
Revisiting Deep Learning for Particle Physics

Thesis submitted in partial fulfilment
of the requirements for the degree of

Master of Science in
Computational Natural Sciences

by Research

by

Jai Bardhan
2018113008

jai.bardhan@research.iiit.ac.in

International Institute of Information Technology
Hyderabad - 500 032, INDIA

June 2023



Copyright © Jai Bardhan, 2023

All Rights Reserved



International Institute of Information Technology
Hyderabad, India

CERTIFICATE

It is certified that the work contained in this thesis, titled “Revisiting Deep Learning for Particle
Physics” by Jai Bardhan, has been carried out under my supervision and is not submitted elsewhere
for a degree.

Date Advisor: Dr. Subhadip Mitra



To my parents and my brother,

for their unconditional love and support



Acknowledgments

I want to express my sincere gratitude to my advisor, Dr. Subhadip Mitra, for his guidance,
encouragement, and support throughout this research work. His expertise and insights have been
invaluable in shaping my work and helping me overcome the challenges I faced. I am incredibly
grateful for his encouragement and support for all my personal and career goals. I would also
like to sincerely thank Dr. Tanumoy Mandal for his valuable feedback and guidance through the
projects.

I am grateful to my close friend and partner in crime, Cyrin Neeraj. His mentorship, aid, and
friendship made my research experience fun and rewarding. His contribution and feedback to
my thesis enhanced its quality considerably. I would also like to thank my PhD lab mates, Arvind
Bhaskar and Maaz Khan, whose comforting words and genial attitude during stressful hours
enabled me to tackle this project. I particularly thank A.B. for his insightful discussion and help
with the experiments and results.

I would also like to thank my friends (./, NSMJ, Wing Group) – Ahish, Yoogottam, Pranav
K., Sartak, Pranav T., Sarthak, Jaidev, Arpan, Jivitesh, Vikrant, Rohan, Aman, and especially to my
old roommate Bhavyajeet Singh and MS lab mates Animesh Sinha and Kalp Shah. I am grateful
for their companionship and encouragement through the years, which helped me through some
tough times. My discussions with them (especially with A.S., K.S., B.S. and A.D.) provided me
with ample constructive criticism, improving my work significantly.

I am thankful to my juniors for motivating me to work hard on my thesis and complete it on
time. I am also grateful to them for teaching me to take a break and have fun. My final years in
the university would not have been so memorable if it wasn’t for them.

Finally, I would like to thank my family for their unconditional love and support. They have
always supported me in pursuing my dreams and goals. They have moved heaven and earth to
ensure I have access to an excellent educational institute and meet all my needs. I could not have
done this without them.

v



Abstract

The Large Hadron Collider (LHC) experiment is searching for exotic beyond the Standard Model
signal processes. These processes occur at extremely low rates compared to the Standard Model
ones making it difficult to extract these signals effectively. Classical cut-based methods that
rely heavily on hand-crafted strategies fail to perform well on these exotic signals. For the next
stage of runs at the LHC, there is an urgent need to develop newer algorithms more capable of
identifying these rare signals. Deep learning methods have recently gained traction to assist these
searches due to their exceptional ability to analyse complex patterns and show immense potential
to improve the sensitivity of experiments. In this thesis, I describe a few approaches to adapt and
incorporate deep learning techniques into collider experiments. First, I present a case study of a
phenomenological search for a hypothetical heavy quark, where I augment the standard search
strategy with a simple deep-learning model to yield better sensitivity and reach. In the case study,
I also discuss the caveats of such methods and point to a potential solution. Secondly, I present a
simple adaptation of the deep learning training strategy to align it with physics goals. Specifically,
I study modifications to the standard Cross Entropy loss and propose a new loss function, based
on the Lovasz extension, to directly optimise the sensitivity metric (Z-score). Finally, I present
a novel generative model based on the GAN (Generative Adversarial Framework) to generate
particle jets. This model can quickly generate jets from different processes and assist jet studies.

vi



Contents

Chapter Page

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

I Background 3

2 Primer on Particle Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Particles in the Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 The Fermions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 The Bosons and the Fundamental Forces . . . . . . . . . . . . . . . . . . . 6

2.2 Interactions in the Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Quantum Electrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Quantum Chromodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 Weak Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.4 The Role of the Higgs Boson . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 The Standard Model is an Effective Theory . . . . . . . . . . . . . . . . . . . . . . 9

3 Collider Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1 Colliders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Energy and Luminosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Collision Event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 Large Hadron Collider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4.1 LHC Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4.2 What is seen by the detector? . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.5 Computational Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6 Kinematics at the Collider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.6.1 Mandelstam Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.6.2 Pseudorapidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.6.3 Transverse Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.7 Statistics at the LHC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.7.1 Experimental Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.7.2 Experimental Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1.1 A Representative Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

vii



viii CONTENTS

4.2 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.1 Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.1.1 Mean Squared Error . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2.2.1 Cross Entropy Loss . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Unsupervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3.1 Representation Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3.2 Generative Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4 Boosted Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4.1 Decision Tree Construction . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4.1.1 Regression Construction . . . . . . . . . . . . . . . . . . . . . . . 29
4.4.1.2 Classification Construction . . . . . . . . . . . . . . . . . . . . . 29

4.4.2 Ensembling Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.5 Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.5.1 Activation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.5.2 Backpropogation and Gradient-Based Optimization . . . . . . . . . . . . . 31
4.5.3 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.6 Neural Network on Unstructured Data . . . . . . . . . . . . . . . . . . . . . . . . 33
4.6.1 Jets as Particle Clouds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.6.2 Graph Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

II Research Work 37

5 Application of ML in BSM searches at the LHC:
A case study with heavy-quark signals . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1 Vectorlike Quarks, in brief . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Search Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2.1 Process Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2.2 Reconstructed Objects, Kinematic Cuts . . . . . . . . . . . . . . . . . . . . 42
5.2.3 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2.4 Dataset Curation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3.1 Boosted Decision Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3.2 Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.5 Interpretability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.5.1 Integrated Gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.5.2 The choice of baselines and Averaged Gradients . . . . . . . . . . . . . . . 56
5.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6 Loss Functions for Deep Learning at the LHC . . . . . . . . . . . . . . . . . . . . . . . . 58
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.2 Process Weighted Cross Entropy Loss . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.2.1 Different Weighting Schemes . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3 Surrogate med[Z] score loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.3.1 Submodular Functions and Lovasz Extension . . . . . . . . . . . . . . . . . 61



CONTENTS ix

6.3.2 Z-score as a submodular function . . . . . . . . . . . . . . . . . . . . . . . 62
6.3.3 Error Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.4 Setup and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.4.1 Dataset Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.4.2 Deep Learning Model Construction . . . . . . . . . . . . . . . . . . . . . . 69
6.4.3 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.4.4 Test Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.6 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7 Generative Modelling of Jets at the LHC . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.1 Introduction and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.2 Mathematical Setup for Jet Generation . . . . . . . . . . . . . . . . . . . . . . . . 78
7.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.3.1 Generating the discrete categorical variable n . . . . . . . . . . . . . . . . 80
7.3.2 Generating the Jet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.3.3 Discriminator Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.3.3.1 Sizes Discriminator . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.3.3.2 Particle Discriminator . . . . . . . . . . . . . . . . . . . . . . . . 82

7.4 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.5 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.7.1 Plots For Individual Jet Sizes . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.8 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8 Summary, Conclusions, and Future Outlook . . . . . . . . . . . . . . . . . . . . . . . . 97

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100



List of Figures

Figure Page

2.1 The Standard Model of Particle Physics: The particle content (left) and the inter-
actions (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1 Schematic of a Hadronic Collision at the LHC . . . . . . . . . . . . . . . . . . . . 13
3.2 Cross Section of the CMS detector . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 The pipeline of Computational Tools . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.1 An illustrative diagram of the relevant signal topology . . . . . . . . . . . . . . . . 40
5.2 A few kinematic variable distributions . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3 Jet Substructure Variables for the selected fatjet . . . . . . . . . . . . . . . . . . . 45
5.4 Select invariant mass reconstructions . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.5 Girth of select reconstructed hadronic objects . . . . . . . . . . . . . . . . . . . . 48
5.6 Few plots of the distance (∆R) between reconstructed objects . . . . . . . . . . . 49
5.7 Correlation between the features for signal and background processes . . . . . . . 50
5.8 NS , NB curve as threshold choices for neural network . . . . . . . . . . . . . . . . 53
5.9 Results for BDT and NN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.10 Integrated Gradients Feature Importances . . . . . . . . . . . . . . . . . . . . . . 56

6.1 Loss landscapes for the four error measures m . . . . . . . . . . . . . . . . . . . . 66
6.2 Plot of ∂

∂p
∂
∂n (∆ζ(nC + 1, pC)−∆ζ(nC , pC)) . . . . . . . . . . . . . . . . . . . . . 68

6.3 The effect of batch size scaling to some performance metrics . . . . . . . . . . . . 74
6.4 The Z vs Classifier Threshold curves for various loss functions . . . . . . . . . . . 75
6.5 The Z vs Classifier Threshold curves for ∆Z and ∆ζ . . . . . . . . . . . . . . . . . 75

7.1 The schematic of the GAN setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.2 Architectures of the Blocks from Set Transformer . . . . . . . . . . . . . . . . . . 81
7.3 The distribution of n learned for the two cases . . . . . . . . . . . . . . . . . . . . 85
7.4 The distribution of log pT , logE, η, ϕ for generated Top jets . . . . . . . . . . . . . 86
7.5 The distribution of log pT , logE, η, ϕ for generated QCD jets . . . . . . . . . . . . 87
7.6 The distribution of log mass for generated Top and QCD jets . . . . . . . . . . . . 88
7.7 logE distribution for Top jets of various sizes . . . . . . . . . . . . . . . . . . . . 89
7.8 log pT distribution for Top jets of various sizes . . . . . . . . . . . . . . . . . . . . 90
7.9 η distribution for Top jets of various sizes . . . . . . . . . . . . . . . . . . . . . . . 91
7.10 ϕ distribution for Top jets of various sizes . . . . . . . . . . . . . . . . . . . . . . . 92
7.11 logE distribution for QCD jets of various sizes . . . . . . . . . . . . . . . . . . . . 93

x



LIST OF FIGURES xi

7.12 log pT distribution for QCD jets of various sizes . . . . . . . . . . . . . . . . . . . . 94
7.13 η distribution for QCD jets of various sizes . . . . . . . . . . . . . . . . . . . . . . 95
7.14 ϕ distribution for QCD jets of various sizes . . . . . . . . . . . . . . . . . . . . . . 96



List of Tables

Table Page

5.1 Higher-order cross sections of the SM backgrounds considered in our analysis . . 41
5.2 Categorization of reconstructed features and their descriptions . . . . . . . . . . . 43

6.1 Details of the various processes used for the current experiments . . . . . . . . . . 69
6.2 Performance of the proposed losses when for test scenario — TC1 . . . . . . . . . 71
6.3 Performance of the proposed losses when for test scenario — TC2 . . . . . . . . . 72
6.4 Performance of the proposed losses when for test scenario — TC3 . . . . . . . . . 73

7.1 Model Architecture Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.2 Results of the metrics for jets Generated by the Model . . . . . . . . . . . . . . . . 84

xii



Chapter 1

Introduction

The Large Hadron Collider began its operation in 2010 and successfully discovered the Higgs
boson in 2012. Since then the LHC has undergone multiple upgrades and expanded its search
for Beyond the Standard Model (BSM) particles. Currently, Run III is underway, with the collider
operating at a higher energy than its previous runs. The LHC is planned to undergo another
upgrade (the High-Luminosity LHC, HL-LHC), which will increase the number of collisions. The
increased collisions will allow physicists to study processes with smaller cross-sections. A high-
energy upgrade, which will enable the LHC to probe higher energies, is also under consideration.
These next series of runs at the LHC will search for rarer BSM signal processes. These processes
occur with small production rates amidst an overwhelming amount of background processes.
Traditional cut-based analyses, where kinematic cuts on hand-crafted physical features are
applied, have found isolating the signal processes challenging. This has led to the adoption of
multivariate techniques such as decision trees, SVMs, and Gaussian mixture models, among
others. However, as we scale to the subsequent runs, these methods would also find it challenging
to provide sufficient experimental sensitivity for these rare signals. This has motivated the
physics community to explore newer analysis methods, such as deep learning models, which
show much promise in improving experimental sensitivity. These methods perform better than
other multivariate techniques due to their ability to learn and model complex interactions within
the input. Furthermore, their ability to construct complex high-level features from raw data can
easily replace the need for hand-crafted features.

While adopting these deep learning models, they are generally treated as black boxes with
limited insights into their predictions. Typically, they also require a vast amount of data to make
sensible predictions. This thesis explores some of the questions regarding these models and
their alignment with particle physics in their applications to current experimental searches and
phenomenological projections. Specifically, the thesis we explore the following:

1. We pick a typical new physics projection study at HL-LHC to compare the performance of two
widely used ML models — a boosted decision tree (BDT) model and a deep neural network
(DNN) model. The signal we pick for the study is the pair-production of a heavy bottom-

1



like quark from proton-proton collisions. We show that a simple DNN shows significant
improvement over a BDT model. DNNs are generally considered to be less interpretable
than BDT models. To address this, we also study the application of the method of Integrated
Gradients, an interpretability framework, to gain insights into the DNN model. By designing
intelligent baselines for the dataset to compare predictions, we see what features the model
considers important during the classification process.

2. We identify some simple modifications to the deep learning pipeline that would align the
training process with physics goals. We study the improvements in terms of robustness
and the alignment of goals through modifications to the simple Binary Cross Entropy
loss, introducing two losses: (1) weighted Cross Entropy loss, and (2) surrogate loss for
maximising Z-score.

3. With the rise of data-driven methods, there is a significant need for obtaining larger datasets.
Deep learning-based generative models can provide a faster, albeit less accurate, alternative
to Monte Carlo simulations. Finally, we develop a deep learning-based generative model
(Generative Adversarial Network) for generating particle jets at the LHC.

The thesis is organised as follows:
Chapter 2-4 provide the required background for the rest of the thesis — chapter 2 gives a

quick introduction particle physics, chapter 3 provides relevant background on experimental
setups and methods, and chapter 4 introduces machine learning theory and architectures.

Chapter 5-7 discuss the research problems introduced here. Specifically, chapter 5 discusses
our first question, i.e., the application of DNNs to a phenomenological study, chapter 6 discusses
the alternative losses for DNN training, and chapter 7 presents a novel generative model based on
Generative Adversarial Network (GAN) framework to resolve the data generation issue prevalent
in particle physics studies.

Chapter 8 provides the summary and conclusion of the research work presented in the thesis.
It also offers some future directions that one may explore to further improve the techniques
discussed.

2



Part I

Background

3





Chapter 2

Primer on Particle Physics

The Standard Model (SM) provides the most successful description of nature to date. It unifies
all fundamental forces except gravity and, therefore, encompasses the known physics up to TeV
scale energies. In the major part of this thesis, we talk about isolating new physics signals at
collider experiments; it is important to understand the SM phenomena and how they manifest at
the colliders. This chapter gives a brief introduction to the particle content of the SM and the
fundamental interactions it describes. For a review of the current state of the SM, we refer the
reader to [1, 2].

2.1 Particles in the Standard Model

2.1.1 The Fermions

Fermions are the building blocks of matter and follow the Pauli exclusion principle, which
means that no two fermions can occupy the same quantum state. The Standard Model has 12
types of elementary particles that are spin-1/2 fermions. These fermions can be classified into
two groups: quarks and leptons. Quarks and leptons have different properties and interactions.
Both quarks and leptons carry electric charges and interact through the electromagnetic force.
Furthermore, quarks also carry colour charges and interact with each other through strong force.

The fermions are divided based on their generation. Both the quarks and leptons have three
generations, each with two particles. The first generation consists of the up and down quarks
and the electron, and the electron neutrino. The first-generation fermions are stable under
normal conditions and form almost all visible matter in the Universe. For example, the proton
and neutrons are constructed through the colour-neutral combinations of up and down quarks.
The second generation consists of the charm and strange quarks and the muon and the muon
neutrino. The third generation consists of the top and bottom quarks and the tau and the tau
neutrino. Increasing generations have higher masses than the previous generation. The second

5



Standard Model of Elementary Particles

Figure 2.1: The Standard Model of Particle Physics: The particle content (left) and the interactions
(right).

and third-generation fermions are unstable and can decay into lower-generation fermions. For
example, a muon decays into an electron, an electron anti-neutrino, and a muon neutrino.

2.1.2 The Bosons and the Fundamental Forces

Nature is governed by four fundamental forces that describe how matter and energy interact.
These forces are the electromagnetic force, the strong force, the weak force, and the gravitational
force. The Standard Model also has 4 types of elementary particles with spin 1 (vector or gauge)
or spin 0 (scalar) called bosons, which follow the Bose-Einstein statistics. Some of these bosons
mediate these fundamental forces between the fermions. Gauge bosons are described through
gauge theories, whereby the gauge bosons preserve the local gauge symmetries of the specific
field.

The electromagnetic force is a long-range force that acts on electrically charged particles, such
as quarks and electrons. It can be attractive or repulsive depending on the sign of the charges.
The electromagnetic force is described by quantum electrodynamics (QED). The photon (γ) (or
the quantum of light) mediates the electromagnetic force. It is massless and chargeless and
carries unit spin. It interacts with electromagnetically charged particles.

The strong force is a short-range force that acts on particles with colour charges, such as
quarks and gluons. It is attractive and binds quarks together to form hadrons, such as protons
and neutrons. It also binds protons and neutrons together to form atomic nuclei. The strong
force is described by quantum chromodynamics (QCD). The gluon (g) mediates the strong force.
It has spin 1, zero mass and colour charges. It can interact with any particle with colour charges.

6



The name “gluons” comes from the fact that these act as a glue to hold the quarks together in
hadrons, such as protons.

The weak force is a short-range force that acts on all fermions, including neutrinos. It is
responsible for various types of radioactive decay, such as beta decay and alpha decay, as well as
nuclear fission reactions. In the modern description of the Standard Model, the electromagnetic
force and the weak force have been unified to give the electroweak theory (EW), which also
describes the weak force. The W± and Z bosons mediate the weak force. They have spin 1,
non-zero mass, and electric charge (except for the Z boson, which is neutral). Since they are
massive, they travel slower than the speed of light.

The gravitational force is a long-range attractive force that acts on all objects with mass and
energy. Currently, gravity cannot be completely explained using QFT. However, it proposes a
hypothetical boson called the gravitonwith spin 2, which wouldmediate the quantum gravitational
field.

The four fundamental forces have different strengths or coupling constants, which measure
how strongly they interact with matter and energy. The strongest force is the strong force,
followed by the electromagnetic force, the weak force, and finally, the gravitational force. At
sufficiently high energies, the coupling constants of these forces approach a common value,
suggesting the existence of a hypothetical unified theory of forces.

Apart from the force mediating bosons, Standard Model also incorporates the Higgs boson
(H), which is a special boson that does not mediate any force but instead gives masses to the
particles through the Higgs mechanism. It has spin 0, non-zero mass, and zero electric charges.
It interacts with any massive particle, such as quarks, leptons, and W , Z bosons. The Higgs field
manifests as the Higgs boson, which permeates all space and breaks the electroweak symmetry
at low energies.

2.2 Interactions in the Standard Model

Interactions are described through perturbative QFT. In QFT, the fundamental objects are fields
and elementary particles (fermions and bosons) are the excited states of their corresponding fields.
The perturbative calculations can be represented graphically by the use of Feynman diagrams,
which provides a convenient way to visualize and compute the scattering amplitudes for different
processes. Higher-order calculations correspond to Feynman diagrams with more vertices and
generally involve the use of virtual particles or loops.

2.2.1 Quantum Electrodynamics

Quantum electrodynamics (QED) is the framework that describes how electrically charged
particles interact through the electromagnetic force. The photon (γ) is the boson that mediates the

7



electromagnetic force in QED. In QED, the U(1) gauge symmetry ensures the local conservation
of electric charge. The Abelian nature of the U(1) symmetry implies that there is only one
force-mediator which is the photon.

QED calculations are perturbative, meaning that they can be done by expanding the probability
amplitude in a series of terms with increasing powers of the fine-structure constant (α), which
measures the strength of the electromagnetic interaction. The higher-order terms correspond
to more complicated processes involving more virtual photons and loops. These perturbative
calculations are performed with the aid of Feynman diagrams.

2.2.2 Quantum Chromodynamics

Quantum chromodynamics (QCD) is a non-Abelian gauge theory that describes how particles
with colour charge interact through the strong nuclear force. Colour charge is a property of quarks
and gluons that determines their interactions in QCD. There are three types of colour charges:
red, green, and blue, which have nothing to do with visible colours. The analogy is drawn because
we do not see coloured particles in nature; therefore, stable particles are “colourless”. This
means they have either no net colour charge (such as protons and neutrons) or equal amounts
of colour and anti-colour charge (such as mesons). Colour confinement is the phenomenon in
that colour-charged particles cannot be isolated and, therefore, cannot be directly observed in
normal conditions. This is because the strong force becomes stronger as the distance between
the colour-charged particles increases, making it impossible to separate them without creating
new particles. Unlike in QED, where there is only one type of photon, there are eight different
types of gluon in QCD, drawn from the SU(3) group. The SU(3) gauge symmetry ensures the
conservation of colour charge in QCD. Gluons can be assumed to carry two kinds of colour charge:
one for emission and one for absorption. For example, a gluon that carries a red-antigreen colour
charge can be emitted by a red quark and absorbed by a green quark.

QCD calculations are perturbative at high energies and short distances, which means they
can be done by expanding the probability amplitude in a series of terms with increasing powers
of the coupling constant (αS), which measures the strength of the strong nuclear interaction.
QCD is not perturbative at low energies and long distances, so it cannot be solved analytically for
describing hadrons. For practical purposes, hadron interactions are described using form factors
that fit the experimental data.

Hadrons–QCD Bound States: Hadrons are composite particles of quarks and gluons bound by
the strong force. Hadrons can be classified into two types: baryons and mesons. The former are
hadrons comprising of three quarks with different colour charges (i.e, the colourless combination
of red, green, blue colour charges) or three antiquarks with different anti-colour charges (i.e, the
colourless combination of antired, antigreen, antiblue colour charges). Baryons have half-integer
spin and obey Fermi-Dirac statistics. Examples of baryons are protons and neutrons. The latter

8



are hadrons comprising of a quark-antiquark pair with opposite colour charges (such as the
colourless combination red-antired or green-antigreen colour charges). Mesons have integer spin
and obey Bose-Einstein statistics. Examples of mesons are pions and kaons.

2.2.3 Weak Interactions

Weak interactions are mediated by three bosons: the W boson (W±) with unit electric charge
and the neutral Z boson. Unlike the photon and the gluon, which are massless, the Z and W

bosons are massive, with masses of about 80 GeV and 90 GeV, respectively. The mass of these
bosons implies that the weak interactions have a very small range of the order of 10−17 m. It
also implies that they can decay into other particles, such as quarks, leptons, or photons. Weak
interactions describe how particles change their flavour, such as quarks changing their type.
These interactions are described by the SU(2)L gauge symmetry, i.e., the interacting particles are
invariant under local SU(2) transformations. The SU(2)L symmetry implies that only particles
with left-handed chirality (i.e., those with their spins and momenta pointing in the opposite
directions) have nonzero weak isospins. Weak isospin is the quantum number that distinguishes
between the left-handed particles forming doublets, such as up and down quarks or the electron
and the electron neutrino, etc. Right-handed particles can interact with the Z boson through
their hypercharges.

2.2.4 The Role of the Higgs Boson

Higgs field fills the Universe and gives mass to all other elementary particles. The Higgs boson
is a scalar boson, meaning it has no spin, unlike all other elementary particles. It is a massive
boson with a mass of 125GeV. The Higgs field interacts with all other particles in different ways.
The strength of this interaction determines how much mass a particle acquires from the Higgs
field. The Higgs boson’s mass is related to the strength of the Higgs field and its self-interaction.
A heavier Higgs boson implies a stronger Higgs field and a stronger self-interaction.

The Higgs boson is unstable and decays almost instantly into other particles after it is created.
The most methods of production at the LHC is through gluon fusion. This process involves two
gluons colliding and fusing into a virtual top quark-antiquark pair, emitting a Higgs boson.

2.3 The Standard Model is an Effective Theory

The Standard Model has been remarkably successful in explaining a wide range of phenomena
and experiments, but it also has some limitations and puzzles that remain unsolved. Gravity is
the weakest of the four fundamental forces. It is responsible for the attraction between masses,
such as the Earth and the Moon. However, gravity is not included in the Standard Model because

9



it is incompatible with QFT. There is no quantum theory of gravity that can describe how gravity
works at tiny scales, such as near black holes or during the Big Bang. One major challenge in
physics is finding a way to unify gravity with the other forces in a consistent theory. Dark matter
(DM) is another puzzle that does not fit into the SM. DM is inferred to exist from its gravitational
effects on visible matter, such as galaxies and clusters of galaxies. The nature and origin of dark
matter are unknown, and none of the particles in the Standard Model can account for it. There
are many candidates for dark matter particles, such as neutrinos, axions, or weakly interacting
massive particles (WIMPs), but none have been detected.

There are many other aspects of the Standard Model that are not fully understood or explained,
such as the origin and hierarchy of masses and couplings of the particles, the number and types
of generations of leptons and quarks and the asymmetry between matter and antimatter in the
universe, among others. These open questions motivate physicists to hunt for new physics beyond
the SM using theoretical models and experimental tests.

10



Chapter 3

Collider Experiments

LHC experiments offer testing grounds for our conjectures about nature. These experiments
collide protons at high energy to probe the physics at small scales mainly in two ways: 1) to
verify SM predictions at high precision and 2) to search for well-motivated, new-physics models
beyond the SM. Before searching for a theoretically promising model, its collider prospects are
benchmarked using state-of-the-art software that simulates various detector environments. It is,
therefore, crucial to understand a typical LHC experiment, the pipeline for the projection studies
and how we statistically measure the effectiveness of a particular experiment. In this chapter, we
briefly look at the physics of a collider experiment and the statistics behind making a discovery
or ruling out a model using these experiments. For a detailed explanation, see Refs. [3, 1, 2].

3.1 Colliders

Controlled particle physics experiments are performed using particle colliders. In a collider,
two beams of opposing particles collide at high energies in order to study their internal structure
and subsequent decay [4]. The collider can either be a ring accelerator or a linear accelerator.
Linear accelerators, such as the Stanford Linear Accelerator Center (SLAC), can achieve high
energies without significant energy loss, but due to the linear topology, they require large areas for
construction (which eventually limits the maximum energy attainable). Ring accelerators, such
as the Large Hadron Collider (LHC), are built due to their smaller size and ring topology, which
allows for continuous acceleration since particles can transit indefinitely. However, as particles
accelerate in ring colliders, they lose energy due to the magnetic field needed to maintain the
particles within the collider (and thus, they also have an upper limit to the maximum energy
achievable) [5]. Similarly, one can also classify current colliders based on what kinds of collisions
they investigate. Electron-positron colliders give high purity and allow us to study the decay
precisely, while proton-proton colliders allow us to probe QCD at higher energies, albeit at
significantly noisier final states [1].

11



3.2 Energy and Luminosity

Apart from the type of collisions, colliders are also parameterised by their centre of mass
energy and luminosity. Collision of two beams of particles accelerated to high energies E1, E2

respectively gives us access to a centre of mass energy Ecm ≈ 2
√
E1E2, assuming a small crossing

angle. Most collider studies are done between particles of equal mass, giving us a centre of mass
energy Ecm = 2Eb where Eb is the energy of one of the particle beams.

To investigate high-energy particle physics phenomena, we require not only sufficiently high
energies but also a large number of events (collisions). Fewer events of interest would not provide
sufficient statistics or opportunities for physicists to study the phenomenon.

The cross-section of the process under investigation and the time integral of the instantaneous
luminosity L determine the number of events of interest,

Nexp = σexp ·
∫
L(t)dt︸ ︷︷ ︸

Integrated Luminosity

(3.1)

The cross-section σexp provides a measure of the probability of the process to occur, which
depends on the theoretical model and the centre of mass energy. The luminosity L is a measure
of the rate of collisions, which depends on the beam parameters such as the number of particles
per bunch, the number of bunches per beam, the beam size and divergence, and the crossing
angle [5, 1]. A new physics phenomenon generally has a low cross-section and therefore requires
high luminosity to be studied.

3.3 Collision Event

Many phenomena at various scales and energies are involved in a collision, which is a com-
plicated physics process. In order to understand and analyse a collision event, we can divide it
into four main stages.

1. Hard Scattering: This is the stage where the initial partons (quarks or gluons) from the
colliding protons interact at incredibly short distances and high energies. This stage can be
described by quantum field theory (QFT) using perturbative quantum chromodynamics
(QCD). The outcome of this stage can be calculated by finding the scattering amplitudeM
from the Feynman diagrams that describe the possible processes.

2. Parton Shower: This is the stage where the final partons produced in the hard scattering
emit multiple gluons and quarks, resulting in a cascade of partons with lower energies and
longer distances. This stage cannot be described by perturbative QCD because the coupling
constant becomes large, and the calculations become divergent. Instead, this stage can be

12



Figure 3.1: Schematic of a Hadronic Collision at the LHC. Image credits [13]

simulated by using classical approximations of QCD, such as the DGLAP [6] or CCFM [7]
equations [1], which describe how partons split.

3. Hadronization: This is the stage where the partons from the parton shower combine
together to form colourless hadrons, i.e., mesons and baryons. This stage also cannot be
described by perturbative QCD because it involves non-perturbative effects and confinement.
Instead, this stage can be modelled by using phenomenological approaches, such as the
Lund string model [8] or the cluster model [9, 10], which describe how partons form
bounded states [1].

4. Detection and Clustering: This is the final stage where the hadrons from the hadronization,
along with leptons and photons, reach the detector and aremeasured by various components.
This stage can be described using detector simulation software, such as GEANT4 [11]
or DELPHES [12], which accounts for various detector efficiencies. After the detection,
clustering algorithms are applied to group together hadronic objects into jets, which serve
as a substitute for the original partons.

3.4 Large Hadron Collider

The Large Hadron Collider is a ring collider. It is a proton-proton collider which means that it
is used to study the QCD interactions at high energies. It currently operates at a centre of mass
energy of 6.8TeV, with a maximum design value of 7 TeV. In the coming years, it will undergo an

13



Figure 3.2: Cross Section of the CMS detector. Image credits: CERN, TensorFlow

ambitious upgrade to HL-LHC, with the LHC Injector Upgrade, that would improve the integrated
luminosity to 3ab−1 [14].

3.4.1 LHC Detectors

The LHC detector is composed of four collision points (detectors) (such as ATLAS, CMS, LHCb
and ALICE). Here we briefly explain the CMS detector since the overarching design remains similar
between these experiment detectors. For a complete review, we refer the reader to [15, 16].

The Compact Muon Solenoid detector (CMS) detector is located at one of the collision points
of LHC. The CMS detector has a cylindrical shape with several layers of components arranged in a
concentric design. These components help us record and identify the collision event by recording
the properties of the particles of the event. This is done by:

1. Bending Particles: A powerful solenoid magnet bends the particles that emerge from the
collision event. Bending particles help us determine: (1) the charge of the particle since
positively and negatively charged particles bend in opposite directions; (2) the momentum
of the particle, as particles with higher momentum bend lesser than the ones with lower
momentum.

2. Tracking particles: To calculate the momentum and identify a particle, the path of the
particle is tracked, using silicon trackers, as it bends. The tracker can reconstruct the path
of heavy muons, light leptons, hadrons and short-lived particles such as the b quark.

3. Measuring Energy: Information about the particle’s energies is crucial to identifying the
particle. The CMS detector has two energy calorimeters, ECAL and HCAL. The Electro-
magnetic Calorimeter (ECAL) is the inner calorimeter with the main goal of measuring

14



the energy of electrons and photons, which completely stop there. Hadrons, composed
of quarks and gluons, fly through the ECAL and are stopped at the Hadronic Calorimeter
(HCAL), which measures their energy content. Hadrons also deposit some energy content
at the ECAL as they travel through it.

4. Detecting Muons: The muon is the final particle that the CMS directly measures. They can
pass through the calorimeters, so special sub-detectors are needed to detect them as they
travel through the CMS detector.

3.4.2 What is seen by the detector?

Different particles interact with the detectors differently, which allows us to reconstruct and
identify them.

• Electrons: These are charged particles that lose most of their energy in the ECAL. They also
bend under the magnetic field, which allows us to determine their charge and momentum.
However, it is still challenging to identify them with high accuracy and precision because
they can be confused with other particles that deposit energy in the ECAL. The identification
depends upon several other factors, such as the ratio of energy deposited in the ECAL to
HCAL and isolation from other particles, among others.

• Photons: These are neutral bosons that also mainly interact with the ECAL. However, unlike
electrons, they do not bend under the influence of the magnetic field, and they do not leave
any tracks in the detector. Therefore, we can reconstruct photons as clusters of energy in
the ECAL that are not associated with any tracks. The photon identification also depends
on several variables, such as the shape of the shower, isolation from other particles, etc.

• Muons: These are heavier than electrons and therefore lose less energy in the ECAL and
the HCAL. We can reconstruct muons as tracks that match with hits in the muon chamber.
The muon identification relies on several variables, such as the number of hits in the tracker
and muon chamber, the quality of the track fit, and isolation from other particles.

• Charged Hadrons: These particles interact strongly with the HCAL, where they create
showers of secondary hadrons. They also bend under the magnetic field and leave tracks in
the tracker. We can reconstruct them as clusters of energy in the HCAL that have matching
tracks.

• Neutral Hadrons: These particles also interact strongly with the HCAL but do not have an
electric charge and therefore do not bend under the magnetic field. They do not leave any
tracks and are reconstructed as energy deposits in the HCAL that are not matched with any
tracks.

15



• Jets: Jets are sprays of stable hadrons that originate from final state partons of hard
scattering. These partons undergo a series of emissions, followed by hadronization to
form the spray of stable hadrons, which is the jet. At the detector, we observe groups of
stable hadrons originating from different partons. Therefore, we need to cluster these
stable hadrons to reconstruct the jets. These are two types of clustering algorithms — (1)
Cone-based algorithms, which try to find stable cones that contain the detected hadrons,
and (2) Sequential clustering algorithms, which iteratively combine the detected hadrons to
form stable clusters [17]. The generalized kT algorithm is a sequential clustering algorithm
that uses the following distance measure to hierarchically combine particles:

dij = min(p2pTi
, p2pTj

)
∆Rij

R2
, (3.2)

where pTi and pTj are the transverse momenta of particles i and j, ∆Rij is the angular
separation between the two particles, R is a radius parameter, and p decides the weight
given to softer or harder particles. p = 1 gives us the kT algorithm, which clusters softer
particles first to form harder subclusters that are then clustered together [18]. p = 0 gives
us the Cambridge-Aachen (C-A) algorithm, which clusters spatially closer particles first,
followed by more distant particles. p = −1 gives the ubiquitous anti-kT algorithm, which
clusters particles around hard particles and results in clusters that are centred around
the hard particle [19]. This makes this algorithm suitable for experiments due to its
robustness to noise and pileup. Some jets are larger than others depending upon the value
of R used in the clustering algorithm. These larger jets are called fatjets, and they often
have substructure since they come from partons that decay into smaller partons before
hadronizing. For example, the W boson can decay into a quark-antiquark pair, which forms
a two-pronged fatjet (W-jet), and a top quark can decay into a b quark and a W boson,
which forms a three-pronged jet (top jet). We can study the internal substructure of these
jets to identify their origin and tag them appropriately.

Apart from these, there are neutrinos which are neutral leptons that interact very weakly with
matter and do not leave traces in the detector. They escape undetected and carry away some of
the energy and momentum of the collision.

3.5 Computational Tools

To simulate and analyze collision events, we need to use various tools that can handle different
stages of event generation and reconstruction, Fig. 3.3. In this section, we will briefly describe
some of the tools that we use in our project and their roles.
MadGraph [20]: MadGraph is a tool that can calculate the matrix elements for the hard scattering
processes. MadGraph uses Monte Carlo techniques to sample the phase space and generate

16



Matrix Element – 
Monte Carlo 
Simulation

Final State 
Parton Events

Parton Shower 
and 

Hadronization

Hadrons and 
Stable Particles

Detector 
Simulation

Model Files 
(UFO)

MadGraph5 Pythia 8 Delphes 3

Full Simulated 
Event

Ev
en

t 
A

n
al

ys
is

Jet Clustering

FastJet

Events with 
reconstructed jets

Further Analysis with 
Deep Learning

Data Reading and 
Feature Extraction

ROOT

Figure 3.3: The pipeline of Computational Tools

events according to the cross-sections and kinematics of the processes. MadGraph can handle a
wide range of processes, both standard model and beyond standard model processes and can
interface with other tools for further steps.

Pythia [21]: Pythia is a tool to simulate the parton shower and hadronization stages of the
event generation. Pythia uses classical approximations to model how the partons from the hard
scattering emit gluons and quarks to form a stream of low-energy partons. Pythia also models
how the partons form colourless hadrons, i.e., mesons and baryons. Pythia can also simulate
some aspects of the underlying event and multiple interactions.

Delphes [12]: Delphes is a software package to replicate the detector response to the stable
particles obtained in the event. Delphes is not a full detector simulation but rather a fast simulation
that mimics the performance of realistic detectors using simpler probabilistic methods. Delphes
can account for the detector geometry, material, resolution, and efficiency, as well as introduce
noise and smearing effects. Delphes can also perform some basic reconstruction tasks, such as
track finding.

FastJet [22]: FastJet is a tool that performs jet clustering. FastJet provides several techniques for
jet clustering, such as the kT algorithms and SISCone. These algorithms are based on different
criteria for defining and merging jets, such as distance or momentum. FastJet also provides some
tools for jet analysis, such as jet substructure and grooming.

There are other tools that can perform similar or complementary tasks for simulating collision
events, such as Geant4 [11], Herwig [23], or Sherpa [24]. Some of these tools have more features

17



or accuracy than the ones we use, but they also require more computational resources. The tools
that we have chosen are the standard for phenomenological studies.

3.6 Kinematics at the Collider

We move on to describe the kinematics of the collision since these are relevant to the features
we can obtain from the reconstructed objects in the previous section. Special relativity dictates
that collision events are invariant under the transformations in the Lorentz Group. The energy E

and the 3-momentum of the p of a particle of mass m form a 4-vector p = (E,p), whose square
p2 = E2 − |p|2 = m2. The particle’s velocity is β = p/E is a Lorentz scalar. All transformations
that preserve p2 (or Lorentz scalars) are Lorentz-Invariant.

3.6.1 Mandelstam Variables

In two-body body collisions, two particles of momentum p1, p2 and massesm1,m2 respectively
often interact to give rise to two particles with momentum p3, p4 and masses m3,m4 respectively.
The Mandelstam variables are Lorentz-invariant quantities that characterize the kinematics of
the reaction:

s = (p1 + p2)
2 = (p3 + p4)

2

= m2
1 + 2E1E2 − 2p1 · p2 +m2

2 (3.3)

t = (p1 − p3)
2 = (p2 − p4)

2

= m2
1 − 2E1E3 + 2p1 · p3 +m2

3 (3.4)

u = (p1 − p4)
2 = (p2 − p3)

2

= m2
1 − 2E1E4 + 2p1 · p4 +m2

4 (3.5)

These variables are crucial for calculating various properties of the interaction, such as cross-
sections. Specifically,

√
s is the Ecm of the collision.

3.6.2 Pseudorapidity

Rapidity y is used to define the direction of the trajectory along the beam direction (i.e., this
becomes the direction for the z-axis). Rapidity is then defined by:

y =
1

2
ln

(
E + pz
E − pz

)
(3.6)

= ln

(
E + pz
mT

)
= tanh−1

(pz
E

)
, (3.7)

18



where mT is the transverse mass defined as m2
T = m2 + p2x + p2y, which differs from the definition

used by experimentalists, E is the energy of the particle, and pz is the momentum along the z

axis.
Importantly, the shape of the rapidity distribution is invariant to a Lorentz boost in the z-

direction, i.e., rapidity differences are invariant to Lorentz boosts along the beam direction. This
makes rapidity crucial in accelerator physics.

For p >> m, the rapidity may be expanded to obtain

y =
1

2
ln

cos2(θ/2) +m2/4p2 + . . .

sin2(θ/2) +m2/4p2 + . . .
(3.8)

≈ − ln tan(θ/2) ≡ η (3.9)

Therefore the pseudorapidity η is approximately equal to rapidity y for p >> m. Pseudorapidity
is more commonly used than rapidity since it is generally difficult to measure the rapidity for
highly relativistic particles.

3.6.3 Transverse Variables

In collider experiments, a significant and unknown amount of energy of the incoming protons
is lost along the beam pipe. Momentum in the direction transverse to the beam pipe is defined
as the transverse momentum pT. If an invisible particle is created (such as a neutrino), we can
only measure and constrain it in the axis transverse to the beam pipe, as an unknown amount of
energy is lost along the pipe. We define missing transverse energy as:

Emiss
T = −

∑
i

pTi
(3.10)

If events have more than 1 invisible particle in the final state, it recovers the vector sum of the
3-momentum of the invisible particle.

For the decay of a mother particle (of mass M) into two particles, of which one is invisible, we
can constrain the mass of the mother particle using a quantity "transverse-mass".

M2
T = [ET (1) + ET (2)]

2 − [pT(1) + pT(2)]
2 (3.11)

= m2
1 +m2

2 + 2 [ET (1)ET (2)− pT(1)pT(2)] (3.12)

where pT for the invisible particle is defined as pT = Emiss
T

3.7 Statistics at the LHC

When analyzing the data from LHC for a BSM particle, one can find either one of two outcomes:
we observe the BSM signal, or we do not. If we do not find evidence for the presence of the signal

19



process, the result is utilized to provide limits for one or more parameters of the BSM model.
This is a simple example of a "limit-setting" experiment.

One of the simplest kinds of experiments that can be run to test for the presence of a signal
process is a counting experiment. In this experiment, one counts the number of events that
pass certain selection criteria and compares it with the expected number of events from known
processes. There are two hypotheses:

H0: This is the “background-only” (null) hypothesis, which supposes that there is no beyond
standard model physics. It suggests that the observed result could be a statistical fluctuation
of the background processes, NB = σB × ϵB ×

∫
L(t)dt, where σB is the background

processes’ cross-section, and ϵb is the efficiency of the selection criteria.

H1: This hypothesis considers the existence of the signal process. In the nominal case, we would
expect additional events, NS = σS × ϵS ×

∫
L(t)dt, over N b.

Suppose for each event in the signal sample, one measures a variable x and uses these values
to create a histogram N = (N1, N2, . . . , Nk). The expected value for each Ni is written as,

E[Ni] = µNSi +NBi , (3.13)

where NSi and NBi is the mean number of entries in the ith bin from signal and background.
The signal process’ strength is determined by the parameter µ, where µ = 0 corresponds to the
"background-only" hypothesis, and µ = 1 means the nominal signal hypothesis. The likelihood
function is given by the product of Poisson probabilities for each bin:

L(µ) =

k∏
j=1

(µNSj +NBj )
Nj

Nj !
e
−(µNSj

+NBj
)
. (3.14)

For the remainder of the section, we will take the case of only 1 bin, i.e., k = 1. However, one
can expand the following results for more than one bin to achieve better results.

To test a hypothesized value of µ, we define the profile likelihood-ratio test as,

λ(µ) =
L(µ)

L(µ̂)
(3.15)

where µ̂ is the parameter independently optimized to maximize the Poisson likelihood function
L. The profile likelihood ratio measures how likely it is for the observations to have come from
the model with a given µ. The lower the value, the less likely the hypothesis model explains the
data. We have not included any nuisance parameters θ in this analysis, as they will complicate
the derivations and are not essential for the final results.

We define two test statistics in order to study the presence of a signal. The first test statistic
is for testing for discovery and tests whether the background-only hypothesis could fluctuate

20



upwards to explain the observations. Generally, we do not consider downward fluctuations and
assign those to experimental errors or uncertainties:

q0 =

−2 lnλ(0) µ̂ ≥ 0

0 µ̂ < 0
(3.16)

The second test statistic is used to put an upper bound on the signal strength parameter and
constrain or exclude the signal+background hypothesis. The test statistic tests whether the signal
+ background hypothesis could fluctuate downwards to explain the observations. Here we do
not test for upwards fluctuations as they could indicate a different BSM signal or model,

qµ =

−2 lnλ(µ) µ̂ ≤ µ

0 µ̂ > µ
(3.17)

Supposed we test a value µ for the strength parameter, and suppose we collect data with a
true value of strength parameter µ′, we would obtain µ̂ follows a Gaussian distribution with mean
µ′ and standard deviation σ. Then using Wilk’s theorem [25] and Wald’s approximation [26],
we obtain that:

−2 lnλ(µ) = (µ− µ̂)2

σ2
+O

(
1√
N

)
(3.18)

where N represents the sample size. In the limit of a large sample size, the approximation
becomes accurate.

We now define an "Asimov dataset" as a hypothetical data set such that it gives back our true
parameters when we use it to evaluate the estimators for all parameters [3]. In our case, if we
use an Asimov data set to estimate µ̂, we would get µ̂ = µ′.

Using the approximation in equation (3.18), one obtains the connection between the Z score
test statistic (referred to as Z score henceforth) and q0, qµ. The Z score is preferred as that is
more commonly used.

Z0 =
√
q0 (3.19)

Zµ =
√
qµ (3.20)

3.7.1 Experimental Sensitivity

To identify the sensitivity of an experiment, we are interested in the expected (median)
significance with which we can reject various values of µ. For example, in the case of discovery
sensitivity, we would like to know the median assuming the nominal signal model (µ = 1),
with which we can reject the background-only (µ = 0) hypothesis. In the case of exclusion
limits, we define the sensitivity as the median significance, assuming data is generated using the
background only (µ = 0) hypothesis that can reject a nonzero value of µ (generally, µ = 1).

21



The median values of q0, qµ can easily be obtained using an Asimov data set, and they lead to
simple expressions for the median significance. Since Z is a monotonic function of q, as shown in
equations (3.19) and (3.20), its median is given by the corresponding function of the Asimov
value (median) of q. For discovery using q0, one wants the median discovery significance assuming
a strength parameter µ′, and for upper bounds using qµ, the median exclusion is calculated taking
a strength parameter µ assuming data is from µ′ = 0. Therefore we get

Discovery: med[Z0|µ′] =
√
q0,A (3.21)

Exclusion: med[Zµ|0] = √qµ,A (3.22)

An important case is a counting experiment with a known value of mean background NB. Now
the data collected is only the count N , and thus the likelihood function is:

L(µ) =
(µNS +NB)

N

N !
e−(µNS+NB) (3.23)

The test statistic for discovery is q0, and we obtain the optimized parameter µ̂ = (N −NB)/NS

that maximizes L(µ̂). Substituting this into q0, and only considering the case of µ̂ ≥ 0, we get:

Z0 =
√
q0 =

√
2N ln

(
N

NB

)
+ 2NB − 2N (3.24)

We are interested in the median significance, assuming the data is from the nominal signal
hypothesis (µ′ = 1). Then we see that for an Asimov data set, µ̂ = µ′ = 1, which will give
N = NS +NB. Therefore, we get [3]

med[Z0|1] = √q0,A =

√
2(NS +NB) ln

(
NS +NB

NB

)
− 2NS (3.25)

Similarly, if we are interested in the test statistic for exclusion qµ with µ = 1, we see upon
substituting,

Zµ =
√
qµ =

√
2(NS +NB −N)− 2N ln

(
NS +NB

N

)
(3.26)

Since we are interested in the median significance, assuming that the data is from the µ′ = 0

hypothesis, we set µ̂ = µ′ = 0, which gives us N = NB. Substituting that, we get the asymptotic
exclusion limit as,

med[Z1|0] = √qµ,A =

√
2NS − 2NB ln

(
NS +NB

NB

)
(3.27)

In the case of NS ≪ NB, which is generally the case with a search for new physics, we see that
both equation (3.25) and (3.27) approximate to:

med[Z0|1] ≈ med[Z1|0] ≈
NS√
NB

(3.28)

22



3.7.2 Experimental Tests

Analyses at Tevatron and LHC use the likelihood ratio test statistic [27, 28, 29], defined by,

Λ(Nd) =
L(Nd;NS +NB)

L(Nd;NB)
(3.29)

to test between the null hypothesis µ = 0 (background only), and the nominal signal hypothesis
µ = 1 (signal+background). Here Nd is the number of events in the data collected, and L(a; b)

means a Poisson likelihood of mean a evaluated at b. Alternatively, we define:

q = −2 lnΛ(Nd) (3.30)

The probability distribution function for this test statistic is estimated by performing a series of
pseudo-experiments for both the “background-only” and “signal+background” hypotheses. For
each pseudo-experiment, we sample from a Poisson distribution with mean NB (NS +NB) for
the background only (signal + background) hypothesis to generate the number of pseudo-events
observed.

The compatibility of the data with the two hypotheses is assessed by comparing the test statistic
value observed in actual data qobserved with the probability distribution functions calculated from
the pseudo-experiments. Confidence levels (CL) can then be defined as:

CLB =

∫ ∞

qobserved

pB

(
q
(
Nd
))

d
(
q
(
Nd
))

(3.31)

CLS+B =

∫ ∞

qobserved

pS+B

(
q
(
Nd
))

d
(
q
(
Nd
))

(3.32)

We use CLb to estimate the probability that the null hypothesis (background) would fluctuate
upwards enough to explain the observed excess if an excess over the background predictions is
observed. The background-only hypothesis may be rejected if this probability is small. Conversely,
when we do not observe a significant excess, we calculate the probability that the alternate
hypothesis (signal+background) would fluctuate downwards to "mask" the existence of the signal.
We can exclude the signal+background hypothesis if this probability is small. However, CLs+b is
not suitable for this as it can lead to "spurious exclusions", where we may exclude a model even
if the experiment had no sensitivity for the particular model. The modified-frequentist method
fixes this issue by considering

CLs =
CLs+b

CLb
. (3.33)

CLs gives more conservative and appropriate exclusions compared to CLs+b.
qµ and q0 lead to equivalent tests to q in the limit of Wald’s Approximation. They are, thus,

optimal in the Neyman-Pearson lemma sense [3].

23



Chapter 4

Machine Learning

4.1 Introduction

Machine Learning models are designed to learn to perform a specific task without being explicitly
programmed to do so. Machine learning has become a rapidly expanding field in the last decade,
employing various machine learning techniques to teach computers to perform tasks. In this
chapter, I briefly introduce machine learning methods, specifically those which are commonly used
in physics analyses. For a detailed explanation of the concepts mentioned here, see Refs. [1, 30].
For a comprehensive review of how these ML models have been used in various areas in particle
physics in particular, see Ref. [31].

4.1.1 A Representative Example

Let us take the problem of jet tagging as a representative example of machine learning
and how it may be used in particle physics. In jet tagging, the goal is to identify the parton
(quark/gluon/boson/BSM particles) which initiated the clustered jet of particles observed at
the detector. The detector, in principle, can measure various properties of the particles in the
jet. But, for the simplicity of this example, we will only consider some high-level features that
are reconstructed from the clustered jet, such as jet pT , jet mass, Nsubjetiness, etc. (although
one could also use low-level features and let the machine learning algorithm reconstruct the
relevant high-level features). These features form a vector input x ∈ Rd to the machine learning
algorithm.

We can perform Monte Carlo simulation and obtain pairs of samples (x, y), where x is the
feature vector of the jet and y is the label specifying the kind of jet (top, quark, etc.). We want to
learn a parameterised function fθ : x→ y that can accurately predict the class of the jet. This
can be made concrete by specifying a loss function L(fθ(x), y), which is an indicator of how poor
the model performs at the prediction task.

24



Ideally, we would want to minimise the total risk: R(fθ) =
∫
x,y L(fθ(x), y)∗p(x, y)dµ, which is

the expected loss over the true distribution of jets. However, in most cases, we do not have access
to the true distribution as it is intractable or unknown. Instead, we have finite samples (x, y) i.i.d∼
p(x, y), which form our training dataset. Therefore we instead minimize the empirical risk
Remp(fθ) =

∑n
i=1 L(fθ(xi), yi). The empirical risk formulation assumes that the true distribution

can be approximated as the sum of the delta distribution of the samples within the training
dataset. One can now train the network using an optimiser (which is generally gradient-based),
such as gradient descent.

Typically, we observe that the empirical risk evaluated on a separate test dataset is higher
than on the training dataset. Significant differences in the risk indicate overfitting, and the model
does not perform well on unseen data. The ability of the model to accurately perform the task on
unseen data is referred to as generalisation, and the empirical risk evaluated on the test dataset
gives a measure of the generalisation error. If the model performs poorly on both the training
dataset as well as the test dataset, then it indicates underfitting.

Formally, we are trying to find a function f ∈ F , where F is the family of functions that our
model can represent, such that:

f̂ = argminf∈FRemp[f ] (4.1)

The expressivity of a model characterises its ability to minimise empirical risk. It depends upon
the specific implementation of the model and the regularisation techniques employed.

One can classify machine learning based on the kind of problem that it solves.

4.2 Supervised Learning

In supervised learning, one has access to the i.i.d input-output tuples {xi, yi}i=1,2,...,N in
the training dataset. Supervised learning can be further classified into two broad categories:
regression and classification.

4.2.1 Regression

In regression, the output y ∈ Y is a real-valued scalar, but the input x may be a real-valued
vector or more unstructured input such as images, point clouds, sentences, etc. In statistical
terms, the output y is often referred to as the dependent variable and the input x is known
as the independent variable. In classical statistics, generally, we assume that there is normally
distributed additive noise around the target such that,

yi = fϕ(xi) + ei (4.2)

25



where ei is the additive noise and is independent of x. This assumption leads to the least squares
method in the case of linear regression. However, one can relax this assumption and assume an
arbitrary joint distribution p(x, y).

4.2.1.1 Mean Squared Error

Mean Squared Error (MSE) is a commonly used metric for evaluating the performance of
regression models. It uses the Squared Error loss function,

L(y, f(x)) = (y − f(x))2 (4.3)

to measure the discrepancy between the predicted values and the actual values. MSE has
the advantage that it is always positive, and a value of 0 indicates a perfect fit. Also, contrary
to initial expectations, MSE is not limited to cases where the conditional distribution p(y|x) is
normally distributed. Regardless of the underlying distribution, using the calculus of variations,
we can show that the optimal regressor for the MSE is,

f∗
MSE(x) = Ep(y|x) [y] , (4.4)

i.e., the conditional expectation of y given x.
However, one issue with squared error as the loss function is that it is sensitive to outliers.

Alternatively, as the loss function, one can use absolute-error, |y − f(x)|.

4.2.2 Classification

In classification, the output y ∈ Y is a discrete value (generally with no continuous connection
or ordering between the values). The output y can be interpreted as a class label. A particular case
of classification is when the label y takes on only two values (such as "signal" and "background"),
known as binary classification.

4.2.2.1 Cross Entropy Loss

Cross entropy loss is a loss function commonly used in classification. It quantifies the difference
between the actual probability distribution of classes and the predicted probability distribution.
It can be interpreted as the average number of bits needed to identify an event drawn from a
sample of classes if a coding scheme is based on the predicted probability distribution rather
than the true distribution.

The cross-entropy loss function for binary classification is defined as,

L(y, f(x)) = −y log(f(x))− (1− y) log(1− f(x)) (4.5)

26



where y is the true label (0 or 1), and f(x) is the predicted probability for the positive class. This
loss penalises differences in predictions such that larger differences are penalised more heavily
than smaller differences.

Cross entropy may be generalised for multi-class classification as,

L(y, f(x)) = −
C∑
i=1

yi log(fi(x)) (4.6)

where C is the number of classes, yi is the true label for class i (0 or 1), and fi(x) is the
predicted probability of class i.

Maximising the (Multinoulli) likelihood with respect to the parameters of the model f can
be seen as minimising the cross-entropy loss. Furthermore, cross-entropy minimisation is also
related to KL divergence (DKL(p||q)) minimisation between the true distribution p and the
predicted distribution q. If f is a linear function, then the cross-entropy loss is the same as logistic
regression, another classification loss.

4.3 Unsupervised Learning

In unsupervised learning, one only has access to i.i.d samples {xi}i=1,2,...,N in the dataset.
Unsupervised learning methods have gained significant attention in recent years due to the
difficulty of obtaining ground truth labels for many problems.

4.3.1 Representation Learning

Unsupervised representation learning aims to transform the data without using any label
information. By discovering the structure of the data, these methods can provide a transformation
that can represent data in a more meaningful way.

Traditional examples of representation learning include clustering methods (such as KMeans,
DBSCAN), dimensionality reduction (such as PCA, LLE) and matrix factorisation techniques (such
as NMF), among others. Clustering methods aim to group similar data points together based on
some similarity measure, such as Euclidean distance. Dimensionality reduction methods aim to
project high-dimensional data onto a lower-dimensional space while preserving some properties
of the data, such as variance or local neighbourhood. Matrix factorisation techniques aim to
decompose a matrix into simpler matrices that can reveal hidden factors or patterns in the data.

Modern deep-learning techniques rely on auxiliary tasks to learn good embeddings for the data.
Some examples include autoencoders and self-supervised learning methods such as contrastive
learning and inpainting. Autoencoders are neural networks that try to reconstruct the input data
from a compressed representation, which can force the network to learn meaningful features of
the data. Contrastive learning is a technique that tries to learn embeddings that are similar for

27



positive pairs (such as two transformations of the same image) and dissimilar for negative pairs
(such as two different images). Inpainting is a technique that tries to fill in missing parts of an
image based on the surrounding context, which can encourage the network to learn the structure
and semantics of the image. We refer the reader to [cite, cite, cite] for more information.

4.3.2 Generative Modelling

Generative modelling refers to the class of problems where the objective is to learn the
underlying probability distribution of a given data set and to sample or generate new data from
that distribution.

Generative Adversarial Networks [32] are a kind of generative modelling technique which
involves two networks competing with each other. The first network, the generator, has the goal
of generating samples that are identical or mimic the real sample, while the second network,
the discriminator, has the purpose of discriminating between the generated and real samples. A
game theoretic analysis of this zero-sum game shows that at ooptimalityptimality, the discrimin-
ator ensures that a particular probability distance measure (which depends upon the specific
formulation) is reduced by training the generator. In the original formulation, this turns out to be
the Jenson-Shannon divergence. In newer formulations, the generator minimises the Wasserstein
distance [33] or the χ2 divergence [34] instead.

There are other generative models, such as Variational Autoencoders [35] Autoregressive
models, Normalizing Flows [36], Diffusion models [37] and Poisson Flow models [38], which
are widely used by scientists in different applications [39].

4.4 Boosted Decision Trees

An adaptive basis-function model (ABM) is of the form f(x) = ω0 +
∑M

i=1 ωmϕm(x), where
ϕm(x) is the mth basis function, which is learned from the data. This basis function specifies the
family of functions that can be optimized in equation (4.1).

Decision Trees, or CART (Classification and Regression Trees), models are built by splitting
the input space recursively and defining a local model for each input space segment. This can be
done in a hierarchical way, with each leaf node representing a segment. Decision trees construct
axis aligned splits to partition the N-dimensional space into regions. In the case of regression, we
can now calculate a mean response for each region. Similarly, in the case of classification, we
can associate the distribution over the class labels instead of the mean response in each of the
regions.

28



4.4.1 Decision Tree Construction

Finding an optimal partitioning of the space is NP-Complete [40], so it is common to greedily
optimize the local maximum likelihood scores. One defines a splitting function to choose the
best feature (j∗) and the best value for the feature (t∗) to split the region upon. The splitting
function has the form:

(j∗, t∗) = arg min
j∈{1,...,D}

min
t∈Tj

cost({xi, yi : xij ≤ t}) + cost({xi, yi : xij > t}) (4.7)

where the cost function for a given problem and dataset is defined in section [ref], t defines a
threshold from the set of thresholds Tj for a feature j, and x, y are the input and label, respectively.
While one can allow splitting the tree into more than two child trees, it may lead to very few
samples in some leaves, known as data fragmentation.

The cost function of equation [eq] can be defined differently based on whether the problem is
a regression or a classification problem.

4.4.1.1 Regression Construction

In regression, we define the cost as follows:

cost(D) =
∑
i∈D

(yi − ȳ)2, (4.8)

where ȳ = 1
|D|
∑

i∈D yi is the mean of the response variable of the specified set of data. Alternat-
ively, one may fit a linear regressor for each leaf using inputs chosen along the path to the leaf,
i.e., pass the series of splits.

4.4.1.2 Classification Construction

In the case of a classification problem, there are different criteria to measure the quality of a
split. We fit a categorical distribution to the distribution of labels within each of the leaves by
estimating the class probabilities as,

p̂ic =
1

|D|
∑
i∈D

I(yi = c) (4.9)

where D is the data in the leaf.
Entropy cost

H(π̂) = −
C∑
c=1

π̂c log π̂c (4.10)

The entropy is minimized when the information gain between the class label Y and the test
Xj < t is maximized

infoGain(Xj < t, Y ) = H(Y )−H(Y |Xj < t) (4.11)

29



Gini Index
C∑
c=1

π̂c(1− π̂c) =
∑
c

π̂c −
∑
c

π̂2
c = 1−

∑
c

π̂2
c (4.12)

Gini Index quantifies the expected error rate and assesses the impurity or heterogeneity of a set
of data. A Gini Index value of 0 indicates perfect purity, meaning all instances in a subset belong
to the same class. Conversely, a Gini Index value of 1 signifies maximum impurity, implying an
equal distribution of instances across all classes.

Decision trees have several advantages. They are interpretable and can handle both discrete
and continuous data and features. However, they have some disadvantages as well. They do not
perform as well as some modern methods and are prone to overfitting.

4.4.2 Ensembling Methods

Ensembling methods are techniques that combine predictions of multiple models to make
better and more reliable predictions. These methods have gained popularity due to their ability
to enhance prediction quality and deal with complex problems. Ensembling methods generally
train a group of different base models and combine their predictions to make a final prediction.

Averaging methods, such as Bagging and Random Forests, build multiple independent models
and then average their predictions. These methods introduce randomness by training models on
different subsets of the data or using different subsets of features. By taking the average of these
base models, the ensembling method reduces the variance and improves generalization by taking
the average of these base models.

On the other hand, boosting methods, such as Gradient Boosting and AdaBoost, sequentially
build models wherein each base model learns to correct the mistakes made by the previous models.
Boosting methods assign higher weights to incorrectly classified data samples to prioritize them
in the subsequent models. This iterative process focuses on difficult instances and improves the
ensemble’s performance.

Gradient Boosting is a popular boosting algorithm combining boosting with gradient-based
optimization. The method minimises a loss function by iteratively adding weak learners to the
ensemble. Each weak model is fitted to the steepest descent of the loss function. Boosted decision
trees, a variant of Gradient Boosting, utilize decision trees as the weak models. These decision
trees are generally shallow trees, and the combination of multiple shallow decision trees through
boosting allows them to capture complex interactions and model non-linear relationships. The
final prediction of the ensemble is obtained by summing the predictions of all the decision trees,
weighted by a learning rate that controls the contribution of each tree.

In summary, ensembling methods combine the predictions of multiple models to improve the
accuracy and robustness of predictions.

30



4.5 Neural Network

Neural networks are a class of machine learning models inspired by the neuron architecture
of the brain. A simple neural network can be formed by stacking a series of perceptron blocks,
each followed by a non-linear activation. The following equation describes the perceptron block:

f(x) = Wx (4.13)

where W is the parameter learned from the data.
Neural networks are proven to be universal function approximators with just 2 layers of

neurons with sufficiently large layer widths [41] (i.e., number of neurons per layer). However,
this proof requires an exponentially large number of neurons as the complexity of the problem
rises. Scaling the neural network to add more layers (i.e., make it deeper) has shown to perform
better even with fewer nodes on each layer. Therefore, there is a significant effort to develop
deeper networks. Designing bigger and deeper networks requires considerable scientific and
engineering effort due to larger networks’ greater instability and computational complexity.

4.5.1 Activation Functions

The non-linear activation function takes inspiration from the dendrites that communicate
between different neurons by releasing activation chemicals. If the activation is not a non-linear
function, it is evident that the network becomes an affine transformation. No one activation
function works best across all problems, and the choice of the activation function is empirical.
However, it has been found that activation functions that do not lead to vanishing gradients tend
to provide faster convergence. The general recommendation for designing deep neural networks
is to use a ReLU [42] activation function given by: a(x) = max(0,x), where the max is taken
element-wise of the vectors. However, ReLU has been shown to perform poorly when the input
values take on negative values as the activation becomes zero. In order to mitigate this issue,
newer activation functions have been proposed, such as Swish [43] and Mish [44]. We refer
the reader to review [45] for more information.

4.5.2 Backpropogation and Gradient-Based Optimization

Due to the graph structure of all neural networks, it is easy for one to calculate the gradient of
the output with respect to each of the internal neurons using the chain rule of differentiation.
This process of calculating the gradients by using the graph structure of the internal connections
is called backpropagation (named so as the algorithm for calculating the gradients first calculates
the gradient of the output based on the last layer and then uses the chain rule to compute the
gradients for the preceding layers, thus propogating back through the network).

31



A host of gradient-based optimization methods have been developed that can be used to
optimize the parameters of the network using the gradients. The simplest of them is the standard
stochastic gradient descent which updates the parameters as,

θ = θ − ηdθ, (4.14)

where θ are the parameters and η is a learning rate that is a hyperparameter. While the gradient
descent method has been shown to provide optimal results within polynomial time complexity
for convex optimization, neural network optimization is highly non-convex and therefore, vanilla
gradient descent fails to perform effectively. Some of the commonly used variants are:

• SGD with momentum: It incorporates a momentum term to accelerate convergence. It
accumulates the weighted average of past gradients and uses the weighted average to
update the parameters.

v = βv − (1− β)dθ (4.15)

θ = θ + ηv (4.16)

v is the velocity term, and β is the momentum coefficient which controls the averaging.

• RMSProp: It uses the sum of squares of the previous gradients to reduce the variance in the
update term. Specifically, it maintains an exponential moving average of squared gradients,
which gives more importance to recent gradients compared to past gradients.

c = βc+ (1− β)(dθ)2 (4.17)

θ = θ − η
dθ√
c+ ϵ

(4.18)

c is the cache term and maintains the sum of squares, β is the coefficient and controls the
averaging.

• Adam [46]: It combines the concepts of both RMSProp and momentum. It maintains a
running average of both the gradients and the squared gradients, allowing it to adaptively
adjust the learning rate while incorporating momentum.

v = β1v + (1− β1)dθ (4.19)

c = β2c+ (1− β2)(dθ)2 (4.20)

v̂ = v/(1− βt
1) (4.21)

ĉ = c/(1− βt
2) (4.22)

θ = θ − η
v̂√
c+ ϵ

(4.23)

Equation (4.21) and eq. (4.22) correct for the bias present in the initial stages of exponential
averaging.

32



4.5.3 Regularization

Regularization is essential to prevent neural networks from overfitting. Regularization en-
courages the neural network to learn more robust and generalizable patterns by introducing
additional constraints or penalties to the learning. A few common methods are explained here.

• Weight Decay (L2 Regularization): Adds a penalty to the loss function proportional to the
squared values of the model’s weight. It encourages smaller weight values, preventing the
model from assigning excessively large weights to singular features. Moreover, it encourages
smoother decision boundaries and improves numerical stability.

• Dropout [47]: Randomly drops a fraction of the neurons while training. Neurons in the
neural network can become highly co-adaptive, i.e., they rely on the presence of other
specific neurons to produce meaningful outputs. This regularization forces the network to
learn redundant representations and prevents individual neurons from relying too heavily
on specific input features, encouraging learning more generalizable features. Some works
also interpret dropout as training multiple models in parallel. By dropping neurons, the
network effectively samples different architectures during each training iteration. At test
time, the network approximates the behaviour of an ensemble of these models.

• Batch Normalization [48]: Normalizes each layer’s inputs by subtracting the batch mean
and dividing by the batch standard deviation. This technique helps stabilize the learning
process, reduces the internal covariate shift, and allows the network to learn efficiently. It
also introduces some noise and makes it more robust to small perturbations in the input,
which encourages smoother outputs.

4.6 Neural Network on Unstructured Data

Unstructured data refers to data that does not have a predefined format or structure, such
as text, images, video, point clouds, etc. Raw unstructured data often contains abundant and
complex information but is also noisy and heterogeneous. Therefore, processing and analyzing
raw unstructured data poses many challenges for traditional data tools and methods.

4.6.1 Jets as Particle Clouds

Jets have typically been represented as detector images, pT ranked sequences of particles
or decay trees. However, a more natural representation for such data would be an unordered,
permutation-invariant set of particles. We refer to this representation as a "particle cloud",
analogous to the point cloud representation of 3D shapes used in computer vision. The two
representations are very similar in that they are unordered sets of objects distributed irregularly

33



in space (4D vs 3D), and in both cases, the elements of the cloud are not unrelated but belong to a
higher-level object. Moreover, particle cloud representation provides us with similar flexibility to
other representations, specifically the ability to include arbitrary features for each particle [49].

Developing neural networks for point cloud data poses a few problems, namely:

• Point Clouds are irregular. Therefore, we cannot apply conventional convolutional neural
networks (CNNs) or recurrent neural networks (RNNs) that rely on regular grids or se-
quences.

• Point Clouds are permutation-invariant. Therefore, any function of such data should also
be permutation invariant. Conventional neural networks are not permutation-invariant,
and to train them to learn this invariance, we would require data scaling proportional to
the factorial of the size of the point cloud.

• Point Clouds are sparse and noisy. This makes it difficult for conventional methods to extract
robust and discriminative features from point clouds.

4.6.2 Graph Neural Networks

Graph Neural Networks are a class of neural networks that operate on graphs. One can adapt
GNNs to work on point cloud data by observing the relation that point clouds can be interpreted
as graphs with (1) no edges between the nodes, (2) locally connected nodes in (spectral) space,
or (3) complete graph with connections between all the nodes. There may be other ways to
construct graphs from point clouds, but most approaches adopt GNNs for point clouds through
either of the three constructions mentioned [50].

Graph Neural Networks provide a solution to the problems posed by point cloud data:

• GNNs handle the irregular nature of point clouds using graph convolutions that do not rely
on fixed grids or sequences.

• GNNs are designed to be permutation-invariant since graph data is also permutation-
invariant.

• GNNs can handle sparse data through the use of graph pooling and graph attention, allowing
it to aggregate information from neighbouring nodes.

The family of functions learned by Graph Neural Networks can be described using the Message
Passing framework [51, 52], whereby one node passes its information to the neighbouring nodes,
and functions are learned using the passed information. With x

(k−1)
i ∈ RF denoting the node

feature of node i in layer (k − 1) and eij ∈ RD denoting (optional) edge features from node j to
node i, message passing graph neural networks can be described as:

x
(k)
i = γ(k)

x
(k−1)
i ,

⊕
j∈N (i)

ϕ(k)
(
x
(k−1)
i , x

(k−1)
j , eij

) (4.24)

34



where
⊕

denotes a differentiable, permutation invariant function, e.g., sum, mean, or max, and
γ and ϕ denote differentiable functions such as MLPs.

Once we learn representations for each node, we can obtain representations for the entire
point cloud (graph) through a global pooling operation applied over all the nodes. Similarly, if
we want to obtain representations for the edges, we can do so by transforming the features of the
edge’s vertices. Graph Neural Networks have found great use in high-energy physics. We refer
the reader to Ref. [53] for a review of the application of GNNs in high-energy physics.

35



36



Part II

Research Work

37





Chapter 5

Application of ML in BSM searches at the LHC:

A case study with heavy-quark signals

BSM search results in the conventional channels from the LHC have constrained new physics
phenomena to a high mass scale (≳ 2 TeV). Observing new physics would involve effectively
isolating signals with extremely low cross sections from SM processes with huge cross sections.
The task becomes exceptionally challenging with the proposed new colliders and upgrades to
LHC (i.e. HE-LHC and HL-LHC). Machine learning models have been shown to perform well for
such classification tasks [31]. In this chapter, I discuss how we can use a simple deep-learning
model to improve the prospects of a typical BSM signature at the HL-LHC. The signal we pick
is the production of a pair of heavy B quarks and its subsequent decay in a well-motivated
phenomenological extension of the SM. I discuss the kinematic features that can be used to
separate such a signal from similar backgrounds and compare the performance of different
machine learning models like BDT and DNNs. The better-performing DNN model is discussed in
more detail. To close the chapter, I briefly discuss how to interpret the DNN model predictions
using integrated gradients.

5.1 Vectorlike Quarks, in brief

Vectorlike quarks (VLQs) are non-chiral fermions which are present in many extensions of the
SM. Unlike the SM quarks, their left- and right-hand representations transform identically under
the weak SU(2) group. They can have singlet, doublet and triplet representations under weak
group [54]. Detectors at the LHC, ATLAS and CMS have an active search program for these
quark partners [55, 56, 57, 58, 59]. These searches generally assume that VLQs decay into an
SM quark and a gauge or an SM Higgs boson due to their mixing with the SM quarks. Direct
limits on their masses, which come from searches for scattering processes producing a pair of
these quarks, vary from 1.4− 1.8 TeV depending on various representations and branching ratios

39



of the final states searched for. Their expected mass scale is far larger than that of the SM quark
masses (top quark mass at 172 GeV); hence, we also refer to them as heavy quarks.

Collider searches have not found these quark partners while searching for them in the conven-
tional channels (yet, I should add). This prompts us to check for ‘gaps’ in these searches. Recent
papers have explored scenarios where a sub-TeV singlet state Φ, i.e. a scalar or a pseudoscalar,
coupling to VLQs in the context of larger extensions of the SM [60, 61, 62, 63, 64, 65]. This can
lead to many exotic final states at the LHC. Still, collider searches are yet to look for VLQs in such
channels. Minimally, we assume that such a singlet only couples with the VLQs. Then, its decay
gives a di-jet signature consisting of either two quarks or gluon jets [66]. Such signatures with
mostly hadronic objects are challenging to isolate at the collider from the huge SM backgrounds.
We can make use of ML models to isolate such challenging signatures. As a concrete example,

p

p

!Φ

b

t

W

QCD

B

B

Figure 5.1: An illustrative diagram of the signal topology for the pair-produced B scattering
process, where one B decays to a BSM singlet and a b-quark and other decays to a top quark and
a W -boson.

this chapter studies the production of a pair of singlet B VLQs, also called the bottom (b-quark)
partners. Like the SM b-quark, it comes in three colour varieties and has an electric charge −1e/3,
where e is the charge of an electron. When it also couples with Φ, there are four total decays
possible for a singlet B quark:

B →


tW

bH

bZ

bΦ

. (5.1)

Our goal is to estimate the LHC reach of future searches for pair-produced singlet B in the
presence of B → bΦ decay mode. Therefore, we demand that one of the pairs produced B

decay gives a bottom quark and Φ. We also require that the other B decays to a top quark
and a W -boson to maximise the signal yield and to add more well-defined objects that can be
reconstructed at the LHC. We demand that either the top quark or the W -boson decay to a lepton
and a neutrino. Leptons have dedicated calorimeters at the LHC (ECAL and the Muon Chamber),

40



Background σ

Processes (pb)

V + jets [67, 68]
W + jets 1.95× 105

Z + jets 6.33× 104

tt [69] tt + jets 988.57

Single t [70]
tW 83.10

tb 248.00

t + jets 12.35

V V + jets [71]
WW + jets 124.31

WZ + jets 51.82

ttV [72, 73]
ttZ 1.05

ttW 0.65

ttH 0.61

Table 5.1: Higher-order cross sections of the SM backgrounds considered in our analysis. The
cross-sections (σ) are in units of picobarn.

therefore giving cleaner signatures. An illustrative Feynman diagram for the signal process is
shown in Fig. 5.1.

We need to isolate such a signal from the known SM processes. All the background processes
that can yield the same final states as a signal must be considered. Specifically, we demand that
there should be at least one lepton (from the decay of the top quark or W -boson coming from
heavy B) in the final state. The appropriate background processes (which gives one or more
leptons) and their cross-sections at

√
s = 14TeV are shown in Table 5.1.

5.2 Search Setup

5.2.1 Process Generation

We apply FeynRules [74] to generate the model files (UFO) [75] for the Vectorlike B scen-
ario. We use MadGraph5 [20] to simulate the hard scattering process at the leading order,
Pythia8 [21] for the showering and hadronisation, and Delphes3 [12] to mimic the generic
LHC detector environment. The events are generated at

√
s = 14 TeV. To account for the boosted

kinematics of the final state objects, we adjust the DeltaRMax parameter (the radius of an
electron cone centred around an identified track), within the lepton isolation criteria, from 0.5 to
0.2, following Ref. [76]. The b-tagging efficiency and the mis-tag rate for lighter quarks were
updated to reflect the medium working point of the DeepCSV tagger from Ref. [77].

41



5.2.2 Reconstructed Objects, Kinematic Cuts

To analyse an event, we need to reconstruct certain objects/particles as done by the experiments
at the LHC. At the LHC, this is done using dedicated tracking modules and measurements at
the calorimeters. We use Delphes3 to mimic the detector environment and the efficiencies
of various particles at the LHC. Broadly, the more objects we choose to reconstruct, the more
control we have over isolating a signal event from backgrounds. However, reconstructing an
object means that we have to deal with the efficiencies associated with identifying it. Even though
we generate events (both signal and background) with the exact topologies we require, the
events might not have the desired final state objects after parton showering and factoring in
the efficiencies of isolating that particular particle at the LHC. We also know that kinematically
final state particles coming from the signal events must have a boosted profile compared to the
ones from the backgrounds. This means that after identifying them, we can put demands on
the reconstructed objects’ kinematic features to cut background contributions. This ensures that
the ML model performs the classification in a harder phase space, where the background events
mimic the signals more closely. We refer to each such demand of ensuring a particular final state
particle or constraining its kinematic quantities as a cut on the phase space. The cuts chosen for
this particular study are listed below (for more detail, we refer the reader to the paper [78]):

C1: Exactly 1 lepton (ℓ ∈ {e, µ}).
The lepton is required to have a pT > 100 GeV, |η| < 2.5 and must obey the updated
isolation criteria mentioned earlier.

C2: HT > 900 GeV, where HT is the scalar sum of the transverse momenta of all hadronic
objects in an event.

C3: At least 3 AK-4 jets with pT > 60 GeV.
The leading jet must have pT > 120 GeV.

C4: At least 1 b-tagged jet with pT > 60 GeV.
At least one of the AK-4 jets must be identified as a b jet.

C5: At least 1 fatjet (J) with R = 1.2 and pT > 500 GeV.
The fatjet is clustered using the anti-kT algorithm, and the parameters have been optimised
to tag a Φ fatjet. We also demand the invariant mass of the fatjet, MJ , to be more than 250

GeV.

C6: ∆RbJ > 1.2.
We demand that at least one of the identified b jets is well separated from the leading fatjet
passing C5, i.e., the b jet lies outside the fatjet cone.

42



Feature Type Description Features

Kinematic Variables

For each of the reconstructed objects, {pTji
}i=1,2,3,

we consider the transverse momentum. pTJ
, HT , ET , . . .

Furthermore, we also take the
scalar sum of transverse momentum
HT , and the missing energy ET .

Jet Substructure
We take the N-subjetiness τβ21, τ

β
32

variables for the fatjet. This is to ∀ β = 1, 2
study the prongness of the fatjet.

Invariant Masses

We take the invariant mass of the fatjet, mJ , {mjm}m=1,2,3,b,
as we expect the signal process to show {mjmjn}m,n=1,2,3,b,J ,
a peak around the mass of the Φ scalar, {mjmjnjo}m,n,o=1,2,3,b,J ,
but a noisy spread for the background {mℓjm}m=1,2,3,b,J ,
processes. We also further take the invariant . . .
mass of the combinations of the various jets.

Girth of Jets

The girth is the pT weighted average distance ωJ , {ωja}a=1,2,3,b,
of the constituents to the jet axis. If one Var [ja]a=1,2,3,b,J ,
thinks of this as the first order central Skew [ja]a=1,2,3,b,J ,
moment of the distribution of energy with Kurt [ja]a=1,2,3,b,J

distance to the jet axis, one may
generalise to higher-order central moments.

Table 5.2: Categorization of reconstructed features and their descriptions

5.2.3 Feature Selection

We use a comprehensive set of kinematic variables reconstructed from the event as input to
these learning-based methods.

Kinematic Features: The boost of the final state jets are significantly higher in the signal
compared to the background processes. While this may not be that apparent in leading jet pT ,
Fig. 5.2a, (as the signal has higher HT and more jets to distribute the total pT compared to
fewer hard jets in the dominant background), it is clear in the sub-subleading jet pT , Fig. 5.2b.
The sub-subleading jet has significantly higher pT in the case of the signal process than the
background process. Signal events also usually have higher scalar HT than all the background
processes, Fig. 5.2c. This is due to the higher mass (energy) of the pair produced B VLQs, which
decay to give a higher transverse boost. The same trend as HT can be seen in the missing ET

distribution for the signal process in Fig. 5.2d.
Jet Substructure Features: We expect the signal fatjet to be 2-pronged and the largest back-
ground to have a 3-pronged fatjet. In Fig. 5.3c, we can see from the Nsubjetiness τβ=2

21 ratio that
the selected fatjet in the signal events is more more consistent with two prongs than the selected
fatjets in background events. This is expected, as the scalar ϕ in the signal event decays to two
hadronic jets and is reconstructed as the fatjet. In background events, top jets are predominantly

43



0 500 1000 1500 2000 2500
pTj1

 (GeV)

BG
MB = 1.2 TeV, M = 0.4 TeV
MB = 1.5 TeV, M = 0.4 TeV
MB = 1.8 TeV, M = 0.7 TeV

(a) pT of the leading jet

0 200 400 600 800 1000 1200
pTj3

 (GeV)

BG
MB = 1.2 TeV, M = 0.4 TeV
MB = 1.5 TeV, M = 0.4 TeV
MB = 1.8 TeV, M = 0.7 TeV

(b) pT of the sub-subleading jet

1000 2000 3000 4000 5000 6000
HT (GeV)

BG
MB = 1.2 TeV, M = 0.4 TeV
MB = 1.5 TeV, M = 0.4 TeV
MB = 1.8 TeV, M = 0.7 TeV

(c) Scalar HT

0 250 500 750 1000 1250 1500
|Emiss

T | (GeV)

BG
MB = 1.2 TeV, M = 0.4 TeV
MB = 1.5 TeV, M = 0.4 TeV
MB = 1.8 TeV, M = 0.7 TeV

(d) Missing ET

Figure 5.2: A few kinematic variable distributions

44



0.0 0.2 0.4 0.6 0.8 1.0
= 1

21

BG
MB = 1.2 TeV, M = 0.4 TeV
MB = 1.5 TeV, M = 0.4 TeV
MB = 1.8 TeV, M = 0.7 TeV

(a) τβ=1
21 of the fatjet

0.0 0.2 0.4 0.6 0.8 1.0
= 1

32

BG
MB = 1.2 TeV, M = 0.4 TeV
MB = 1.5 TeV, M = 0.4 TeV
MB = 1.8 TeV, M = 0.7 TeV

(b) τβ=1
32 of the fatjet

0.0 0.2 0.4 0.6 0.8 1.0
= 2

21

BG
MB = 1.2 TeV, M = 0.4 TeV
MB = 1.5 TeV, M = 0.4 TeV
MB = 1.8 TeV, M = 0.7 TeV

(c) τβ=2
21 of the fatjet

0.0 0.2 0.4 0.6 0.8 1.0
= 2

32

BG
MB = 1.2 TeV, M = 0.4 TeV
MB = 1.5 TeV, M = 0.4 TeV
MB = 1.8 TeV, M = 0.7 TeV

(d) τβ=2
32 of the fatjet

Figure 5.3: Jet Substructure Variables for the selected fatjet

45



400 600 800 1000 1200
mJ (GeV)

BG
MB = 1.2 TeV, M = 0.4 TeV
MB = 1.5 TeV, M = 0.4 TeV
MB = 1.8 TeV, M = 0.7 TeV

(a) Mass of the fatjet

0 1000 2000 3000 4000
mbJ (GeV)

BG
MB = 1.2 TeV, M = 0.4 TeV
MB = 1.5 TeV, M = 0.4 TeV
MB = 1.8 TeV, M = 0.7 TeV

(b) Invariant mass mbJ of b jet and fatjet

0 500 1000 1500 2000
m b (GeV)

BG
MB = 1.2 TeV, M = 0.4 TeV
MB = 1.5 TeV, M = 0.4 TeV
MB = 1.8 TeV, M = 0.7 TeV

(c) Invariant mass (mℓb) of lepton and iden-
tified b jet

0 1000 2000 3000 4000
mj1j2 (GeV)

BG
MB = 1.2 TeV, M = 0.4 TeV
MB = 1.5 TeV, M = 0.4 TeV
MB = 1.8 TeV, M = 0.7 TeV

(d) Invariant mass mj1j2j3 of leading jet,
subleading jet and sub-subleading jet

Figure 5.4: Select invariant mass reconstructions

reconstructed, which decay into 3 hadronic jets. Clearly, from Figs. 5.3b, 5.3d, there is no
discriminating power in τβ32.

Mass Variables: In general, the reconstructed invariant masses are higher in the case of the signal
process than in the background processes. This is due to the higher mass (energy) of the B VLQ
than the mass of t or W found in the dominant background processes. From Fig. 5.4a, we can see
that mJ peaks around the mass of the ϕ scalar in the case of the signal process, indicating that it
is well clustered. As mentioned in [cite], we do not perform any jet filtering; therefore, in some
instances, noisy top jets also appear. In the case of background processes, this reconstruction
peaks around the mass of t quark in the case of processes involving t jets and noisy spread around
the mass of W/Z/H boson in the case of processes involving these bosons.

46



We show the distribution of mbJ in Fig. 5.4b. We expect that mbJ should reconstruct the
invariant mass of the B VLQ, and from the figure, we can see that the reconstruction peaks close
to the benchmark points. The spread around the benchmark point is largely due to two reasons,
namely: (1) poor reconstruction of the ϕ fatjet and/or the b jet; and (2) the mismatch between
the fatjet and b jet from different sides, which do not exactly reconstruct the B mass.

From Fig. 5.4c, we can see that for the background processes, mℓb reconstructs the mass of
the t jet (when the t jet decays leptonically) or reconstructs the mass of the W boson (in the case
of W+jets background process). However, in the case of the signal process, there is only a small
shoulder around the mass of t-jet, and it peaks at a much higher value.

The general trend of mjpjq and mjpjqjm (Fig. 5.4d), where p, q,m are indices of the clustered
jets, is that they peak at higher values in the signal process compared to the background processes.
This can again be attributed to the higher mass (energy) of the parent particle in the signal
process.

Girth/Width of jets: In Fig. 5.5a, we show the girth of the sub-subleading jet. As anticipated, since
the sub-subleading jet has a higher boost in the signal process, it is more collimated and therefore
exhibits lower girth as high pT particles are closer to the jet axis. This trend is broadly true for all
hadronic objects (Fig. 5.5b) in the signal process because of their higher boosts. Fig. 5.5c reveals
no significant difference in the girth of the fatjets, although as the mass of B VLQ rises, we see
that the signal fatjet’s girth reduces since the fatjet becomes more collimated. Fig. 5.5d shows
the girth of the b jet, which follows a very similar trend to that of the sub-subleading jet.

Distances in η − ϕ plane: We see a varying trend between the signal and background processes.
Most of these can be explained by appreciating the different final state topologies of the signal
and background processes. Fig. 5.6a demonstrates how boosted the leptonic W is for the signal
process than for the background processes. Additionally, we see from the ∆RbJ distribution
(Fig. 5.6b) that the tagged b jet is opposite to the fatjet in background processes, but in the
case of signal processes, the b jet from the same side of the fatjet may also be reconstructed.
We see a distinct bimodal distribution for the background processes from Fig. 5.6c of ∆Rℓb.
The left peak likely originates from top processes with the b jet and ℓ coming from the same
leptonically decaying top jet. In this case, the other jet is reconstructed as the fatjet, and the
∆RbJ requirement ensures that b is not from that fatjet. The right peak likely arises from other
processes involving additional W jets or purely W jets. In the case of the signal process, most
of the b jets are distant from the ℓ. We see a similar bimodal distribution in the case of ∆Rj2j3

(Fig. 5.6d) for background processes, which indicates that the two non-leading jets are clustered
from the same side or the opposite side. In the case of opposite jets, this could occur in tt̄ events
when the b jet from the leptonically decaying top jet is selected as either non-leading jet. The
signal distribution mainly reflects the higher number of hard jets in the final state and does not
vary significantly across different benchmark points. This suggests that this feature depends more
on the final state topology than kinematics.

47



0.00 0.05 0.10 0.15 0.20 0.25 0.30
wj3

BG
MB = 1.2 TeV, M = 0.4 TeV
MB = 1.5 TeV, M = 0.4 TeV
MB = 1.8 TeV, M = 0.7 TeV

(a) Girth of sub-subleading jet

0.00 0.05 0.10 0.15 0.20 0.25
wj1

BG
MB = 1.2 TeV, M = 0.4 TeV
MB = 1.5 TeV, M = 0.4 TeV
MB = 1.8 TeV, M = 0.7 TeV

(b) Girth of the leading jet

0.0 0.2 0.4 0.6 0.8 1.0
wJ

BG
MB = 1.2 TeV, M = 0.4 TeV
MB = 1.5 TeV, M = 0.4 TeV
MB = 1.8 TeV, M = 0.7 TeV

(c) Girth of the fatjet

0.00 0.05 0.10 0.15 0.20 0.25
wb

BG
MB = 1.2 TeV, M = 0.4 TeV
MB = 1.5 TeV, M = 0.4 TeV
MB = 1.8 TeV, M = 0.7 TeV

(d) Girth of b jet

Figure 5.5: Girth of select reconstructed hadronic objects

48



0 2 4 6 8
REmiss

T

BG
MB = 1.2 TeV, M = 0.4 TeV
MB = 1.5 TeV, M = 0.4 TeV
MB = 1.8 TeV, M = 0.7 TeV

(a) Distance between MET and ℓ

1 2 3 4 5 6
RbJ

BG
MB = 1.2 TeV, M = 0.4 TeV
MB = 1.5 TeV, M = 0.4 TeV
MB = 1.8 TeV, M = 0.7 TeV

(b) Distance between b jet and the fatjet

0 1 2 3 4 5 6
R b

BG
MB = 1.2 TeV, M = 0.4 TeV
MB = 1.5 TeV, M = 0.4 TeV
MB = 1.8 TeV, M = 0.7 TeV

(c) Distance between the lepton and the b
jet

0 1 2 3 4 5 6
Rj2j3

BG
MB = 1.2 TeV, M = 0.4 TeV
MB = 1.5 TeV, M = 0.4 TeV
MB = 1.8 TeV, M = 0.7 TeV

(d) Distance between the subleading jet
and the sub-subleading jet

Figure 5.6: Few plots of the distance (∆R) between reconstructed objects

49



0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

10
5

11
0

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
105
110 0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

(a) Weighted Correlation plot between the reconstructed variables for the background
processes. 0− 114 are the identifiers for each of the variables.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

10
5

11
0

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
105
110 0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

(b) Correlation plot between the reconstructed variables for the signal process. 0−114
are the identifiers for each of the variables.

Figure 5.7: Correlation between the features for signal and background processes

50



We also show the correlation between the features in Fig. 5.7. There is a strong correlation
between the Nsubjetiness features (0−4) and also between the mass features (70−110). However,
most of the correlation values are close to 0, except some that deviate above 0.5 or below −0.5.
These trends are true for both the signal and background processes. This correlation matrix
is based on the Pearson coefficient, which only measures the linear relationship between pairs
of features. It does not capture the complete redundancy among the features. To do so, one
needs to examine the effect of each feature in a nonlinear setting (assuming further analysis is
nonlinear), taking into account the effects of all features and not just pairwise interactions. In
case one would like to replicate the results with a smaller number of variables (for example, to
increase robustness to noise), one can refer to the following section § 5.5 on interpretability and
feature importance.

5.2.4 Dataset Curation

The dataset was split into 3 parts: Training, Validation and Test with a split of 1:1:1 (i.e., ∼ 33%

for each part). The models were trained on the training dataset, and hyperparameter tuning was
performed on the validation dataset. Finally, we calculate the results of the test dataset.

5.3 Method

In order to improve the reach, we employ a neural network to separate the signal and
background processes. We benchmark the neural network’s performance against the baseline of
XGBoost, a modern gradient-boosted decision tree algorithm.

We perform the hyperparameter optimization for both the models at a representative with
MB = 1.5 TeV and Mϕ = 0.4 TeV. We then apply the same hyperparameters for the rest of the
search points.

Note: One might argue why the first series of analysis cuts were even applied since they
are far more inefficient than a neural network or a BDT. The rationale for such cuts is that
they are motivated by physics considerations and ensure we target the required event topology.
Furthermore, these cuts are the most explainable, interpretable and reproducible by the broader
physics community.

5.3.1 Boosted Decision Tree

We use the XGBoost [79] library in Python to train the XGBoost classifier on the dataset
comprising these events. The hyperparameter for XGBoost was chosen using GridSearchCV,
which searches over all the possible combinations of hyperparameters. We select the hyper-
parameter that yields the highest significance on the cross-validation dataset. For models with

51



comparable performance, we prefer the simpler BDT in order to prevent overfitting. The chosen
BDT has a depth of 2, with 200 estimators and a regularization weight λ = 0.4. We observe that
larger BDTs give roughly the same performance. Interestingly, for models with larger depth, the
hyperparameter scan preferred a larger regularization value (λ = 0.6 for a depth of 3, λ = 0.8

for a depth of 4). While parameter-heavy models with larger regularization have been shown
to give better generalization performance in other domains [80], investigating such effects is
beyond the scope of this work. We use Gini Index to train the Boosted Decision Tree.

5.3.2 Neural Network

We use a standard DNN architecture composed of 2 Linear layers (with layer width 128) with
Mish [44] Activation and BatchNorm [48]. Additionally, we apply Dropout [47] with dropout
probability 0.2 and L2 weight decay with λ = 10−4 to regularize the training. The optimization
was performed using the AdamW optimizer. We determine the hyperparameters through a grid
search such that the chosen hyperparameter achieves the highest significance on the validation
dataset. Similar to the BDT design, among two comparably performing networks, we choose the
simpler one.

Instead of training the neural network using the standard cross-entropy loss, we find that
using a weighted cross-entropy loss provides better robustness to the choice of final threshold.
Since we are dealing with multiple classes of processes, we weigh the loss function to impose a
higher penalty for misclassifying a sample from a process with a higher cross-section. Similarly,
we re-weigh the samples to be unbiased to the explicit count of samples generated for each
process. The final weight for a sample of process pi is given by:

ωpi =

√
σpiL

Npi

(5.2)

Here, σpi denotes the cross-section of the process pi, Ni is the number of events present in the
training dataset and L = 3ab−1 is the experimental luminosity. The exact functional form of the
weight was determined experimentally, as the weights performed slightly better with the root
than without it.

For both approaches, we scan the final response output for a threshold that maximizes the Z
score on the validation dataset. Here we exclude those threshold points in the final response that
are unstable (high variance around that point) as they do not generalize well to the test dataset.
Fig. 5.8 shows that as we increase the neural network response threshold, i.e., demand a more
stringent classification, NS decreases smoothly, but NB drops drastically.

52



10−7

10−6

10−5

10−4

10−3

10−2

10−1

1

0 0.2 0.4 0.6 0.8 1

Fr
ac

tio
n

of
E

ve
nt

s

DNN Response

10−7

10−6

10−5

10−4

10−3

10−2

10−1

1

0 0.2 0.4 0.6 0.8 1

Signal

Background

Figure 5.8: NS , NB curve as threshold choices for neural network

5.4 Results

We are interested in calculating the sensitivity of the two methods. As described in sec-
tion§ 3.7.1, one calculates the discovery sensitivity score using equation (3.25):

Z =

√
2 (NS +NB) log

(
NS +NB

NB

)
− 2NS (5.3)

After the analysis cuts, for the benchmark point MB = 1.2 TeV, MΦ = 0.4 TeV, we have
NS = 223, and NB = 335946, resulting in an experimental discovery sensitivity of roughly 0.38σ.
Therefore, we need data-driven models to make more complex cuts in order to improve the
experimental sensitivity significantly.

From Fig 5.9, one can see that the neural network outperforms the BDT across all points in
the MB −Mϕ scan. The absolute difference in performance decreases as we approach higher
masses of MB, which is also due to the lower pair production cross-section of the BB process.

The performance ranges from ∼ 20% to ∼ 40% better for the neural network than the BDT.
Moreover, an interesting trend in the case of the neural network is that its performance increases
as the mass of the ϕ increases, while the performance is relatively constant for the BDT.

53



1.0

300

400

500

600

700

11.21

11.05

12.04

14.28

13.87

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

11.74 8.43 5.66 4.28 2.82 2.22 1.60 1.10

12.26 7.37 6.08 4.45 2.76 2.20 1.93 1.26

13.34 9.13 6.33 4.52 3.18 2.27 1.58 1.15

14.37 9.42 6.78 4.69 3.14 2.20 1.55 1.34

15.13 9.70 6.91 4.89 3.27 2.47 1.68 1.61

MB (TeV)

M
 (G

eV
)

b = 0.8 0.6

Exclusive
BB (b ) (tW)

(a) Mass scan over MB and Mϕ for sensitivity scores obtained by the BDT

1.0

300

400

500

600

700

13.53

14.86

16.32

16.01

15.69

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

14.67 9.35 7.08 4.56 3.37 2.71 1.94 1.41

14.72 10.30 7.77 5.67 3.81 3.14 1.77 1.48

15.74 10.73 7.73 5.59 4.09 2.71 1.96 1.31

18.13 11.89 7.93 5.61 3.91 2.73 1.90 1.35

16.95 11.84 8.32 6.50 4.57 2.88 2.19 1.83

MB (TeV)

M
 (G

eV
)

b = 0.8 0.6

Exclusive
BB (b ) (tW)

(b) Mass scan over MB and Mϕ for sensitivity scores obtained by the NN

Figure 5.9: Results for BDT and NN

In this specific study, we can project the reach for such a decay process using the above
methodology. The 5σ reach is up to 1.7 TeV for B mass for this specific channel. We refer the
readers to [78] for more results and a comprehensive scan.

54



5.5 Interpretability

A key issue with neural networks is that they lack interpretability due to their highly nonlinear
hidden units. This poses an issue in understanding the outcome of the network and gaining
insights into the predictions. Specifically, we would like to identify input features critical in
distinguishing the signal process from the background ones.

A few methods have been proposed to provide some interpretability to neural networks.
Among these, the method of interest is Integrated Gradients.

5.5.1 Integrated Gradients

The idea behind Integrated Gradients [81] is that the contribution of each input feature to
the model’s prediction can be estimated by integrating the gradients of the model’s output with
respect to the input feature along a straight line path from a baseline to the input.

Integrated Gradients have the following desirable properties:

1. Sensitivity: If the input and the baseline have different predictions and only differ in one
feature, the feature that differs should have a non-zero attribution. Also, in this case, the
features that are the same are given zero attribution.

2. Implementation Invariance: Two networks are functionally equivalent if they produce
identical outputs for all inputs, regardless of how they are implemented. IG satisfies
implementation invariance, i.e., the attributions are always the same for two functionally
equivalent networks.

3. Completeness: Integrated Gradients also satisfy a property called completeness, that the
sum of the attributions is equal to the difference between the function’s output at the input
x and the baseline x′.

Mathematically, if we have an ML model with input x and output y, the contribution of the ith

input feature to the model’s prediction can be approximately expressed as

GIG
i (f,x,x′) = (xi − x′i)

∫ 1

α=0

δf [x′ + α(x− x′)]

δxi
dα (5.4)

where x and x′ represent the features of the input and the baseline input, respectively. The
integral is taken from α = 0 to α = 1, and (x− x′) represents the vector from the baseline to the
input, δf [x′ + α(x− x′)] /δxi is the gradient of the model’s output with respect to the ith input
feature.

Integrated Gradients is a local interpretability model i.e., it provides attributions to each
feature for an individual input. However, if one fixes the baselines and averages the attributions
over all the inputs in the dataset, one can obtain global attribution scores that estimate the

55



10−3

10−2

10−1

1

101

HT mℓb /ET mℓ j2 mℓ j2 j3 mℓ j2 mℓ j1 j2 MJ pTb m j3 mℓJb mJb j2 τβ=1
21 ∆Rℓb mb j2 j3 mℓb j3 m j2 mℓJ pTJ pTℓ

Signal
Background

10−3

10−2

10−1

1

101

HT mℓb /ET mℓ j2 mℓ j2 j3 mℓ j2 mℓ j1 j2 MJ pTb m j3 mℓJb mJb j2 τβ=1
21 ∆Rℓb mb j2 j3 mℓb j3 m j2 mℓJ pTJ pTℓ

Figure 5.10: Integrated Gradients Feature Importances

relative importance of each input feature for the problem. The sign of the integrated gradient for
an input feature indicates whether the feature had a positive or negative impact on the model’s
prediction. The magnitude indicates the relative scale of impact the feature had on the prediction
compared to other features.

5.5.2 The choice of baselines and Averaged Gradients

The attribution score provided for each input is sensitive to the values that are similar or the
same between the baseline and the input. While in the case of images, one can take a black image
as the baseline, it is not evident what an appropriate choice of baseline would be in the case of
particle physics, as the baseline needs to be physically valid in the specific problem setting.

Refs. [82, 83] propose an extension of Integrated Gradients that computes the Integrated
Gradients over many baselines and averages the result. When we average over multiple baselines
from the same distribution D, we use the distribution as the baseline. So now we have changed
the problem from choosing a baseline x′ to choosing a distribution D.

Gi(f,x) =

∫
x′
GIG

i (f,x,x′)× pD(x
′) dx′ (5.5)

where the baseline x′ is integrated over a probability distribution on baselines D.

In our problem setting, we want to gain insights into features that are crucial in separating
signal events from background events. Therefore, we take the distribution of the background
events (in proportion to the cross sections of the originating processes) as the distribution of the
baselines. Eq. (5.5) can be seen as computing the expectation over the set of baselines, which
can be approximated from a few samples using the Monte Carlo. This method provides more
robust and better attribution for each of the features.

56



5.5.3 Results

Fig. 5.10 shows that HT has the highest importance in pushing the model to predict the signal
class. This is expected since there is a considerable separation in HT (Fig. 5.2c). Furthermore,
/ET and mℓb also seem essential to the network for predicting the signal class. We also see that
from the left towards the right, implying that the first few variables are enough to provide good
separation. While there are some negative importance scores, they are close to 0; we can think of
them as tiny correction terms to the final classifier output rather than essential contributors. The
feature attribution falls only slightly for the ones following the top 10 due to the weight-decay
regularisation used while training the network. For example, the 40th most-important variable,
m/ET j3

, has a feature attribution of ≈ 0.056.

57



Chapter 6

Loss Functions for Deep Learning at the LHC

In this chapter, we investigate how to align a DNN model prediction to physics goals using
targeted loss functions while training the network. We explore two avenues. First, we tweak the
binary cross entropy loss with cross sections of the scattering processes. Second, we develop a
loss function to maximise the sensitivity metric of a projection study, namely the Z score, using
Lovàsz’s extension [84]. We also compare these two classes of losses with the baseline (binary
cross entropy loss) using different metrics to quantify the improvement and their robustness.

6.1 Introduction

Modern particle physics experiments at the accelerators like the LHC rely heavily on multivariate
classifiers to isolate signatures of interesting processes (the signal) from well-understood ones
(the background). These investigations are generally of two types: 1) measurements of known
processes/properties with improving precision to check for anomalies, i.e., departures from SM
and 2) looking for new processes—like looking for a hypothetical particle predicted in some
new-physics theory. The main challenge comes from the fact that the signal is (extremely)
rare compared to the background in most cases. Generally, a classifier has to use kinematic
features to identify signal or background events. Regardless of the nature of the classifier, one
generally characterises an experiment’s sensitivity with a significance score. The signal plus
background hypothesis (H1) is tested against the null or background-only hypothesis (H0), and
the disagreement between them is expressed in terms of a p value. An equivalent interpretation
of the p value is the significance score, Z, defined such that a Gaussian distributed variable found
Z standard deviations away from its mean has a tail-distribution probability equal to p [3], as
mentioned in Chapter 3. In binary classification tasks with neural networks, a widely-used metric
is the BCE loss.

Here, we investigate whether other loss functions are more suitable for improving experimental
sensitivity in particle physics experiments. We start with two observations. First, not all event

58



rates are equal; some scattering processes have higher probabilities than others. Given a set
of experimental conditions, the cross section with which a scattering process occurs can be
calculated using QFT. A basic BCE loss that treats all events equally might be ill-suited to such
classification problems, as misclassifying events of some types could be more detrimental to the
classifier performance than the other. Second, the BCE loss may not actually maximise the Z score.
Instead of relying on generic classification performance metrics, can we derive a better-suited loss
for any classifier which maximises the test statistic (in this case, the Z score) directly? Motivated
by these observations, we investigate the following classes of losses:

1. Process weighted Cross Entropy:

We assign appropriate weights to the loss of each data sample based on the effective cross-
section of the corresponding process. By doing so, we make the training aware of the risk
of misclassifying that particular sample, i.e., there is a greater error (risk) in misclassifying
a process that is more frequent at the LHC than one that is less frequent.

2. Surrogate Loss to maximize the Z score derived using Lovasz Extension:

We derive a surrogate loss in order to directly maximize the med[Z] score. This extends
from the insight that the Z score described in equation (3.28) is effectively a set function,
and certain sets will have higher Z scores than others. Therefore, we define a loss using the
Lovász extension to maximize it directly.

6.2 Process Weighted Cross Entropy Loss

Since we define the risk of misclassifying a particular kind of event, this becomes an empirical
task, as the risk can depend upon the specific contribution of the sample to the task. By making the
network aware of the risk of misclassifying a sample, we ensure that the classes with the highest
risk are assigned values close to the desired label. This guarantees that as we scale the threshold,
the classes with the highest risk are correctly classified first. While the unweighted loss might
perform similarly at the extreme threshold values (t→ 1.0), we observe that since our method
classifies the highest risk background (i.e., background event with the largest cross-section)
closest to 0, there is a large range over which the model achieves a sensitivity score close to the
maximum.

We can estimate the cross-sections from theory and predict the data distribution with a high
degree of accuracy, so we can quantify the "risk" as a function of the rate of occurrence at the
LHC. We can simply derive a simple weighing scheme to match the risk of a sample to its rate of
production at LHC. However, as this remains an empirical task, we experiment with different
weights to see which performs the best. In cases where we do not know the exact cross-sections or

59



where there is a large disparity between the risks, one may prefer to train an unbiased classifier
due to its better convergence properties.

6.2.1 Different Weighting Schemes

We examine the performance of different weighting schemes, which can be categorized as
follows:

WC1 (Choices related to the dataset size): Generally, some processes are much easier to
generate compared to others and therefore are present in larger numbers in the training
dataset, creating large class imbalances. These choices are used to reduce the bias on the
exact number of samples from each process in the dataset and address the class imbalances.
The weighing schemes take the form:

ω1 ∈
{

1

Ni
, n

√
1

Ni
,

1

lnNi

}
, n ∈ R (6.1)

WC2 (Choices related to the cross-section of the process):] By providing the cross-section
information, we would inform the training about the risk of misclassifying a sample as a
function of the production rate of that process. Here the weighting scheme takes the form:

ω2 ∈ {σi, n
√
σi, ln(σi),U(σi)} , n ∈ R (6.2)

where U is described as,

U(σi) =

σi × 10

⌊
log10

(
maxj∈B{σj}

σi

)⌋
, if i ∈ S

σi, otherwise

where S,B denote the signal and background processes, respectively.

We try not only individual choices from WC1 and WC2 but also their combinations. We note a
few specific cases, ω = 1

Ni
is the weighting scheme used for developing unbiased estimators, and

ω = σi
Ni

weighs the sample of a process such that it matches its rate of production at LHC.

6.3 Surrogate med[Z] score loss

One wants to maximize the med[Z]-score (referred to as Z-score for the remainder of this
chapter) given in equation (3.25), which corresponds to the sensitivity of the experiment. In
analyses involving searches for new particles, we typically have Ns << Nb and the sensitivity is
optimized by maximizing Ns/

√
Nb. Although an excellent binary cross entropy-based classifier

60



might give a good sensitivity, it is not guaranteed optimal. Therefore, we wonder whether we can
train a classifier to directly maximize the relevant metric, i.e., the sensitivity score of the method.

There are two hurdles that one will have to resolve in order for the approach to work with
gradient-based methods such as machine learning:

1. The metric Z-score is a non-differentiable function as it depends upon discrete quantities.
Therefore we need to develop some kind of continuous interpolation for the function.

2. The metric operates on sets of data instead of individual samples; specifically, it operates
on the count data. Therefore, one must either develop a method to directly optimize the
set function or assign contributions to specific samples within the set to optimize.

6.3.1 Submodular Functions and Lovasz Extension

A hint towards the solution comes from the domain of discrete optimization, specifically sub-
modular functions. A submodular function is a function that captures the concept of diminishing
returns. It is defined on sets and has a property similar to concavity. Formally one defines a
submodular function as:

Definition 6.3.1. Submodularity: A set function ∆ : 2N → R, where N is a finite set, is

submodular if it satisfies the following condition: For A,B ⊆ N , if A ⊆ B, and x /∈ B, then

∆(A ∪ {x})−∆(A) ≥ ∆(B ∪ {x})−∆(B) (6.3)

or equivalently, for all sets A,B ⊆ N ,

∆(A) + ∆(B) ≥ ∆(A ∪B) + ∆(A ∩B) (6.4)

where N is the Universe set, and 2N refers to the power set.

Due to this property of submodular functions, they can be optimized using greedy optimization
techniques, and optimal solutions may be reached in polynomial time. However, these discrete
optimization techniques cannot be used directly due to the lack of gradients for descent-based
methods.

For the next section on continuous relaxation, we alternatively represent the powerset as
{0, 1}p, where p is the number of elements in the Universe and the value 0 or 1 for an element
indicates its inclusion in a specific subset.

Lovász Extension allows us to associate a continuous, convex function with any submodular
function. The Lovász extension for any submodular function is defined as

61



Definition 6.3.2. Lovász Extension: For a set function ∆ : {0, 1}p → R, the Lovász extension

∆̄ : [0, 1]p → R is defined as

∆̄ : m ∈ Rp 7→
p∑

i=1

mi gi(m) (6.5)

where gi(m) = ∆({π1, . . . , πi})−∆({πi, . . . , πi−1}) and π is a permuation ordering the compon-

ents of m in decreasing order, i.e., xπ1 ≥ xπ2 ≥ · · · ≥ xπp [85]. Usually, m is the vector of errors

that, i.e., mi is the deviation for element i from the label (0 or 1).

Additionally, the Lovasz extension of a submodular function preserves submodularity, i.e., the
extension evaluated at the points of the hypercube still follows submodularity. Using the Lovász
extension, we can directly compute the tight convex closure of a submodular function within
polynomial time [O(p log(p)) time complexity]. This convex extension is amenable to a host of
efficient optimization methods, especially gradient-based approaches.

6.3.2 Z-score as a submodular function

To view the Z score as a set function, we define some sets. Let Vi be the set of events of a
process iwhere i ∈ S∪B, where S,B are the sets of signal and background processes, respectively.
Let y be the ground truth labels of a set of events and ỹ be the labels predicted by the method for
the set of events. We define Py to be the set of positive labels, i.e., y = 1, and Pỹ be the set of
positive predictions, i.e., ỹ = 1. We now have the Z score,

Z ≈ NS√
NB

=

∑
i∈S

|Vi∩Pỹ |
|Vi| σiL√∑

i∈B
|Vi∩Pỹ |
|Vi| σiL

(6.6)

Now we may rewrite the above equation in terms of a set of misclassifications. Note that vi is
the number of events of each process, ni is the number of false negatives for process i ∈ S, and
pi is the number of false positives for process i ∈ B. Then for a set of misclassifications (n,p), we
have:

Z(y, ỹ) =

∑
i∈S

vi−ni
vi

σiL√∑
i∈B

pi
vi
σiL

(6.7)

Now we make three changes in order to adapt the above term for gradient minimization:

1. First, we introduce a small ϵ term in the denominator to ensure numerical stability.

2. We take the negative of the Z score so that we can minimize it using inbuilt gradient descent
algorithms (§ 4.5.2).

3. We additionally demand that the modified function evaluates to 0 for an empty set.

62



Based on these changes, we define a modified function ∆Z based on the Z-score.

∆Z(y, ỹ) =
∑
i∈S

σiL√
ϵ
−

∑
i∈S

vi−ni
vi

σiL√
ϵ+

∑
i∈B

pi
vi
σiL

(6.8)

Theorem 6.3.3. ∆Z is submodular on the set of misclassifications (n,p), where n is the vector for

number of false negatives (ni), and p is the vector of number of false positives (pi).

Proof:
For the proof, we take the scenario with a single signal process (|S| = 1, n = n1 = n) and a

single background process (|P | = 1, p = p1 = p) to simplify the expressions. But the result can
be easily extended to incorporate multiple signal and background processes due to the linearity
of additional signal processes and background processes. We will also drop the luminosity term
as that will not affect the core derivation.

For the proof, let us assume that we have two sets of misclassifications C (nC , pC) and D

(nD, pD), such that D ⊆ C, i.e.,

D ⊆ C, nD ≤ nC , pD ≤ pC (6.9)

The total number of events remains the same between C and D, i.e., vS for signal and vB for
background, and only the misclassifications on the total set change.

To establish the proof, we need to show that the diminishing return property of submodularity
holds under the addition of a new element i /∈ C.
Case I: Adding false negatives i /∈ C

We prove that ∆Z is submodular under the addition of false negatives:

∆Z(C ∪ {i}) = ∆Z(nC + 1, pC) (6.10)

=
σS√
ϵ
−

vS−nC−1
vS

σS√
ϵ+ pC

vB
σB

(6.11)

=

σS√
ϵ
−

vS−nC
vS

σS√
ϵ+ pC

vB
σB

+

1
vS
σS√

ϵ+ pC
vB

σB
(6.12)

= ∆Z(C) +

1
vS
σS√

ϵ+ pC
vB

σB
(6.13)

∆Z(C ∪ {i})−∆Z(C) =

1
vS
σS√

ϵ+ pC
vB

σB
(6.14)

Now since D ⊆ C, i.e., pD ≤ pC , we see from equation (6.14),

∆Z(C ∪ {i})−∆Z(C) ≤ ∆Z(D ∪ {i})−∆Z(D), i is a false negative (6.15)

63



Case II: Adding a false positive i /∈ C

We prove that ∆Z is submodular under the addition of false positives:

∆Z(C ∪ {i}) = ∆Z(nC , pC + 1) (6.16)

=
σS√
ϵ
−

vS−nC
vS

σS√
ϵ+ pC

vB
σB + 1

vB
σB

(6.17)

(6.18)

Now we have,

∆Z(C ∪ {i})−∆Z(C) =

vS−nC
vS

σS√
ϵ+ pC

vB
σB
−

vS−nC
vS

σS√
ϵ+ pC

vB
σB + 1

vB
σB

(6.19)

=

(
vS − nC

vS
σS

)
︸ ︷︷ ︸

T1

 1√
ϵ+ pC

vB
σB
− 1√

ϵ+ pC
vB

σB + 1
vB

σB


︸ ︷︷ ︸

T2

(6.20)

Therefore it decomposes into a product of two terms. If we show that independently both of
these terms are independently smaller for C than for D, we will have our result.

First consider T1, we have

nC ≥ nD (6.21)

= −nC ≤ −nD (6.22)

=
vS − nC

vS
≤ vS − nD

vS
(6.23)

Therefore, T1 is indeed larger for D compared to C.
In order to check for term T2, we first simplify the expression and write HC = ϵ + pC

vB
σB,

(HC ≥ HD). Now we can write term two as:
1√
HC
− 1√

HC + 1
vB

σB
(6.24)

We move to a continuous relaxation of the term such that:

f(x) =
1√
x
− 1√

x+ 1
vB

σB
(6.25)

f(HC) =
1√
HC
− 1√

HC + 1
vB

σB
(6.26)

which is the same as equation (6.24). Now differentiating equation (6.25) with respect to x, we
get:

d
dx

f =
1

2

 1(
x+ 1

vB
σB

) 3
2

− 1

(x)
3
2

 (6.27)

64



which will always be less than zero for x > 0. Thus since d
dxf < 0, we have that T2 will be greater

for D compared to C.
Now since both T1 and T2 is greater for D compared to C, we have

∆Z(C ∪ {i})−∆Z(C) ≤ ∆Z(D ∪ {i})−∆Z(D), i is a false positive (6.28)

Therefore from Case I and Case II, we have shown that ∆Z is submodular for all the possible
cases and therefore is submodular for the set of misclassifications (n,p).

We posit the task of maximizing the Z score as minimizing the above submodular term ∆Z .
Using the submodular property of the term, we can create a Lovasz extension (∆̄Z) that can be
used to train a deep neural network through gradient-based optimization.

6.3.3 Error Functions

We require a loss function to handle any vector of errors m ∈ Rp
+ since we are working with

continuous predictions, not only to discrete vectors of misclassifications in {0, 1}p. We consider
four cases for defining the vector of errors m to construct the surrogate losses using the Lovasz
extension.

1. Hinge (Max Margin) Loss: Following Ref. [86], we implement a hinge loss to compute
the error in the prediction. The labels are considered signed (yi ∈ {−1, 1}). The model
outputs a score Fi(x) for each sample x. The error is given by the hinge loss,

mi = max(1− Fi(x)yi, 0), yi ∈ {−1, 1}. (6.29)

2. Sigmoid Error: Similar to Ref. [85], we also consider the sigmoid error. The model outputs
a probability Fi(x) for the sample x to be in the signal class. The error is given by

mi =

1− Fi(x), if yi = 1,

Fi(x), otherwise.
(6.30)

3. Cross Entropy Error: We also experiment with the BCE loss to measure the error mi. This
is similar to taking the logarithm of the error calculated in the Sigmoid Error. One could
also interpret this as a form of weighted cross entropy where the weights are calculated
based on the specific composition of the batch of events and misclassifications on that batch.

4. Focal Loss Error: We also consider Focal Loss [87] as the measure for the error mi. This
loss function drives the network to focus on hard misclassified events.

Algorithm 1 provides a simple pseudocode to calculate the gradient g(m) from Eq. (6.5) using
Eq. (6.8) as the loss.

65



−2
0

2 −2

0

2
0

1

2

3

∆̄
Z

(y
, ỹ

)

F1(x)

F 2
(x

)

(a) Hinge Error

0.0
0.5

1.00.0

0.5

1.0
0.0

0.5

1.0

∆̄
Z

(y
, ỹ

)

F1(x)

F
2
(x

)

(b) Sigmoid Error

0.0
0.5

1.00.0

0.5

1.0
0.5

0.8

1.1

∆̄
Z

(y
, ỹ

)

F1(x)

F
2
(x

)

(c) Cross Entropy Error

0.0
0.5

1.00.0

0.5

1.0

0.3

0.5

0.8

∆̄
Z

(y
, ỹ

)

F1(x)

F 2
(x

)

(d) Focal Loss Error

Figure 6.1: Loss landscapes for the four error measures m in Sec.§ 6.3.3. The Z score loss is
plotted with ground truth, GT = [1, 0], σ = [1, 10]. The x, y axes denote the classifier output
(F1(x), F2(x)). For the Hinge Error, the GT labels are converted to their signed equivalent.

66



Algorithm 1 Gradient of Lovász Z loss ∆̄Z

Require: vector of errors m ∈ Rp
+, ground truth labels δ, sample weights w = {w1, w2, . . . , wp}

calculated from σi and counts.
Ensure: g(m) gradient of ∆̄Z from Equation (6.5)
1: π ← decreasing sort permutation for m
2: δπ ← (δπi)i∈[1,p]
3: numerator← 1 - cumulative_sum(δπ) w
4: denominator← 1 + cumulative_sum(1 − δπ) w
5: g ← σ − numerator/

√
denominator

6: if p > 1 then
7: g[2 : p]← g[2 : p]− g[1 : p− 1]
8: end if
9: return gπ

We also investigate deriving a surrogate loss from the med[Z]-score given in equation (3.25).
Similar to equation (6.8), we redefine the equation for gradient minimization, which we refer
to as ∆ζ . For the case of a single signal and single background process, i.e, |S| = |B| = 1 and
n = n1 = n, p = p1 = p, the redefined equation is

∆ζ(y, ỹ) = C −

√√√√2

(
ϵ+

vS − n

vS
σS +

p

vB
σB

)
ln

(
1 +

vS−n
vS

σS

ϵ+ p
vB

σB

)
− 2

(
vS − n

vS
σS

)
(6.31)

C : is a constant such that ∆ζ(∅) = 0

Lemma 6.3.4. The ∆ζ loss function is not submodular on the set of misclassifications (n,p), where

similar to equation (6.8), n is the set of false negatives and p is the set of false positives.

Proof: For the proof, we take the scenario with a single signal process (|S| = 1, n = n1 = n) and
a single background process (|P | = 1, p = p1 = p) in order to simplify the expressions. Let us
assume that we have two sets of misclassifications C (nC , pC) and D (nD, pD), such that D ⊆ C,
i.e.,

D ⊆ C, nD ≤ nC , pD ≤ pC (6.32)

The total number of events remains the same between C and D, i.e., vS for signal and vB for
background, and only the misclassifications on the total set change.

Now, we observe the case of adding a false negative to ∆ζ , and checking for diminishing
returns,

∆ζ(C ∪ {i})−∆ζ(C) = ∆ζ(nC + 1, pC)−∆ζ(nC , pC) (6.33)

For brevity, we do not expand the above terms, but one can now take derivative with respect
to n and p and plot it over the entire domain of n, and p, i.e. vS and vB, respectively. We plot

67



0

20

40

60

80

0

20

40

60

80

×
10
−

5

0.5

1.0

1.5

2.0

2.5

3.0

N

P

Figure 6.2: The plot of ∂
∂p

∂
∂n (∆ζ(nC + 1, pC)−∆ζ(nC , pC)). The value is positive, indicating

that the diminishing return property does not hold. But the values are very close to zero.

the same in Fig. 6.2, where we see that the derivative is positive, showing that the diminishing
returns property does not hold. However, we see that the value is very close to zero near the
central regions indicating that it may still be viable to employ this as a potential loss function.

Additionally, ∆ζ is submodular under the addition of a false positive sample. One can still
define a continuous extension using the Lovasz extension and optimize it. We test it for one case
and find the performance is very similar, if not identical, (Fig. 6.5) between ∆ζ and ∆Z .

6.4 Setup and Evaluation

6.4.1 Dataset Construction

We choose a typical particle physics experiment searching for a new phenomenon to generate
the dataset. We consider the task of isolating events from inelastic scattering processes producing
two vectorlike quarks (VLQs) from the background processes with similar final states. Particularly
we study the pp→ BB process (introduced in § 5.1). The reason for choosing this particular
example is that its cross-section is expected to be small compared to the dominant background
processes. Since the focus of this study is to evaluate the performance of the different losses and
not perform a thorough physics study, we consider only a few dominant background processes
— namely, we consider the semileptonic decay of pp→ tt process (BG1), and the monoleptonic
decay of pp→ ttW process as the backgrounds (BG2), (see Table 6.1)

68



Process Initial σ (fb) Event Sel. σ (fb) Dataset Size TTG (Server)
pp→ BB (Signal) 0.2171 0.0739 420k ∼ 24 hours
pp→ tt (BG1) 2.9× 105 91.23 430k ∼ 7 days
pp→ ttW (BG2) 1.92× 102 0.0231 420k ∼ 3 days

Table 6.1: Details of the various processes used for the current experiments: their initial cross
sections (in fb), their cross sections after event selection criteria are applied (in fb), the number
of samples in the dataset, and the time taken to generate (TTG) these samples on a server grade
PC running Xeon processors.

The data generation and preprocessing pipeline remain the same as in § 5.2.1. We employ
MADGRAPH5 [20] to generate events for the study. We employ PYTHIA8 [21] for parton shower-
ing and hadronisation. We use a detector simulator DELPHES3 [12] to replicate LHC detectors
where all the final state objects are detected. We also apply the same analysis cuts specified in
§ 5.2.2 on the processes to extract "signal-like" events.

6.4.2 Deep Learning Model Construction

Since we want to explore the effect of the loss function, we have chosen a simple DNN
architecture with 2 layers (each with 128 neurons). After each hidden layer, the activation
function is Mish [44] activation. We use BatchNorm [48] to stabilise the training process. We
also use Dropout [47] with probability 0.2, and weight decay with λ = 10−4 to regularize the
training. We train the network using AdamW [88] optimizer for 50 epochs, after which we observe
no change in the result. Significant hyperparameter tuning was not performed as that is not
relevant to the motivation of the solution.

6.4.3 Evaluation Metrics

An ideal classifier would result in the maximum med[Z] (sensitivity) score ( (3.25)) for the
broadest range of the classifier response. With this in mind, we define the following metrics to
evaluate the performance of the proposed loss functions.

• Maximum Z score [max(Z)]: We scan over the various classifier thresholds and report
the maximum Z score the classifier achieves. However, this metric does not capture the
complete nature of the Z score vs classifier response curve — it is susceptible to sharp peaks
in the response curve, which are undesirable.

• Multiple working points (WPs): We pick various WPs of classifier thresholds to report the
Z score. The classisifer thresholds for these WPs are 0.3 (WP1), 0.5 (WP2), 0.8 (WP3), 0.95
(WP4). These choices correspond to increasing levels of strictness for signal classification.

69



One can also get an idea of the flatness of the curve by observing the trends between all
the working points.

• Area under the curve (AUC): We calculate the area under the Z-score vs classifier response
curve. For an ideal classifier, the area under the curve would equal the maximum Z score
(i.e., the maximum Z score is achieved at a low level of classifier thresholds and remains
the same for the entire range of classifier responses).

• Region within 10% of max(Z) [R10%]: Using this metric, one can identify models that per-
form close to their peak performance over a wide region of threshold choice. A classifier
with large regions within 10% of the best performance will essentially eliminate the need
to pick a good threshold.

Moreover, when calculating the Z score, we demand that the signal and background classes
contain a minimum number of events to be statistically significant. We choose this threshold to
be 10 events (i.e., NS , NB ≥ 10).

6.4.4 Test Scenarios

We evaluate the performances of the proposed losses on some simple test cases (TCs) for
different class-imbalance scenarios and computational constraints.

• TC1: Full Dataset

In this scenario, the number of training events in each class is roughly equal, and there are
sufficient training samples in all classes to learn from.

• TC2: Reduced training samples in the background class

This test examines how the losses perform when the classifier has a small number of event
samples for processes with higher probability. Only 10% of the training samples in the
background class are used to train, while the complete set of signal samples is used. Such a
scenario arises when one has limited computing resources to generate a large number of
background events, especially ones that resemble the signal.

• TC3: Reduced training samples in both signal and background class

We also study whether the proposed losses can help compensate for a severe lack of
samples to learn from. Specifically, we take only 10% of the training samples in signal and
background classes to train the network. This test case is an extension of TC2 and can be
mapped to a study performed under extremely stringent computing constraints.

70



Loss max(Z) WP1(0.3) WP2(0.5) WP3(0.8) WP4(0.95) AUC R10%

BCE 6.08±0.09 1.57±0.01 1.93±0.02 2.79±0.04 4.28±0.09 2.11±0.02 0.01±0.00

Weighted CE loss based on dataset size (ω1)
1/Ni 6.00±0.19 1.58±0.03 1.93±0.03 2.77±0.07 4.23±0.08 2.11±0.04 0.01±0.00

1/
√Ni 6.09±0.06 1.57±0.01 1.93±0.02 2.78±0.04 4.26±0.11 2.11±0.03 0.01±0.00

1/ ln(Ni) 6.09±0.12 1.57±0.01 1.93±0.02 2.79±0.05 4.28±0.11 2.11±0.03 0.01±0.00

Process-aware CE losses, characterised by ω2/Ni

σi 5.54±0.30 5.22±0.23 4.89±0.40 1.73±2.00 0.00±0.00 3.87±0.41 0.36±0.09
2
√
σi 6.48±0.30 3.53±0.10 4.34±0.16 5.20±0.56 6.27±0.50 4.17±0.06 0.13±0.07

4
√
σi 6.43±0.11 2.33±0.02 2.88±0.04 4.09±0.08 5.66±0.06 3.04±0.04 0.04±0.01

10
√
σi 6.48±0.08 1.81±0.02 2.23±0.01 3.20±0.02 4.78±0.06 2.41±0.01 0.01±0.01

lnσi 6.46±0.02 1.86±0.02 2.30±0.02 3.28±0.05 4.84±0.08 2.47±0.02 0.02±0.00

U(σi) 5.62±0.17 1.56±0.04 1.81±0.19 2.67±0.05 3.97±0.07 2.04±0.04 0.01±0.00

Surrogate Z score loss, characterised by the mi error
Hinge 5.58±0.31 2.54±0.16 3.66±0.14 5.49±0.23 0.00±0.00 2.78±0.11 0.15±0.05

Sigmoid 3.54±0.03 3.21±0.04 3.26±0.04 3.34±0.05 3.43±0.03 3.21±0.04 0.76±0.04

CE 5.91±0.09 1.40±0.07 3.62±0.10 5.80±0.13 0.94±1.88 2.90±0.16 0.18±0.03

Focal 5.88±0.25 0.71±0.03 3.54±0.08 4.53±0.45 0.00±0.00 2.12±0.05 0.13±0.01

Table 6.2: Performance of the proposed losses when the whole dataset is used (TC1) to train
the classifier using the metrics described in Sec.§ 6.4.3. The highest score for each metric is
highlighted for process-aware losses and theoretical ones.

6.5 Results

We set ϵ = L = 1, as larger or smaller values lead to unstable training. We suspect that the
results will improve if we take epsilon to be a small value and L = 3ab−1.

Tables[6.2-6.4] present the performances of the proposed losses with the metrics defined in
section § 6.4.3. We take the BCE loss as the baseline. We report the results only for the interesting
cases.

We see that the BCE loss performs worse than both the process-aware weighted cross entropy
and the Z score losses across the metrics for all the test cases considered. Between the proposed
losses, we see that the empirically weighted losses generally perform better than the surrogate
loss. Among the TCs, TC2 and TC3 metrics for the proposed losses show only a slight variation
from each other. We see that BCE performs significantly better for TC3 than for TC2, as expected,
because TC3 has roughly the same number of samples for all classes. We see that all the process-
aware losses give a flatter Z score for a higher range of classifier thresholds.

Furthermore, amongst the weighting based on the number of samples of the process within
the dataset, we see that 1/Ni consistently performs excellently. However, none of these methods
has a flat curve and peaks at a point, like the BCE loss.

71



Loss max(Z) WP1(0.3) WP2(0.5) WP3(0.8) WP4(0.95) AUC R10%

BCE 2.97±0.02 0.94±0.01 1.10±0.02 1.45±0.03 2.05±0.03 1.16±0.02 0.01±0.00

Weighted CE loss based on dataset size (ω1)
1/Ni 4.33±0.07 1.44±0.02 1.74±0.02 2.40±0.03 3.35±0.05 1.84±0.03 0.02±0.01

1/
√Ni 3.65±0.12 1.15±0.02 1.37±0.02 1.86±0.04 2.62±0.06 1.45±0.02 0.01±0.00

1/ ln(Ni) 3.06±0.04 0.97±0.00 1.13±0.01 1.50±0.02 2.11±0.03 1.20±0.01 0.01±0.00

Process-aware CE losses, characterised by g(ω2/Ni)

σi 3.94±0.28 3.78±0.27 3.75±0.29 3.67±0.44 2.65±1.83 3.57±0.34 0.87±0.01
2
√
σi 4.60±0.01 2.91±0.05 3.43±0.07 4.16±0.08 4.53±0.12 3.28±0.05 0.18±0.05

4
√
σi 4.69±0.23 2.06±0.04 2.49±0.03 3.34±0.05 4.27±0.14 2.54±0.02 0.06±0.01

10
√
σi 4.65±0.19 1.69±0.10 2.05±0.13 2.83±0.24 3.99±0.48 2.17±0.17 0.02±0.01

lnσi 4.58±0.17 1.70±0.02 2.06±0.02 2.80±0.03 3.80±0.08 2.14±0.02 0.03±0.01

U(σi) 4.27±0.15 1.43±0.02 1.72±0.02 2.34±0.01 3.26±0.05 1.81±0.01 0.02±0.01

Surrogate Z score loss, characterised by the mi error
Hinge 4.16±0.26 1.81±0.07 2.59±0.02 3.74±0.15 3.49±0.70 2.30±0.04 0.15±0.03

Sigmoid 2.63±0.04 2.31±0.04 2.36±0.04 2.44±0.03 2.53±0.03 2.33±0.04 0.43±0.02

CE 4.17±0.13 1.78±0.06 2.49±0.03 3.44±0.21 4.02±0.24 2.35±0.04 0.11±0.04

Focal 4.18±0.11 1.10±0.09 2.50±0.02 4.00±0.20 2.90±0.74 2.17±0.04 0.18±0.01

Table 6.3: Performance of the proposed losses while using a reduced number of background
events (TC2) using the metrics described in Sec.§ 6.4.3. The highest score for each metric is
highlighted for process-aware losses and theoretical ones.

72



Loss max(Z) WP1(0.3) WP2(0.5) WP3(0.8) WP4(0.95) AUC R10%

BCE 4.41±0.09 1.43±0.01 1.72±0.01 2.33±0.02 3.28±0.03 1.81±0.02 0.02±0.01

Weighted CE loss based on dataset size (ω1)
1/Ni 4.49±0.08 1.43±0.01 1.71±0.01 2.34±0.02 3.30±0.03 1.81±0.02 0.01±0.00

1/
√Ni 4.44±0.03 1.43±0.01 1.71±0.01 2.33±0.01 3.28±0.01 1.81±0.01 0.01±0.00

1/ ln(Ni) 4.45±0.04 1.44±0.01 1.72±0.01 2.34±0.01 3.29±0.01 1.81±0.01 0.02±0.00

Process-aware CE losses, characterised by ω2/Ni

σi 3.78±0.22 3.67±0.27 3.60±0.27 3.47±0.41 3.10±0.59 3.46±0.27 0.75±0.09
2
√
σi 4.35±0.08 2.95±0.03 3.39±0.06 4.06±0.06 4.32±0.06 3.25±0.04 0.26±0.02

4
√
σi 4.89±0.14 2.01±0.02 2.44±0.03 3.30±0.03 4.29±0.09 2.50±0.03 0.04±0.01

10
√
σi 4.79±0.14 1.64±0.02 1.98±0.03 2.72±0.08 3.82±0.14 2.08±0.04 0.02±0.00

ln(σi) 4.81±0.19 1.67±0.03 2.02±0.05 2.77±0.11 3.84±0.16 2.12±0.06 0.02±0.00

U(σi) 4.44±0.14 1.39±0.02 1.67±0.02 2.27±0.03 3.23±0.07 1.76±0.02 0.01±0.01

Surrogate Z score loss, characterised by the mi error
Hinge 4.54±0.34 1.84±0.07 2.89±0.16 4.37±0.37 0.93±1.87 2.41±0.10 0.16±0.04

Sigm. 3.45±0.58 2.70±0.25 2.82±0.30 3.03±0.40 3.24±0.50 2.79±0.30 0.21±0.19

CE 4.33±0.22 1.69±0.12 2.80±0.23 4.06±0.47 3.43±0.81 2.45±0.13 0.18±0.06

Focal 4.44±0.19 0.94±0.19 2.79±0.23 4.08±0.34 0.86±1.73 2.02±0.14 0.16±0.01

Table 6.4: Performance of the proposed losses when the classifier is trained with only 10% of the
total data (TC3) using the metrics described in Sec.§ 6.4.3. The highest score for each metric is
highlighted for process-aware losses and theoretical ones.

73



0

1

2

3

4

5

6

7

max(Z) AUC WP(0.3) WP(0.8)

256
1024
4096

0

1

2

3

4

5

6

7

max(Z) AUC WP(0.3) WP(0.8)

(a) Hinge Error

0

1

2

3

4

5

6

7

max(Z) AUC WP(0.3) WP(0.8)

256
1024
4096

0

1

2

3

4

5

6

7

max(Z) AUC WP(0.3) WP(0.8)

(b) Sigmoid Error

0

1

2

3

4

5

6

7

max(Z) AUC WP(0.3) WP(0.8)

256
1024
4096

0

1

2

3

4

5

6

7

max(Z) AUC WP(0.3) WP(0.8)

(c) Cross Entropy Error

0

1

2

3

4

5

6

7

max(Z) AUC WP(0.3) WP(0.8)

256
1024
4096

0

1

2

3

4

5

6

7

max(Z) AUC WP(0.3) WP(0.8)

(d) Focal Error

Figure 6.3: The effect of batch size scaling to some performance metrics max(Z), AUC, WP0.3,
WP0.8 for the surrogate loss ∆̄Z . Batch sizes 256, 1024 and 4096 have been considered for the
study.

74



0

1

2

3

4

5

6

7

8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Z
sc

or
e

Classifer Threshold

BCE
Z loss, Sigmoid Error

Z loss, Hinge Error
Z loss, CE Error

PA, g = σ 0.5

PA, g = σ

0

1

2

3

4

5

6

7

8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 6.4: The Z vs Classifier Threshold curves for various loss functions. PA stands for the
process weighted loss functions

0

1

2

3

4

5

6

7

8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Z
sc

or
e

Classifer Threshold

Hinge Error, ∆ζ
Hinge Error, ∆Z

0

1

2

3

4

5

6

7

8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 6.5: The Z vs Classifier Threshold curves for comparing surrogate loss of ∆Z to that of ∆ζ

75



Two losses are particularly noteworthy: (1) weighted cross entropy with ωi = σi/Ni, and
(2) surrogate loss function with m given by the Sigmoid scheme. In both losses, we note that
the maximal Z score is achieved very early, and the curve remains very flat as we increase the
threshold. Figure 6.4 shows the Z vs NN threshold response curve for both losses.

We also study the effect of various batch sizes on the performance of the surrogate loss function
(Fig. 6.3). Overall, we see a slight improvement as the batch size increases, but we note that this
improvement is marginal for all practical purposes.

6.6 Related Works

Weighted CE losses have been used to mitigate the effects of dataset imbalances while training
a classifier [89, 90]. Biasing them with priors is known to improve model performances—for
example, in the case of language models, biasing the loss with character frequencies [91] performs
better than a naive Bayes classifier. Earlier, the Lovász extension has been used to derive loss
functions in various other fields as well. Our proof of Theorem 6.3.3 is similar to Ref. [86], which
defines a surrogate loss called the Lovász Hinge with reduced complexity of gradient computation.
In the domain of image segmentation, the authors of Ref. [85] have defined a surrogate loss over
the mean Jaccard index.

In particle physics, recent works focus on developing losses for likelihood-free inference by
training a neural network to estimate the likelihood ratios directly. Refs. [92, 93] exploit latent
information available in Monte Carlo simulators and define losses that utilize this additional
information to estimate the likelihood ratio directly. The most closely related work to ours is
that of Ref. [94], where the authors devise a surrogate loss to maximize a term proportional to
the extended likelihood function. Our work differs from theirs in that we take the asymptotic
formulae for likelihood-based tests, derive a continuous relaxation of the sensitivity, and maximize
it directly.

76



Chapter 7

Generative Modelling of Jets at the LHC

Deep learning models rely on large amounts of data to make accurate predictions. We use Monte
Carlo event generators to construct the datasets for these models, which is computationally
intensive and time-consuming. In this chapter, we investigate the potential of generative models
to produce a large number of jet samples. Such models can facilitate searches for new physics by
resource-limited groups and accelerate large-scale prototyping. Moreover, such a method can
provide a useful prior for anomaly detection or other self-supervised learning approaches.

7.1 Introduction and Motivation

As we pursue rarer signals at the LHC, we require enormous amounts of data to infer information
about the problem (and especially to apply deep learning techniques to it). This poses a barrier
for resource-limited groups who want to participate in such endeavours. Large, pre-processed
datasets might seem like an obvious solution here; however, they have certain caveats. They
are cumbersome to handle, difficult to distribute, and do not allow for control by the end user.
The natural goal, then, is to develop a faster alternative to current simulation-based frameworks
for event generation. Generative models offer a promising solution as they are able to encode
information from large datasets. These generative models could easily be distributed between
teams, and events may be generated by the end-user with specific generation control that could
be incorporated into the model’s design. Furthermore, deep learning-based generative models
are much faster and can be parallelised over GPUs, unlike current classical Monte Carlo-based
generation methods.

However, replacing event generators with deep generative models is a challenging task; it
would involve modelling multiple stages of a hard scattering event (§ 3.3). In this chapter, we
focus on the simpler task of generating the final state jets of an event. This problem is similar to
the event generation problem, and the lessons learned from solving this simpler problem can be

77



applied to the more complex one. In this chapter, we, therefore, propose a Generative Adversarial
Network (GAN) (see section § 4.3.2) to generate the jets.

7.2 Mathematical Setup for Jet Generation

We generate jets as particle clouds (see § 4.6.1). A challenge that we face that is absent in 3D
shape (point cloud) generation is the variable sizes of the jets. Therefore, we model the cardinality
and the attributes of the constituents as a product of two distinct probabilities. We model the
generative process for jets as follows — Let Y be a jet of size n (i.e., it has n constituents) and
y1, y2, . . . , yn be the constituents of the jet. Then we have:

p(Y |z) = p(n|z) · p(y1, y2, . . . , yn|z, x1, x2, . . . , xn) (7.1)

where z is a global latent noise parameter which controls both the cardinality of the jet and the
properties of constituents of the jet. Additionally, for the second part of the generation, we have
point-wise noise parameters x1, x2, . . . , xn, which are used to distinctly model the particles in
the jet.

This mathematical framework translates into a two-step process:

1. Sample the global latent noise z ∼ P from a chosen probability distribution P, and pass it
as input into the Sizes Generator which would output the cardinality of the jet (n).

2. Samples n points x1, x2, . . . , xn ∼ P ′ from another probability distribution P ′ to construct
the input set. Append the global latent noise z to each of the points and pass it as input to
the Particles Generator to transform the input set to the final particles within the
jet.

We note that the cardinality of a jet is not an IRC-safe quantity [95], and therefore this
generation is not IRC-safe. In order for one to construct an IRC-safe generator, one should
consider IRC-safe quantities such as pT ,MJ , but such an exploration is out of the scope of the
current work.

7.3 Methodology

The complete schema of the method is shown in Fig 7.1. The generation is performed in a
pipeline with two stages. Each stage has a separate generator, namely, the Sizes Generator

and the Particle Generator. Accordingly, we have two discriminators for each stage.

78



No gradient

Sizes
Generator

Input
Set

Sampler
Particle

Generator

Particle
Discriminator

Sizes
Discriminator

Generator
Discriminator

Global
Level
Input
Noise

Per Point Input Noise

GAN Loss
Formulation

Figure 7.1: The schematic of the GAN setup. z is input to the Sizes Generator, which outputs n.
This is passed to an input set sampler that samples n points. These sampled points and z are
passed into the Particle Generator, which outputs y. There are 2 discriminators, one - for each of
the two generators.

79



7.3.1 Generating the discrete categorical variable n

Generating discrete variables is a difficult task for neural networks since such variables are
not differentiable and do not provide gradients to train the network weights. Discrete data can
be generated by sampling from a categorical distribution, which may be constructed using the
softmax operation on the outputs of the neural network. However, this sampling process is
non-differentiable.

yi = onehot(argmax(π1, π2, . . . , πN )) (7.2)

Refs. [96, 97] proposed to reparameterize the problem using a Gumbel Distribution to enable
sampling from the underlying probabilities. Furthermore, they sidestepped the problem of
non-differentiability by replacing the argmax operation with a softmax operation with a
temperature τ . For a noise sample gi sampled from Gumbel(0, 1) distribution yi is given by:

yi =
e

log(πi)+gi
τ∑N

j=1 e
log(πj)+gj

τ

(7.3)

As τ → 0, this approximation becomes closer to the onehot representation of the discrete
variable, and as τ →∞, this approximation becomes closer to a uniform distribution.

We use this setup to generate the categorical variable n. We haveN as the maximum cardinality
in the dataset (here 100). The probabilities πi are the output of Sizes Generator, an MLP
network, π = f1(z) where z is the global level noise. We additionally use the Straight-Through
trick to obtain a onehot representation of yi.

7.3.2 Generating the Jet

Particle Clouds are inherently sets, and thus, functions on them must respect certain con-
straints and symmetries to prevent adding in artificial information (§ 4.6.1). We re-iterate these
constraints:

• The network should be able to work for variable-sized inputs (since sets, in general, can
have variable cardinality, the network needs to be able to adapt to that).

• The network should be permutation invariant (or equivariant in some cases). This sym-
metry is fundamental as it reduces the search space for the network. A set can have n!

arrangements, and thus a network that is invariant to this symmetry would learn faster
and with fewer data points.

In order to generate permutation-invariant jets, we reimplement the SetTransformer [98]
architecture with a minor modification that allows it to work for variable-sized inputs without
masks. The SetTransformer architecture is based on Transformers [99], originally developed
for language modelling. Transformers are essentially graph neural networks (§ 4.6.2) [100]

80



(a) MAB Architecture (b) ISAB Architecture

Figure 7.2: Architectures of the Blocks from Set Transformer. Figures by original authors

that assume a complete graph between the nodes and learn functions that can focus (or attend)
on interactions between specific subsets of nodes. We direct the reader to [101] for a review
on transformers. SetTransformer proposes an attention-based module that models interactions
between the elements of the input set. Using schemes inspired by the inducing points method in
Gaussian process literature, the authors reduce the self-attention complexity from quadratic to
linear in the number of elements in the set. This reduced complexity attention module is dubbed
ISAB, shown in Fig 7.2.

ISABm(X) = MAB(X,H) ∈ Rn×d (7.4)

where, H = MAB(I,X) ∈ Rm×d (7.5)

Here I (dubbed inducing points) is a learnable parameter of size m × d, and MAB is the
MultiHeadAttention block (from the Transformer architecture). The complexity of this layer
is O(nm) ≈ O(n) for small constant values of m.

The Particle Generator consists of 5 ISAB blocks, each with 4 separate attention heads.
The first two blocks have an embedding dimension of 128, and the last three blocks have
an embedding dimension of 64. LeakyReLU [102] is used as the activation function, and
LayerNorm [103] is used to stabilize the training, following the transformer architecture. This
creates a Set-to-Set architecture, and the input sampled point cloud is converted to the final
particle cloud.

7.3.3 Discriminator Architectures

In this work, we have two discriminators which are trained independently. The first discrim-
inator provides guidance to the Sizes Generator, and the second provides guidance to the
Particle Generator.

81



Jet Type # Parameters
Total (Sizes + Particle) Generator 460k
Sizes Discriminator 36.8k
Particle Discriminator 699k

Table 7.1: Model Architecture Details

7.3.3.1 Sizes Discriminator

The role of the Sizes Discriminator is to discriminate between the generated onehot
samples of n with the true distribution of n. The architecture is a simple MLP composed of a
series of Linear layers and Swish Activation. The Sizes Discriminator has 6 MLP layers
with an embedding dimension of 128, followed by 4 layers with an embedding layer 64, and
finally, a layer with an embedding dimension 32. BatchNorm is also used for stabilizing the
training. This task of this discriminator is relatively easy and thus should have sufficient capacity.

7.3.3.2 Particle Discriminator

The task of the Particle Discriminator is to discriminate between generated particle
clouds (jets) and real particle clouds (jets). This discriminator must also respect the constraints
specified in section§ 4.6.1. The Particle Discriminator also comprises ISAB layers in
series followed by a global pooling operation and an MLP. The Particle Discriminator

consists of 4 ISAB blocks in series. Each ISAB block with an embedding dimension of 128 and
four separate attention heads. LeakyReLU is used as the activation function, and LayerNorm
is used for stabilizing the training.

The total number of parameters of the models trained are provided in Table 7.1. The dis-
criminator networks are made to be more complex to provide better guidance to the generator
networks.

7.4 Dataset

The dataset for training the GAN is based on the Top Tagging Reference Dataset ([104]). This
dataset was used as it has sufficiently complex jets, with the cardinalities varying from 7 to 200.
We believe that a network that can replicate this complex data would, in principle, replicate a
host of other kinds of jets.

The dataset contains 14TeV hadronic Tops as signal and QCD dijets as background. Parton
shower and hadronization were performed using Pythia8, and detector simulation was performed
using Delphes. The jets were clustered using the anti-kT algorithm with a ∆R of 0.8 in the pT

82



range of [550, 650] GeV. The dataset contains jets with max 200 constituents, but we reduced the
maximum size to 100 for our purposes.

We transformed the jets to change their basis from (E, px, py, pz) to (E, pT , η, ϕ). η and ϕ

values were normalized with respect to the jet so that they lie between [−1, 1]. We worked with
logE and log pT as they are easier to train on.

7.5 Training

To train the network, we adopt the LSGAN formulation [34], which uses the least squares
loss function instead of the binary cross entropy loss from the original formulation. The LSGAN
formulation is defined as follows:

min
D

V (D) =
1

2
Ex∼pdata(x)

[
(D(x)− b)2

]
+

1

2
Ez∼pz(z)

[
(D(G(z))− a)2

]
(7.6)

min
G

V (G) =
1

2
Ez∼pz(z)

[
(D(G(z))− c)2

]
(7.7)

Here we choose b = c = 1 and a = 0.

Minimizing the LSGAN loss is equivalent to minimizing Pearson’s χ2 divergence between
the generated and real dataset. LSGAN encourages the generator to generate samples closer
to the decision boundary in the discriminator’s space, leading to better quality and diversity of
the generated samples. LSGAN also alleviates the issue of vanishing gradient that occurs in the
original formulation when the discriminator becomes too powerful.

We also use Spectral Normalization [105] on the weights of the discriminators to stabilize
the training process. Spectral Normalization is a technique that constrains the spectral norm
(the largest singular value) of the weight matrix to be less than or equal to a certain value.
This prevents the discriminators from becoming too dominant over the generator and ensures
balanced learning dynamics.

We trained the generator and the two discriminators alternatively, updating the discriminators
three times each time for every two generator updates. This unequal frequency allows the
discriminator to learn faster and provide more meaningful feedback to the generator.

Rmsprop optimizer was used with a learning rate of 0.0002. We trained the models for
600 epochs on 2 GTX1080Tis. The models were implemented in Pytorch Deep Learning
Framework [106]. Pytorch Geometric [107] and Pytorch Lightning [108] were used
for model creation and training respectively.

83



7.6 Evaluation

Evaluating generated jets is a difficult task as there is no single metric that is sensitive to the
features of the jets. Taking inspiration from the domain of generative modelling in Computer
Vision [109] have adapted and tested a few metrics to evaluate the quality of the generation of
jets. Among these, they find the following metrics sensitive enough:

1. Frechet Particle Distance (FPD) — Frechet Particle Network, inspired by the image-
counterpart Frechet Inception Distance [110], measures the difference between the gener-
ated images and the true images by finding the W2 distance between the latent distribution
of ParticleNet for the real data and the generated data.

2. Maximum Mean Discrepancy (MMD): Using the Energy Mover’s Distance metric [111],
designed to compare collider events, we calculate the MMD between the generated and
true distributions.

3. Wasserstein Distance on Energy Flow Polynomials WEFP — Energy Flow Polynomials [112]
form a linear basis on all the IRC-safe observables that can be constructed from jets.
Therefore, one can compare the difference in such IRC-safe observables by comparing the
Wasserstein distance on the Energy Flow Polynomials.

7.7 Results

Jet Type WEFP ↓ MMD ↓ FPD Score ↓
Top Jet 0.0001 0.2300 0.0055
QCD Jet 0.0005 0.3364 0.0060

Table 7.2: Results of the metrics for jets Generated by the Model

Table 7.2 summarizes our results for Top Jet and QCD Jet generation. The Wasserstein
distance between the EFPs of the real and generated data is low, which indicates that the IRC
safe observables computed from the generated data are similar to those computed from the real
data. Both our FPD score and MMD score are low. However, it shows that there may still be scope
for improvement. This we can see from a few cases in Fig. 7.7 to Fig. 7.14.

We also plot the distribution of the 4-vector in Fig 7.4 and Fig 7.5. Visually from the distributions
of log pT , logEt, η, and ϕ, the generated data appears to follow the same distribution as the real
data. We also plot the distribution of the masses of the constituents in Fig 7.6.

Additionally, we plot, in Fig 7.3, the size distributions of the jets in the generated dataset and
the true dataset. We can observe that, although there are some discrepancies, the general trend
of the learned distribution follows the true distribution.

84



0 20 40 60 80 100
Size of the Jet

0.00

0.01

0.02

0.03

0.04

De
ns

ity

real
gen

(a) The distribution of n in Top Jet generation

0 20 40 60 80 100
Size of the Jet

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

De
ns

ity

real
gen

(b) The distribution of n in QCD Jet generation

Figure 7.3: The distribution of n learned for the two cases. Plot generated with 100000 samples
of real and generated jets. (real in blue and generated in orange)

7.7.1 Plots For Individual Jet Sizes

We also plot the distributions of log pT ,logE, η, and ϕ for jets with various sizes in Figs. 7.7 to
Fig. 7.14. In most cases, the generated samples are close to the real distribution. The cases where
the generated distribution deviates from the actual distribution are when the jet sizes are very
small or very large and there is insufficient training data for the model to learn the distribution.
Through these plots, we can also see the disparity between the quality of the top jets generated
and the QCD jets. In the case of QCD jets, the model has difficulty learning the distribution of
jets with > 60 constituents.

7.8 Related Works

Deep generative models have attracted increasing attention as a tool for generating samples
for various stages of the Monte Carlo event generation pipeline Ref. [113] employed conditional
GANs with MLPs and trained them on the MMD-GAN objective to generate hard partonic collision
samples to be used in later stages of the generation pipeline. They demonstrated that the GAN-
generated events satisfied physical constraints such as momentum conservation. Refs. [114, 115]
proposed using GANs as an alternative to the detector-level simulations performed by GEANT4,
which is the most time-consuming stage of the pipeline and thus can benefit from significant
speed-ups. Current phenomenological rely on events simulated using fast approximations for the
actual detector simulations. Ref. [116] provided a proof of concept for GANs to generate jets.
The works in Refs.[117, 118] develop models for jet generation based on normalizing flows and
diffusion models. However, these methods work with smaller jets with little variation in the jet

85



log(E)0

50000

100000

150000

200000

250000

300000

Nu
m

be
r o

f P
ar

tic
le

s

Jet Source
generated
real

4 2 0 2 4 6 8
log(E)

0.6

0.8

1.0

1.2

1.4

Nu
m

be
r o

f P
ar

tic
le

s

(a) The distribution of logE in Top Jet generation

log(pT)0

50000

100000

150000

200000

250000

Nu
m

be
r o

f P
ar

tic
le

s

Jet Source
generated
real

4 2 0 2 4 6
log(pT)

0.6

0.8

1.0

1.2

1.4
Nu

m
be

r o
f P

ar
tic

le
s

(b) The distribution of log pT in Top Jet generation

0

100000

200000

300000

400000

500000

600000

Nu
m

be
r o

f P
ar

tic
le

s

Jet Source
generated
real

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

0.6

0.8

1.0

1.2

1.4

Nu
m

be
r o

f P
ar

tic
le

s

(c) The distribution of η in Top Jet generation

0

100000

200000

300000

400000

500000

Nu
m

be
r o

f P
ar

tic
le

s

Jet Source
generated
real

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

0.6

0.8

1.0

1.2

1.4

Nu
m

be
r o

f P
ar

tic
le

s

(d) The distribution of ϕ in Top Jet generation

Figure 7.4: The distribution of log pT , logE, η, ϕ for generated Top jets. Plot generated with
100000 samples of real and generated jets. (real in orange and generated in blue)

86



log(E)0

50000

100000

150000

200000

250000

300000

350000

400000

Nu
m

be
r o

f P
ar

tic
le

s

Jet Source
generated
real

4 2 0 2 4 6 8
log(E)

0.6

0.8

1.0

1.2

1.4

Nu
m

be
r o

f P
ar

tic
le

s

(a) The distribution of logE in QCD Jet generation

log(pT)0

50000

100000

150000

200000

250000

300000

350000

Nu
m

be
r o

f P
ar

tic
le

s

Jet Source
generated
real

4 2 0 2 4 6
log(pT)

0.6

0.8

1.0

1.2

1.4
Nu

m
be

r o
f P

ar
tic

le
s

(b) The distribution of log pT in QCD Jet generation

0

50000

100000

150000

200000

250000

300000

350000

Nu
m

be
r o

f P
ar

tic
le

s

Jet Source
generated
real

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

0.6

0.8

1.0

1.2

1.4

Nu
m

be
r o

f P
ar

tic
le

s

(c) The distribution of η in QCD Jet generation

0

50000

100000

150000

200000

250000

300000

Nu
m

be
r o

f P
ar

tic
le

s

Jet Source
generated
real

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

0.6

0.8

1.0

1.2

1.4

Nu
m

be
r o

f P
ar

tic
le

s

(d) The distribution of ϕ in QCD Jet generation

Figure 7.5: The distribution of log pT , logE, η, ϕ for generated QCD jets. Plot generated with
100000 samples of real and generated jets. (real in orange and generated in blue)

87



log (mass)0

50000

100000

150000

200000

250000

300000

350000

400000

Nu
m

be
r o

f P
ar

tic
le

s

Jet Source
generated
real

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
log (mass)

0.6

0.8

1.0

1.2

1.4

Nu
m

be
r o

f P
ar

tic
le

s

(a) The distribution of log mass in Top Jet gen-
eration

log (mass)0

100000

200000

300000

400000

Nu
m

be
r o

f P
ar

tic
le

s

Jet Source
generated
real

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
log (mass)

0.6

0.8

1.0

1.2

1.4

Nu
m

be
r o

f P
ar

tic
le

s
(b) The distribution of log mass in QCD Jet gen-
eration

Figure 7.6: The distribution of log mass for generated Top and QCD Jets. Plot generated with
100000 samples of real and generated jets. (real in orange and generated in blue)

size. Moreover, they do not incorporate the variability of jet size into the generative modelling
but instead introduce extra "masks" that emulate the output. Our work differs from theirs as we
not only incorporate an additional generator that can learn the distribution of the jet sizes, but
we also use the GAN framework, which leads to faster generation compared to methods like
normalizing flows and diffusion models.

88



2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

log(E) : Jets with 93 particles
Real
Generated

2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

0.30
log(E) : Jets with 53 particles

Real
Generated

2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

0.30
log(E) : Jets with 46 particles

Real
Generated

0 2 4 6
0.0

0.1

0.2

0.3

0.4

0.5

log(E) : Jets with 6 particles
Real
Generated

2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

log(E) : Jets with 29 particles
Real
Generated

2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

log(E) : Jets with 28 particles
Real
Generated

2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

log(E) : Jets with 36 particles
Real
Generated

2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

0.30
log(E) : Jets with 49 particles

Real
Generated

0 1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

log(E) : Jets with 5 particles
Real
Generated

2 0 2 4 6 8
0.00

0.05

0.10

0.15

0.20

0.25

log(E) : Jets with 32 particles
Real
Generated

2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
log(E) : Jets with 94 particles

Real
Generated

2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

log(E) : Jets with 34 particles
Real
Generated

2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

0.30

log(E) : Jets with 60 particles
Real
Generated

2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
log(E) : Jets with 88 particles

Real
Generated

2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

log(E) : Jets with 44 particles
Real
Generated

2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
log(E) : Jets with 89 particles

Real
Generated

4 2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

0.30

log(E) : Jets with 65 particles

Real
Generated

2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
log(E) : Jets with 86 particles

Real
Generated

2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

0.30
log(E) : Jets with 61 particles

Real
Generated

6 4 2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

log(E) : Jets with 38 particles

Real
Generated

2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

0.30

log(E) : Jets with 85 particles
Real
Generated

2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

log(E) : Jets with 42 particles
Real
Generated

2 0 2 4 6 8
0.00

0.05

0.10

0.15

0.20

0.25
log(E) : Jets with 17 particles

Real
Generated

2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

0.30
log(E) : Jets with 50 particles

Real
Generated

Figure 7.7: logE distribution for Top jets of various sizes

89



2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

log(pT) : Jets with 44 particles
Real
Generated

2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

0.30

log(pT) : Jets with 73 particles

Real
Generated

2 0 2 4
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

log(pT) : Jets with 95 particles
Real
Generated

2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

0.30

log(pT) : Jets with 8 particles
Real
Generated

2 1 0 1 2 3 4 5
0.00

0.05

0.10

0.15

0.20

0.25

0.30

log(pT) : Jets with 82 particles
Real
Generated

1 0 1 2 3 4 5 6
0.0

0.5

1.0

1.5

2.0

2.5

log(pT) : Jets with 3 particles
Real
Generated

2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

0.30
log(pT) : Jets with 46 particles

Real
Generated

2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

0.30

log(pT) : Jets with 64 particles
Real
Generated

2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

log(pT) : Jets with 32 particles
Real
Generated

2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

log(pT) : Jets with 35 particles
Real
Generated

2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

log(pT) : Jets with 22 particles
Real
Generated

3 2 1 0 1 2 3 4 5
0.00

0.05

0.10

0.15

0.20

0.25

0.30

log(pT) : Jets with 87 particles
Real
Generated

2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

log(pT) : Jets with 18 particles
Real
Generated

2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

0.30

log(pT) : Jets with 9 particles
Real
Generated

2 1 0 1 2 3 4 5
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
log(pT) : Jets with 91 particles

Real
Generated

2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

log(pT) : Jets with 37 particles

Real
Generated

2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

log(pT) : Jets with 29 particles
Real
Generated

4 2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

0.30
log(pT) : Jets with 49 particles

Real
Generated

2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

log(pT) : Jets with 48 particles
Real
Generated

2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25
log(pT) : Jets with 11 particles

Real
Generated

4 2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

0.30
log(pT) : Jets with 55 particles

Real
Generated

2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

0.30

log(pT) : Jets with 78 particles
Real
Generated

2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

log(pT) : Jets with 41 particles
Real
Generated

2 1 0 1 2 3 4 5
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
log(pT) : Jets with 88 particles

Real
Generated

Figure 7.8: log pT distribution for Top jets of various sizes

90



1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

 : Jets with 41 particles

Real
Generated

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

8

 : Jets with 13 particles
Real
Generated

0.4 0.2 0.0 0.2 0.4 0.6
0

2

4

6

8

10

12

14

 : Jets with 6 particles
Real
Generated

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75
0.0

0.5

1.0

1.5

2.0

2.5

 : Jets with 61 particles
Real
Generated

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75
0.0

0.5

1.0

1.5

2.0

2.5

 : Jets with 62 particles
Real
Generated

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6
 : Jets with 22 particles

Real
Generated

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.0

0.5

1.0

1.5

2.0

2.5

3.0

 : Jets with 49 particles
Real
Generated

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

 : Jets with 23 particles

Real
Generated

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.0

0.5

1.0

1.5

2.0

 : Jets with 94 particles
Real
Generated

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

 : Jets with 24 particles

Real
Generated

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

8

 : Jets with 10 particles

Real
Generated

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.0

0.5

1.0

1.5

2.0

 : Jets with 93 particles
Real
Generated

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75
0.0

0.5

1.0

1.5

2.0

2.5

 : Jets with 68 particles
Real
Generated

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75
0.0

0.5

1.0

1.5

2.0

2.5
 : Jets with 83 particles

Real
Generated

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

 : Jets with 45 particles
Real
Generated

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.0

0.5

1.0

1.5

2.0

2.5

 : Jets with 85 particles
Real
Generated

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75
0.0

0.5

1.0

1.5

2.0

2.5
 : Jets with 79 particles

Real
Generated

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.0

0.5

1.0

1.5

2.0

2.5

 : Jets with 59 particles
Real
Generated

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.0

0.5

1.0

1.5

2.0

2.5

3.0

 : Jets with 57 particles
Real
Generated

1.0 0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0

 : Jets with 70 particles
Real
Generated

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75
0.0

0.5

1.0

1.5

2.0

2.5

3.0
 : Jets with 53 particles

Real
Generated

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
0

1

2

3

4

 : Jets with 33 particles
Real
Generated

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75
0.0

0.5

1.0

1.5

2.0

 : Jets with 95 particles
Real
Generated

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
0

2

4

6

8

10

 : Jets with 9 particles
Real
Generated

Figure 7.9: η distribution for Top jets of various sizes

91



1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75
0.0

0.5

1.0

1.5

2.0

2.5

 : Jets with 61 particles
Real
Generated

0.75 0.50 0.25 0.00 0.25 0.50 0.75
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
 : Jets with 34 particles

Real
Generated

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
0

2

4

6

8

 : Jets with 9 particles
Real
Generated

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

 : Jets with 35 particles
Real
Generated

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

 : Jets with 21 particles
Real
Generated

1.0 0.5 0.0 0.5 1.0
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

 : Jets with 94 particles
Real
Generated

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.0

0.5

1.0

1.5

2.0

2.5

 : Jets with 62 particles
Real
Generated

1.0 0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0

 : Jets with 64 particles
Real
Generated

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.0

0.5

1.0

1.5

2.0

2.5

 : Jets with 69 particles
Real
Generated

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.0

0.5

1.0

1.5

2.0

2.5

 : Jets with 55 particles
Real
Generated

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.0

0.5

1.0

1.5

2.0

2.5

 : Jets with 72 particles
Real
Generated

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
0

1

2

3

4

 : Jets with 25 particles
Real
Generated

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
0

1

2

3

4

 : Jets with 24 particles
Real
Generated

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.0

0.5

1.0

1.5

2.0

 : Jets with 83 particles
Real
Generated

0.4 0.2 0.0 0.2 0.4 0.6
0

5

10

15

20

25

30

 : Jets with 3 particles
Real
Generated

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.0

0.5

1.0

1.5

2.0

2.5

 : Jets with 80 particles
Real
Generated

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0

10

20

30

40

 : Jets with 4 particles
Real
Generated

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.0

0.5

1.0

1.5

2.0

2.5

 : Jets with 56 particles

Real
Generated

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.0

0.5

1.0

1.5

2.0

 : Jets with 81 particles
Real
Generated

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75
0.0

0.5

1.0

1.5

2.0

 : Jets with 96 particles
Real
Generated

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.0

0.5

1.0

1.5

2.0

2.5

 : Jets with 76 particles
Real
Generated

0.75 0.50 0.25 0.00 0.25 0.50 0.75
0.0

0.5

1.0

1.5

2.0

2.5

 : Jets with 52 particles

Real
Generated

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

 : Jets with 36 particles
Real
Generated

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

 : Jets with 92 particles
Real
Generated

Figure 7.10: ϕ distribution for Top jets of various sizes

92



2 1 0 1 2 3 4 5 6
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
log(E) : Jets with 90 particles

Real
Generated

4 2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

log(E) : Jets with 46 particles

Real
Generated

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

log(E) : Jets with 18 particles
Real
Generated

2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

log(E) : Jets with 35 particles

Real
Generated

4 2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

log(E) : Jets with 56 particles

Real
Generated

2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

log(E) : Jets with 37 particles

Real
Generated

2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

0.30
log(E) : Jets with 64 particles

Real
Generated

2 1 0 1 2 3 4 5 6
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

log(E) : Jets with 98 particles
Real
Generated

2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

log(E) : Jets with 31 particles

Real
Generated

4 2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

log(E) : Jets with 47 particles

Real
Generated

2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
log(E) : Jets with 92 particles

Real
Generated

4 2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
log(E) : Jets with 93 particles

Real
Generated

0 1 2 3 4 5
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

log(E) : Jets with 17 particles
Real
Generated

2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

0.30

log(E) : Jets with 24 particles
Real
Generated

1 0 1 2 3 4 5 6
0.0

0.1

0.2

0.3

0.4

log(E) : Jets with 21 particles
Real
Generated

2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

log(E) : Jets with 54 particles

Real
Generated

2 1 0 1 2 3 4 5 6
0.00

0.05

0.10

0.15

0.20

0.25

0.30

log(E) : Jets with 89 particles
Real
Generated

2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

log(E) : Jets with 42 particles

Real
Generated

2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

log(E) : Jets with 45 particles

Real
Generated

2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

log(E) : Jets with 43 particles

Real
Generated

2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

0.30

log(E) : Jets with 82 particles
Real
Generated

2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

0.30

log(E) : Jets with 72 particles
Real
Generated

1 0 1 2 3 4 5 6 7
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
log(E) : Jets with 20 particles

Real
Generated

2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

0.30
log(E) : Jets with 71 particles

Real
Generated

Figure 7.11: logE distribution for QCD jets of various sizes

93



2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

log(pT) : Jets with 35 particles

Real
Generated

2 1 0 1 2 3 4 5
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

log(pT) : Jets with 99 particles
Real
Generated

2 1 0 1 2 3 4 5
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
log(pT) : Jets with 97 particles

Real
Generated

2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

log(pT) : Jets with 41 particles

Real
Generated

2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
log(pT) : Jets with 25 particles

Real
Generated

2 0 2 4
0.00

0.05

0.10

0.15

0.20

0.25

0.30

log(pT) : Jets with 84 particles

Real
Generated

2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

log(pT) : Jets with 40 particles

Real
Generated

2 1 0 1 2 3 4 5 6
0.0

0.1

0.2

0.3

0.4

0.5

0.6
log(pT) : Jets with 20 particles

Real
Generated

2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

0.30

log(pT) : Jets with 72 particles

Real
Generated

2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

log(pT) : Jets with 54 particles

Real
Generated

2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

0.30
log(pT) : Jets with 63 particles

Real
Generated

4 2 0 2 4
0.00

0.05

0.10

0.15

0.20

0.25

0.30

log(pT) : Jets with 87 particles
Real
Generated

2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

0.30

log(pT) : Jets with 80 particles
Real
Generated

2 0 2 4
0.00

0.05

0.10

0.15

0.20

0.25

0.30

log(pT) : Jets with 86 particles

Real
Generated

2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

log(pT) : Jets with 52 particles

Real
Generated

2 1 0 1 2 3 4 5 6
0.00

0.05

0.10

0.15

0.20

0.25

0.30

log(pT) : Jets with 22 particles
Real
Generated

2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

0.30

log(pT) : Jets with 75 particles

Real
Generated

4 2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

0.30
log(pT) : Jets with 65 particles

Real
Generated

3 2 1 0 1 2 3 4 5
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

log(pT) : Jets with 96 particles

Real
Generated

2 0 2 4
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

log(pT) : Jets with 94 particles
Real
Generated

2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

0.30

log(pT) : Jets with 76 particles

Real
Generated

2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

log(pT) : Jets with 51 particles

Real
Generated

2 1 0 1 2 3 4 5
0.00

0.05

0.10

0.15

0.20

0.25

0.30

log(pT) : Jets with 83 particles

Real
Generated

2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

log(pT) : Jets with 59 particles

Real
Generated

Figure 7.12: log pT distribution for QCD jets of various sizes

94



1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
 : Jets with 65 particles

Real
Generated

0.75 0.50 0.25 0.00 0.25 0.50 0.75
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

 : Jets with 46 particles

Real
Generated

0.75 0.50 0.25 0.00 0.25 0.50 0.75
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

 : Jets with 44 particles

Real
Generated

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

 : Jets with 96 particles
Real
Generated

0.6 0.4 0.2 0.0 0.2 0.4
0

1

2

3

4

5

6
 : Jets with 19 particles

Real
Generated

0.75 0.50 0.25 0.00 0.25 0.50 0.75
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

 : Jets with 50 particles

Real
Generated

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

 : Jets with 60 particles

Real
Generated

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

 : Jets with 58 particles

Real
Generated

0.6 0.4 0.2 0.0 0.2 0.4 0.6
0

1

2

3

4

5

 : Jets with 18 particles
Real
Generated

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

 : Jets with 95 particles
Real
Generated

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
 : Jets with 54 particles

Real
Generated

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
 : Jets with 59 particles

Real
Generated

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
 : Jets with 55 particles

Real
Generated

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

 : Jets with 73 particles

Real
Generated

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
 : Jets with 61 particles

Real
Generated

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

 : Jets with 35 particles

Real
Generated

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

 : Jets with 31 particles

Real
Generated

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

 : Jets with 56 particles

Real
Generated

0.75 0.50 0.25 0.00 0.25 0.50 0.75
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

 : Jets with 47 particles

Real
Generated

0.75 0.50 0.25 0.00 0.25 0.50 0.75
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

 : Jets with 51 particles

Real
Generated

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

 : Jets with 94 particles

Real
Generated

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

 : Jets with 53 particles

Real
Generated

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

 : Jets with 27 particles
Real
Generated

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

 : Jets with 81 particles
Real
Generated

Figure 7.13: η distribution for QCD jets of various sizes

95



0.75 0.50 0.25 0.00 0.25 0.50 0.75
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
 : Jets with 57 particles

Real
Generated

0.75 0.50 0.25 0.00 0.25 0.50 0.75
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
 : Jets with 56 particles

Real
Generated

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
 : Jets with 70 particles

Real
Generated

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
 : Jets with 19 particles

Real
Generated

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

 : Jets with 25 particles
Real
Generated

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
 : Jets with 26 particles

Real
Generated

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

 : Jets with 47 particles

Real
Generated

0.75 0.50 0.25 0.00 0.25 0.50 0.75
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

 : Jets with 46 particles

Real
Generated

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
 : Jets with 100 particles

Real
Generated

0.75 0.50 0.25 0.00 0.25 0.50 0.75
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
 : Jets with 49 particles

Real
Generated

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
 : Jets with 89 particles

Real
Generated

0.6 0.4 0.2 0.0 0.2 0.4 0.6
0

1

2

3

4

5

 : Jets with 20 particles
Real
Generated

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

 : Jets with 68 particles

Real
Generated

0.75 0.50 0.25 0.00 0.25 0.50 0.75
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

 : Jets with 39 particles

Real
Generated

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
 : Jets with 63 particles

Real
Generated

0.75 0.50 0.25 0.00 0.25 0.50 0.75
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
 : Jets with 53 particles

Real
Generated

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
 : Jets with 83 particles

Real
Generated

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
0.0

0.5

1.0

1.5

2.0

2.5
 : Jets with 24 particles

Real
Generated

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

 : Jets with 97 particles
Real
Generated

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

 : Jets with 76 particles

Real
Generated

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
 : Jets with 62 particles

Real
Generated

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
 : Jets with 80 particles

Real
Generated

0.75 0.50 0.25 0.00 0.25 0.50 0.75
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

 : Jets with 35 particles
Real
Generated

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

 : Jets with 67 particles
Real
Generated

Figure 7.14: ϕ distribution for QCD jets of various sizes

96



Chapter 8

Summary, Conclusions, and Future Outlook

We summarise the major results of this thesis below:

• In chapter 5, we performed a case study of applying deep learning in a new-physics search for
a heavy B quark. We discussed the event-generation pipeline, the kinematic and topological
cuts applied, and the choice of features reconstructed. We compared the performances of
two ML approaches: a DNN model and a BDT model. At the benchmark point of MB = 1.5

TeV andMΦ = 0.4 TeV, the analysis cuts only achieved a discovery sensitivity score of 0.38σ,
while the BDT achieved a score of 2.76σ, and the DNN achieved a score of 3.81σ. The DNN
outperformed the BDT by roughly ∼ 20%− 40% across all mass points. The study’s result
showed that, with our method, a B VLQ of mass up to 1.7 TeV could be discovered (5σ) at
the HL-LHC. We then used Integrated Gradients to obtain global feature importances. We
addressed the issue of an appropriate baseline by averaging the feature attributions over
multiple baselines sampled from the background distribution to obtain a robust and better
attribution score.

For future work, we believe that newer neural network models which operate on raw,
unstructured data, such as graph neural networks, will provide significant improvements.
Furthermore, expanding interpretability methods to these architectures is a promising
future direction. Finally, one can also think about the inverse problem of reconstructing
meaningful features using the DNN feature attributions to recognize connections.

• In chapter 6, we built upon the modification to the loss introduced in chapter 5 and asked the
general question — whether one could modify the loss function to align the DNN training
with physics goals. We investigated two losses: (1) weighted cross entropy loss with weights
calculated from theory, and (2) a theoretically derived surrogate loss for maximizing the
discovery sensitivity, Eq. (3.28), based on the Lovasz extension. For the case of weighted
losses, we experimented with different weights as functions of the cross-section of the
processes. For the surrogate loss, we showed that, with slight modifications, equation
(3.28) is submodular under the set of misclassifications (n,p), i.e., false negatives and

97



false positives. We used this property to construct the surrogate loss. We also showed that
equation (3.25) is not submodular under the same set. We benchmarked the two losses
and found that both perform better than the simple binary cross entropy loss in all the test
cases. However, we found that both methods require some finetuning. Reducing the need
for such finetuning would be an excellent future goal.

• Finally, in chapter 7, we addressed the problem of data generation, which is essential for
collider projection studies, especially for those based on deep learning. Specifically, we
developed a generative model based on the GAN framework to generate particle jets (as
particle clouds). This generative model could enable faster and computationally cheaper
generation for jet datasets. Jet generation poses a few problems that are not common in
other domains, namely, the variability in the size of the jet and the permutation invari-
ance of particle clouds. We proposed a two-stage pipeline with two generators and two
discriminators trained on the LSGAN formulation to resolve these issues. We evaluated the
trained generator on a few metrics designed to capture the quality of the generated data.
We found that the generator performed well in producing jets that mimicked the IRC-safe
observables. However, there is still scope for improvement, indicated by the relatively poor
MMD and FPD values.

For future work, we suspect improvements can come from using deeper networks for both
the generator and the discriminator and training the models on a larger dataset. Future
studies could also explore other formulations, such as the Wasserstein GAN formulation,
but this formulation would require modifications for jet data. Other directions could also
include introducing conditional variables and developing generative models using different
kinds of generative models, such as VAEs, or diffusion models.

Though deep learning models are ubiquitous in particle physics searches, their inner workings
are poorly understood. This thesis points out some ways to interpret these models better while
proposing multiple avenues to investigate these models further. It also proposes novel methods
to maximise the sensitivity of a particle physics experiment. It also explores the prospects of
generative models for quick and scalable data generation.

98



Related Publications

1. Machine learning-enhanced search for a vectorlike-singlet B quark decaying to a singlet
scalar or pseudoscalar

Jai Bardhan, Tanumoy Mandal, Subhadip Mitra, Cyrin Neeraj

(Published: Physical Review D 107, 115001 (2023), https://doi.org/10.1103/
PhysRevD.107.115001)

2. Targeted Losses for Deep Learning in Particle Physics

Jai Bardhan, Cyrin Neeraj, Subhadip Mitra, Tanumoy Mandal

(Under preparation)

3. A Simple Generative Adversarial Network for generating jets at LHC

Jai Bardhan, Subhadip Mitra

(Under preparation)

99

https://doi.org/10.1103/PhysRevD.107.115001
https://doi.org/10.1103/PhysRevD.107.115001


Bibliography

[1] Particle Data Group collaboration, R. L. Workman et al., Review of Particle Physics, PTEP
2022 (2022) 083C01.

[2] K. Olive, et al., the Particle Data Group and J. Rademacker, Review of particle physics
(2014), Chinese Physics C 38 (Aug., 2014) .

[3] G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based
tests of new physics, Eur. Phys. J. C 71 (2011) 1554, [1007.1727]. [Erratum:
Eur.Phys.J.C 73, 2501 (2013)].

[4] Wikipedia contributors, “Collider — Wikipedia, the free encyclopedia.” https:
//en.wikipedia.org/w/index.php?title=Collider&oldid=1156154818,
2023.

[5] V. Shiltsev and F. Zimmermann, Modern and future colliders, Rev. Mod. Phys. 93 (Mar,
2021) 015006.

[6] A. D. Martin, Proton structure, Partons, QCD, DGLAP and beyond, Acta Phys. Polon. B 39
(2008) 2025–2062, [0802.0161].

[7] L. Lonnblad and H. Jung, Monte Carlo generators and the CCFM equation, in 8th
International Workshop on Deep Inelastic Scattering and QCD (DIS 2000), pp. 297–300, 6,
2000. hep-ph/0006166.

[8] B. Anderson, The Lund string model. Adam Hilger Ltd, United Kingdom, 1985.

[9] D. Amati and G. Veneziano, Preconfinement as a property of perturbative qcd, Physics
Letters B 83 (1979) 87–92.

[10] A. Bassetto, M. Ciafaloni and G. Marchesini, Color singlet distributions and mass damping
in perturbative qcd, Physics Letters B 83 (1979) 207–212.

[11] S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce et al., Geant4—a
simulation toolkit, Nuclear Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and Associated Equipment 506 (2003) 250–303.

100

http://dx.doi.org/10.1093/ptep/ptac097
http://dx.doi.org/10.1093/ptep/ptac097
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://dx.doi.org/10.1140/epjc/s10052-011-1554-0
http://arxiv.org/abs/1007.1727
https://en.wikipedia.org/w/index.php?title=Collider&oldid=1156154818
https://en.wikipedia.org/w/index.php?title=Collider&oldid=1156154818
http://dx.doi.org/10.1103/RevModPhys.93.015006
http://dx.doi.org/10.1103/RevModPhys.93.015006
http://arxiv.org/abs/0802.0161
http://arxiv.org/abs/hep-ph/0006166
http://dx.doi.org/https://doi.org/10.1016/0370-2693(79)90896-7
http://dx.doi.org/https://doi.org/10.1016/0370-2693(79)90896-7
http://dx.doi.org/https://doi.org/10.1016/0370-2693(79)90687-7
http://dx.doi.org/https://doi.org/10.1016/S0168-9002(03)01368-8
http://dx.doi.org/https://doi.org/10.1016/S0168-9002(03)01368-8


[12] DELPHES 3 collaboration, J. de Favereau, C. Delaere, P. Demin, A. Giammanco,
V. Lemaître, A. Mertens et al., DELPHES 3, A modular framework for fast simulation of a
generic collider experiment, JHEP 02 (2014) 057, [1307.6346].

[13] J. Bauer, “Prospects for the Observation of Electroweak Top Quark Production with the
CMS Experiment. Perspektiven zur Beobachtung der elektroschwachen Produktion
einzelner Top-Quarks mit dem CMS Experiment.”
http://cds.cern.ch/record/1308713, 2010.

[14] CERN, “The large hadron collider.” https:
//home.web.cern.ch/science/accelerators/large-hadron-collider.

[15] CERN, “How a detector works.”
https://home.cern/science/experiments/how-detector-works.

[16] CERN, “Cms detector.” https://cms.cern/detector.

[17] R. Atkin, Review of jet reconstruction algorithms, Journal of Physics: Conference Series 645
(sep, 2015) 012008.

[18] S. Catani, Y. L. Dokshitzer, M. H. Seymour and B. R. Webber, Longitudinally invariant Kt

clustering algorithms for hadron hadron collisions, Nucl. Phys. B 406 (1993) 187–224.

[19] M. Cacciari, G. P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04
(2008) 063, [0802.1189].

[20] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond,
Journal of High Energy Physics 2011 (June, 2011) 128.

[21] T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten et al., An introduction to
pythia 8.2, Computer Physics Communications 191 (2015) 159–177.

[22] M. Cacciari, G. P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C72 (2012) 1896,
[1111.6097].

[23] M. Bähr, S. Gieseke, M. A. Gigg, D. Grellscheid, K. Hamilton, O. Latunde-Dada et al.,
Herwig++ physics and manual, The European Physical Journal C 58 (Dec., 2008) 639–707.

[24] E. Bothmann, G. S. Chahal, S. Höche, J. Krause, F. Krauss, S. Kuttimalai et al., Event
generation with Sherpa 2.2, SciPost Phys. 7 (2019) 034.

[25] S. S. Wilks, The Large-Sample Distribution of the Likelihood Ratio for Testing Composite
Hypotheses, Annals Math. Statist. 9 (1938) 60–62.

101

http://dx.doi.org/10.1007/JHEP02(2014)057
http://arxiv.org/abs/1307.6346
http://cds.cern.ch/record/1308713
https://home.web.cern.ch/science/accelerators/large-hadron-collider
https://home.web.cern.ch/science/accelerators/large-hadron-collider
https://home.cern/science/experiments/how-detector-works
https://cms.cern/detector
http://dx.doi.org/10.1088/1742-6596/645/1/012008
http://dx.doi.org/10.1088/1742-6596/645/1/012008
http://dx.doi.org/10.1016/0550-3213(93)90166-M
http://dx.doi.org/10.1088/1126-6708/2008/04/063
http://dx.doi.org/10.1088/1126-6708/2008/04/063
http://arxiv.org/abs/0802.1189
http://dx.doi.org/https://doi.org/10.1016/j.cpc.2015.01.024
http://dx.doi.org/10.1140/epjc/s10052-012-1896-2
http://arxiv.org/abs/1111.6097
http://dx.doi.org/10.21468/SciPostPhys.7.3.034
http://dx.doi.org/10.1214/aoms/1177732360


[26] A. Wald, Tests of statistical hypotheses concerning several parameters when the number of
observations is large, Transactions of the American Mathematical Society 54 (1943)
426–482.

[27] A. G. Frodesen, O. Skjeggestad and H. Tofte, Probability and Statistics in Particle Physics.
Universitetsforlaget, Bergen, Norway, 1979.

[28] F. James, Statistical Methods in Experimental Physics. WORLD SCIENTIFIC, 2nd ed., 2006,
10.1142/6096.

[29] J. Stupak, A search for first generation leptoquarks in
√
s = 7 TeV pp collisions with the

ATLAS detector. PhD thesis, SUNY, Stony Brook, 8, 2012.

[30] K. P. Murphy, Machine Learning: A Probabilistic Perspective. The MIT Press, 2012.

[31] HEP ML Community, “A Living Review of Machine Learning for Particle Physics.”
https://iml-wg.github.io/HEPML-LivingReview/.

[32] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair et al.,
Generative adversarial nets, in Advances in Neural Information Processing Systems
(Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence and K. Weinberger, eds.), vol. 27,
Curran Associates, Inc., 2014.

[33] M. Arjovsky, S. Chintala and L. Bottou, Wasserstein generative adversarial networks, in
Proceedings of the 34th International Conference on Machine Learning (D. Precup and Y. W.
Teh, eds.), vol. 70 of Proceedings of Machine Learning Research, pp. 214–223, PMLR,
06–11 Aug, 2017.

[34] X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang and S. P. Smolley, Least squares generative
adversarial networks, in 2017 IEEE International Conference on Computer Vision (ICCV),
pp. 2813–2821, 2017. DOI.

[35] D. P. Kingma and M. Welling, Auto-Encoding Variational Bayes, in 2nd International
Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014,
Conference Track Proceedings, 2014. http://arxiv.org/abs/1312.6114v10.

[36] D. J. Rezende and S. Mohamed, Variational inference with normalizing flows, in
Proceedings of the 32nd International Conference on International Conference on Machine
Learning - Volume 37, ICML’15, p. 1530–1538, JMLR.org, 2015.

[37] J. Ho, A. Jain and P. Abbeel, Denoising diffusion probabilistic models, in Advances in Neural
Information Processing Systems (H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan and
H. Lin, eds.), vol. 33, pp. 6840–6851, Curran Associates, Inc., 2020.

102

http://dx.doi.org/10.1142/6096
https://iml-wg.github.io/HEPML-LivingReview/
http://dx.doi.org/10.1109/ICCV.2017.304
http://arxiv.org/abs/http://arxiv.org/abs/1312.6114v10


[38] Y. Xu, Z. Liu, M. Tegmark and T. Jaakkola, Poisson flow generative models, in Advances in
Neural Information Processing Systems (S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave,
K. Cho and A. Oh, eds.), vol. 35, pp. 16782–16795, Curran Associates, Inc., 2022.

[39] S. Bond-Taylor, A. Leach, Y. Long and C. G. Willcocks, Deep generative modelling: A
comparative review of vaes, gans, normalizing flows, energy-based and autoregressive models,
IEEE Transactions on Pattern Analysis and Machine Intelligence 44 (2022) 7327–7347.

[40] L. Hyafil and R. L. Rivest, Constructing optimal binary decision trees is np-complete,
Information Processing Letters 5 (1976) 15–17.

[41] K. Hornik, M. Stinchcombe and H. White, Multilayer feedforward networks are universal
approximators, Neural Networks 2 (1989) 359–366.

[42] V. Nair and G. E. Hinton, Rectified linear units improve restricted boltzmann machines, in
Proceedings of the 27th International Conference on International Conference on Machine
Learning, ICML’10, (Madison, WI, USA), p. 807–814, Omnipress, 2010.

[43] P. Ramachandran, B. Zoph and Q. V. Le, Searching for activation functions, arXiv preprint
arXiv:1710.05941 (2017) .

[44] D. Misra, Mish: A self regularized non-monotonic activation function, in British Machine
Vision Conference, 2020.

[45] S. R. Dubey, S. K. Singh and B. B. Chaudhuri, Activation functions in deep learning: A
comprehensive survey and benchmark, Neurocomput. 503 (sep, 2022) 92–108.

[46] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization., in ICLR (Poster)
(Y. Bengio and Y. LeCun, eds.), 2015.

[47] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov, Dropout: A
simple way to prevent neural networks from overfitting, Journal of Machine Learning
Research 15 (2014) 1929–1958.

[48] S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network training by
reducing internal covariate shift, in Proceedings of the 32nd International Conference on
Machine Learning (F. Bach and D. Blei, eds.), vol. 37 of Proceedings of Machine Learning
Research, (Lille, France), pp. 448–456, PMLR, 07–09 Jul, 2015.

[49] H. Qu and L. Gouskos, ParticleNet: Jet Tagging via Particle Clouds, Phys. Rev. D 101 (2020)
056019, [1902.08570].

[50] Y. Guo, H. Wang, Q. Hu, H. Liu, L. Liu and M. Bennamoun, Deep learning for 3d point
clouds: A survey, IEEE transactions on pattern analysis and machine intelligence 43 (2020)
4338–4364.

103

http://dx.doi.org/10.1109/TPAMI.2021.3116668
http://dx.doi.org/https://doi.org/10.1016/0020-0190(76)90095-8
http://dx.doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
http://dx.doi.org/10.1016/j.neucom.2022.06.111
http://dx.doi.org/10.1103/PhysRevD.101.056019
http://dx.doi.org/10.1103/PhysRevD.101.056019
http://arxiv.org/abs/1902.08570


[51] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals and G. E. Dahl, Neural message passing
for quantum chemistry, in Proceedings of the 34th International Conference on Machine
Learning (D. Precup and Y. W. Teh, eds.), vol. 70 of Proceedings of Machine Learning
Research, pp. 1263–1272, PMLR, 06–11 Aug, 2017.

[52] J. You, Z. Ying and J. Leskovec, Design space for graph neural networks, in Advances in
Neural Information Processing Systems (H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan
and H. Lin, eds.), vol. 33, pp. 17009–17021, Curran Associates, Inc., 2020.

[53] S. Thais, P. Calafiura, G. Chachamis, G. DeZoort, J. Duarte, S. Ganguly et al., Graph
Neural Networks in Particle Physics: Implementations, Innovations, and Challenges, in
Snowmass 2021, 3, 2022. 2203.12852.

[54] L. Panizzi, Vector-like quarks: t′ and partners, Nuovo Cim. C 037 (2014) 69–79.

[55] CMS collaboration, A. M. Sirunyan et al., Search for pair production of vectorlike quarks in
the fully hadronic final state, Phys. Rev. D 100 (2019) 072001, [1906.11903].

[56] CMS collaboration, A. M. Sirunyan et al., A search for bottom-type, vector-like quark pair
production in a fully hadronic final state in proton-proton collisions at

√
s = 13 TeV, Phys.

Rev. D 102 (2020) 112004, [2008.09835].

[57] ATLAS collaboration, Search for pair-production of vector-like quarks in pp collision events
at
√
s = 13 TeV with at least one leptonically-decaying Z boson and a third-generation

quark with the ATLAS detector, ATLAS-CONF-2021-024, 6, 2021.

[58] ATLAS collaboration, Search for single production of vector-like T quarks decaying to Ht or
Zt in pp collisions at

√
s = 13 TeV with the ATLAS detector, ATLAS-CONF-2021-040, 2021.

[59] ATLAS collaboration, G. Aad et al., Search for single production of a vector-like T quark
decaying into a Higgs boson and top quark with fully hadronic final states using the ATLAS
detector, 2201.07045.

[60] S. Gopalakrishna, T. Mandal, S. Mitra and G. Moreau, LHC Signatures of Warped-space
Vectorlike Quarks, JHEP 08 (2014) 079, [1306.2656].

[61] S. Gopalakrishna, T. S. Mukherjee and S. Sadhukhan, Extra neutral scalars with vectorlike
fermions at the LHC, Phys. Rev. D 93 (2016) 055004, [1504.01074].

[62] B. A. Dobrescu and F. Yu, Exotic Signals of Vectorlike Quarks, J. Phys. G 45 (2018) 08LT01,
[1612.01909].

[63] J. A. Aguilar-Saavedra, D. E. López-Fogliani and C. Muñoz, Novel signatures for vector-like
quarks, JHEP 06 (2017) 095, [1705.02526].

104

http://arxiv.org/abs/2203.12852
http://dx.doi.org/10.1393/ncc/i2014-11738-x
http://dx.doi.org/10.1103/PhysRevD.100.072001
http://arxiv.org/abs/1906.11903
http://dx.doi.org/10.1103/PhysRevD.102.112004
http://dx.doi.org/10.1103/PhysRevD.102.112004
http://arxiv.org/abs/2008.09835
http://arxiv.org/abs/2201.07045
http://dx.doi.org/10.1007/JHEP08(2014)079
http://arxiv.org/abs/1306.2656
http://dx.doi.org/10.1103/PhysRevD.93.055004
http://arxiv.org/abs/1504.01074
http://dx.doi.org/10.1088/1361-6471/aacbfd
http://arxiv.org/abs/1612.01909
http://dx.doi.org/10.1007/JHEP06(2017)095
http://arxiv.org/abs/1705.02526


[64] H. Han, L. Huang, T. Ma, J. Shu, T. M. P. Tait and Y. Wu, Six Top Messages of New Physics
at the LHC, JHEP 10 (2019) 008, [1812.11286].

[65] R. Benbrik et al., Signatures of vector-like top partners decaying into new neutral scalar or
pseudoscalar bosons, JHEP 05 (2020) 028, [1907.05929].

[66] A. Bhardwaj, T. Mandal, S. Mitra and C. Neeraj, Roadmap to explore vectorlike quarks
decaying to a new scalar or pseudoscalar, Phys. Rev. D 106 (2022) 095014,
[2203.13753].

[67] G. Balossini, G. Montagna, C. M. Carloni Calame, M. Moretti, O. Nicrosini, F. Piccinini
et al., Combination of electroweak and QCD corrections to single W production at the
Fermilab Tevatron and the CERN LHC, JHEP 01 (2010) 013, [0907.0276].

[68] S. Catani, L. Cieri, G. Ferrera, D. de Florian and M. Grazzini, Vector boson production at
hadron colliders: A fully exclusive qcd calculation at next-to-next-to-leading order, Phys. Rev.
Lett. 103 (Aug, 2009) 082001.

[69] C. Muselli, M. Bonvini, S. Forte, S. Marzani and G. Ridolfi, Top Quark Pair Production
beyond NNLO, JHEP 08 (2015) 076, [1505.02006].

[70] N. Kidonakis, Theoretical results for electroweak-boson and single-top production, PoS
DIS2015 (2015) 170, [1506.04072].

[71] J. M. Campbell, R. K. Ellis and C. Williams, Vector boson pair production at the LHC, JHEP
07 (2011) 018, [1105.0020].

[72] A. Kulesza, L. Motyka, D. Schwartländer, T. Stebel and V. Theeuwes, Associated production
of a top quark pair with a heavy electroweak gauge boson at NLO+NNLL accuracy, Eur. Phys.
J. C 79 (2019) 249, [1812.08622].

[73] LHC Higgs Cross Section Working Group collaboration, D. de Florian et al., Handbook
of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector, 1610.07922.

[74] A. Alloul, N. D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 - A complete
toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250–2300,
[1310.1921].

[75] C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer and T. Reiter, UFO - The
Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201–1214,
[1108.2040].

[76] ATLAS collaboration, G. Aad et al., Electron and photon performance measurements with
the ATLAS detector using the 2015–2017 LHC proton-proton collision data, JINST 14
(2019) P12006, [1908.00005].

105

http://dx.doi.org/10.1007/JHEP10(2019)008
http://arxiv.org/abs/1812.11286
http://dx.doi.org/10.1007/JHEP05(2020)028
http://arxiv.org/abs/1907.05929
http://dx.doi.org/10.1103/PhysRevD.106.095014
http://arxiv.org/abs/2203.13753
http://dx.doi.org/10.1007/JHEP01(2010)013
http://arxiv.org/abs/0907.0276
http://dx.doi.org/10.1103/PhysRevLett.103.082001
http://dx.doi.org/10.1103/PhysRevLett.103.082001
http://dx.doi.org/10.1007/JHEP08(2015)076
http://arxiv.org/abs/1505.02006
http://dx.doi.org/10.22323/1.247.0170
http://dx.doi.org/10.22323/1.247.0170
http://arxiv.org/abs/1506.04072
http://dx.doi.org/10.1007/JHEP07(2011)018
http://dx.doi.org/10.1007/JHEP07(2011)018
http://arxiv.org/abs/1105.0020
http://dx.doi.org/10.1140/epjc/s10052-019-6746-z
http://dx.doi.org/10.1140/epjc/s10052-019-6746-z
http://arxiv.org/abs/1812.08622
http://arxiv.org/abs/1610.07922
http://dx.doi.org/10.1016/j.cpc.2014.04.012
http://arxiv.org/abs/1310.1921
http://dx.doi.org/10.1016/j.cpc.2012.01.022
http://arxiv.org/abs/1108.2040
http://dx.doi.org/10.1088/1748-0221/14/12/P12006
http://dx.doi.org/10.1088/1748-0221/14/12/P12006
http://arxiv.org/abs/1908.00005


[77] CMS collaboration, A. M. Sirunyan et al., Identification of heavy-flavour jets with the CMS
detector in pp collisions at 13 TeV, JINST 13 (2018) P05011, [1712.07158].

[78] J. Bardhan, T. Mandal, S. Mitra and C. Neeraj, Machine learning-enhanced search for a
vectorlike singlet b quark decaying to a singlet scalar or pseudoscalar, Phys. Rev. D 107 (Jun,
2023) 115001.

[79] T. Chen and C. Guestrin, XGBoost: A scalable tree boosting system, in Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
’16, (New York, NY, USA), pp. 785–794, ACM, 2016. DOI.

[80] Z. Allen-Zhu, Y. Li and Y. Liang, Learning and generalization in overparameterized neural
networks, going beyond two layers, in Advances in Neural Information Processing Systems
(H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox and R. Garnett, eds.),
vol. 32, Curran Associates, Inc., 2019.

[81] M. Sundararajan, A. Taly and Q. Yan, Axiomatic attribution for deep networks, in
Proceedings of the 34th International Conference on Machine Learning - Volume 70,
ICML’17, p. 3319–3328, JMLR.org, 2017.

[82] P. Sturmfels, S. Lundberg and S.-I. Lee, Visualizing the impact of feature attribution
baselines, Distill (2020) . https://distill.pub/2020/attribution-baselines.

[83] D. Smilkov, N. Thorat, B. Kim, F. Viégas and M. Wattenberg, Smoothgrad: removing noise
by adding noise, 2017. 10.48550/ARXIV.1706.03825.

[84] L. Lovász, Submodular functions and convexity, pp. 235–257. Springer Berlin Heidelberg,
Berlin, Heidelberg, 1983. 10.1007/978-3-642-68874-4_10.

[85] M. Berman and M. B. Blaschko, Optimization of the jaccard index for image segmentation
with the lovász hinge, CoRR abs/1705.08790 (2017) , [1705.08790].

[86] J. Yu and M. Blaschko, The lovász hinge: A novel convex surrogate for submodular losses,
2015. 10.48550/ARXIV.1512.07797.

[87] T.-Y. Lin, P. Goyal, R. Girshick, K. He and P. Dollár, Focal loss for dense object detection, in
Proceedings of the IEEE international conference on computer vision, pp. 2980–2988, 2017.

[88] I. Loshchilov and F. Hutter, Decoupled weight decay regularization, in International
Conference on Learning Representations, 2017.

[89] Y. S. Aurelio, G. M. de Almeida, C. L. de Castro and A. P. Braga, Learning from imbalanced
data sets with weighted cross-entropy function, Neural Processing Letters 50 (2019)
1937–1949.

106

http://dx.doi.org/10.1088/1748-0221/13/05/P05011
http://arxiv.org/abs/1712.07158
http://dx.doi.org/10.1103/PhysRevD.107.115001
http://dx.doi.org/10.1103/PhysRevD.107.115001
http://dx.doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.23915/distill.00022
http://arxiv.org/abs/1705.08790
http://dx.doi.org/10.1007/s11063-018-09977-1
http://dx.doi.org/10.1007/s11063-018-09977-1


[90] Z. Zhou, H. Huang and B. Fang, Application of weighted cross-entropy loss function in
intrusion detection, Journal of Computer and Communications 09 (2021) 1–21.

[91] D. Zhang, Y. Fang and H. Tang, Research on naive Bayes algorithm based on feature
weighted, in International Conference on Electronic Information Engineering and Computer
Technology (EIECT 2021) (S. Verma and N. Rajathi, eds.), vol. 12087, p. 120871A,
International Society for Optics and Photonics, SPIE, 2021. DOI.

[92] J. Brehmer, K. Cranmer, G. Louppe and J. Pavez, A Guide to Constraining Effective Field
Theories with Machine Learning, Phys. Rev. D 98 (2018) 052004, [1805.00020].

[93] J. Brehmer, G. Louppe, J. Pavez and K. Cranmer, Mining gold from implicit models to
improve likelihood-free inference, Proc. Nat. Acad. Sci. 117 (2020) 5242–5249,
[1805.12244].

[94] B. Nachman, A guide for deploying Deep Learning in LHC searches: How to achieve
optimality and account for uncertainty, SciPost Phys. 8 (2020) 090, [1909.03081].

[95] J. Shelton, Jet Substructure, in Theoretical Advanced Study Institute in Elementary Particle
Physics: Searching for New Physics at Small and Large Scales, pp. 303–340, 2013.
1302.0260. DOI.

[96] C. J. Maddison, A. Mnih and Y. W. Teh, The concrete distribution: A continuous relaxation
of discrete random variables, in International Conference on Learning Representations, 2017.

[97] E. Jang, S. Gu and B. Poole, Categorical reparameterization with gumbel-softmax, in
International Conference on Learning Representations, 2017.

[98] J. Lee, Y. Lee, J. Kim, A. Kosiorek, S. Choi and Y. W. Teh, Set transformer: A framework for
attention-based permutation-invariant neural networks, in Proceedings of the 36th
International Conference on Machine Learning (K. Chaudhuri and R. Salakhutdinov, eds.),
vol. 97 of Proceedings of Machine Learning Research, pp. 3744–3753, PMLR, 09–15 Jun,
2019.

[99] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez et al., Attention is
all you need, in Proceedings of the 31st International Conference on Neural Information
Processing Systems, NIPS’17, (Red Hook, NY, USA), p. 6000–6010, Curran Associates Inc.,
2017.

[100] C. Joshi, Transformers are graph neural networks, The Gradient 12 (2020) .

[101] T. Lin, Y. Wang, X. Liu and X. Qiu, A survey of transformers, AI Open (2022) .

[102] B. Xu, N. Wang, T. Chen and M. Li, Empirical evaluation of rectified activations in
convolutional network, arXiv preprint arXiv:1505.00853 (2015) .

107

http://dx.doi.org/10.4236/jcc.2021.911001
http://dx.doi.org/10.1117/12.2624729
http://dx.doi.org/10.1103/PhysRevD.98.052004
http://arxiv.org/abs/1805.00020
http://dx.doi.org/10.1073/pnas.1915980117
http://arxiv.org/abs/1805.12244
http://dx.doi.org/10.21468/SciPostPhys.8.6.090
http://arxiv.org/abs/1909.03081
http://arxiv.org/abs/1302.0260
http://dx.doi.org/10.1142/9789814525220_0007


[103] J. L. Ba, J. R. Kiros and G. E. Hinton, Layer normalization, 2016.

[104] G. Kasieczka, T. Plehn, J. Thompson and M. Russel, Top quark tagging reference dataset,
Mar., 2019. 10.5281/zenodo.2603256.

[105] T. Miyato, T. Kataoka, M. Koyama and Y. Yoshida, Spectral normalization for generative
adversarial networks, 2018.

[106] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan et al., Pytorch: An
imperative style, high-performance deep learning library, in Advances in Neural Information
Processing Systems (H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox and
R. Garnett, eds.), vol. 32, Curran Associates, Inc., 2019.

[107] M. Fey and J. E. Lenssen, Fast graph representation learning with PyTorch Geometric, in
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

[108] W. Falcon et al., Pytorch lightning, GitHub. Note:
https://github.com/PyTorchLightning/pytorch-lightning 3 (2019) .

[109] R. Kansal, A. Li, J. Duarte, N. Chernyavskaya, M. Pierini, B. Orzari et al., Evaluating
generative models in high energy physics, Phys. Rev. D 107 (2023) 076017, [2211.10295].

[110] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler and S. Hochreiter, Gans trained by a
two time-scale update rule converge to a local nash equilibrium, in Advances in Neural
Information Processing Systems (I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan et al., eds.), vol. 30, Curran Associates, Inc., 2017.

[111] P. T. Komiske, E. M. Metodiev and J. Thaler, Metric space of collider events, Physical Review
Letters 123 (Jul, 2019) .

[112] P. T. Komiske, E. M. Metodiev and J. Thaler, Energy flow polynomials: a complete linear
basis for jet substructure, Journal of High Energy Physics 2018 (Apr, 2018) .

[113] A. Butter, T. Plehn and R. Winterhalder, How to gan lhc events, SciPost Physics 7 (Dec,
2019) .

[114] E. Buhmann, S. Diefenbacher, E. Eren, F. Gaede, G. Kasieczka, A. Korol et al., Getting high:
High fidelity simulation of high granularity calorimeters with high speed, Computing and
Software for Big Science 5 (May, 2021) .

[115] P. Musella and F. Pandolfi, Fast and accurate simulation of particle detectors using
generative adversarial networks, Computing and Software for Big Science 2 (Nov, 2018) .

108

http://dx.doi.org/10.1103/PhysRevD.107.076017
http://arxiv.org/abs/2211.10295
http://dx.doi.org/10.1103/physrevlett.123.041801
http://dx.doi.org/10.1103/physrevlett.123.041801
http://dx.doi.org/10.1007/jhep04(2018)013
http://dx.doi.org/10.21468/scipostphys.7.6.075
http://dx.doi.org/10.21468/scipostphys.7.6.075
http://dx.doi.org/10.1007/s41781-021-00056-0
http://dx.doi.org/10.1007/s41781-021-00056-0
http://dx.doi.org/10.1007/s41781-018-0015-y


[116] R. Kansal, J. Duarte, H. Su, B. Orzari, T. Tomei, M. Pierini et al., Particle Cloud Generation
with Message Passing Generative Adversarial Networks, in 35th Conference on Neural
Information Processing Systems, 6, 2021. 2106.11535.

[117] B. Käch, D. Krücker, I. Melzer-Pellmann, M. Scham, S. Schnake and A. Verney-Provatas,
JetFlow: Generating Jets with Conditioned and Mass Constrained Normalising Flows,
2211.13630.

[118] V. Mikuni, B. Nachman and M. Pettee, Fast Point Cloud Generation with Diffusion Models in
High Energy Physics, 2304.01266.

109

http://arxiv.org/abs/2106.11535
http://arxiv.org/abs/2211.13630
http://arxiv.org/abs/2304.01266

	Introduction
	I Background
	Primer on Particle Physics
	Particles in the Standard Model
	The Fermions
	The Bosons and the Fundamental Forces

	Interactions in the Standard Model
	Quantum Electrodynamics
	Quantum Chromodynamics
	Weak Interactions
	The Role of the Higgs Boson

	The Standard Model is an Effective Theory

	Collider Experiments
	Colliders
	Energy and Luminosity
	Collision Event
	Large Hadron Collider
	LHC Detectors
	What is seen by the detector?

	Computational Tools
	Kinematics at the Collider
	Mandelstam Variables
	Pseudorapidity
	Transverse Variables

	Statistics at the LHC
	Experimental Sensitivity
	Experimental Tests


	Machine Learning
	Introduction
	A Representative Example

	Supervised Learning
	Regression
	Mean Squared Error

	Classification
	Cross Entropy Loss


	Unsupervised Learning
	Representation Learning
	Generative Modelling

	Boosted Decision Trees
	Decision Tree Construction
	Regression Construction
	Classification Construction

	Ensembling Methods

	Neural Network
	Activation Functions
	Backpropogation and Gradient-Based Optimization
	Regularization

	Neural Network on Unstructured Data
	Jets as Particle Clouds
	Graph Neural Networks



	II Research Work
	Application of ML in BSM searches at the LHC:  A case study with heavy-quark signals
	Vectorlike Quarks, in brief
	Search Setup
	Process Generation
	Reconstructed Objects, Kinematic Cuts
	Feature Selection
	Dataset Curation

	Method
	Boosted Decision Tree
	Neural Network

	Results
	Interpretability
	Integrated Gradients
	The choice of baselines and Averaged Gradients
	Results


	Loss Functions for Deep Learning at the LHC
	Introduction
	Process Weighted Cross Entropy Loss
	Different Weighting Schemes

	Surrogate med[Z] score loss
	Submodular Functions and Lovasz Extension
	Z-score as a submodular function
	Error Functions

	Setup and Evaluation
	Dataset Construction
	Deep Learning Model Construction
	Evaluation Metrics
	Test Scenarios

	Results
	Related Works

	Generative Modelling of Jets at the LHC
	Introduction and Motivation
	Mathematical Setup for Jet Generation
	Methodology
	Generating the discrete categorical variable n
	Generating the Jet
	Discriminator Architectures
	Sizes Discriminator
	Particle Discriminator


	Dataset
	Training
	Evaluation
	Results
	Plots For Individual Jet Sizes

	Related Works

	Summary, Conclusions, and Future Outlook
	Bibliography


