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Abstract

Multi-robot formation control has various applications in domains such as vehicle troops,
platoons, payload transportation, and surveillance. Maintaining formation in a vehicle platoon
requires designing a suitable control scheme that can tackle external disturbances and uncer-
tain system parameters while maintaining a predefined safe distance between the robots. A
crucial challenge in this context is dealing with the unknown/uncertain friction forces between
wheels and the ground, which vary with changes in road surface, wear in tires, and speed of the
vehicle. Although state-of-the-art adaptive controllers can handle a priori bounded uncertain-
ties, they struggle with accurately modeling and identifying frictional forces, which are often
state-dependent and cannot be a priori bounded.

This thesis proposes a new adaptive sliding mode controller for wheeled mobile robot-based
vehicle platoons that can handle the unknown and complex behavior of frictional forces with-
out prior knowledge of their parameters and structures. The controller uses the adaptive sliding
mode control techniques to regulate the platoon’s speed and maintain a predefined inter-robot
distance, even in the presence of external disturbances and uncertain system parameters. This
approach involves a two-stage process: first, the kinematic controller calculates the desired
velocities based on the desired trajectory; and second, the dynamics model generates the com-
mands to achieve the desired motion. By separating the kinematics and dynamics of the robot,
this approach can simplify the control problem and allow for more efficient and robust control
of the wheeled mobile robot.

The stability of the closed-loop system employing both the proposed controllers are studied
analytically via Lyapunov theory. The effectiveness of the proposed controller is demonstrated
through simulations using Gazebo, a popular robot simulation tool. The simulations show that
the proposed controller outperforms existing state-of-the-art controllers in terms of stability,
convergence, and robustness to changes in frictional forces. The simulations also demonstrate
the controller’s ability to maintain formation under various road conditions, including slopes,
curves, and rough terrain.
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Chapter 1

Introduction

The field of robotics has captured people’s imaginations due to its potential for machines to
replace humans in everyday tasks. One of the main benefits of robotics is the inefficiency of
humans in performing repetitive tasks. Machines can perform these tasks without constraints
such as boredom or distraction. Additionally, robots can transcend the mechanical limitations
of humans, making them ideal for tasks that are physically demanding or hazardous.

The development of robots has followed a similar path to the evolution of living beings.
Initially, robots were designed for specific operations, and humanoid fantasies were seen as
impractical with the technology available at the time. Robots came in various mechanical forms
with task-specific features similar to living creatures. One significant step in the evolution of
robotics was the development of autonomous systems that could perform tasks without human
control. This development led to the need for a new science stream called control, which is
essential for the functioning of autonomous systems.

One of the most significant applications of autonomous systems is in the field of autonomous
vehicles. These vehicles have been brought to life through advances in control techniques and
are used for research and commercial purposes. Autonomous vehicles come in various forms,
including cars, ships, and quadrotors. While the use cases for aerial and marine robots are
limited due to safety constraints, road vehicles equipped with autopilot features are already in
use, and major automobile manufacturers are shifting their focus towards autonomous vehicles.

The control of autonomous vehicles encompasses a broad range of activities, from high-
level control that selects an optimal trajectory to low-level control that determines appropriate
actuator inputs. Robotics and control engineering are two closely related fields that have played
an instrumental role in shaping our modern world. Robotics involves the design, construction,
operation, and use of robots to perform a wide range of tasks, from manufacturing and assembly
to exploration and space travel. Control engineering, on the other hand, focuses on designing
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and implementing control systems to manage and regulate complex processes, ensuring that
they are efficient, safe, and reliable.

The integration of robotics and control engineering has led to many significant advance-
ments in various industries. For example, in manufacturing, robots and automation have trans-
formed production lines, allowing for faster and more efficient assembly of products. Robots
can perform tasks that are repetitive, dangerous, or require high precision, which reduces the
risk of injury and improves quality control. Control engineering is used to optimize and man-
age these complex systems, ensuring that they operate efficiently and safely.

1.1 Autonomous Vehicle Platoon

Figure 1.1: Platoonig. Source: Wikipedia

Multi-wheeled mobile robot platoons are a type of robotic system that has the potential
to revolutionize the way goods are transported in logistics and distribution networks. These
platoons consist of a group of autonomous vehicles that can operate together in a coordinated
manner, following a lead vehicle or a predetermined path. This technology is being developed
by various research institutions and companies around the world, with the aim of reducing
transportation costs and increasing efficiency.
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The benefits of using multi-wheeled mobile robot platoons are numerous. First and fore-
most, they can increase transportation efficiency and reduce costs. By coordinating the move-
ments of several vehicles, platoons can travel at a constant speed and maintain a safe following
distance, reducing the need for drivers and optimizing fuel consumption. This can lead to
significant savings for logistics and distribution companies.

Another benefit of multi-wheeled mobile robot platoons is their potential to reduce traffic
congestion and improve safety on roads. By coordinating their movements, these platoons can
reduce the number of vehicles on the road, decreasing the likelihood of accidents and reducing
travel times for other drivers.

Additionally, these platoons can operate autonomously, eliminating the need for human
drivers. This can lead to increased safety, as there is less risk of accidents caused by human
error. It can also lead to cost savings for logistics and distribution companies, as they will not
need to pay for drivers’ salaries, benefits, and training.

1.2 System Representation

The main components involved in modeling a robotic system, namely, representing the
model, defining reference frames with state variables, and developing kinematic and dynamic
dynamic equations. Although there are various approaches to modeling dynamics in each of
these sections, the focus will be on the method employed in this work.

1.2.1 Reference Frames

In order to describe the position of the robot Inertial Coordinate System (XI , YI) and Robot
Coordinate System (Xr, Yr) frames are shown in Figure (1.2). The Inertial Coordinate System
is a global frame which remains fixed in the environment or plane where the wheeled mobile
robot (WMR) operates. It serves as the benchmark for reference. While, the Robot Coordinate
System is local frame which is affixed to the mobile robot and moves along with it.

The position of any point on the robot can be defined in the robot frame and the inertial
frame as Xr = [xr, yr, θr]T and XI = [xI , yI , θI ]T respectively. The important issue that
needs to be explained at this stage is the relation between these two frames. Then, the two
coordinates are related by the following transformation

XI = R(θ)Xr (1.1)
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where R(θ) =

cos(θ) −sin(θ) 0

sin(θ) cos(θ) 0

0 0 1


The robot position and orientation in the Inertial Frame can be defined as qI = [xa, ya, θ]

T

1.2.2 Kinematic Model

Figure 1.2: Schematic of a two-wheeled nonholonomic mobile robot

Kinematic modeling involves analyzing the movement of mechanical systems while disre-
garding the forces that influence the movement. In the case of the mobile robot, the primary
goal of kinematic modeling is to express the robot’s velocities in relation to the velocities of its
driving wheels and the robot’s geometric characteristics.

Let vr and vl denote the right and left wheel linear speed respectively.

vr = Rϕ̇r (1.2a)

vl = Rϕ̇l (1.2b)

where ϕr and ϕl are angular speed of right and left wheel respectively; R is wheel radius. The
linear velocity v of the robot in the Robot Frame is the average of the linear velocities of the
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two wheels,

v =
vr + vl

2
= R

ϕ̇r + ϕ̇l

2
(1.3)

and the angular velocity of the robot is

w =
vr − vl
2L

= R
ϕ̇r − ϕ̇l

2
(1.4)

where 2L denote the width of the robot (cf. Fig. 1.2). The velocities in the robot frame can
now be represented in terms of the center-point A velocities in the robot frame as follows:

ẋra = v; ẏra = 0; θ̇ = w (1.5)

The robot velocities in the inertial frame can be written as

q̇I =

ẋaẏa
θ̇

 = R(θ)


R
2

R
2

0 0
R
2b
−R

2b

[
ϕ̇r

ϕ̇l

]
(1.6)

For each robot in the platoon (cf. Fig. 1.2), q = [x, y, θ]T represents the generalized state
with (x, y) is the robot position in the global inertial frame, and θ being its heading angle (yaw);
u = [v, ω]T is the control input where v is the linear velocity and ω is the angular velocity of
the robot. The typical kinematic model of such system is given by

q̇ =

cos(θ) 0

sin(θ) 0

0 1

u. (1.7)

1.2.3 Dynamic model

The field of dynamics involves examining how mechanical systems move while accounting
for the various forces that impact their motion. This differs from kinematics, which does not
take these forces into account. In order to analyze the motion of the mobile robot and develop
motion control algorithms, it is crucial to have a dynamic model of the system.

Deriving system equations of motion via Lagrangian method rely on the following equation:

d

dt
(
∂L

∂q̇i
)− ∂L

∂qi
= F − ΓT (q)γ (1.8)

where L = T − P is the Lagrangian function; T and P represents kinetic energy and potential
energy of system respectively; qi are generalized coordinate; F is the generalized force vec-
tor.However, since the robot is moving in the (XI , YI) plane, the potential energy of the robot
is considered to be zero i.e. P = 0.
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A non-holonomic differential drive robot with n generalized coordinates (q1, q2, ..., qn) and
subject to constraints can be described by the following equations of motion:

M(q)q̈ + V (q, q̇)q̇ + F (q̇) +G(q) + τd = B(q)τu − ΓT (q)γ (1.9)

where M(q) an n× n symmetric positive definite inertia matrix, V (q, q̇) is the centripetal and
coriolis matrix, F (q̇) is the surface friction matrix, G(q) is the gravitational vector, τd is the
vector of bounded unknown disturbances including unstructured unmodeled dynamics, B(q) is
the input matrix, τu is the input vector, Γ is the constraints matrix, γ is the vector of Lagrange
multipliers associated with the constraints.

Ignoring the distance between centre of mass of the robot and origin of the local coordinate
frame attached to the mobile robot, the standard dynamic model of the system is given by

mv̇ + fv + dv = F, with fv = fr + fl, (1.10a)

Jω̇ + fw + dw = τ, with fw = fr + fl. (1.10b)

Here m and J denote the mass and the moment of inertia of the robot; dv and dw represent
bounded external disturbances; fv and fw are the frictional force and frictional torque respec-
tively generated at the right (fr) and left (fl) wheel; (F, τ) denote the control input.

Let τr and τl be the right and left wheel torque respectively andR be the radius of the wheel.
Then, the following holds [

F

τ

]
=

1

R

[
(τr + τl)

(τr − τl)L

]
. (1.11)

1.2.4 Friction Model

Friction is the force that opposes motion between two surfaces in contact. Two common
types of friction models are Coulomb friction and viscous friction. While both models de-
scribe the behavior of friction, they differ in their underlying assumptions and mathematical
expressions.

Coulomb friction, also known as dry friction or static friction, is a simple model that as-
sumes that the friction force between two surfaces in contact is proportional to the normal
force pressing the surfaces together. The model further assumes that the friction force is inde-
pendent of the sliding speed and that it only acts when the surfaces are in contact and stationary
relative to each other. Once the surfaces start moving relative to each other, the friction force
decreases and becomes proportional to the kinetic friction coefficient, which is typically lower
than the static friction coefficient.

Viscous friction, also known as dynamic or fluid friction, is a more complex model that
assumes that the friction force is proportional to the velocity of the surfaces relative to each
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other. This model is often used to describe the behavior of fluids, such as air or liquids, but can
also be applied to solid materials. The viscous friction coefficient depends on the viscosity of
the fluid or the deformation properties of the solid material and can vary with temperature and
other factors.

Figure 1.3: Coulomb + Viscous friction model

The mathematical expressions for Coulomb and viscous friction are also different. Coulomb
friction is typically expressed as a constant static friction coefficient and a lower kinetic friction
coefficient, while viscous friction is expressed as a linear function of the velocity between the
surfaces.

While both models have their limitations, they are useful for understanding and predicting
the behavior of friction in different scenarios. The general friction model for a moving body
considering the static Coulomb friction (fk) and the viscous friction (fc) can be represented as
fr = fk + fc (cf. 1.3). The friction forces fv and fw in (1.10a) and (1.10b) can be rewritten as

fv = (fkr + fcrvr) + (fkl + fclvl), (1.12a)

fw = ((fkr + fcrvr)− (fkl + fclvl))L (1.12b)

where fki and fci are coulomb and viscous friction respectively for wheel having speed vi with
i = r, l as in (1.3) and (1.4).
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1.3 Control of multiple mobile robots

1.3.1 Motivation

Cooperative mobile multi-robot systems have gained significant attention due to their ad-
vantages over single-robot systems, such as better efficiency, high tolerance, redundancy, and
manoeuvrability [1, 2]. These multi-robot systems have a broad range of applications, includ-
ing search and rescue, exploration, navigation, security and surveillance, precision agriculture,
and payload transportation [3–6]. One specific application is the platoon of autonomous ve-
hicles, where multiple agents/robots/vehicles follow a common path in a shared environment.
The control objective of such formation control is often decentralized [7] , where the aim is
to maintain a desired line-of-sight range between each vehicle and its predecessor while pro-
ceeding along a given trajectory [8]. However, controlling these systems under parametric
uncertainties and unmodelled dynamics is still a significant challenge and an open problem.

1.3.2 Related Works

When it comes to autonomous platooning, the accuracy of formation control is heavily in-
fluenced by vehicle dynamics and external disturbances, particularly at higher speeds. The use
of a simple Coulomb friction model is inadequate to capture the complex relationship between
tyre wear and friction forces, as evidenced by previous studies [9–11]. However, accurately
parameterizing this phenomenon in real-world situations is challenging, if not impossible, due
to the variability of friction forces caused by factors such as changes in payload quantity, road
conditions, and tyre distortion.

Advanced control strategies such as interpolating control [12], distributed formation con-
trol [13], intervehicle distance control [14], and robust control [15] have been developed to
handle the dynamics of vehicles for both longitudinal and lateral control in automatic platoon
formation. However, these strategies require prior knowledge of system parameters. To ad-
dress this limitation, two-stage tracking controllers have been used for wheeled mobile robots
[16–18], combining a kinematic controller with an adaptive sliding mode controller (ASMC).
However, these controllers can only handle bounded uncertainties, and frictional forces, which
are state-dependent, do not satisfy this requirement [19, 20].

Therefore, there is a need for an adaptive control solution that can handle state-dependent
unknown dynamics without prior knowledge for a multi-robot platoon system. Current re-
search in this area has been focused on using a combination of a kinematic controller and
ASMC for tracking control. However, these methods have been limited in their ability to han-
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dle unbounded uncertainties, which can arise due to the state-dependent nature of frictional
forces. To overcome this limitation, new research is needed to develop adaptive control meth-
ods that can handle state-dependent uncertainties in multi-robot platoon systems. This research
should focus on developing controllers that can adapt to changing conditions in real-time, with-
out requiring prior knowledge of system parameters. In addition, these controllers should be
designed to be robust to unbounded uncertainties, such as those arising from frictional forces.

1.3.3 Contribution

Based on the limitations of current control methods for multi-robot platoon systems, a new
framework ASMC is proposed. This framework does not require prior knowledge of system
dynamics, including inertia parameters, frictional forces, and external disturbances. The sta-
bility of the closed-loop system is analyzed using the Lyapunov method, and simulation results
show that the proposed method outperforms current state-of-the-art control methods for multi-
robot platoon formation control.

1.4 Organization of the Thesis

The thesis is organized into four chapters. A brief summary of each chapter is mentioned
below.

• Chapter 1: This introductory chapter gives an overview of wheeled robotics, kinematic
and dynamic modelling and state-of-the-art control strategies. It briefly describes the
motivation for this research, the problem orientation, the pertaining gaps in the literature,
the main contributions and an outline of the thesis.

• Chapter 2: The chapter expalins a new adaptive sliding mode controller for WMR-
based vehicle platoons that can handle unknown and complex frictional forces. The
controller maintains a predefined inter-robot distance and regulates the platoon’s speed
despite external disturbances and uncertain system parameters. The approach involves a
two-stage process of kinematic and dynamic controllers to achieve the desired motion.
This allows for more efficient and robust control of the mobile robot. The stability of the
closed-loop system using the proposed controllers is studied using Lyapunov theory.

• Chapter 3: In this chapter the proposed controller’s effectiveness was demonstrated us-
ing Gazebo simulations results, showing it outperformed state-of-the-art controllers in

9



terms of stability, convergence, and robustness to frictional force changes. The perfor-
mance is compare via error plots and root mean-squared (RMS) error.

• Chapter 4: This chapter concludes the thesis by summarizing the various contributions
brought out by this thesis.

10



Chapter 2

Adaptive Sliding Mode Control for Autonomous Vehicle

Platoon under Unknown Friction Forces

2.1 Introduction

In cases where the system parameters are unknown, state-of-art control laws have been
employed to handle a priori bounded uncertainties. Unfortunately, frictional forces generally
do not adhere to such uncertainty settings due to their state-dependent nature. Prior studies have
been unable to handle state-dependent unknown dynamics without prior knowledge, leaving a
gap in the field. Therefore, a solution for multi-robot platoon systems that can handle state-
dependent unknown dynamics without prior knowledge is still lacking.

Toward this direction, the proposed adaptive control solution has the following major con-
tributions:

• The study introduces an ASMC framework to address state-dependent dynamic factors
such as frictional and inertial forces, as well as external disturbances, in each vehicle of
a platoon.

• The closed-loop stability of the system is analysed via Lyapunov-based method and com-
parative simulation results suggest significant improvement in tracking accuracy of the
proposed scheme compared to the state of the art.

The rest of the chapter is organised as follows: Section 2.2 describes the controller design;
Section 2.3 details the proposed control stability analysis.

11



2.2 CONTROL FORMULATION

The platoon control problem involves multiple vehicles, each with their own trajectory to
follow. Except for the leading vehicle, each follower calculates its next waypoint based on the
position of the vehicle in front of it. The focus of this work is on controlling each vehicle,
which is considered a nonholonomic WMR, to follow the desired path rather than planning the
path for each robot.

Controlling a nonholonomic WMR effectively requires considering both kinematic and dy-
namic model-based controllers [16–18]. In this approach, the linear and angular velocity de-
rived from the kinematic controller are used as the desired trajectory in the dynamic model.
However, since parametric uncertainty can only be captured in the dynamic model, the nov-
elty of this work lies in designing an ASMC for the dynamic model while using the standard
kinematic controller as in previous works [21–23].

2.2.1 Kinematic Control Design

The kinematic control design objective is to follow a time-varying reference trajectory
qr(t) = [xr(t), yr(t), θr(t)]

T .
The following standard assumption is made:

Assumption 1 The desired trajectories xr(t) and yr(t) are designed to be sufficiently smooth

and bounded.

The posture tracking error of the mobile robot qe(t) is defined as

qe(t) = [e1(t), e2(t), e3(t)]
T (2.1)

where e1(t)e2(t)

e3(t)

 =

 cos θ(t) sin θ(t) 0

− sin θ(t) cos θ(t) 0

0 0 1


xr(t)− x(t)yr(t)− y(t)
θr(t)− θ(t)

 . (2.2)

In order to be more concise, we will eliminate the time-related aspects of the functions when-
ever feasible. Using (1.7), the time derivative of (2.2) leads toė1ė2

ė3

 = v

−10
0

+ ω

 e2

−e1
−1

+

vd cos(e3)vd sin(e3)

ωd

 , (2.3)

where ud = [vd, ωd]
T denotes the reference (desired) time-varying linear and angular velocity.
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Following [21–23], we used the following backstepping method based kinematic tracking
control law [

vc

ωc

]
=

[
vd cos(e3) + k1e1

ωd + k2vde2 + k3vd sin(e3)

]
(2.4)

where k1, k2 and k3 are positive design constants.
As mentioned earlier, the main contribution of the work lies in designing the dynamic con-

troller and the corresponding control problem is discussed subsequently.

2.2.2 PROPOSED DYNAMIC CONTROLLER DESIGN

Remark 1 (State-dependent forces) It is crucial to note that viscous friction being propor-

tional to the velocity v of the vehicle, the friction forces are state-dependent and thus, cannot

be bounded a priori [24–27]. Such consideration segregates this work from the state-of-the-art

adaptive solutions [16–18] relying on a priori bounded dynamical forces.

With this observation, we present the following assumption on system dynamics uncertainty,
which acts as a control design challenge.

Assumption 2 (Uncertainty setting) The system dynamics termsm, J, dv, dw and their bounds

are unknown for control design.

Following the system dynamics structure (1.10), the proposed control framework is divided
into two parts, namely, force control and torque control as detailed in the following two sub-
sections. It is noteworthy that the co-design approach of force and torque control are not in-
dependent; rather they are interconnected via the uncertainty structures (cf. (2.10) and (2.17))
and thereby to be designed simultaneously.

Let us define the linear velocity tracking error ev and the angular velocity tracking error eω
as

ev ≜ v − vc, eω ≜ ω − ωc. (2.5)

2.2.3 Force Control

Let the sliding variable be designed as

sv(t) = ev(t) + ϕv

∫ t

0

ev(ψ) dψ, (2.6)
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where ϕv is a positive design scalar. Multiplying the time derivative of (2.6) by m and using
(1.10) gives

mṡv = m(v̇ − v̇c + ϕvev) = F + ϵv, (2.7)

where ϵv ≜ −(dv +mv̇c + fv −mϕvev) represents the overall uncertainty in force dynamics
with its upper bound structure computed as

|ϵv| ≤ dv +m(|v̇c|+ |ϕv||ev|) + |fv|, (2.8)

where |dv| ≤ dv. Substituting the relations vr = 2v+ωL
2

and vl = 2v−ωL
2

from (1.3) and (1.4)
into (1.12), the upper bound structure (2.8) can be simplified to

|ϵv| ≤dv +m(|v̇c|+ |ϕv||ev|) + |fkr|+ |fkl|+
|v|(|fcr|+ |fcl|) + (L/2)|ω|(|fcr|+ |fcl|). (2.9)

Further, let us define ξv ≜ [ev,
∫ t

0
ev(ψ) dψ]

T and ξω ≜ [eω,
∫ t

0
eω(ψ) dψ]

T . Then, using the
inequalities |ξv| ≥ |ev| and |ξω| ≥ |eω| and substituting v = ev + vc and ω = eω + ωc from
(2.5) into (2.9) one obtains

|ϵv| ≤K∗
v0 +K∗

v1|ξv|+K∗
ω2|ξω| (2.10)

where K∗
v0 ≜dv +m|v̇c|+ |fkr|+ |fkl|+ |vc|(|fcr|+ |fcl|)

+ (L/2)|ωc|(|fcr|+ |fcl|),
K∗

v1 ≜m|ϕv|+ (|fcr|+ |fcl|), K∗
ω2 ≜ (L/2)(|fcr|+ |fcl|)

are unknown scalars.
The force control law is designed as

F (t) = −Λvsv(t)− ρv(t)sgn(sv(t)), (2.11a)

ρv(t) = K̂v0(t) + K̂v1|ξv|+ K̂ω2|ξω|, (2.11b)

where Λv is a positive scalar gain and (K̂v0(t), K̂v1(t)K̂ω2(t)) are estimates of (K∗
v0, K

∗
v1, K

∗
ω2)

obtained via the following adaptive laws

˙̂
Kv0(t) = |sv(t)| − αv0K̂v0(t), K̂v0(0) > 0, (2.12a)

˙̂
Kv1(t) = |sv(t)||ξv(t)| − αv1K̂v1(t), K̂v1(0) > 0, (2.12b)
˙̂
Kω2(t) = |sω(t)||ξω(t)| − αω2K̂ω2(t), K̂ω2(0) > 0, (2.12c)

where αv0, αv1, αω2 are user-defined positive scalars.
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2.2.4 Torque Control

For torque control, the sliding variable is designed as

sω(t) = eω(t) + ϕω

∫ t

0

eω(ψ) dψ, (2.13)

where ϕω is a positive user-defined gain. Multiplying the time derivative of (2.13) by J and
using (1.10) yields

Jṡω = J(ω̇ − ω̇c + ϕωv) = τ + ϵω, (2.14)

where ϵω ≜ −(dω + Jω̇c + fω − Jϕωeω) is the overall uncertainty for the torque dynamics and
it satisfies the following upper bound structure

|ϵω| ≤ dω + J(|ω̇c|+ |ϕω||eω|) + |fω| (2.15)

where |dω| ≤ dω. Substituting vr and vl from (1.3) and (1.4) into (1.12), then (2.15) is simpli-
fied to

|ϵω| ≤dω + J(|ω̇c|+ |ϕω||eω|) + L(|fkr|+ |fkl|)+
|v|L(|fcr|+ |fcl|) + |ω|(L2/2)(|fcr|+ |fcl|). (2.16)

Substituting v = ev + vc and ω = eω + ωc in (2.16) and using the inequalities |ξv| ≥ |ev| and
|ξω| ≥ |eω| the following is obtained from (2.16)

|ϵω| ≤ K∗
ω0 +K∗

ω1|ξω|+K∗
v2|ξv| (2.17)

where K∗
ω0 ≜dω + J |ω̇c|+ L(|fkr|+ |fkl|) + |vc|L(|fcr|+ |fcl|)

+ |ωc|(L2/2)(|fcr|+ |fcl|),
K∗

ω1 ≜J |ϕω|+ (L2/2)(|fcr|+ |fcl|), K∗
v2 ≜ L(|fcr|+ |fcl|)

are unknown scalars.
The torque control law is designed as

τ(t) = −Λωsω(t)− ρω(t)sgn(sω(t)), (2.18a)

ρω(t) = K̂ω0(t) + K̂ω1|ξω|+ K̂v2|ξv|, (2.18b)

where Λω is a user-defined positive scalar gain. The adaptive gains K̂ω0(t), K̂ω1(t), K̂v2(t) are
the estimates of K∗

ω0, K
∗
ω1, K

∗
v2 updated as

˙̂
Kω0(t) = |sω(t)| − αω0K̂ω0(t), K̂ω0(0) > 0, (2.19a)

˙̂
Kω1(t) = |sω(t)||ξω(t)| − αω1K̂ω1(t), K̂ω1(0) > 0, (2.19b)

˙̂
Kv2(t) = |sv(t)||ξv(t)| − αv2K̂v2(t), K̂v2(0) > 0 (2.19c)

where αω0, αω1, αv2 are user-defined positive scalars.
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Remark 2 The upper bound structures of ϵv and ϵw in (2.10) and (2.17), respectively, reveal

that state-dependencies occur inherently in the system uncertainties via ξv and ξw. Therefore,

the gains ρv and ρw in (2.11) and (2.18), respectively, are designed according to these state-

dependent structures.

2.3 Stability Analysis of The Proposed Controller

Theorem 1 Under the Assumptions 1 and 2, the closed-loop trajectories of (2.7) and (2.14)

with control laws (2.11) and (2.18), along with the adaptive laws (2.12) and (2.19) are Uni-

formly Ultimately Bounded (UUB).

Proof. The closed-loop stability analysis is carried out using the following Lyapunov func-
tion

V =Vv + Vω, (2.20)

where Vv =(1/2)
[
ms2v + (K̂v0 −K∗

v0)
2 + (K̂v1 −K∗

v1)
2 + (K̂ω2 −K∗

ω2)
2
]
,

Vw =(1/2)
[
Js2w + (K̂w0 −K∗

w0)
2 + (K̂w1 −K∗

w1)
2 + (K̂v2 −K∗

v2)
2
]
.

Using (2.7), the time derivative of Vv yields

V̇v =msvṡv + (K̂v0 −K∗
v0)

˙̂
Kv0 + (K̂v1 −K∗

v1)
˙̂
Kv1 + (K̂w2 −K∗

w2)
˙̂
Kw2

=sv(F + ϵv) + (K̂v0 −K∗
v0)

˙̂
Kv0 + (K̂v1 −K∗

v1)
˙̂
Kv1 + (K̂w2 −K∗

w2)
˙̂
Kw2. (2.21)

Using the control law (2.11) and the upper bound from (2.10) we have

V̇v =sv(−Λvsv − ρvsgn(sv) + ϵv) + (K̂v0 −K∗
v0)

˙̂
Kv0

+ (K̂v1 −K∗
v1)

˙̂
Kv1 + (K̂w2 −K∗

w2)
˙̂
Kw2

=− Λvs
2
v − (K̂v0 −K∗

v0)(|sv| −
˙̂
Kv0)− (K̂v1 −K∗

v1)(|sv||ξv| −
˙̂
Kv1)

− (K̂w2 −K∗
w2)(|sw||ξw| −

˙̂
Kw2). (2.22)

The adaptive laws in (2.12) yield

(K̂v0 −K∗
v0)

˙̂
Kv0 =|sv|(K̂v0 −K∗

v0) + αv0K̂v0K
∗
v0 − αv0K̂

2
v0 (2.23)

(K̂v1 −K∗
v1)

˙̂
Kv1 =|sv|(K̂v1 −K∗

v1)|ξv|+ αv1K̂v1K
∗
v1 − αv1K̂

2
v1 (2.24)

(K̂w2 −K∗
w2)

˙̂
Kw2 =|sw|(K̂w2 −K∗

w2)|ξw|+ αw2K̂w2K
∗
w2 − αw2K̂

2
w2. (2.25)
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Substituting (2.23), (2.24), (2.25) into (2.22) yields

V̇v ≤− Λv|sv|2 + (αv0K̂v0K
∗
v0 − αv0K̂

2
v0)

+ (αv1K̂v1K
∗
v1 − αv1K̂

2
v1) + (αw2K̂w2K

∗
w2 − αw2K̂

2
w2)

≤− Λv|sv|2 − (1/2)αv0((K̂v0 −K∗
v0)

2 −K∗
v0

2)

− (1/2)αv1((K̂v1 −K∗
v1)

2 −K∗
v1

2)

− (1/2)αw2((K̂w2 −K∗
w2)

2 −K∗
w2

2). (2.26)

Following the similar lines to obtain (2.26), one can also obtain V̇w as the following

V̇w ≤− Λw|sw|2 − (1/2)αw0((K̂w0 −K∗
w0)

2 −K∗
w0

2)

− (1/2)αw1((K̂w1 −K∗
w1)

2 −K∗
w1

2)

− (1/2)αv2((K̂v2 −K∗
v2)

2 −K∗
v2

2). (2.27)

Further, using the definitions of Lyapunov function as in (2.20), (2.26) and (2.27) can be further
simplified to

V̇v ≤ −ϱvVv +
1

2
(αv0K

∗
v0

2 + αv1K
∗
v1

2 + αw2K
∗
w2

2), (2.28)

V̇w ≤ −ϱwVw +
1

2
(αw0K

∗
w0

2 + αw1K
∗
w1

2 + αv2K
∗
v2

2), (2.29)

where ϱv ≜
min(Λv, αv0, αv1, αw2)

max(m/2, 1/2)
> 0

ϱw ≜
min(Λw, αw0, αw1, αv2)

max(J/2, 1/2)
> 0. (2.30)

Combining (2.28) and (2.29), the time derivative of the overall Lyapunov function V̇ can be
obtained as

V̇ =− ϱV + (1/2)(αv0K
∗
v0

2 + αv1K
∗
v1

2 + αw2K
∗
w2

2)

+ (1/2)(αw0K
∗
w0

2 + αw1K
∗
w1

2 + αv2K
∗
v2

2), (2.31)

where ϱ ≜ min(ϱv, ϱw). Defining a scalar κ such that 0 < κ < ϱ, V̇ in (2.31) is further
simplified to

V̇ ≤− κV − (ϱ− κ)V +
1

2
(αv0K

∗
v0

2 + αv1K
∗
v1

2 + αw2K
∗
w2

2)

+ (1/2)(αw0K
∗
w0

2 + αw1K
∗
w1

2 + αv2K
∗
v2

2)). (2.32)

Defining a scalar β ≜
∑2

i=0(αviK
∗
vi

2+αwiK
∗
wi

2)

2(ϱ−κ)
, it can been noted that V̇ (t) < −κV (t) when

V (t) ≥ β, leading to
V ≤ max(V (0), β), ∀t > 0, (2.33)
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and hence, the closed-loop system remains UUB.
To avoid chattering due to discontinuity in control law, the ‘sgn’ functions in (2.11) and

(2.18) are often replaced by a ‘saturation’/sigmoid functions which leads to minor modifica-
tions in the stability analysis without altering the overall UUB result and hence omitted to avoid
repetition (cf. [17, 19, 28]).
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Chapter 3

SIMULATION RESULTS

3.0.1 Simulation Scenario

The multi-robot platoon system operates in a decentralized manner, where each robot only
requires the state information of its predecessor robot to maintain a formation (cf. Fig. 3.1).
The desired waypoints for the platoon are generated using Algorithm 1, which stores the way-
points in an array. Each robot calculates its desired state based on the index number of its
local leader robot in the array. Instead of calculating the shortest distance between consecu-
tive robots, the gap between them is calculated along the path. This approach ensures that the
platoon maintains a consistent formation while navigating along a given path. By using this de-
centralized formation control system, the multi-robot platoon can efficiently navigate through
challenging environments and achieve their desired goals. The waypoints generated by Algo-
rithm 1 provide a clear and precise path for the robots to follow, enabling them to maintain a
consistent formation throughout their mission.

Figure 3.1: Multi-Robot Platoon Representation
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Algorithm 1: Target way-point calculation

Initialisation;1

initialize d = 02

initialize gapdes3

cx = array containing x-coordinates of trajectory4

cy = array containing y-coordinates of trajectory5

i← indexleader6

while d < gapdes do7

d+ = [(cx[i]− cx[i− 1])2 + (cy[i]− cy[i− 1])2]0.58

i = i− 19

end10

return follower xr = cx[i], yr = cy[i]11

Figure 3.2: Custom Arena
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The study aims to compare the performance of the proposed adaptive sliding mode con-
troller (ASMC) with the standard ASMC [17]. The evaluation is conducted in a Gazebo simu-
lation platform using an open-source TurtleBot3 robot model [29] and a Teeterbot plugin [30]
to give a torque command to each motor using (1.11). The controller’s performance is assessed
in a custom arena in Gazebo 1, which is divided into four quadrants with different surface
longitudinal friction values. The first, second, and fourth quadrants have a friction value of
µ1 = 0.1, while the third quadrant has a friction value of µ2 = 0.13. The lateral friction value
is kept constant at 0.1 in all quadrants to prevent lateral slippage of the robots. Additionally,
two speed breakers are placed in the arena to provide sudden interruptions (cf. Fig. 3.1).

Formation control is carried out using three robots, namely Robot 1, 2, and 3, which are
required to follow a figure-of-eight-like path as in Fig. 3.2. The lead robot is initially positioned
at coordinate (14, 0), while the follower robots are kept at a desired distance of 1m between
them. The simulation platform, robot model, and plugin used in the study are all open-source
and freely available.

3.0.2 Parameter Selection

For simulation, the kinematic control parameters are selected as: k1 = 5, k2 = 3, k3 = 2,
vd = 2 m/sec for all robots. The control parameters of the proposed ASMC are selected to be:
ϕv = 0.5, ϕw = 0.1,Λv = 3,Λw = 2, K̂v0(0) = K̂v1(0) = K̂w2(0) = K̂w0(0) = K̂w1(0) =

K̂v2(0) = 0.01, αv0 = 2.5, αv1 = 2.5, αw2 = 3, αw0 = 5, αw1 = 5, αv2 = 1.5 for all robots.
For parity, similar sliding variable and similar kinematic control parameters are designed for
the standard ASMC [17].

3.0.3 Results and Analysis

The study compared the performance of two controllers, the proposed Adaptive Sliding
Mode Controller (ASMC) and the standard ASMC [17] via Figs. 3.3, 3.4 and 3.5, in terms
of position tracking error for three robots, labeled 1, 2, and 3. The analysis was carried out
in four quadrants. In the third quadrant, between 300 < t < 400, all robots experienced a
sharp turn and high friction surface, causing an increase in tracking error. The results show
that the standard ASMC [17] performed worse than the proposed ASMC during this period,
as it was not designed to handle changes in state-dependent friction components. A similar
trend was observed between 500 < t < 600, when the robots encountered two speed breakers.

1Simulation Video: https://youtu.be/7yHY9atSeK8; Titled as ”Adaptive Sliding Mode Control for Au-
tonomous Vehicle Platoon under Unknown Friction Forces” on Youtube
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Figure 3.3: Position tracking error comparison for Robot 1.

Figure 3.4: Position tracking error comparison for Robot 2.
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Figure 3.5: Position tracking error comparison for Robot 3.

The proposed controller showed fewer spikes in the tracking error profile during this period.
The performance of both controllers was found to be similar in the first, second, and fourth
quadrants. This was confirmed by path tracking performances shown in Figures 3.6, 3.7 and
3.8. Overall, the results indicate that the proposed controller performs better in the third quad-
rant, where changes in friction components are significant, while the standard and proposed
controllers have similar performance in the other quadrants.

Additionally, in Figure 3.9, the difference between the intended gap and the actual gap of
two consecutive robots, namely Robot 1-Robot 2 and Robot 2-Robot 3, is illustrated, which is
called the gap error. At around t = 350 seconds, it can be observed that when the robots are in
the third quadrant and encounter a high variation in friction, the standard ASMC [17] exhibits a
significantly greater gap error than the proposed ASMC. To provide more conclusive evidence,
Tables 3.1 and 3.2 present the performance of both controllers in terms of root mean-squared
(RMS) error. The data in these tables indicate that the proposed ASMC achieves superior
tracking accuracy while preserving the desired distance between the robots.
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Figure 3.6: Trajectory tracking comparison for Robot 1.

Figure 3.7: Trajectory tracking comparison for Robot 2.
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Figure 3.8: Trajectory tracking comparison for Robot 3.

Figure 3.9: (a) Gap error comparison between Robot 1 and Robot 2. (b) Gap error comparison between

Robot 2 and Robot 3.
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Table 3.1: Performance Comparison for Trajectory Tracking

No. Position standard ASMC [17] proposed ASMC

RMS error (m) RMS error(m)

x 0.081 0.076
Robot1

y 0.063 0.056

x 0.079 0.076
Robot2

y 0.062 0.058

x 0.080 0.070
Robot3

y 0.060 0.056

Table 3.2: Performance Comparison for Gap Maintenance

Gap Error b/w Robots standard ASMC [17] proposed ASMC

RMS error (m) RMS error(m)

Robot 1 and Robot 2 0.026 0.014

Robot 2 and Robot 3 0.050 0.036
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Chapter 4

Conclusion and Future Work

A new method has been suggested for controlling the formation of a platoon of autonomous
wheeled mobile robots, which can manage factors such as external interferences, uncertainties
in parameters, and variations in friction between the tire and the surface without any prior
knowledge of them. The proposed adaptive sliding mode controller uses Lyapunov function to
establish stability of the closed-loop system, with the help of Uniformly Ultimately Bounded
concept. The effectiveness of the controller was tested under different conditions using Gazebo
simulation, and the results showed significant enhancements in the performance of the platoon,
in terms of both trajectory tracking and maintaining a fixed safe distance between the robots,
when compared to existing methods.

The controller’s ability to adjust to unknown factors, such as external disturbances, fric-
tional differences, and parametric uncertainties, is a key feature that sets it apart from other
techniques. By using a sliding mode approach, the controller’s design ensures robustness and
adaptation to such variations. Additionally, the Lyapunov function used in the analysis guar-
antees that the closed-loop system is stable, and the Uniformly Ultimately Bounded notion en-
sures that the solutions are bounded and convergent. The effectiveness of the proposed method
was demonstrated through simulations, where it was observed that the proposed controller per-
formed better than the existing methods, achieving high accuracy in trajectory tracking and
maintaining a safe distance between the robots.

Future work involve implementing the proposed adaptive sliding mode controller on a real-
world platform and conducting experiments to evaluate its performance with different slope
and payloads. The controller could also be further optimized for improved energy efficiency
and faster response times. Additionally, the controller’s scalability could be investigated to
determine its effectiveness in controlling larger platoons of mobile robots. Finally, the proposed
method could be extended to other types of autonomous systems, such as aerial drones or
underwater vehicles.
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