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Abstract

The current generation of quantum devices fall in the noisy intermediate scale quantum (NISQ)
era and are afflicted with qubit decoherence issues, scalability problems, circuit trainability and much
more. Keeping these issues in mind, quantum-classical hybrid algorithms have been developed that
break the problem into tasks for both classical and quantum processors. The classical processor is
leveraged for computational tasks like arithmetic operations and optimizations which are easier for
classical computers to handle, while computational tasks where quantum processors give better results
like solving systems of linear equations come in the "quantum part" of the algorithm. A special class of
quantum-classical hybrid algorithms is the variational quantum algorithms (VQAs) which has been used
extensively to solve quantum chemistry problems, particle physics problems, optimization problems and
much more as they provide a general framework for solving problems.

Classical machine learning has recently facilitated many advances in solving problems related to
many-body physical systems. Given the intrinsic quantum nature of these problems, it is natural to
speculate that quantum-enhanced machine learning will enable us to unveil even greater details than
what we currently have. With this motivation, this thesis examines a quantum machine learning ap-
proach based on shallow variational ansatz inspired by tensor networks for supervised learning tasks.

We first start with an introductory chapter explaining the focus of our works and our contributions.
We also discuss the applications of quantum computing in natural sciences. Then we dive into the nec-
essary background of our works in detail. This includes sections on the basics of quantum computing,
the NISQ era, variational quantum algorithms, tensor network ansatz and a literature review of the use
of tensor networks in quantum computing. We introduce the circuits used by us and explain the tasks
tackled in this work. We first look at a preliminary classical image classification task on the Fashion-
MNIST dataset and study the effect of repeating tensor network layers on the ansatz’s expressibility and
performance. Finally, we take on the problem of quantum phase recognition for the Transverse Ising
and Heisenberg spin models in one and two dimensions, where we were able to reach > 98% test-set
accuracies with both multi-scale entanglement renormalization ansatz (MERA) and tree tensor network
(TTN) inspired parametrized quantum circuits. Finally, we analyze our results and end with a discussion

on the scope of future works.
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Chapter /

Introduction

1.1 Motivation

The evolution of modern classical computers from the first generation vacuum tube era to the tran-
sistor era and now to the current integrated circuit era has been responsible for great advances in compu-
tational capacity. A look at the number of transistors in a dense integrated circuit over the years shows
that this number has been doubling every two years (Fig. 1.1). This is referred to as the Moore’s law

[2]. The Moore’s law has set targets for advancements in semiconductor technology for decades now.
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Figure 1.1: The graph shows the doubling of the number of transistors per processor chip every two
years in accordance with the Moore’s law [2]. The straight line graph in a logarithmic scale points to
the exponential nature of this trend.



The design of semiconductor technology is becoming increasingly more complex and is reaching
molecular limits. We are reaching a point where transistor size cannot be any smaller. This has con-
tributed towards a slowdown of the Moore’s law. However, this does not indicate a complete halt in the
progress of semiconductor technology. It is reasonable to expect more efficient and powerful classical
computers in the predictable future.

The biggest chink in the armour of even the fastest classical computers is computational tasks such
as molecular simulation or finding prime factors of large composite numbers. These problems are
exponential in nature and even with the advancements made in classical computing, it is simply not

possible for any classical computers in the foreseeable future to solve them.

This is where quantum computers step in. The idea of quantum computing was born in the year 1980
with Paul Benioff’s proposal of a quantum mechanical model of the turing machine [3]. The theory
that quantum computers could simulate things that are classically intractable was proposed by Richard
Feynman in 1981 [4]. It was in the year 1994 that a quantum algorithm for finding prime factors of
an integer was developed by Peter Shor [5]. This is especially important because this is a threat to
RSA (Rivest, Shamir, Adleman). RSA is a public-key cryptosystem that uses the fact that factoring the
product of two large numbers is hard for classical computers [6]. RSA is the oldest and the most used

system for data transmission.

Figure 1.2: Google’s Sycamore quantum computer is pictured above [7]. The Sycamore quantum
computer has a 53 qubit processor.



The most exciting development in the field of quantum computing came in 1998 when the first two
qubit quantum computer was created [8]. Quantum computers use the quantum principles of superpo-
sition and entanglement in their computations. They use quantum bits or ’qubits’ instead of the normal
bits used in classical computing.

The current era of quantum computing faces enormous challenges. This era is called the noisy
intermediate-scale quantum (NISQ) era. In this work, we focus on the trainability aspect of variational

quantum algorithms that leverage the available NISQ devices.

1.2 Research Focus and Contribution

This current era of quantum computing is as exasperating as it is exciting. The exasperation comes
from the available technology that faces problems like qubit decoherence, scalability, circuit depth,
circuit trainability etc. However, it is also an incredibly exciting time to be a researcher in this field as we
are on the path towards fault tolerant quantum devices. Moreover, many algorithms have been developed
to leverage the existing classical and quantum technologies to perform complex computational tasks.
This set of quantum-classical hybrid algorithms, called variational quantum algorithms (VQAs), have
been the subject of focus of this thesis. More specifically, we focus on the trainability of tensor network
inspired ansatz for image classification and quantum phase recognition tasks.

We have tried to answer the following questions in our work:

1. Can the performance of the ansatz be increased?

A major component of the quantum variational workflow is the parameterized circuit or the ansatz.
The performance of the algorithm is greatly dependent on it. We look at two main tensor network
inspired ansitze and study unitary blocks based on metrics like expressibility and entangling
capability of the ansatz to find the best unitary blocks that will evolve the input state to our target
state. We also see the effect on espressibility and entangling capacity of the ansatz on increasing

the layers of such circuits with hierarchical structures and using different unitary blocks.

2. How does our ansatz perform on more complex tasks?

We study the performance of our chosen unitaries arranged in a tensor network circuit on complex
tasks. We have extended the previous works done in literature by attempting to perform quantum
phase recognition on 2D spin systems with eight spins. These 2D systems are generally more

challenging to deal with than the spin systems on 1D lattice that have been studied till now.
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Figure 1.3: Our main goal is to maximize the overlap between the solution states and the states that the
ansatz evolves the input states to, which we refer to as ansatz states here.

1.3 Outline

This thesis has been broadly divided into 4 main chapters:

Ch. 1 In this introductory chapter we give a brief background on the history of quantum computing
and the challenges faced when using NISQ devices. We discuss the focus of our works and our
contributions. We end the chapter with a brief overview of the applications of quantum computing

in natural sciences.

Ch. 2 This chapter focuses on topics used in our works. We start with a basic run through of quantum
computing topics, covering qubits, their representations, quantum measurement, pure and mixed
states, quantum evolution, quantum circuits and quantum gates. We then move on to a discussion
on the NISQ era and variational quantum algorithms. Then a quick overview of tensors, their
notations, tensor networks and types of tensor networks is given. Finally, a brief introduction to

spin systems is given.

Ch. 3 We start off this chapter with a description of the circuit architecture used by us. We then go
on to introduce the image classification and phase recognition tasks done by us. We explain the

different experimental setups and the datasets used. Finally, we report the results obtained by us.

Ch. 4 In this chapter, we analyze the results of the image classification task on the Fashion-MNIST
dataset and phase recognition tasks on the various spin models in detail and provide our conclu-

sions.



1.4 Quantum computing in Natural Sciences

Nature isn’t classical, dammit, and if you want to make a simulation of nature, you’d better make it

quantum mechanical, and by golly it’s a wonderful problem, because it doesn’t look so easy.
— Richard Feynman

Researchers are actively working towards leveraging near term quantum devices to provide a quan-
tum advantage for natural science problems. Certain problems like that of drug discovery and protein
folding require the efficient simulation of many-body systems to understand and predict complex struc-
tures, functions, interactions with other compounds, and much more. Let us take an example of design-
ing a drug molecule with 50 atoms that can be built using say 10 unique atoms. For any given geometric
configuration, the number of molecules that need to be studied is 10°°. Now, adding in various possible
structural conformations increases the number of possible candidates to be studied. Clearly, this prob-
lem is exponential in nature and even with the approximate methods, it is bound to become classically
intractable for the present computational methods. These systems are inherently quantum mechanical
in nature and simulating quantum many body systems using classical computers is computationally
expensive. Thus, such problems provide promising applications of quantum computers [9].

Quantum computers can be used to prepare and evolve complex, highly entangled quantum states.
This makes them a better contender at simulating many-body quantum systems. The current generation
of quantum hardware, refered to as NISQ devices, should be viewed as stepping stones towards ad-
vancements in quantum technology. Hybrid form of algorithms called variational quantum algorithms
implemented on NISQ devices have been used extensively in the field of quantum chemistry, particle
physics, condensed matter physics, and life sciences.

For example, the variational quantum eigensolver (VQE) [10] is an algorithm belonging to the class
of VQAs that is used to find the ground state of a given molecular Hamiltonian. The subspace search
VQE (SSVQE) [11] is used to find the excited states of a molecular Hamiltonian. Similarly, in the field
of material sciences, quantum computing is currently being used for calculating various properties of
different materials as it allows for better modeling and efficient simulations, leading to results that are
closer to the actual experimental results. In particle physics, the ground state energies of light nuclei
have been computed and research is being done to simulate sub-atomic many body physics on quantum
processors [12]. Quantum computing is also being used in life sciences to study the protein folding
problem [13] and for drug design and drug discovery [14].

In our work, we have performed image classification on images as a preliminary task to analyze
the learning ability of tensor network ansatz presented by us. We have then performed quantum phase
recognition tasks on one-dimension and two-dimension spin systems defined by the Transverse Ising
and Heisenberg models of interaction using our tensor network ansatz. We show that our proposed
ansitze were capable of learning phase labels and transition which are critical for identifying important

characteristics of quantum many-body systems.



Chapter 2

Background

This chapter provides a brief overview of the concepts used in our studies. It is divided into three
main sections: quantum computing, tensor networks and spin systems.

The section on quantum computing starts with a very basic introduction of the fundamentals of
quantum computing. A discussion on qubits and their representation using the bloch sphere, quantum
measurements, the different kinds of states a qubit can be found in, and quantum evolution of the state of
qubits is done. This is followed by an outline of quantum circuits and various quantum gates available
for computation. Finally, a short discussion on the current NISQ systems and a class of hybrid classical-
quantum algorithms called variational quantum algorithms(VQE) is done.

The second section is on tensor networks and covers two main topics, First, tensor network notation
and some of the types of tensor networks and second, tensor networks in quantum computing.

The third and final section of this chapter is on Spin systems. The concepts of exchange interaction,

1D and 2D spin lattices and quantum transitions are discussed here.

2.1 Quantum Computing

2.1.1 Qubits and the Bloch sphere

Computation requires manipulation of information that needs to be stored and utilized in various
ways. In the classical framework, information is stored in bits which can have the discrete, deterministic
values 0 or 1. In the quantum framework, quantum bits or qubits are the vectors of information. A qubit
is essentially a description of a two level quantum system. Mathematically, a qubit is represented as a

superposition of states |U):

¥) = al0) + B11) @.1)

|¥) is a normalized vector in the Hilbert space C? with |0) and |1) as the orthonormal basis of
this two dimensional vector space. Hence, |a|® + |3|* = 1. The states |0) and |1) are known as the

computational basis states [15].



1)

Figure 2.1: Representing a qubit’s state as a vector in the bloch sphere

The state of a qubit can be represented geometrically as a vector in a 3 dimensional sphere called the
Bloch sphere as shown in Fig. 2.1. The bloch sphere is a useful tool for the visualization of the state of

a single qubit. Operations on the state of a qubit can be described using the Bloch sphere as well.

The qubit’s state can be rewritten using the elevation angle 8 and the azimuthal angle ¢ as:

0 . 0
W) = cos 5 [0) + €' sin 311 (2.2)

2.1.2 Measurement

While a qubit does exist in a continuum of states between |0) and |1) as shown geometrically on
the bloch sphere, which can have an infinite number of points on its surface, it would be incorrect to
presume that a qubit can store an infinite amount of information. This is due to its behavior when a

measurement is done. A measurement collapses the state of the qubit.

Measurements are done using measurement operators (M,,) (Fig. 2.2) acting on the qubit’s state
space. Measurement of a qubit in the computational basis yields the states |0) with probability |04]2 or
|1) with probability | 5|,
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Figure 2.2: Measurement operator acting a qubit [16]. After a measurement, a qubit’s state collapses,
yielding either the |0) or the |1) state. This resultant information can be stored in a classical bit as 0 or
1 as shown.

2.1.3 Pure and Mixed States

When the state of a qubit that can be represented as a single state vector [¢), it is called a pure
state. In cases where the state of a qubit is a statistical ensemble of state vectors with some probability
distribution, we say that the qubit is in a mixed state.

Geometrically, a pure state is represented by points on the surface of the bloch sphere while a mixed

state is represented by points inside the bloch sphere as shown in Fig. 2.3.

(b) |

) 1)

Figure 2.3: (a) A pure state in represented by a unit vector in the bloch sphere. (b) A mixed state is
represented by a vector of length < 1 in the bloch sphere
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Figure 2.4: A four qubit quantum circuit with the NOT gate acting on ¢, the Hadamard gate acting on
qo and the CNOT gate acting on : ¢; as target and gg as control, go as target and ¢; as control and g3 as
target and g2 as control

The density matrix formulation is used for describing qubits in a mixed state. For a system in a
statistical ensemble of state vectors |¢)1), [1)2), ... |t,) with the respective probability distribution py,
P2, ... P, the density matrix is given by:

p=_pilv) (Wil 2.3)

i=1

2.1.4 Quantum Evolution

Quantum evolution refers to the change in the state of the qubit with respect to time. The evolution

of a quantum system from a pure state |¢)) at time ¢ to a pure state |¢)') at time ¢’ is given by:

") = U |¢) (2.4)

Where U is a unitary operator and is dependent on the times ¢ and ¢'.

For mixed states, the density matrix evolves as:

p=> pilts) (Wil B > piU i) (| UT = UpU (2.5)
i=1 i=1

This implies that if the system was initially in state |¢)) at time ¢ with probability p;, then the unitary

operator U evolves it such that at time ¢', it will be in state U |1);) with the same probability.

2.1.5 Quantum Circuits and Quantum gates

Quantum circuits are made up of qubits, which are often referred to as wires, and quantum gates that
act on the state of these wires and evolve them (Fig. 2.4). Quantum gates are represented using unitary
matrices U, that is UUT = I . These quantum gates can act on single qubits, like the NOT gate (X) or
they can act on multiple qubits like the CNOT gate (Fig. 2.5).
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Rotation gates R, (6), R,(0) and R, () rotate the state vector |¢) of the qubit about the z, y and z
axes respectively in the bloch sphere by an angle § and are particularly useful. They have been used a

lot in the computations done in our studies. The matrix representations of these gates are given by:

0 PR ] ) —if
~ COS 5 —1811 5 ~ COS5 —SIng ~ e "2 0
Rl‘ (0) = 2 2 ) Ry('g) = 2 2 ’ RZ(Q) = ) (26)
0 9 0 9 il
—1 811 5 COS 5 S1n 5 COS 5 0 €2

Rotations by 7 about the x, y and z axes are represented using the Pauli operators and are denoted

using 0, 0y, 0. The matrix representation of the Pauli operators is given below:

2.1.6 The Noisy Intermediate-Scale Quantum era

As discussed earlier, qubits are able to represent complex entangled quantum systems and form the
basis of quantum computing. Advances in the field of quantum computing have been done in an effort
to reach quantum supremacy. Quantum supremacy refers to an era where no classical computer that

exists now or in the predictable future can solve computational tasks that a quantum computer can.

Fortress of Fault
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ﬁ Hel 2
A ﬁ ﬁnﬁ

Figure 2.6: The NISQ era lacks robust error correcting codes that can deal with all the decoherence
issues. There is still a long time to go till we reach the stage of fault tolerant quantum devices [17].
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While quantum computers are inherently more complex than classical computers, it does not mean
that they are more powerful. Quantum computers have been shown to perform better than classical
computers in some instances. The most famous example of this is that no efficient classical algorithm
exists for finding the prime factors of large composite integers [18].

The current quantum devices fall in the noisy intermediate-scale quantum (NISQ) era. This era
is characterized by noisy devices with around 50 to a few hundred qubits, which is more than what
the existing supercomputers can simulate by brute force. Even though the number of qubits we can
simulate is important, we need to also focus on the quality of qubits. The performance of NISQ devices
is severely affected due to quantum decoherence [18]. We do expect to see robust, fault tolerant systems
in the future with advances in error correcting codes and better qubit quality (Fig. 2.6).

The NISQ devices should be perceived as a stepping stone to do more advanced and powerful fault
tolerant quantum technologies. A new powerful set of algorithms called variational quantum algorithms
have been developed to work on NISQ devices. These algorithms are the subject of discussion of the

next subsection.

2.1.7 Variational Quantum Algorithms

As discussed earlier, the NISQ era is plagued by limited qubits, shorter circuit depth, decoherence is-
sues and much more. A special class of classical-quantum hybrid algorithms called variational quantum
algorithms, or VQAs for short, have been proposed to leverage the current NISQ devices in an effort
towards achieving quantum advantage [19].

I
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Figure 2.7: The general workflow of a VQA is broken up into a quantum section, consisting of the state
preparation and the quantum circuit, and the classical section, consisting of the cost function evaluation
and optimization[20].
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A typical VQA algorithm consists of an objective function, a parameterized quantum circuit, a data
encoding strategy and an optimization scheme. Formulating quantum algorithms to solve problems is
hard and not intuitive. A huge advantage of the variational quantum algorithms is that they provide a
general framework for solving problems. Moreover, they leverage the best of both classical and quantum
computing. The use of classical computing for optimization helps keep the circuit depth short which
reduces issues caused by noise.

In this section, we will discuss in detail about the objective function of VQAs, the parameterized

circuit, the data encoding strategies and optimization.

2.1.7.1 Parameterized Quantum Circuit

The parameterized quantum circuit (PQC) or the ansatz is a quantum circuit which takes in certain
parameters that are optimized using the variational quantum algorithm. The structure of the ansatz is
very important and studies are being done on the trainability, efficiency and accuracy of various ansitze.

Aside from qubit decoherence and low circuit depth issues, there are other problems that affect the
trainability of the ansatz and are ansatz specific. One such problem is the barren plateau problem (Fig.
2.8). It is a trainability problem that occurs when the cost function landscape turns flat as the algorithm
is run, that is the gradient becomes zero. This makes reaching the global minima difficult. It has been
shown that the likelihood of the presence of barren plateaus increases with increasing expressibility of
the circuit and increasing depth [21].

The choice of ansatz varies from problem to problem. Ansitze that are problem specific are known
as physically motivated ansatz, as seen in the variational quantum eigensolver(VQE) which is used to
find the ground state energy of a molecular Hamiltonian. Ansétze that make use of the existing hardware
are known as hardware efficient ansitze.

The parameterized ansatz can be denoted by a single unitary U () that is applied to the qubit states
that are inputted, where 6 represents the parameters of the circuit. U(6) can be split into a product of

M unitaries applied sequentially as:

U0) = Un(Om)Uar—1)(0ar—1y)----Ur(01) (2.8)

2.1.7.2 Data Embedding

Applications of VQAs have used both classical and quantum data. Since our quantum devices expect
to work on quantum data, classical data needs to be represented as quantum states in the Hilbert space.
This process is known as quantum embedding. A quantum feature map is used to embed classical data
into a quantum state. This is an important step in the algorithm as the choice of embedding strategy
affects the performance of the algorithm.

The basis embedding is used in places where the classical data is in the form of binary strings. This

embedding involves associating each data point with the computational basis of the space. Hence, in
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Figure 2.8: Mathematically, the phenomenon of barren plateaus can be explained as the cost function
partial derivatives on an average becoming exponentially flat with the system size. In this case,
reaching the global minima becomes very difficult, affecting the training of the ansatz [22]

this embedding the classical binary string essentially corresponds to its respective quantum state in the
Hilbert space.

For a dataset D = (x1, z2, ..... , :cp) where each data point x; is an n-dimensional vector, the basis
embedding requires [NV qubits such that N > n.

The dataset D is given by:

1 p
D)= — i 2.9
D) ﬁ;w (2.9)

which is just the superposition of the computational basis states with each state having equal probability.
The amplitude embedding encodes each data point into the amplitudes of the quantum state. The
data D = (x1, 2, ....., x}) is first normalized and each data point x; is encoded into the amplitudes of a

2" dimensional quantum state [t ):
N
[Yw) =D wij 17) (2.10)
j=1

where N = 2", z;; is the 4t element of z; and |7) is the 4t computational basis state. We need
n > logs(pN) qubits to encode dataset D.

There are many other types of embedding, like angle embedding, hamiltonian embedding etc. We
have used the amplitude encoding in our works.
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2.1.7.3 Objective Function

The objective function or the cost function is a function that needs to be optimized to get the solution
to our problem. The cost function is defined on measurements taken on the qubit state and is given by

the general formula:
C(0) = f(pr: Ok, U(8)) (2.11)

where f is the cost function, p is the set of inputs, Oy is the set of observables, and U(#) is our
parametrized circuit.

The cost function chosen is very important as it generates a cost function landscape whose global
minima corresponds to the solution of our problem. It is seen that the phenomenon of barren plateaus is

dependent on the choice of cost function used.

a)

o® 1.0
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0.6
0.4

0.2

0.0

Figure 2.9: The cost function landscape with (a) a global cost function and (b) a local cost function.
The usage of a global cost function causes the formation of barren plateaus in the landscape [23].

Studies have shown that the landscape becomes flatter with increase in number of qubits even when
the circuit depth is less. This happens because the cost function is trying to compare two states that
live in exponentially large hilbert spaces and the information is in the overlap. This overlap on average
is going to be very small. It was found that the usage of a local cost function instead of a global one

eliminates the barren plateaus in the loss landscape as shown in Fig. 2.9 [21].

2.1.7.4 Optimization

This is the normal classical optimization step where the parameters 0 are updated according to the

cost function.

Oit1 < 0; — gopt(6;) (2.12)
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2.2 Tensor networks

Tensor networks are essentially approximations of very large tensors using smaller, easier to handle
tensors [24]. They are widely used to simulate strongly entangled quantum systems. The usage of
tensor networks has seen developments in quantum information theory, condensed matter physics and
machine learning among other avenues. Due to the ability of tensor networks to describe quantum states
it is useful to check their performance on quantum phase recognition tasks. In this section we will be
discussing how tensor networks are represented, the types of tensor networks and finally we will be

discussing the usage of tensor networks in quantum computing.

2.2.1 Notation

A tensor with rank n in m dimension is a mathematical object with n indices and m™ components
and obeys certain transformation rules. Hence, the number of indices that the tensor has is its rank and
the number of values that each index can take is the dimension of the tensor. For example, a tensor that
can be represented as a scalar has a rank 0, a vector has a rank 1 and a matrix has rank 2 [25].

In linear algebra, tensors are represented using bases of the space and its respective components. The
indices of the components vary in whether they are written as a superscript (for contravariant tensors) or
in the subscript (for covariant tensors). Moreover, this notation also includes the usage of the Einstein
convention, which is just a method of expressing summations in a short form by using repeated indices
for the indices that are summed over. This way of expressing tensors becomes a bit difficult to handle
when dealing with tensor networks.

The development of the graphical notation of tensors in 1971 by Roger Penrose made dealing with
large tensors and tensor networks more intuitive and easier. In the graphical notation, the tensors them-
selves are denoted by solid shapes called nodes with their indices denoted by edges or lines jutting out
from them as shown in Fig. 2.10. Therefore, the rank of the tensor is just the number of open edges.
The dimension of the tensor cannot be gleaned from this graphical notation.

An important concept in the graphical notation of tensors is that of edge contraction and node split-
ting. Tensors are contracted by summing over their common index. In the graphical notation, tensor
contraction is shown by joining the common index of the tensors as shown in Fig 2.11. This is equivalent

to a matrix multiplication:

Cij =Y AwBy; (2.13)
k

Connecting the indices of the same tensor gives the trace of the tensor as shown in Fig. 2.11.
We see some more edge contractions in Fig. 2.11. As can be seen, in this notation, we can omit the
names of the tenors and the indices. This leads to a cleaner, more coherent diagram. Moreover, as is

evident, even for complicated contractions, the rank of the resulting tensor can be deduced at a glance
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Figure 2.10: Tensors of rank one (represented as a vector) , two (represented as a matrix) and three [26]
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Figure 2.11: The figure above shows some general tensor contractions [26]

by counting the number of open edges. So for example in Fig. 2.12, since there are no open edges, we

know, without doing any calculations, that the resultant tensor has to be a scalar.
To denote contravariant or covariant indices, one can simply use directed edges.

The second important concept that we need to talk about is node splitting. It is a method by which a
tensor node is split into 2 tensor nodes. Fig. 2.13 shows the splitting of a rank 2 tensor. This is done by

first doing an Singular Value Decomposition of the rank 2 tensor. This gives rise to three rank 3 tensor
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Figure 2.12: The figure shows a tensor network with rank zero which involves some complex
contractions.

nodes that are joined together. These can be represented by matrices U, D and V' as shown in Fig.2.13.
From the resulting matrices, the diagonal matrix D is split into Dy and Ds by taking the square root
of the elements of the diagonal. Now the edge between U and D; is contracted. Similarly the edge
between Dy and V is contracted. So now our initial tensor node has been split into two nodes. Note that

even after splitting the node, the rank of the resultant node remains the same.
Edge contraction

Edge contraction

SVD /

Figure 2.13: The figure shows a node of rank two splitting using Singular Value Decomposition (SVD).

Tensor nodes with rank greater than 2 can also be split as shown in Fig. 2.14. This example uses a
tensor of rank 3. In this case, this tensor is first converted to a rank 2 tensor by flattening one index. The

node is then split normally.



Edge contraction
M,
SVD /
Edge contraction |\/|2
Figure 2.14: The figure shows a node of rank three splitting. In this case an index of the node is first

flattened and the node is hence converted to a rank two tensor and is then split using SVD (Singular
Value Decomposition) as before.

Certain tensor networks can be realized as quantum circuits and have been used as ansétze in varia-

tional algorithms. Three such tensor networks are:

2.2.1.1 The Tree Tensor Network

The tree tensor network (TTN) is characterized by a tree like structure (Fig. 2.15). Note that it is not
necessary for the tree tensor network to have only two children per node. It can have multiple sub trees
as children. For example, if there are three sub trees as children of the node, this corresponds to a three

qubit unitary block in the ansatz [27].

RN _
/\ /N >

fN TN N T g |

Figure 2.15: Classical TTN tensor network and its circuit realization
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2.2.1.2 The Matrix Product State

The matrix product state (MPS) is a network of Rank 3 tensors as shown in Fig 2.16. The matrix
product state tensor network is a special case of a tree tensor network. This tensor network has been

studied extensively and many efficient algorithms have been developed using this [26].

Figure 2.16: Classical MPS tensor network and its circuit realization

2.2.1.3 The Multi-scale Entanglement Renormalization Ansatz

The multi-scale entanglement renormalization ansatz (MERA) tensor networks produce highly en-
tangled states. Their structure and corresponding quantum circuit [27] have been illustrated in Fig 2.17.
The MERA tensor network ansatz has shown promising results in various computational tasks, which is

the subject of discussion of the next section.

SN |
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/NN N

Figure 2.17: Classical MERA tensor network and its circuit realization
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2.2.2 Tensor networks in quantum computing

As discussed before, tree tensor networks (TTN) [28] and multi-scale entanglement renormalization
ansatz (MERA) [29] can be constructed using a quantum circuit [30, 31].

Recently, the use of quantum circuits based on tensor networks have been explored in the domain
of machine learning for both generative [32] and discriminative tasks [30, 33, 34]. The bond dimen-
sion of a tensor network is the dimension of the index connecting smaller tensors together. The bond
dimension, D, of a tensor network that has been realized using a quantum circuit is 2, where v qubits
connect different subtrees. The main motivation behind using tensor network inspired quantum circuits
is the increase in expressibility of the ansatz with increasing bond dimension to the point that for a
sufficiently huge bond dimension, the entire state space can be covered. Dealing with such systems is
computationally expensive in the classical scenario[30]. Moreover, it is highly likely that in the case of
quantum data such as the wavefunction of a system, usage of classical methods will be intractable due
to the exponential increase of information that needs to be encoded and computed with the increase in
number of particles.

Circuits with a hierarchical structure like that of a MERA or TTN tensor network have been used in
the classification of images like those in the MNIST dataset [33, 34]. A hybrid classical-quantum MPS-
VQC has been used in image classification tasks with the MPS being the feature extractor for the images.
While the MPS tensor network in this case is classical in nature, it can be replaced with an equivalent
quantum circuit paving the way for the usage of quantum tensor networks as feature extractors [35].
Various tensor network ansitze have also been used for Quantum phase recognition tasks for the 1-D

Heisenberg [34] and Transverse Ising models [36] with good results.

2.3 Spin Systems

The study of spin systems is important in order to understand the magnetic properties of a system at a
macroscopic level. This is because the magnetic moment of an atom has contributions from the electron
spins. The alignment of many such spins on a macroscopic scale defines the magnetic properties of
the system. This alignment of spins is driven by the exchange interaction between the atoms. Exchange
interaction is a short range, powerful interaction that occurs due to the electrical forces between electrons
in the atoms [37, 38]. In our works we will deal with spin systems where the atomic dipoles are depicted
by points on a 1-D and 2-D square lattice. The exchange interaction between atoms is limited to nearest

neighbors and is given by the general formula:

e =a8,.8; + 57 S%

S1 and Sq are the spins of the two neighboring atoms in question (bold style represents the corre-
sponding angular momentum vector). We will be considering variants of the special case of a = 0 and

B = J which is the Ising model of interaction and o = J and 8 = 0 which is the Heisenberg model of
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interaction [37]. Spin systems undergo quantum phase transitions. A quantum phase transition is a point
of non-analyticity in the energy graph of the ground state of the Hamiltonian of the system caused due
to quantum fluctuations at 0 K [39]. Since many complex models can be approximated as spin systems,
quantum phase recognition allows us to derive and understand the properties of such systems.
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Figure 2.18: A 2-D lattice of an eight spin system in paramagnetic phase
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Chapter 3

Machine Learning using Quantum Tensor Networks

Machine learning (ML) offers tools and techniques to learn and predict patterns that emerge in data.
One crucial avenue of this pattern recognition task is classification, which involves predicting class la-
bels for the input data and has found applications in speech recognition [40], biometric identification
[41], object classification [42], disease identification [43] and many more. These applications result
from immense leaps classical ML algorithms have made in dealing with various challenging datasets.
Lately, based on these successes, ML algorithms have been used for problems related to many-body
physical systems, such as recognizing phases of matter [44, 45]. Even though they have shown more
promising results for studying relevant and useful many-body systems than the best contemporary clas-
sical algorithms, they still do not alleviate the sign problem [46], which usually emerges in such calcu-

lations and causes an exponential slowdown.

More recently, there has been an ongoing effort to develop quantum-enhanced machine learning al-
gorithms that leverage quantum computers to tackle traditional ML problems [47]. These algorithms are
typically based on a class of hybrid quantum-classical algorithms called variational quantum algorithms
(VQAs), such as variational quantum eigensolver (VQE) [10] and variational quantum linear solvers
(VQLS) [48] that have been used to find the ground state of a Hamiltonian and solve systems of linear
equations on noisy intermediate-scale quantum (NISQ) hardware [18]. The relatively short depth of
the parameterized quantum circuits (PQCs) used in these algorithms makes them an ideal candidate for

achieving good results on NISQ devices without error correction codes. [19].

In principle, although PQCs are analogous to classical neural networks structurally, they can exploit
additional computational resources due to the presence of quantum mechanical phenomena such as su-
perposition and entanglement [49]. The basic working principle of VQAs is to optimize the parameters
of PQC, also referred to as an ansatz, using a classical optimization routine to minimize a cost function
defined on measurements taken on the qubits present in the ansatz. Therefore, the performance of these
algorithms is majorly based on the structure of the ansatz [50]. Hence, it is crucial to analyze and have
some basic insights into the ansatz for a particular problem or application to assess and improve their

trainability.
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In our works, we use a VQE-based algorithm to classify classical and quantum data. For the former,
we look at the task of classification of Fashion MNIST dataset [51], whereas, for the latter, we tackle
the problem of classification of the quantum phase of 1-D and 2-D transverse-field Ising and XXZ
Heisenberg spin system. We employ multi-scale entanglement renormalization ansatz (MERA) and tree
tensor network (TTN) states for building the ansatz for the variational routine. Finally, we also use
expressibility and entangling capability analysis for choosing the structure of unitary block for these
ansitze (Figs. 3.2a and 3.2b) that helps us make use of shorter-depth blocks than the general SU(4) one
suggested in [34].

MERA Tensor Network Ansatz

I ~ —

N | Up(64) .

P 056 U (G) Do
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Figure 3.1: Variational workflow using multi-scale entanglement renormalization ansatz (MERA)
tensor network

In this chapter, we will describe the circuit architecture of the model used in our studies, the image
classification and quantum phase recognition tasks, their experimental setup in detail, various analytical

studies and the results obtained by us.
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Figure 3.2: Unitary blocks and their analysis: The possible choices of unitary blocks for building
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variational ansitze are (a) V'(#), which can represent any element from SU (4) group, and (b) U(6),
which is a two-qubit entangling unitary. For comparing the effectiveness of built TTN and MERA
tensor network ansitze, we perform (a) expressibility analysis based on the Jensen-Shannon divergence
of fidelity distributions of generated parameterized states with that of Haar states (lower the better), and
(b) entangling power analysis based on the Meyer-Wallach measure (higher the better)

3.1 Circuit Architecture

Our experiments utilize variational quantum circuits based on the tree tensor network (TTN) [28],
and the multi-scale entanglement renormalization ansatz (MERA) [29]. The TTN ansatz has a binary-
tree-like structure with unitaries applied to the adjacent nodes, as shown in Fig. 3.3, which depends
on the bond dimension D of the tensor network. As mentioned earlier, the bond dimension equals
D = 27, where v is the number of qubits connecting the subtrees [52]. In our case, we have used v = 1;
therefore, our ansatz has a bond dimension of two. On the other hand, the structure of the MERA tensor
network can be explained using that of TTN itself, where it is constructed by adding a set of unitaries to
consecutive nodes of the TTN as shown in Fig. 3.1.

—

The choice of the ansatz /(#) is a crucial one, which depends on the unitary block (Up) and their
bond dimension (D), and results in varied performance between different ansatz structures. In our case,
we compare the performance of MERA- and TTN-based ansatz built using the unitary block V(g) and
U(g) based on metrics of expressibility and entangling capability defined in the qLEET library [50]. In
particular, we want our ansatz to be more expressive and capable of generating entanglement. For the

former, we compare the divergence between the fidelity distributions for the states generated by Haar

25



Tree Tensor Network Ansatz

I
Ug(6;)
11\)I O @ -
o -
T _E_UB(QQ)
: Up(07)
mE (M)

= > = »n
S
=

Figure 3.3: Structure of the tree tensor network (TTN) ansatz, with bond dimension D = 2, used in our
experiments

Random unitaries (Piaar(F, Urtaar)) and the ansatz (Pch(]: U (5))) using the Jensen-Shannon distance
(JSD) [53], where fidelity F (11, %2) = |{11|12)|? is defined as the squared overlap between the states

[11), [12) [54] produced by Uy, Us € U(0) (or Upaar). We use this to define expressivity (Expr € [0, 1))

of the ansitze as given below:

Expr = D_75p5(Proc (F,U0)) | Paar (F, Ustaar), (3.1)

The smaller this distance, i.e., divergence, the closer ansatz is to Haar random unitaries and hence more
expressive it comes out to be. In contrast, to compare the latter, we use an entanglement measure
known as the Mayer-Wallach measure (Q)) [55], which quantifies the average entanglement in all the
states produced by an ansatz by measuring the average linear entropy over all possible single-qubit

subsystems (Eq. 3.2).

2 1 ¢

Q=2 (1nZTr<pi<0i>>>, 0<Q<1 (32)
‘ ’01'65 k=1

where n is the total number of qubits, p(6) = ’w(g > <¢(§)’ is the density matrix for the parameterized

pure state |1(6)) and pk(g) is the reduced single-qubit density matrix for the k™ qubit after tracing out

the rest. For any given ansatz U/ (6), the larger the value of () is, the more capable in general it would be

to produce entanglement between qubits, i.e., more entangled states.
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We present the structure description of U(#) and V' (6) in Figs. 3.2a and 3.2b. The first one is
a general element of the SU(4) group, which can be decomposed into four controlled-NOTs and 15
single-qubits rotations [34]. In distinction, the other one is a two-qubit entangler gate comprising three
controlled-NOTS and six single-qubit rotations arranged in a layer-wise manner.

In the Figs. 3.2c and 3.2d, we look at expressibility and entangling capability, respectively. As a
general trend, we see that MERA-based ansatz is more expressible and generates more entangled states

than TTN-based ansatz. Additionally, amongst U(f) and V' (6), in both the cases, for single-layered

circuits (L = 1), the ansatz built using U(d) comes out to be more effective than V (4). Moreover,
since the number of variational parameters is lesser in case of the U (5) block as compared to the V(é)
block, with a ratio of 2 : 5, it will be easier to optimize the former and hence it will be more scalable

— —

for larger systems. Additionally, the circuits with U (6) and V' (€) blocks become equally expressible for

both MERA- and TTN- based ansatz for multiple layers (L > 1). However, the U (5) block produces

more entangled states than the V(#) block. Therefore, based on these observations, we have used tensor
network ansatz based on the Ug = U (6).

3.2 Image Classification

3.2.1 Dataset

We have conducted the image classification tasks on the Fashion-MNIST dataset [51]. It is a set of
28 x 28 grayscale images with 60, 000 train and 10, 000 test samples spread uniformly among 10 classes
(tshirt, trousers, pullover, etc.) In our experiments, the train set was split in a ratio of 5 : 1 into balanced
train and validation sets. Therefore, our data was split into the train, validation, and test classes in the
ratio 5 : 1 : 1, with each class distributed uniformly in each of these sets.

Most of the image classification tasks done using quantum tensor networks use the MNIST dataset
[56]. We have chosen the Fashion-MNIST dataset because it is less explored in the quantum machine
learning literature and is more complicated than the MNIST dataset, which is essentially solved at this
point [57]. Therefore obtaining better accuracies at Fashion-MNIST would represent the effectiveness

of the learning models better.

3.2.2 Encoding Strategy

In order to process classical data using a quantum circuit, we first need to embed it in a quantum
state. For our experiments, we have used amplitude embedding in which encoding an image of size
N x M will require loga (N x M) qubits. Each image of size 28 x 28 is first converted to a linear vector
of size 1 x 282. In case the image size is too large to process, it is first resized and then transformed into
the image vector. The image vector is then mapped to a state in the Hilbert Space. A variety of feature

maps can be used for this purpose. So each image in the Fashion-MNIST dataset was first resized and
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Figure 3.4: Performance of the MERA tensor network ansatz on classes of the Fashion-MNIST dataset
with different one, three and five layers of the ansatz

converted to an image vector. The image vector was then normalized and encoded into the amplitudes

of an eight qubit quantum state.

3.2.3 Optimization and Hyperparameters

The ADAM optimizer [58] was used to optimize the training process with a learning rate of 0.01. A
mini-batch size of 20 was used, and the model was trained over 40 epochs to minimize the cross-entropy
loss [59]. Computation of both the loss and pair-wise accuracies was done by using (Z3) obtained by

computational basis measurement of the third qubit.

3.2.4 Results

We used eight qubit ansatz based on both TTN and MERA tensor network states. Amongst them,
the latter obtained reasonably better results for all pairs of classes of the Fashion MNIST dataset and
therefore, we present only its results here. Predictably, we see better performance on classes that are
more unlike each other, like Pullover vs. Ankle boot (99.3%), than classes that are similar to each other,
like coat and shirt (64.35%).

Increasing the number of layers to three and five has shown an increase in the pairwise accuracy,

especially in our previous case of the coat and shirt labels where the accuracy increases from 64.35%
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T-shirt
Trouser
Pullover

Dress

Coat
Sandal
Shirt
Sneaker
Bag
Ankle boot
Ankle boot

T-shirt | Trouser | Pullover

Table 3.1: Pairwise accuracy on the classes of the Fashion-MNIST dataset for one layer of the MERA

tensor network

T-shirt
Trouser
Pullover

Dress

Coat
Sandal
Shirt
Sneaker
Bag
Ankle boot
Layers: 3

T-shirt | Trouser | Pullover Sandal Ankle boot

Table 3.2: Pairwise accuracy on the classes of the Fashion-MNIST dataset for three layers of the
MERA tensor network

T-shirt
Trouser
Pullover

Dress

Coat
Sandal
Shirt
Sneaker
Bag
Ankle boot
Layers: 5

T-shirt | Trouser | Pullover Bag | Ankle boot

Table 3.3: Pairwise accuracy on the classes of the Fashion-MNIST dataset for five layers of the MERA

tensor network
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to 73.75% to 77.4% as can be seen in Tables 3.1, 3.2 and 3.3. Such a trend is observed in most classes
where single-layered tensor network ansitze did not perform very well.

We observe a bigger difference in accuracy when going from one layer to three layers than when
going from three layers to five layers. In fact, in most cases, we see a similar performance in ansitze
with three and five layers. Fig. 3.4 shows the pairwise accuracy for certain pairs of classes as the number
of layers increases, which is corroborated by the increasing trends of expressibility and entangling power

in Figs. 3.2c and 3.2d.

3.3 Quantum Phase Recognition

3.3.1 Models and Data generation
3.3.1.1 1-D Transverse-field Ising Model

The transverse-field Ising model in one dimension is characterized by the following Hamiltonian:
n n
H(h)=J)Y 6767, +h> 67, (3.3)
i=1 i=1

where J is the coupling constant, / the external magnetic field and o7 and o represents the Pauli
matrices Z and X acting on the i*" spin. We have taken J = 1 in our experiments, so when h < 1,
the nearest-neighbor term dominates. This leads to the spins aligning in either an up or down direction,
resulting in a disordered paramagnetic phase. For & > 1, the second term dominates, and the spins end
up aligning themselves with the external magnetic field leading to an ordered ferromagnetic phase. A
phase transition for this system between these two phases occurs at h = J [39].

In our experiments, we have generated 1000 ground states for linear chain systems with four and

eight spins using the given Hamiltonian with J = 1 and A varying from 0 to 2.J.

3.3.1.2 1-D XXZ Heisenberg Model

The one-dimensional XXZ Heisenberg model is described using the following Hamiltonian:

n
H(h) = J | 6to7, +616),, + 26767, (3.4)
=1

Where J is again a coupling constant, taken as 1 in our experiments, and A introduces anisotropy

in the interaction along the 2Z-direction. It is observed that for A — oo, the system is in the antifer-
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romagnetic/Néel state, i.e., all spins are alternating spin-up or spin-down. As A — 1, the spins begin
to reorient themselves, and for —1 < A < 1, they remain in the £ — g plane, putting the system in a
paramagnetic phase [37]. Finally, for A < —1, all the spins arrange themselves in the same direction
resulting in a ferromagnetic phase. Therefore, for J = 1, phase transitions happen clearly at A = 1 and
A = —1[37,60].

The 1-D XXZ Heisenberg Model data was generated for linear chain systems with four spins (1 x 4)
and eight spins (1 x 8) using the given Hamiltonian with J = 1 and A varying from —2 to 2 for 1000

points.

3.3.1.3 2-D Transverse-field Ising Model

The two-dimensional transverse-field Ising model has the same Hamiltonian as the one-dimensional
case. However, a phase transition is observed at h ~ 3.01J [61]. The data is generated for 1000 points
for 2-D lattices with four spins (2 x 2) and eight spins (2 x 4) using the given Hamiltonian with J = 1
and h varying from 0 to 6.J. The phase transition is seen at h = 3.01.J. Fig. 2.18 shows a 2-D lattice

(2 x 4) of spin systems.

3.3.1.4 2-D XXZ Heisenberg Model

The two-dimensional XXZ Heisenberg model has the same Hamiltonian as the one-dimensional case
with a phase transition occurring at A = 1 and -1 as well [62]. The data generation process remains the

same as in the one-dimensional case.

3.3.2 Training

A quantum circuit was trained using the variational quantum algorithm as shown in Fig 3.1. The
data was split randomly into the train, validation, and test sets in the ratio 3 : 1 : 1, with each set
having a balanced distribution of the classes. For all the experiments, measurements were taken on
two readout qubits (g;, g;). These were the second and third qubits for the four-spin systems and the
third and sixth qubits for the eight-spin systems. For both Ising and Heisenberg models, we calculate
expectation values (Z;), (Z;) and (Z;Z;) to compute probabilities of the elements of computational
basis corresponding to each class (phase) inspired by the amplitude decoding method introduced in
[34]. These probabilities were fed to a softmax function for normalization, whose outputs were used

to calculate the cross-entropy loss [59]. A batch size of 8 was used with a learning rate of 0.002 for
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Spin Lattice | Tensor Network Test Accuracies
Models States 8 spins 4 spins 4 spins
(simulator) | (simulator) | (IBMQ Nairobi)
XXZ-HM 1-D MERA 98.6 + 0.70 | 98.6 + 0.38 74.0
XXZ-HM 1-D TTN 96.5 £ 1.03 | 98.5 £0.32 72.6
TFIM 1-D MERA 99.8 + 0.06 | 98.6 + 0.08 84.5
TFIM 1-D TTN 98.3 £ 0.10 | 99.0 £ 0.03 86.2
XXZ-HM 2-D MERA 98.5 £ 0.88 | 98.4 £+ 0.27 68.6
XXZ-HM 2-D TTN 96.3 +1.25 | 98.1 + 0.31 64.0
TFIM 2-D MERA 99.8 +£0.06 | 98.8 £ 0.18 72.1
TFIM 2-D TTN 98.0 £ 0.09 | 99.1 +0.13 73.6

Table 3.4: Performance of the TTN and MERA tensor networks on recognizing correct phases of
various XXZ Heisenberg (XXZ-HM) and transverse-field Ising (TFIM) spin systems on
one-dimensional (linear) and two-dimensional (rectangular) lattices. For eight spin systems,

simulations were performed numerically on a quantum simulator, and results were averaged over five
trials. Whereas for the four spins systems, along with similar numerical simulations, experiments were
also executed on the IBMQ Nairobi (imbqg_nairobi) [1], a seven-qubit quantum hardware, and the best
results out of three trials are being reported here.
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Figure 3.5: Prediction probabilities of phases with MERA based ansatz: (a) for transverse-field
Ising model in 1-D case (noiseless simulation), and (b) For transverse-field Ising model in 2-D case
(executed on IBMQ Nairobi (ibmg_nairobi), 7-qubit hardware [1])

the MERA-based ansatz and 0.0008 for the TTN-based ansatz. The ADAM optimizer [58] was used to

optimize the training process over 2000 iterations.
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3.3.3 Results

We see that both MERA- and TTN-based ansétze perform well for both four-spin and eight-spin sys-
tems, with overall better performance for the transverse-field Ising models than the Heisenberg models
(Table 3.4). Moreover, their performance in the 1-D cases is better than in the more complicated 2-D
case. In Fig. 3.5a, we show the results outputted by our model for the transverse-field Ising model with
eight spins on a linear (chain) lattice. When the probability of a phase is more than 50%, we assign our
output the label corresponding to that phase. We see that our model is more confident when the value of
h is further from the point of phase transition, i.e., when h is 1. Similarly, Fig. 3.5b shows the values of
our model’s outputs when the models were trained and executed on the IBMQ Nairobi (ibmq_nairobi)
[1], which is a 7-qubit superconducting quantum hardware for the transverse-field Ising model with four

spins on a square (2 x 2) lattice.
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Chapter 4

Conclusions

In this thesis, we have studied the performance of quantum tensor networks for image classification
tasks and quantum phase recognition tasks of spin systems.

We have extended the previous works done in this domain in the following two ways. First, we have
presented a strategy based on metrics like expressibility and entangling capability of the parameterized
circuits to choose a well-suited block structure for the tensor-network inspired ansitze. Such analysis
was corroborated by the results obtained for the image classification task, where we were able to increase
the performance of our classifiers by increasing the number of layers of the circuits. Second, for the
quantum phase recognition task, we have attempted to study spin systems on 2-D lattices with the
tensor-network ansatz, which are generally more challenging than those on 1-D spin lattices that have

been studied in the literature until now [34, 36].

4 Qubit MERA Tensor Network Ansatz

: | Rx Rz Rx ]_6} ™
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Figure 4.1: 4 qubit MERA tensor network ansatz used for phase recognition

In the image classification task, the pairwise accuracies between the different classes of the Fashion-

MNIST dataset were calculated for 1, 3, and 5 layers of the MERA tensor network ansatz. The results
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Figure 4.2: Tensor network ansétze for four-spin systems: Structures of variational ansitze based on
the (a) tree tensor network (TTN) and the (b) multi-scale entanglement renormalization ansatz (MERA)
tensor network. (¢) Modified structure of MERA tensor network ansatz with changed first unitary block

are shown in Tables 3.1, 3.2 and 3.3. We see a clear increase in accuracy when the number of layers is
increased, especially when we go from a single layer to three layers. The performance of the ansatz with
five layers is slightly more than when three layers are used. This is corroborated by Fig. 3.2c, where we
see a marked increase in the expressibility of our circuit when the number of layers is increased from
one to three but not a lot of increase when going from three layers to five. In pairs of classes where one
layer of the ansatz performed poorly, like coat vs. shirt or sandals vs. sneakers, we see an appreciable
increase in accuracy with an increase in layers. Possibly, this happens because the layered structure
allows correlation to be distributed more effectively among the qubits allowing the system to evolve
to states that were not previously possible. More explicitly, the ansatz becomes more expressible with
each layer, and its overall entangling power also gets enhanced. This can be easily seen in the results of
the entangling power analysis as shown in Fig. 3.2d, where entanglement measures for both TTN and

MERA follow a similar exponential trend of improvement with each layer before plateauing down.

In the quantum phase recognition tasks, we first use a VQE-based variational routine with a hardware-
efficient ansatz to prepare these systems in the ground state of the Hamiltonian for each spin system
instance. This enables us to take care of the sign problem by employing the hybrid quantum-classical
routine. Furthermore, the TTN and MERA tensor network ansatz results indicate their effectiveness at
solving many-body physics problems. We see that it was much easier for tensor-network-based ansatze
to classify phases for the transverse-field Ising model, which has simpler interaction terms than the XXZ
Heisenberg models. This is in agreement with the previous results obtained for these two models [36].
Moreover, for the both models, the results for systems on one-dimensional linear lattices were better
than the results for two-dimensional rectangular lattices. This is again due to fewer interacting terms, as
seen in the previous observation. Among the two tensor-network-based ansétze, we find MERA-based

ansatz to be overall superior in performance for such tasks than the TTN one, except for the case with the
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Ising model with four spins. While we can still attribute the MERA-based ansatz’s better performance
to it being more expressible and generating more entanglement in the states it evolves, the exception
tells us that the order in which the correlation gets distributed also matters, especially when the circuit
is shallow. In this particular case, it appears from the ansitze structures presented in Fig. 4.2 that the
correlation involving the first and fourth qubits need to be spread before the second and third qubits
are entangled. Modifying the MERA ansatz structure by changing the first unitary block to act on the
first and fourth qubits as shown in Fig. 4.2c results in a significant improvement in performance to
99.2 £ 0.05 and 99.3 £ 0.09 for 1-D and 2-D Ising models, respectively. Finally, we also executed our
classifiers on the actual quantum hardware, IBMQ Nairobi, for classifying phases of four spin systems
for both 1-D and 2-D cases. We see that even though there’s a decreased performance due to the noise
present on the device, it was still able to classify the phases decently (Fig. 3.5b). We speculate that
this performance can be further improved by employing specific error mitigation techniques like those
available in Mitiq [63].

Overall, our studies have shown promising results in both tasks, and we conclude that tensor-
network-inspired ansatz is an ideal candidate for quantum-enhanced learning of both quantum and clas-
sical data. For quantum data, further studies need to be done on tasks such as the phase recognition task
on larger, more complicated systems, like systems with 16 or 24 spins, to see how scalable our current
model is, which is something we are currently pursuing. On the other hand, for the classical data, more
specifically, for the image classification tasks, more work is required to study higher resolution images

that would require much better encoding strategies, which is another area of our interest.
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