10K skyline points and over 30K MCSCs. Furthermore, these MCSCs
tend to be large in size (Fig. 7.13c) and have considerable overlap (Fig. 7.14c). Hence, many MCSCs
tend to be redundant. In situations like this, AMCSCs can yield better results. In Fig. 9.1b, we plot
the number of AMCSCs and MCSCs generates as the threshold ε is varied. The black-coloured dashed
line represents the cardinality of the skyline set. Note that the number of AMCSCs is consistently
smaller than the skyline cardinality and far smaller than the number of MCSCs. In Fig. 9.1b, we plot
the distribution of MCSC and AMCSC cardinalities as the threshold is varied and in Fig. 9.1c we plot
the time taken to compute AMCSCs and MCSCs as the threshold is varied. As is expected, AMCSCs
tend to be larger than MCSC. However, AMCSCs are far more efficient to enumerate.
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Figure 9.1: Experimental results on AMCSCs of 4D ANTI dataset with 10K points. (a) The number
of AMCSCs and MCSCs generated as the threshold is varied. The black dashed line represents
the cardinality of the skyline set. (b) Compares cardinalities or sizes of AMCSCs and MCSCs as
the threshold is varied. (c) Compares the efficiency of enumerating all AMCSCs and MCSCs as the
threshold is varied.
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Chapter 10

Conclusion

In this work, we formalised the notion of competitiveness between skyline points and defined com-
petitive skyline cliques (CSCs) and maximal competitive skyline cliques (MCSCs). We restricted our
attention to MCSCs because many CSCs can be redundant and CSCs are exponential in number. Be-
cause the expected number of MCSCs is low, we employed an output-sensitive algorithm to enumerate
all MCSCs. We provided optimisationsto our algorithm that efficiently exploited properties of our com-
petitiveness metric. In our empirical analysis, we showed that the use of an output-sensitive algorithm
over another popular maximal clique enumeration algorithm (BK) witnessed a significant performance
improvement. We proved that, unlike the problem of maximal clique enumeration, the problem of enu-
merating all MCSCs is not NP-Hard and can, in fact, be solved in polynomial time. We established this
fact by providing a polynomial bound on the number of MCSCs. Empirically, we observed that in most
cases, the number of MCSCs was about the same as the number of skyline points. However, within
real datasets, we observed that the number of MCSCs was far fewer than the number of skyline points.
We demonstrated the utility of MCSCs using three real-world datasets. With the UCars dataset, we
observed that MCSCs generated sets of used cars that targetted different consumer sets. We observed
sets of cars that differed in the economic and purpose-driven preferences a consumer might have. For
instance, purpose-driven vehicles like the TATA 14-seater formed singleton MCSCs where economic
vehicles like Maruti Swift and Ford Figo appeared in the same clique. With the FIFA22 dataset, we
observed how MCSCs can be utilized within constraints — A player is competitive with another player
only if they play one of the same positions. We evaluated MCSCs of the Pokémon dataset: we observed
that all Pokémon in a MCSC generally tended to win and lose against the same Pokémon. We also
showed the existence of an optimal linear-time MCSC enumeration algorithm for the specific case when
d = 2 that exploited unique properties of 2D skyline points. Finally, we acknowledged that in some
cases, the number of MCSCs can be large — to that end, we provided a bounded approximate alternative
to MCSCs (AMCSCs) that were smaller in number and easier to enumerate.

Choosing the threshold ε can be tricky. Currently, we use two approaches — (1) in the first approach,
we first set ε for one attribute (for instance, Price) and then reason how much of a change we expect in
another attribute for an ε change in the fixed attribute and (2) in the second approach, we query the user
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with pairs of products to generate an annotated dataset; we then determine ε that satisfies most of the
annotations. A problem with picking a strict value of ε is the lack of fuzziness within competitiveness
relationships. In future work, we will attempt to develop a notion of competitiveness that is not as strict.
MCSCs have other applications – for instance, these cliques are capable of identifying competitive mar-
ket segments. There has been work that aimed at generating new skyline products [Wan et al., 2009].
However, not all skyline products are attractive to consumers. Competitive market segments could be
construed as good indicators of popular consumer preferences. A possible future application would
be to build skyline products that are competitive with many other skyline products to increase the at-
tractiveness of the product. Or alternatively, if the objective is to build a diverse set of products, then
generating skyline products that are not competitive with any existing skyline product would be a good
strategy. Another interesting new direction is generating cliques of diverse skyline points where two
skyline points are defined to be diverse if they differ by at least ε, a large user-defined threshold ε.
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