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Abstract

This thesis explores the critical challenges and provides solutions associated with automatic spoken

data validation in the complex multilingual and multicultural context of India, which is crucial for

developing efficient human-computer interaction (HCI) systems such as automatic speech recognition

(ASR) and Text-to-speech synthesis (TTS). The diversity in linguistic backgrounds and the prevalence

of non-native language speakers create unique challenges in speech communication. These challenges

are exacerbated by the frequent mismatches between recorded speech and its reference text, referred to

as misspoken utterances.

To tackle some of these challenges, this work introduces novel unsupervised techniques for detect-

ing spoken content mismatches. The developed methods leverage state-of-the-art self-supervised speech

representation models such as Wav2Vec-2.0 and HuBERT, integrating them with Dynamic Time Warp-

ing (DTW) as well as its variants such as Phone level cost maximised DTW approach (Ph-DTW), and

Phone level cost maximised weighted DTW approach (Ph-WDTW) along with cross-attention mecha-

nisms. This work develops and tests the techniques on specially curated datasets such as IIITH MM2

Speech-Text and Indic TIMIT, which include a wide variety of phonetic and linguistic features reflective

of India’s language diversity.

The methodologies proposed are rigorously evaluated for their effectiveness in improving the ac-

curacy and efficiency of spoken data validation in an unsupervised manner. The results demonstrate

significant advancements in the automatic detection of mismatches, thereby enhancing the reliability

of speech data for training sophisticated HCI systems. By reducing the reliance on labour-intensive

manual validation processes, these approaches significantly contribute to the scalability of speech data

processing.

Overall, this thesis not only addresses a significant gap in the technological handling of spoken data

validation but also sets a foundation for future research and development in speech technology appli-

cations within diverse linguistic landscapes. The implications of this work are broad, offering potential
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improvements in various data-intensive speech applications such as ASR, TTS, and Computer-aided lan-

guage learning systems (CALL) to name a few. This would be achieved by ensuring a readily accessible

clean training, testing, and validation set for the development of target models for the aforementioned

use-cases, thus addressing the reliable data scarcity to a great extent.
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Chapter 1

Introduction

The non-native signatures are common in the spoken language within societies where there is no

common native language used for communication. Particularly in India, despite language diversity,

often, English is used as the language of communication in administration, law, education and the work-

place. In addition to English, Hindi is also used as the common language to connect the people at work.

However, both languages are non-native to the majority of the Indian population. Though both lan-

guages are learnt during schooling and often, mainly English, with the help of spoken language training

centres, a research report shows that ∼ 47% of graduates are not employable due to lack of English

language skills. Because of low language proficiency, non-native signatures often exist in ones’ spoken

language; hence these variations limit human-computer interaction (HCI) due to the errors caused.

In order to achieve better speech-based HCI, it is required to have good quality speech data, which

is typically obtained with a reliable validation process. The validation process involves justifying the

spoken content in the audio with the text uttered by the speakers while recording. Mostly, this has been

done manually using a group of annotators who listen to the audio and justify its spoken content with the

text. In case of any word mismatches, the annotators correct the text to match the spoken content. This

way, they ensure that the spoken content in the audio always aligns with the corresponding reference

text. Similarly, the automatic validation process targets outcomes similar to those of manual validation.

However, in regions with a large language/accent diversity like India, non-native variations limit the

validation of speech data. Hence, manual data validation is often considered to obtain reliable speech

data. The manual validation is costly and cumbersome, and it limits the scalability of speech data. In

the literature, it has been observed that the size of publicly available reliable Indian speakers’ speech

data is less compared to the speech data of native English and Mandarin speakers.
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On the other hand, the need for reliable speech data is growing exponentially due to the current

deep learning era for achieving significant performance. In order to cater to this growing demand for

speech data, it is required to have automatic speech data validation methods, which could reduce manual

intervention and increase scalability.

Spoken data validation in the Indian context is presented with a twofold challenge. Firstly, adapting

the standard validation methods to India’s linguistic diversity is difficult. This is because these methods

were initially designed for less varied languages and accents, making them less effective in the Indian

scenario. Hence it become non-trivial to adopt these methods for the Indian context. Secondly, it is

complex to identify spoken content mismatches in languages non-native to the speaker. This complexity

arises not only from word mismatches but also from accent variabilities, including lexical and acoustic

differences, compounded by the speaker’s language competency influenced by their native background.

In India, these challenges are amplified due to the country’s vast language diversity. With a multitude

of regional languages and dialects, each with its own unique phonetic and lexical characteristics, the

process of validating speech data requires a highly nuanced approach. Due to this, there arises a pressing

need for developing more sophisticated and context-sensitive approaches that can effectively address the

complexities introduced by India’s linguistic and cultural diversity. This situation calls for new, more

tailored methods that can understand and cope with the diverse linguistic landscape of India.

Hence, to address these challenges, this thesis aims to detect spoken content mismatches in a non-

native context for automatic data validation in the speech data collection process focusing on HCI ap-

plications, including automatic speech recognition (ASR) and text-to-speech synthesis (TTS). The mis-

matches are under read speech conditions between recorded audio and its corresponding reference text

that is used as a prompt for the recording. The proposed work could save the time and cost involved

in the annotation and the correction of the spoken content. Also, it would speed up the process of data

preparation for training systems like ASR and TTS.

1.1 Motivation

The primary goal of the traditional spoken data validation method is to verify that the words that

are spoken in an audio recording correspond precisely to the reference text, i.e. the text intended to

be spoken. This is typically accomplished by a group of annotators working together who listen to the

audio and manually validate the spoken content. In case of mismatches between the spoken content and
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reference text, the reference text is edited to ensure that the speech and its corresponding transcription

match.

This manual approach, despite being successful, is quite a time and resource-exhaustive process and

is thus inefficient. To address this challenge and increase scalability and productivity, there is a need to

develop automated systems for spoken data validation. However, developing such systems is a challeng-

ing task, especially when the language spoken in the recordings is not the speaker’s native language. In

many circumstances, the intricacy extends beyond simply recognizing absent or wrong words; it also

includes comprehending and interpreting varied dialects, the subtleties of lexical choice (the specific

words used), and acoustic nuances (how the word is pronounced). Additionally, the speaker’s overall

ability in the language has a significant impact on these elements, thus enhancing the complexity even

further. In the Indian context, these challenges are intensified even further due to the country’s rich lin-

guistic diversity. Each language and dialect brings its unique characteristics, making it harder to create

a one-size-fits-all automatic spoken data validation approach.

However, the development of a successful automatic data validation approach would have substantial

benefits. It would drastically reduce the time and resources currently needed. Moreover, it would

eliminate the potential for human error, which is an inherent risk in any manually-intensive process.

For researchers working with diverse Indian languages, this would offer a reliable and efficient way to

ensure the accuracy of speech data.

1.1.1 Motivation for Automatic Data Validation

The advent of deep learning era has marked an increase in the data demand for training models to

develop various speech applications. This trend is most noticeable in applications like automatic speech

recognition (ASR) and text-to-speech (TTS). This increasing demand for training data could be met by

the collection of extensive speech corpora. However, data collection in itself is a job half done. The

raw recorded corpora cannot be directly used for training the models as they may contain errors that

adversely impact the performance of model [1, 2, 3, 4].

In order to utilize the collected corpora for achieving better performance on the models trained, it

needs to be refined to ensure good quality. Hence, the recorded corpus needs to be validated prior to the

model training.

Data validation refers to cleaning the raw data to remove erroneous records. It has been established

that Data validation improves the training data quality and hence the quality of the model trained using
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the validated data improves as well. The validation, typically done manually, ensures the absence of

errors within the recordings while also verifying the congruence between utterances and their corre-

sponding transcripts.

In [5], the authors emphasized the benefit of data validation for end-to-end model training. Further-

more, in [6], the authors observed that adding more training data does not necessarily lead to better

performance; instead, it can be achieved with high-quality (validated) training data. This further high-

lights the need for data validation.

1.1.2 Motivation for Automatic Spoken Data Validation

Manual validation, despite providing us with reliable, high-quality data, is costly and cumbersome

[7] and limits the data’s scalability. In this process, a group of annotators listen to the audio and justify

its spoken content with the text. In case of any word mismatches, they correct the text to match the

spoken content, ensuring the speech-text pair used for model training is accurate. However, at times,

they may discard a speech utterance if they are not suited to the purpose of the recorded corpora.

Some of the criteria for discarding maybe that the spoken content is either noisy or unintelligible. The

discarding includes these cases but is not limited to them. For example, very long, noisy or unintelligible

utterances would be discarded from a speech corpora designed for training ASR or TTS models. It

should be understood that removing an utterance includes, but is not limited to, these aforementioned

conditions.

Hence, In order to meet this growing data demand and overcome the drawbacks of manual validation,

it needs to be performed automatically [8, 9], referred to as automatic spoken data validation. This would

make the data validation process faster and scalable.

1.2 Current spoken data demand scenarios

In order to better understand the data demand trend and ensure that automatic data validation is

indeed required, we examine the dataset size to analyze data demand trend in the ASR domain reported

in 204 research papers 1 published in reputed conferences like Interspeech, ICASSP, NEURIPS, ASRU

etc over the span of 2016 to 2021. For the analysis, we consider an equal number of papers per year.

1https://tinyurl.com/surveypaper1
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Ensuring equal distribution of papers per year, the averaged data size (in hours) is shown in Figure 1

considering the following four cases:

1. All ASR types, 2. End-to-End (E2E) ASRs only, 3. DNN-HMM-based ASR only, and 4. GMM-

HMM-based ASR only. Considering all ASR types, it is observed that it follows an overall increasing

trend with the highest data duration of ∼30000 hours for the year 2021.
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Figure 1.1: Data demand trend for training different types of ASR models from 2016 to 2021.

A comparable pattern is noticeable in the case of E2E ASR, with the highest data size of ∼40,000

hours in the year 2020. Compared to E2E ASRs, lower data is considered for DNN and GMM-based

ASRs, but the trend has been increasing over the years. This observation indicates the increasing demand

of the data size over the years. Similar observations are found in [10] where the authors stated that a

larger amount of training data is required for effective training of neural-based language models as

compared to traditional language models. This increasing data demand trend is found to be consistent

when the data considered for building ASR by authors of academia and industry, as shown in Figure 2

and Figure 3, respectively. These observations align with the findings in [11]. The authors highlighted

that rapid growth in data availability has made data demand. Similar observations were made in [12, 13]

where the authors found that the large labelled datasets contributed significantly towards the accelerated

success of deep learning-based methods. Similar observations were emphasized in [14] and [15]. The

aforementioned observations emphasize the increasing demand for high-quality data. This demand can

be achieved quickly, considering automatic data validation methods.

5



Year

D
ur

at
io

n 
in

 h
ou

rs

0

2500

5000

7500

10000

12500

2016 2017 2018 2019 2020 2021

Average training data size Highest training data size

Figure 1.2: Academia’s data demand trend in training ASR models from 2016 to 2021.
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Figure 1.3: Industry’s data demand trend in training ASR models from 2016 to 2021.

1.3 Thesis outline

This thesis explores innovative solutions to enhance human-computer interaction (HCI) systems

through the automatic validation of spoken data in an unsupervised setting, which is crucial in mul-

tilingual and multicultural demography like India due to its large language and accent diversity. The
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thesis is structured into five main chapters, each elaborating on different facets of our approach towards

addressing spoken content mismatch detection within HCI systems.

Chapter 1 sets the stage by highlighting the importance and relevance of data validation. This is then

extended with the motivation for data validation in Section 1.1, followed by the motivation to automate

the data validation in Section 1.1.1. Section 1.1.2 then discusses the need for extending it for spoken

data as well, along with highlighting the data demand trend in recent works in Section 1.2, which further

advocates the need for automatic spoken data validation. This chapter also includes an overview of the

thesis structure in Section 1.3 to guide readers through the subsequent sections.

Chapter 2 presents a detailed discussion of the existing works towards automatic data validation

across multiple domains. It critically analyzes existing literature, identifies gaps in current approaches,

and positions the thesis as a proposal of new approaches towards achieving a robust automatic spoken

data validation under Indian context for building HCI systems.

Chapter 3 motivates the necessity of IIITH MM2 Speech-Text Dataset and describes its creation. It

further discusses the proposed joint entropy maximisation approach employed towards stimuli selection

followed by the subject section approach in Sections 3.1 and 3.2, respectively. Sections 3.3 and 3.4, then

describe the recording setup and protocol followed by the post-processing approach for the recorded

samples. Section 3.5 then thoroughly explains the DTW-based baseline developed for detecting spoken

content mismatches, followed by a discussion of other potential use cases for this dataset in Section 3.6.

Chapter 4 then describes the details of unsupervised pronunciation assessment analysis using utter-

ance level alignment distance. Section 4.1 describes the importance of unsupervised pronunciation

assessment and presents the related works. Section 4.2 explains the dataset used for this analysis,

while Section 4.3 covers the methods applied. Sections 4.4 and 4.5 cover the rationale behind choosing

Wav2Vec-2.0 and the distance measures used for utterance level alignment distance computation. This

is followed by Section 4.6, which details on the approach for computing utterance level alignment dis-

tance, and Section 4.7, which explains the classification technique and experiments performed. Section

4.8 describes the experiments conducted. The baseline and final results are then presented in Sections

4.9 and 4.10, respectively.

Chapter 5 then builds upon the baseline presented in Chapter 3 towards spoken content mismatch

detection. Section 5.1 delineates the datasets employed for developing unsupervised approaches to

detect spoken content mismatches. Subsequently, Section 5.2 elaborates on the methodology utilized.

Furthermore, Sections 5.3, 5.4, and 5.5 respectively discuss the rationale for employing self-supervised

7



speech representations, the distance measures used for computing utterance level alignment, and the

approaches to detect spoken content mismatches. The chapter proceeds with Section 5.7 and Section

5.8, which respectively examine the experiments conducted and the corresponding results.

Finally, Chapter 6 summarizes the findings and underscores the significant contributions of the thesis

towards the development of a more reliable and efficient automatic spoken data validation system in the

Indian context.
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Chapter 2

Related work regarding automatic data validation

In the literature, there have been some works targeting to automate data validation. Early attempts

towards achieving this revolve around anomaly detection as surveyed in the works [16] and [17]. Popular

approaches include density estimation [18], one-class SVM-based approach [19], tree-based isolation

forest [20] as well as GAN utilization [21].

Several other works have addressed this by attempting to detect out-of-distribution (OOD) samples

within the dataset. In [22] the authors the OOD samples by thresholding at the highest softmax score

at the output of the neural network. They hypothesize that the overall softmax score of a true positive

sample would be higher as compared to a false positive sample. The experiments are conducted across

various tasks in the domains of computer vision, natural language processing as well as automatic speech

recognition. This approach is seen to be extended in works like [23] and [24] where the authors extend

the idea of utilizing OOD samples for automatic data validation. In [23] the authors experiment on image

datasets such as CIFAR-10 [25], TinyImageNet [26] and LSUN [27]. They utilize temperature scaling

and identify that introducing small perturbations to the input helps enhance the difference between the

softmax scores of in-distribution and out-of-distribution samples, thus leading to better data validation.

In [24] the authors extend the OOD sample detection by jointly training the classifier responsible for

detecting the OOD samples along with a generative neural network designed to produce more reliable

OOD samples. This experiment is conducted by using popular image datasets such as CIFAR [25],

SVHN [28], ImageNet [29] and LSUN [27].

The idea of OOD detection is further extended in the work [30] where the authors utilize generative

ensembles to learn a tractable likelihood approximation of the training distribution and use it to reject

OOD samples. Similarly, in [31], the authors make use of multiple semantic label representations to

detect OOD samples. In [32], the authors utilize the variational information bottleneck [33] towards
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achieving the OOD detection. Furthermore, the authors in [34] develop an interesting approach of OOD

detection by exposing the models to OOD samples deliberately and then exploring the heuristics for

differentiating between the samples that are in-distribution and others that are OOD.

While these OOD detection techniques have proven to be useful, they often utilize labelled data, thus

limiting their scalability towards validating large-scale raw datasets for which sufficient reliable labels

might not always be available.

Several other works develop rule-based approaches to automate data validation. For example in [35]

the authors suggest rule-based automatic data validation techniques for machine learning datasets. In

[36], the authors utilize Deequ, an Apache Spark-based library, to automate the data validation. In

[37], the authors present a data validation approach via implementing unit testing using the Apache

Spark pipeline. However, the challenge with these approaches is that they usually need a lot of domain

knowledge to specify explicit rules, constraints, and patterns for data validation.

In [38], pointwise gradients from the model are utilized to obtain the outlier filtering heuristics. These

heuristics are then utilized to identify outliers in the given dataset. Similarly, authors in [39] propose a

probabilistic model over a dataset. This integrates the integrity constraints of the dataset with external

data sources to obtain data cleaning suggestions thus ensuring that the dataset does not contain any

OOD values. In [40] the authors target automatically detecting domain value violations on the dataset.

Domain value violation refers to cases when attributes take values outside of the permitted domain.

For example, say a child is born, so the date of birth cannot be a date from the future followed by

[41] where the authors attempt to identify data validation rules from a small subset of clean data. [42]

suggests a unique active learning-based approach towards automatically labelling the crowd-sourced

dataset by learning from the human-labelled subsets. In [43], the authors propose a value modification-

based data validation approach. It utilizes a combination of machine learning and likelihood methods for

identifying and modifying OOD records. In [44], data validation is performed by imputing the missing

records based on the attribute relationships of the relational database. Several other similar validation

approaches via cleaning the data are covered in the survey [45].

While the aforementioned approaches are unique and intuitive, the majority of them are limited to

only numerical and categorical attributes, thus limiting their scalability. In addition to this work like [46]

discusses a variety of data duplication detection techniques thus wring well for a very niche use-case of

data validation. Similarly, in [47], the cleaning of large face datasets is automated by the detection and

removal of dissimilar faces tagged to a common identity.
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We can also find a lot of work being done towards automatically validating the data in a Machine-

learning production pipeline. While this is a good rule-based way to automate dataset validation with

known constraints, it might not be an optimal approach for dynamic datasets. In [48] the authors talk

about detecting anomalies in time series data. [49] also talks about detecting anomalies in a presented

dataset by utilizing dimensionality reduction and statistical hypothesis testing. Similarly in [50] the

authors develop an approach involving deducing appropriate data-validation patterns that accurately

represent the specific data domain. This technique effectively reduces the occurrence of false posi-

tives while enhancing the detection of data quality issues. However, the effectiveness of the developed

method is still sub-par to the human validation as well as limited to validating if the newly added data

points fall into the original data distribution as well as the datatype check. Furthermore, Google utilizes

TensorFlow data validation tool [51] to automate the validation of training and inference samples. Just

like Google, LinkedIn has its own data validation platform [52] which generates statistical insights that

are then used to adopt datasets for the desired training. Similarly in [53] the authors survey the best

practices adopted in industrial machine learning projects towards automatic data validation. In [54] the

authors attempt to improve the scores on machine reading comprehension task by utilizing a BERT to

improve the overall label quality of the dataset. They leverage the semantic data cleaning over syntactic

data cleaning to achieve significant improvements on the TriviaQA [55] dataset.

In the literature, some works perform automatic data validation in the domain of speech as well.

In [56], the authors automated the pruning of recordings when the expressive styles differed from the

intended. In Librispeech corpus [57], the utterances whose decoding did not match the reference tran-

scripts were discarded. In MUCS dataset [58], Hindi and Marathi utterances are automatically validated

using an ASR-based likelihood considering the forced-alignment process. In [59], automatic validation

was carried out on emotional recordings at the speaker level using the discriminative classifiers KNN

and SVM. Using accuracy as a thresholding criterion, they discarded the recordings.

Though there were works that validated the data automatically, the resultant data from these meth-

ods could fail to obtain diversity and reliability of the data. It was reported that the highest F1-score

of only 0.5 from the automatic validation proposed in [10]; thus, the reliability of the method is low.

Further, the decoding-based validation criteria in [11] bias to the grammatical structures of highly oc-

curred sentences in the ASR training. Thus, the obtained data might not contain utterances with rare

grammatical structures and out-of-vocabulary words. Similarly, the forced-alignment likelihood-based

validation also bias to correctly pronounced and highly occurred utterances. In all of these methods, the
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strategy is proposed only to discard the utterances, but not to facilitate the correction mechanism, which

is also part of the manual validation process.
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Chapter 3

IIITH MM2 Speech-Text Dataset

In all of the methods discussed in section 2, the strategy is proposed only to discard the utterances,

but not to facilitate the correction mechanism, which is also part of manual validation process. Fur-

thermore, in order to comprehensively address the problem of automating the spoken data validation,

the development of generalizable automatic data validation methods with robustness towards diverse

non-native variations is imperative. For fostering the creation of such methods a corpus with both the

correct as well as naturally mismatched utterances for a given set of phonetically rich stimuli set shall

be required.

However, to the best of our awareness, no corpora exist to develop robust and scalable automatic data

validation. Hence, this motivates us to collect a read speech dataset encompassing phonetic richness in

its stimuli set with matched and naturally mismatched utterances.

This motivates us to develop IIITH MM2 Speech-Text corpus for automatic spoken data validation

containing the following:

1. Speech data from non-native speakers to include the diversity in the pronunciations.

2. Utterances with naturally occurring spoken errors while reading the text.

3. Manually transcribed text to reflect the spoken errors.

4. Speech data to build the models for automatic correction of the errors.

5. Speech data with word level segmental boundaries.

6. Phonetically rich text stimuli.

We create IIITH MM2 Speech-Text data selecting a subset of 100 stimuli from the total of 2342

TIMIT [60] stimuli to ensure the phonetic richness by proposing a joint entropy maximization approach.
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Table 3.1: Examples of Insertion, Deletion and Replacement mismatches from the recorded corpus

presented with reference text (RT) and transcription annotated (TSA).

Insertion
RT: It offered to surrender its right to exclusive trade but asked an indemnity

TSA: It offered to surrender its right to exclusive trade but asked for an indemnity

Deletion
RT: Superior new material for orthodontic work is another result of research

TSA: Superior new material for orthodontic work is result of research

Replacement
RT: In most discussions of this phenomenon the figures are substantially inflated

TSA: In most discussions of this phenomenon the figures were substantially inflated

These stimuli are recorded from 50 Indian speakers of Hindi, Marathi, Tamil, Telugu, Bangla, Maithili,

Urdu, Gujarati, Malayalam, and Kannada nativities to ensure accent diversity. We segregate the record-

ings into two sets: 1) the recorded speech matched with reference text, and 2) the recorded speech

containing spoken errors, which causes mismatches between speech and the reference text. Further, we

perform manual annotation to obtain the text that reflects spoken errors in the mismatched speech.

The collected read speech dataset comprises 5764 utterances with a total duration of ∼7 hours,

recorded across 50 Indian speakers. It consists of both matched as well as naturally mismatched utter-

ances with respect to the reference text. While the matched set has 5000 utterances, making its entire

duration ∼6 hours, the mismatched set has 764 utterances and has a duration of ∼1 hour. Any utterance

whose transcription contains mismatches at the word level is kept in the mismatched set of the dataset,

while the other utterances are kept in the matched set. A sentence is said to contain mismatched words if

the utterance has an insertion, deletion, or replacement of one or more words that were not present in the

original prompt provided to the subject while recording. An example of each of these three cases from

the collected dataset is presented in Table 3.1. It consists of reference text and the manually annotated

transcription of audio spoken by the subject during the recording process. In the example for insertion

error, the word ‘an’ is extra, which was not present in the corresponding reference text, whereas in the

case of deletion error, the word ‘another’ was present in reference text but was not uttered by the subject

and is hence absent in the corresponding annotated transcription. Similarly, for replacement error, the

word ‘are’ was present in the reference text, but while speaking, the subject replaces it with another

word ‘were’. While these examples are showcased for one word only, any instances where they occur

for multiple words are also treated as a mismatched case.
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As a preliminary analysis, we build a model for speech-text mismatch detection. The developed

model considers self-supervised speech representations from Wav2Vec-2.0 and a DTW [61] distance-

based classification approach. The performance in terms of F1-score is found to be 0.87.

The details of database collection are described in the following five sections: 3.1 discusses the

stimuli selection strategy, 3.2 describes the subject selection, followed by 3.3 and 3.4, which elaborate

the recording process and postprocessing respectively. 3.5 discusses the preliminary analysis performed

on the dataset and 3.6 talks about other potential use cases where this dataset can be utilized.

3.1 Stimuli Selection Strategy

We select 100 unique stimuli from a pool of 2342 TIMIT stimuli [62]. TIMIT was chosen as it was

known for ensuring phonetic richness in the data with the choice of stimuli during its data collection. We

employ joint entropy maximization approach to ensure that the selected subset also captures adequate

phonetic richness. For this, we consider all possible combinations of 100 sentences out of the 2342

TIMIT stimulus. For each combination, phoneme probabilities are computed. Considering these proba-

bilities, an entropy is computed using Equation 3.1 where pi represents the probability of ith phoneme.

The combination with the highest entropy is selected as the stimuli set for the recording. The stimuli

selected with this process have a mean word count of 9.09 and a standard deviation of 3.17 words. The

phonetic diversity in the selected stimuli set is depicted in Figure 3.1.

Entropy(S) =
n∑

i=1

−pi log2 pi (3.1)

3.2 Subject Selection

The dataset was collected from 50 subjects who were either undergraduate or postgraduate students

at IIIT Hyderabad, India, with a good level of proficiency in the English language. We selected subjects

belonging to diverse Indian nativities, including Hindi, Marathi, Tamil, Telugu, Bangla, Maithili, Urdu,

Gujarati, Malayalam and Kannada. The primary criteria for subject selection were their English profi-

ciency and ability to articulate clearly. This approach facilitated the selection of participants belonging

to the aforementioned nativities thus ensuring a diverse representation Figure 3.2 shows the total num-

ber of subjects selected across the nativities, ensuring a gender balance. The subjects’ ages ranged from
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Figure 3.1: Phoneme distribution of the stimuli used for recording the dataset.

18 to 35 years, with an average age of 23.22 years and a standard deviation of 3.56 years. Despite the

best efforts to maintain a homogeneous participant set across genders for each language, the gender

breakdown does not exactly match due to practical challenges with sourcing the participants; given that

the participation was voluntary without any monetary compensation and the speaker selection pool was

limited to only IIIT Hyderabad students. Prior to the recording, all participants were confirmed to be in

optimal physical and mental health. Written consent was obtained from each subject at the outset of the

recording process as per the institute’s ethics policies.

3.3 Recording setup and protocol

The dataset was recorded at a sampling rate of 16KHz from all 50 speakers in a noise-free anechoic

studio setting. Figure 3.3 illustrates the recording setup used for dataset collection. This setup involves a

JBL commercial CSLM20B microphone connected to a Dell Vostro 3020 desktop with a Dell U2412M

24-inch monitor and an Intel i5-13400 processor. This desktop hosts an in-house developed recording

tool named ‘Collection Module’.

The purpose of designing an in-house recording tool is to automate the user profile creation process

for each speaker and store their necessary details. It facilitates speech data recording from speakers by

showing them a stimuli prompt that they have to read. Once they record the stimuli, they will have

the option to playback their recording, and only if they are satisfied with the recorded audio they can

submit it and proceed to the next stimuli. In case the speakers are not satisfied with the recording, they
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Figure 3.2: Nativities of speakers along with gender breakdown.

will have the option to re-record the same stimuli. This mechanism is enforced to ensure that the data

recording is appropriate and doesn’t contain any unwanted impurities that adversely impact the results

of the experiments for Automatic Spoken data validation.

Furthermore, it organizes all metadata and recordings into dedicated folders for each speaker, thus

enhancing the overall structure of the collected dataset. This precautionary function enables effortless

continuation of recording from the precise interruption point caused by unforeseen events by simply

logging into the user profile.

The collection module, when launched, opens a user signup form where the metadata of the subjects

is collected. This metadata collection is done to understand better the speaker diversity associated with

the dataset. However, any details about the speakers are which are personal or could be used to identify

the subjects are kept confidential and shall not be released in the public domain. Since the metadata

form is designed to scroll down while the submit button is stationary, a screenshot of some of the fields

from this form is presented in Figure 3.5. All the fields on this page are mandatory. When the user clicks

on the submit button all the user details are saved in sqlite server. After a subject successfully registers,

they receive a unique username and password followed by a redirection to the login page showcased

in Figure 3.4. The subjects use their respective credentials to log in, thereby getting redirected to the

recording page, an exemplary instance showcased in Figure 3.6. It displays the sentence stimuli to be
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Figure 3.3: Setup used for dataset recording.

spoken by the speaker and consists of four buttons marked by the microphone, stop, playback, and next

symbol, respectively.

1. Firstly we have the sentence ID which is nothing but a unique ID mapped to each of the stimuli

sentences.

2. In the next line we have the Stimuli corresponding to the ID displayed on top.

3. Next we have four buttons corresponding to the following tasks:

(a) Microphone Symbol: On clicking this button, the recording shall start.

(b) Stop Symbol: On clicking this button, the recording shall stop. This button shall be func-

tional only when the recording has started in the first place.

(c) Playback Symbol: This button allows the user to playback the audio he/she had recorded.

(d) Next Symbol: On clicking this button, the user submits the recorded audio and continues to

the next stimuli.
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Figure 3.4: The login page in the designed webtool

Figure 3.5: A screenshot of the subject signup form.
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Before beginning the recording, the speakers were instructed to read each stimulus at their habitual,

self-determined rate, labelled ‘Normal speaking rate’. Also, they were suggested to read the stimulus

appearing on the computer screen without compromising on the intelligibility of their utterance. The

entire recording was carried out under the supervision of an operator, ensuring the verification of all

matched and mismatched audio files during the recording process. On clicking the microphone symbol,

its background colour turns red, thus marking the beginning of the recording. Once the speaker utters

the displayed stimuli, the microphone symbol is clicked again. This turns its background colour back

to cyan, thus indicating that the stimulus has been recorded. The playback button is clicked to verify

the recorded stimuli in case the operator is doubtful about the spoken utterance. If the recording is

satisfactory, the ‘next’ button is pressed, which presents the next stimuli on the screen, and the entire

process is repeated. However, if the recording contains naturally mismatched utterances, the stop button

is pressed, which stores the recorded sample with a mismatched tag. When the recording is tagged as

mismatched or noisy or has a delayed start, the speaker is asked to re-utter the stimulus. In all such

cases, the fresh recording is started by clicking the microphone symbol again. This process is repeated

until all stimuli are recorded. Thus, recordings were segregated into matched and mismatched sets based

on the presence of spoken errors relative to the reference text. The matched set consisted of recordings

that accurately followed the given text, whereas the mismatched set included recordings with deviations

such as insertions, deletions, or replacements of words.

3.4 Post Processing

After completion of the recording process, the 5000 recordings from the matched set were paired

with their corresponding reference stimuli. Simultaneously, a set of 764 utterances are found with

mismatched tags, which are considered the mismatched set. This set is manually transcribed and verified

to reflect the mismatches between speech and the text made by the subjects. The percentage spread

of mismatches along stimuli length is presented in Figure 3.7. From the figure, it is observed that, on

average, there is an increase in mismatch percentages as the stimulus length increases. While the highest

mismatch percentage for stimulus length below ten words is 15%, the lowest mismatch percentage

for stimulus length greater than or equal to ten words is 15.3%. This may be due to the fact that

longer stimuli typically contain more phonetic content and complex sentence structures, increasing the

likelihood of deviations from the expected speech output. The likelihood of deviation may also increase
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Figure 3.6: An exemplary instance of the recording page.

due to the additional cognitive load on the speakers while reading the longer sequences in an impromptu

manner. We obtain word-level boundaries for both matched and mismatched sets using an ASR-based

forced-alignment process. The considered ASR is GMM-HMM based and is trained on Librispeech [57]

corpus using Kaldi [63] toolkit. The reason for manually transcribing the mismatched set and capturing

word-level boundaries is to make the dataset suitable for developing automatic mismatch detection and

correction.

3.5 Prilimnary Analysis

This section describes the speech mismatch detection of the collected data. We follow the work

from [64] and [65] to perform analysis. In [64], DTW is computed between two utterances with cosine

distance as a distance measure using perceptual linear prediction (PLP) [66] and frequency domain linear

prediction (FDLP) features. Furthermore, [65] implements a similar technique and considers average
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Figure 3.7: Spread of mismatched errors (in percentage) across stimuli length.

precision as well as Precision-Recall Breakeven (PRB) as the thresholding criteria. PRB threshold is

the DTW distance at which precision and recall values are equal or closest.

Considering these two works, the DTW is computed with cosine distance (CD) as a distance between

reference and test utterances. While PLP and FDLP have played significant roles in speech analysis,

we utilize Wav2vec-2.0 [67] based self-supervised speech representations for the computation. The

choice for Wav2Vec-2.0-based representations is due to its ability to obtain robust and generalizable

representations from raw audio. This is because it captures linguistic [68] as well as semantic and

syntactic [69] contents. Hence, these features could be useful for differentiating between correct and

natural read speech mismatches. However, detailed experimentation done to justify this choice of feature

is presented in Chapter 4.

For computing the DTW-based distance, we select a male and a female speaker’s recording from the

matched set as reference sets 1 and 2 (RS1 and RS2), respectively. This selection is based on the mini-

mal occurrence of mismatched errors during the dataset recording procedure. After selecting reference

utterances, the detection is performed separately, considering each reference. We separately compute

DTW distance for each utterance from matched and mismatched sets with RS1 and RS2. These dis-

tances are used to detect the matches and mismatches between the speech and the text. The utterance

having a distance below and above the PRB threshold is considered as matched and mismatched, re-

spectively.
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Table 3.2: Classification accuracy (Accuracy) (in percentage), Precision, Recall, F1-score (F1) at PRB

and Area under Precision-Recall curve (AUPR) across distance metric CD for both reference sets (RS1

& RS2).

Accuracy Precision Recall F1 AUPR

RS1 77.731 0.871 0.870 0.870 0.927

RS2 77.534 0.868 0.870 0.869 0.926

The results reported in Table 3.2 present the area under precision-recall curve (AUPR) as well as

accuracy, precision [70], recall [71], F1-score [72] at the threshold where PRB is achieved. These

results are presented for the baseline using DTW-based alignment with CD as a distance metric. From

the table, it is observed that the obtained results are comparable across both reference sets, thereby

advocating the usability of the collected dataset towards detecting read speech mismatches.

3.6 Other Potential use cases

The potential use of the developed IIITH MM2 Speech-Text corpus is for automatic spoken data val-

idation. In addition to this, we believe the data can be used in other applications. As we noticed in the

data, the mismatched set includes spoken grammatical errors; thus, the data can be used for detecting

spoken grammatical errors automatically to aid in developing computer-assisted language learning sys-

tems. It is also to be noted that, unlike the synthetically generated grammatical errors, this data is richer

in naturally made spoken grammatical errors. Another application could be automatic speech intelligi-

bility assessment. It is often known that speech intelligibility is affected due to word-level errors. So,

intelligibility can be assessed by considering the utterances in matched and mismatched sets as intelli-

gible or not. Further, the data can be extended to collect speech intelligibility ratings for building more

accurate assessment models. Moreover, the data can also be used to build the Indian accent recognition

models robust to naturally made spoken errors. Generally, the accent recognition data contains either

read or spontaneous speech. The read speech data always matches speech and text. On the other hand,

spontaneous speech contains unknown spoken errors. The IIITH MM2 Speech-Text could be useful

to analyze accent-specific variations introduced by non-native speakers in the grammatical structures

based on the errors in the mismatched set.
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Chapter 4

Unsupervised pronunciation assessment

For any experiment to be performed successfully, the features selected to represent the speech play an

important role. In the preliminary analysis presented in Chapter 3, we go ahead with choosing Wav2vec-

2.0 as the feature of choice as it is known to capture linguistic [68] as well as semantic and syntactic [69]

contents. However, we test it on the task of unsupervised pronunciation assessment as well to justify

that indeed it could be used as a feature for the task of unsupervised spoken content mismatch detection.

We perform analysis considering the unsupervised assessment approach computing DTW-based

alignment distance between Wav2Vec-2.0 representations of expert’s and learner’s speech for assessing

all the seven factors. The alignment distance computed from DTW is used as the metric to differentiate

the binary class of each factor with a threshold computed from equal error rate (EER) [73] criterion. For

the distance computation, we use three distance metrics: 1) mean absolute error (MAE) [74], 2) mean

square error (MSE) [75], and 3) cosine distance (CD). For the experimentation, we consider voisTU-

TOR corpus [76] containing recordings from 16 learners and two experts, in which each speaker spoke

a set of 1676 stimuli. Further to analyze the drawback of the recording requirement of speech from an

expert, we obtain two sets of speech samples synthesized from the state-of-the-art text-to-speech (TTS)

systems for all 1676 stimuli. We consider these two synthesized speech sets as the two experts’ speech

and perform the proposed unsupervised assessment. Among all the factors, the highest accuracy of

81.24% is obtained for intelligibility factor. When compared with the baseline, the highest relative im-

provement was found to be 48.28% for pause placement factor. It is also observed that the performance

variability among experts is very low for all the factors, which suggests that the synthesized speech can

be used in place of recorded speech from human experts to achieve scalable and economical solutions.

The key contributions in the proposed analysis are as under:

24



1. Assessment of the factors using a common feature unlike the factor-specific features considered

in the existing works discussed in section 4.1.

2. Consideration of the current state-of-the-art Wav2Vec-2.0 representations for the assessment.

3. Computation of alignment distance using cosine distance (inspired from cosine similarity) [77]

that measures angular dissimilarity between two input features.

4. Analysis of the need for the recording of the paired expert speech, which is costly and time-

consuming, to that of the learner’s speech.

The details of unsupervised pronunciation assessment analysis using utterance level alignment dis-

tance is described in the following sections: Section 4.1 discusses the significance of unsupervised pro-

nunciation assessment analysis along with the related works. 4.2 describes the dataset used to perform

unsupervised pronunciation assessment analysis followed by 4.3 discussing the methodology employed.

4.4 and 4.5 then talk about the motivation behind having Wav2Vec-2.0 and the feature of choice as well

as the distance measures used for utterance level alignment distance computation. This is followed by

the sections 4.6, 4.7 and 4.8 which describe the approach of computing utterance level alignment dis-

tance, the classification approach, and the experiments performed. The baseline and the final results

produced are then discussed in sections 4.9 and 4.10, respectively.

4.1 Significance and Related works

The rising number of second language (L2) learners led to an increase in the popularity of au-

tomated assessment tools, which consider Computer Assisted Language Learning (CALL) [78] tech-

niques. These tools benefit the L2 learners in enhancing their spoken proficiency. Among the different

aspects of spoken proficiency, pronunciation plays a critical role and it is affected by various factors.

As per [79], the pronunciation quality depends on the following seven factors: Intelligibility, Phoneme

quality, Phoneme mispronunciation, Syllable stress, Intonation, Correctness of pause placement, and

Mother tongue influence (MTI). Thus, automatically assessing the quality of these factors could help

L2 learners in obtaining detailed feedback about their pronunciation. Hence, spoken proficiency can be

enhanced with the tools incorporating this detailed feedback.

Various automatic assessment works were done in the literature to assess all seven factors except MTI

and Phoneme quality in an unsupervised manner [80, 81, 82, 83, 84, 85, 86]. In most of these works,
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one of the common techniques used is Dynamic Time Warping (DTW), which calculates similarity

between two sequences of different lengths. The similarity level is determined by the alignment distance

resulting from DTW [86]. In the context of language learning, the similarity is computed between expert

(reference) and learner (testing) utterances with different distance metrics and input features.

In [82], intelligibility factor was assessed using phoneme-based posteriorgrams (PPGs) as input fea-

tures, and the DTW is computed between expert and learner using the Bhattacharyya distance (BD)

metric. Miodonska et al. [83] showed that the assessment of phoneme mispronunciation factor was

more effective with DTW than hidden Markov model (HMM) when the DTW is computed using Mel-

frequency cepstral coefficients (MFCCs) with euclidean distance metric. In [84], intonation factor was

assessed considering MFCC and pitch features for distance computation. Further, in this work, stress

factor was also assessed using pitch and energy features. In [85], the pause placement factor was as-

sessed considering MFCCs and the Euclidian distance metric-based DTW. In [86], Euclidian, Bhat-

tacharya distance, and Kullback Leibler divergence metrics are considered for DTW computation for

assessing the pronunciation quality considering posteriorgrams as input features.

In all the existing works, the factors were assessed considering heuristically computed factor-specific

input features of learners’ speech with respect to that of experts’ speech. Thus, it requires a pair of

speech recordings for each stimulus one from the learner and another from the expert. Also, as these

factors influence a common phenomenon, i.e. pronunciation quality, a common input feature for all the

seven factors can be analyzed for better modeling. In recent studies, the effectiveness of self-supervised

learning (SSL) [87] was showcased in various speech-processing applications [88]. In these studies, it

was demonstrated that the contextual representations obtained from these pre-trained SSL models are

capable of capturing linguistic information [89], suprasegmental pronunciation, syntactic and seman-

tic text-based features [90]. Among the existing SSL representations, Wav2Vec-2.0 [91] is one of the

popular methods and was learned using cosine similarity metric. Recently, in [92] Wav2Vec-2.0 repre-

sentations were used to predict the speaker proficiency level of L2 English learners. This further justifies

our choice of using Wav2Vec-2.0 representations.

4.2 Dataset description

For the experiments conducted towards unsupervised pronunciation assessment analysis, voisTU-

TOR corpus [76] was considered. This corpus consists of English speech recordings of 1676 unique
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stimuli obtained from 2 experts and 16 learners. Among the experts, one is a male voice-over artist,

referred to as Expert 1, with more than 20 years of experience, while the other is a female voice-over

artist, referred to as Expert 2, and a spoken English teacher with more than 25 years of experience. The

stimuli were carefully selected from spoken English materials to cover various aspects of pronunciation,

encompassing phonological elements such as fricatives, stops, nasals, glides, laterals, consonant clus-

ters, vowels, diphthongs, and semi-vowels. Additionally, for each audio recording of the learner, a set

of seven binary ratings (0 or 1) was given by the female expert to evaluate the influence of seven factors

on the overall quality.

Furthermore for each of 1676 unique stimuli, Indian and American accented speech samples are

synthesized with male voice using Google TTS API. The speech samples from Indian and American

TTS are referred to as Expert 3 and Expert 4, respectively. Considering these, in total, four sets of

expert speeches are used.

4.3 Methodology

Figure 4.1 shows the block diagram of DTW-based unsupervised assessment approach for assessing

all seven factors. It has four steps. Given the stimulus, the first step obtains Wav2Vec-2.0 representations

for expert and learner speech samples separately using a pre-trained model. In this process, we discard

the silence from the start and end of the speech samples. The second step computes the utterance level

alignment distance between expert and learner Wav2Vec-2.0 representations with DTW considering a

distance metric. The third step considers EER based threshold criterion to compute threshold (τ ) for

predicting the binary rating of each factor. The fourth step detects the binary rating of each factor as

label 1 or 0 considering τ . It is to be noted that, for a given stimulus, the computation flow in Figure 1

repeats for each combination of expert and distance metrics. Similar to existing works, we hypothesize

that the alignment distance computed with Wav2Vec-2.0 has lower values when factor-specific features

in learner’s speech are similar to expert’s speech and vice versa. We hypothesize that all the seven

factors’ specific features are embedded in Wav2Vec-2.0 representations.
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Figure 4.1: Block diagram of DTW-based factors’ assessment with Wav2Vec-2.0 representations

4.4 Motivation for using Wav2vec-2.0 representations

Wav2Vec-2.0 [93] is a state-of-the-art model for obtaining representation sequence for an input raw

audio considering a self-supervised representation learning framework. These representations have been

considered in many end-to-end speech recognition tasks [94, 95]. Self-supervised representation learn-

ing approach in Wav2Vec-2.0 takes raw audio data and learns the representations that could disentangle

the linguistic [96, 89], pronunciation, syntactic and semantic [90] aspects in the audio. These represen-

tations are then used for fine-tuning the downstream tasks including speech recognition [96]. Wav2Vec-

2.0 focuses on capturing complex patterns from waveform; introducing non-linearity by choosing ac-

tivation functions such as GELU [97]. This in turn enhances its generalizability and ensures a robust

representation of the waveform.

Due to this effective learning process, Wav2Vec-2.0 representations have been considered in a wide

variety of tasks besides speech recognition such as Speaker recognition [98] Speaker adaptation [99],

Speaker verification [96], Cross-lingual knowledge transfer [100], Mispronunciation detection [101,

102], Voice activity detection [103], Prosodic boundary detection [104], Emotion identification [105] as

well as Non-verbal vocalization detection [106]. Furthermore, it has been widely explored for medical

domain tasks such as Stuttering [107], Alzheimer detection [108] as well as developing system for rating

children speech with speech sound disorder [109].

We obtain Wav2Vec-2.0 representations for expert and learner speech utterances. Since Wav2Vec-2.0

captures linguistic features, suprasegmental pronunciation, syntactic and semantic text-based features

[90], we hypothesize that these representations can be used for assessing the considered seven factors

contributing to pronunciation quality.
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4.5 Distance metrics

The following distance measures for computing utterance level alignments between expert-learner

speech pairs for a given stimulus:

Mean absolute error (MAE): It is a metric used to quantify the average absolute difference between

any two vectors re and r̃l of dimension D. It ranges between [0,∞).

MAE(re, r̃l) = cMAE(e, l) =
1

D

D∑
i=1

∣∣rie − r̃l
i
∣∣ (4.1)

Mean squared error (MSE): It is a metric used to quantify the average squared difference between

any two vectors re and r̃l of dimension D. It is highly prone to outliers as compared to MAE due to the

squaring of errors. It ranges between [0,∞).

MSE(re, r̃l) = cMSE(e, l) =
1

D

D∑
i=1

(
rie − r̃l

i
)2

(4.2)

Cosine Distance (CD): It is a metric that quantifies the angular dissimilarity between any two vectors

re and r̃l of dimension D. It remains unaffected by the vector magnitudes and has a range of [0,2].

CD(re, r̃l) = cCD(e, l) = 1−
∑D

i=1 r
i
er̃l

i√∑D
i=1(r

i
e)

2

√∑D
i=1(r̃l

i)2
(4.3)

4.6 Alignment distance computation

For a given stimulus, the number of frames is different in the expert’s and learner’s speech. Hence, we

cannot obtain a direct one-to-one mapping between their frames in a sequential manner as it would al-

ways leave some frames unmatched. Furthermore, there is always the possibility of different phonemes

being stretched temporally for an expert-learner speech pair. This gives rise to an uneven distribution

of frames across phonemes. To address this issue, DTW [110] algorithm is considered (for which the

cost can be a distance metric); which is highly time efficient with a focus on cost optimization. In
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this work, the distance metrics considered are MAE, MSE and CD. Considering a distance metric, the

DTW obtains the best possible frame level alignments between each of the expert-learner Wav2Vec-2.0

representation sequence pairs.

Algorithm 1 Utterance level alignment distance computation
Input: E={r1, r2, ..., rE} and L={r̃l, r̃2, ..., r̃L};

Initialization: C̃(e, l)←∞, ∀e, l; 0 ≤ e ≤ E, 0 ≤ l ≤ L, C̃(0, 0)← 0;

Distance (cost) C̃ matrix updation:

e← 1, l← 1;

while e ≤ E do

while l ≤ L do

Compute c(e, l);

C̃(e, l) = c(e, l) + min[C̃(e− 1, l), C̃(e, l − 1), C̃(e− 1, l − 1)];

l← l + 1;

end

e← e+ 1;

end

Output: C(E,L) = C̃(E,L)

Let E={re; 1 ≤ e ≤ E} and L={r̃l; 1 ≤ l ≤ L} are the D−dim Wav2Vec-2.0 representation

sequences of expert and learner with lengths E and L, respectively. The best alignment between E and

L sequence pair is computed using DTW as shown in Equation 4. The equation computes accumulated

cost (C(e, l)) considering representation sequences (r1, r2, . . . , re and r̃1, r̃2, . . . , r̃l) till e-th and l-

th frames from the respective E and L. The accumulated cost computation at e and l involves three

accumulated costs: C(e − 1, l) C(e, l − 1) C(e − 1, l − 1) and one local cost c(e, l), which is the

distance between re and r̃l using one of the Equations 4.1, 4.2 and 4.3. Considering the accumulated

and local costs in Equation 4.4, we obtain the utterance level alignment distance (cost), which is equal

to C(E,L). It is to be noted that the cost C(E,L) computation is not straightforward forward and it is

recursive in nature as C(E,L) involves three accumulated costs from the previous frames and local cost

from frames E and L. Further, the accumulated costs from the previous frames depend on downstream

accumulated costs, which involve the previous of previous frames and so on. Under this recursive

relation of the costs, the utterance level alignment distance (cost) is computed using Algorithm 1.
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C(e, l) = c(e, l) + min [C(e− 1, l), C(e, l − 1), C(e− 1, l − 1)] (4.4)

4.7 Classification Approach

We consider the alignment distance for detecting factors’ binary ratings by computing a threshold

(τ ) considering EER criterion. The EER is an average of the false acceptance rate (FAR) and false

rejection rate (FRR). The equations for FAR, FRR, and EER are provided in Equations 4.5, 4.6 and

4.7 respectively. As per this criterion, the τ is computed as the alignment distance value at which the

values of FAR and FRR are equal. Considering τ value, we classify the learner speech samples whose

alignment distance is above τ as one label and the below as another label.

FAR =
Number of false acceptances

Number of identification attempts
(4.5)

FRR =
Number of false rejections

Number of identification attempts
(4.6)

EER =
FAR+ FRR

2
(4.7)

4.8 Experiments

The entire learner dataset from the voisTUTOR corpus was used for the experiments. We consider

four experts’ speech sample sets of 1676 stimuli, out of which two experts are from voisTUTOR corpus

and the remaining two experts’ speech are synthesized samples. EER [73] criterion was used to deter-

mine the threshold (τ ) using 5% of the data. The performance of the suggested approach was assessed

on the remaining 95% of data, using classification accuracy as the performance indicator with the help

of ground truth labels present in the data. The classification was carried out independently for each of

the three alignment distances, with τ being determined for each distance and used to categorize align-

ment distance results. This was repeated considering each expert’s speech samples set across all the

seven factors considered in the experiments. The alignment distances were calculated independently for

all three distance measures in a stimuli-specific manner using the respective speech from each expert.
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4.9 Baseline

We compare the performance of the proposed unsupervised assessment approach across all three

distance metrics using random selection baseline. This approach corresponds to the random assignment

of labels for the entire learners’ dataset using a binary distribution designed to replicate the original data

distribution in the randomly selected 5% dataset from voisTUTOR corpus. The classification accuracy

thus obtained using these labels is compared against results obtained for the proposed unsupervised

assessment.

4.10 Results

The results obtained for all classification approaches across all factors considered in the experiments

are discussed in the following sub-sections. Sub-section 4.10.1 talks about the overall performance

followed by sub-section 4.10.2 that discusses about the phoneme category-specific performance. Lastly

sub-section 4.10.3 presents an analysis with illustrative examples.

4.10.1 Overall Performance

Table 4.1 shows the classification accuracies obtained with the proposed analysis using all three

distance measures – MAE, MSE, and CD across all four experts along with BL. From the table, it is

observed that the accuracies obtained with the proposed analysis with all three distance measures are

higher than BL except for intelligibility. This may be due to other factors impacting intelligibility that

have not been considered in this study. This limitation highlights the need for developing more nuanced

features or algorithms that can capture the subtleties of intelligibility more effectively.

However, the highest accuracy of 81.24% is observed for intelligibility among all the factors with

Expert 2 for distance measure CD. The highest relative improvement is found to be 17.48%, 23.05%,

13.21%, 48.28%, 34.20%, and 27.24% for intonation (Expert 1 using MSE), phoneme mispronunciation

(Expert 3 using MSE), MTI (Expert 3 using MSE), pause placement (Expert 3 using MAE), phoneme

quality (Expert 3 using MAE), and syllable stress (Expert 1 using MSE), respectively compared with

BL. This indicates the benefit of the proposed analysis for assessing all seven factors. The results across

experts exhibit minimal variation, suggesting that synthesized speech can effectively substitute human

expert speech in CALL systems thereby boosting its scalability.
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Table 4.1: Classification accuracy (in percentage) obtained with proposed analysis for all the seven

factors.

Expert 1 Expert 2 Expert 3 Expert 4 Baseline

Factors MAE MSE CD MAE MSE CD MAE MSE CD MAE MSE CD RS

Intelligibility 80.79 80.36 81.09 81.23 80.86 81.24 80.86 80.89 81.20 80.09 79.92 80.79 85.44

Intonation 59.40 59.67 58.91 58.44 58.16 58.06 59.10 59.14 59.13 59.49 59.37 59.34 50.79

Phoneme

mispronunciation
59.50 60.18 55.69 58.50 59.22 55.03 60.08 60.63 57.41 58.95 58.69 56.72 49.27

MTI 57.33 57.90 53.74 56.49 57.09 52.67 57.76 58.19 55.14 56.91 56.31 54.69 51.40

Pause Placement 74.17 73.70 73.90 74.25 74.26 73.96 75.21 75.16 74.38 74.31 74.10 73.66 50.72

Phoneme quality 65.31 65.08 63.92 64.69 65.15 63.67 65.41 65.06 64.26 64.61 63.78 63.53 48.74

Syllable stress 59.90 60.58 57.34 59.16 59.10 56.50 60.20 60.33 58.56 59.25 58.97 57.89 47.61

4.10.2 Phoneme category-specific performance

Figure 4.2 illustrates the classification accuracies obtained across different phoneme categories with

the proposed analysis with all three distance measures – CD, MAE, and MSE. The highest classification

accuracies for all seven factors with respect to each expert are as follows: Intelligibility - 86.25%,

88.20%, 86.67%, and 83.88% are obtained for nasals and semi-vowels with experts 1, 2, 3, and 4,

respectively. Intonation - 52.65%, 51.78%, 53.35%, and 57.75% are obtained for consonant clusters

with experts 1, 2, 3, and 4, respectively. Pause Placement - 78.07%, 81.08%, 79.67%, and 85.36% are

obtained for consonant clusters with experts 1, 2, 3, and 4, respectively. Phoneme mispronunciation -

48.67%, 51.21%, 48.86%, and 58.73% are obtained for semi-vowels and vowels with experts 1, 2, 3, and

4, respectively. Syllable stress - 55.00%, 56.76%, 55.57%, and 54.22% are obtained for semi-vowels

with experts 1, 2, 3, and 4, respectively. MTI - 62.61%, 60.14%, 61.00%, and 67.19% are obtained for

diphthongs and nasals with experts 1, 2, 3, and 4, respectively. Phoneme quality - 58.79%, 59.15%,

56.43%, and 68.27% are obtained for vowels with experts 1, 2, 3, and 4, respectively. Except for MTI,

the results from the synthesized speech are found to be inline with that from human expert speech. This

further strengthens the observations made from Table I thereby suggesting that synthesized speech can

be interchangeably used with human expert speech in CALL systems.

On a comprehensive analysis of the results from all four experts combined, it is observed that the

phoneme categories vowels and semi-vowels exhibit the highest count of achieving the highest classifi-

cation accuracy. This could be due to the fact that vowels are one of the most critical phoneme categories
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Figure 4.2: Classification accuracy (in percentage) obtained for all the seven factors under the following

phoneme categories: Fricatives, Stops, Nasals, Semi Vowels, Glides, Vowels, Diphthongs, and Conso-

nant Clusters.

in determining the pronunciation of a speech utterance as they carry high energy and hence have signifi-

cant auditory prominence over other phoneme categories. They also usually form the nucleus of syllabic

units, thereby leading to a drastic shift in the meaning with even a slight deviation in their pronuncia-

tion. Since semi-vowels are phonetically very similar to vowel sounds thereby carrying similar auditory

prominence they play an equally important role in determining the pronunciation quality of a speech

utterance.

4.10.3 Analysis with illustrative examples

Figure 4.3A and 4.3B shows the distance (cost) matrices resulting from Algorithm 1 between an

expert and a learner for the spoken text “They walk” and “Wonderful”, respectively. On the figures,

phoneme boundaries of expert and learner are shown with green dotted lines. The intersection of phone

boundaries for expert and learner has been highlighted by red circles. The black line indicates the frame

locations of expert which are aligned with that of learner. For the learners’ speech considered in Figure

4.3A and 4.3B, all the factors are correctly predicted considering utterance level alignment distance.

Particularly, in Figure 4.3A, all the factors’ labels result in a good pronunciation quality i.e. the learner

speech sample is intelligible (1), pronunciation quality is good (1), phoneme mispronunciation is absent

(0), stress placement is correct (1), proper intonation (1), pause placement is correct (1), and mother

tongue influence is absent (0). On the other hand, in Figure 4.3B, all the factors’ labels result a poor

pronunciation quality. From Figure 4.3A, it is observed that red circles fall on the black line, however,
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Figure 4.3: Distance matrices between expert & learner for spoken texts ‘They walk’ (A) and ‘Wonder-

ful’ (B), for which all the factors’ labels correspond to good and poor pronunciation quality, respectively.

not in Figure 4.3B. This indicates that when all the seven factors correspond to good pronunciation

quality, phoneme boundaries in learner’s speech aligns closely with those in expert’s speech resulting the

lower alignment distance. On the other hand, when all the seven factors correspond to bad pronunciation

quality, phoneme boundaries in learner’s speech significantly deviate from those in expert’s speech

resulting in a higher alignment distance. This suggests the effectiveness of the considered alignment

distance.

35



Chapter 5

Unsupervised spoken content mismatch detection

The results presented in Chapter 4 ensure that Wav2vec-2.0 representations not only are able to cap-

ture linguistic [68] as well as semantic and syntactic [69] contents but also perform well for the task of

Unsupervised pronunciation assessment analysis. Hence we can utilize its embeddings as intermediate

speech representations.

Furthermore, we also consider another model named HuBERT [111] to generate speech embeddings

for this task. The rationale behind this choice being that it, just like Wav2vec-2.0 is self-supervised in

nature. Furthermore, it have proven to be equally effective in addressing various downstream tasks.

Hence, building upon the baseline proposed in Table 3.2 of Chapter 3; three approaches are devel-

oped towards addressing the unsupervised spoken content mismatch detection task namely Phone level

cost maximized DTW and Phone level cost maximized Weighted DTW which are an extension of the

DTW approach along with a cross-attention-driven approach. The aforementioned approaches utilize

Indic TIMIT [112] dataset along with the IIITH MM2 Speech-Text Dataset [113] for the experimenta-

tion. In all these approaches the utterance level alignment distance is computed using the Wav2vec-2.0

as well as HuBERT speech representations using mean square error (MSE) [75] as a distance metric.

The Precison-Recall breakeven point (PRB) [65] based thresholding criterion is utilized for the binary

classification of the target utterances during inference. Among all these approaches the highest classifi-

cation accuracy of 89.226% is obtained for the cross-attention driven approach while utilising HuBERT

speech embedings.

The key contributions in this proposed analysis are as under:
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1. Extension of the DTW driven baseline presented in Chapter 3 with Phone level cost maximized

DTW and Phone level cost maximized Weighted DTW towards addressing the unsupervised spo-

ken content mismatch detection.

2. Development of a cross-attention-driven approach towards unsupervised spoken content mis-

match detection.

3. Consideration of the current state-of-the-art Wav2Vec-2.0 as well as HuBERT representations for

the assessment.

4. Computation of alignment distance MSE across all three proposed approaches

The details of the aforementioned approaches are presented in the following sections: Section 5.1

describes the datasets utilized for the development of unsupervised spoken content mismatch detection

approaches followed by 5.2 which discusses the methodology employed. 5.3, 5.4 and 5.5 then talk about

the motivation behind utilizing the self-supervised speech representations, the distance measures used

for utterance level alignment distance computation, and spoken content mismatch detection approaches,

respectively. This is followed by Sections 5.7 and 5.8 which discuss the experiments performed and the

corresponding results respectively.

5.1 Datasets utilized

For the experiments conducted towards developing Unsupervised spoken content mismatch detec-

tion approaches, Indic TIMIT [112] and IIITH MM2 Speech-Text datasets [113] are utilized. The Indic

TIMIT dataset is a phonetically rich Indian English speech corpus designed to reflect pronunciation vari-

ations specific to Indian speakers. It contains approximately 240 hours of speech recordings from 80

subjects, each speaking 2342 stimuli from the TIMIT [114] corpus. The dataset also includes phoneme

transcriptions for a subset of these recordings, manually annotated by linguists to capture the speaker’s

pronunciation nuances. Accompanying the corpus is the Indic English lexicon, which integrates pro-

nunciation variations typical of Indian speakers, identified through their common pronunciation errors,

into an existing native English lexicon.

Subjects for the recordings were selected from major Indian languages spoken by about 90% of the

population, grouped into six regions, and influenced by four major language families — Indo-Aryan,
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Dravidian, Austro-Asiatic, and Tibeto-Burman. The recordings were conducted in a controlled envi-

ronment with each subject reading aloud the stimuli displayed on a laptop, and were recorded using a

Zoom H6 mixer.

Since, Indic TIMIT is recorded in a controlled environment, which ensures superior speech quality

with little to no noise present in the recordings. Additionally, it covers native Indian speech and pro-

nunciation variabilities. This makes Indic Timit a suitable dataset for the cross-attention pre-training

task.

The IIITH MM2 Speech-Text dataset is an innovative corpus designed for the specific purpose of

detecting and correcting mismatches between spoken audio and written text. It stands out as it includes

both matched and mismatched speech-text pairs, with a preliminary analysis, yielding an F1-score of

0.87 using Wav2Vec-2.0 representations and Dynamic Time Warping as showcased in Table 3.2. The

dataset comprises 5764 utterances recorded from 50 speakers from diverse Indian nativities, ensuring

a representative phonetic richness by selecting 100 stimuli from 2342 available in the TIMIT corpus

through a joint entropy maximization method. The details of this approach are described in sub-section

3.1. Recordings were conducted in a controlled anechoic studio environment using professional equip-

ment and a custom-built software tool to facilitate the collection and organization of data. The dataset

includes 5000 matched utterances and 764 with identified mismatches, categorized by insertion, dele-

tion, or replacement errors at the word level. Furthermore, recordings from a male and a female speaker

from the matched set are chosen as reference sets 1 and 2 (RS1 and RS2, respectively). For ease of

addressability, all the other speakers apart from RS1 and RS2 shall be referred to as target speakers.

This selection is made using the criterion of minimal presence of mismatched errors encountered during

the recording process of the dataset.

This rich dataset not only provides a unique resource for testing and enhancing speech recognition

systems but also includes detailed metadata and transcription verifications. This makes IIITH MM2

Speech-Text dataset ideal for the task of fine-tuning the pre-trained cross-attention model on Indic

TIMIT dataset followed by inferencing for the task of spoken content mismatch detection.

Thirty speaker data from the Indic Timit dataset is utilized for the pre-training task of cross-attention

followed by fine-tuning done on 30% dataset of the IIITH MM2 Speech-Text dataset. while the subset

selection from both datasets is random, a gender ratio of 1:1 is ensured.
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5.2 Methodological framework
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Figure 5.1: Block diagram of DTW-based unsupervised spoken content mismatch detection using self-

supervised speech representations with Wav2Vec-2.0 and HuBERT.
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Figure 5.2: Block diagram of cross-attention based unsupervised spoken content mismatch detection

using self-supervised speech representations with Wav2Vec-2.0 and HuBERT.

The block diagram for the DTW [115] based unsupervised spoken content mismatch detection is

presented in Figure 5.1. It utilizes the IIITH MM2 Speech-Text dataset and has four steps. Firstly,

the intermediate speech representations are obtained for both RS1 and RS2 along with speech samples

from the remaining speakers through a pre-trained Wav2Vec-2.0 and HuBERT model. Subsequently,

the alignment distance between these representations is calculated using the proposed Dynamic Time

Warping (DTW) variants namely Phone level cost maximized DTW and Phone level cost maximized

Weighted DTW, where Mean Square Error (MSE) is chosen as the designated distance metric. Fol-

lowing this, a threshold τ is obtained using the Precision-Recall Breakeven (PRB) as the thresholding

criteria. PRB threshold is the DTW distance at which precision and recall values are equal or closest to

each other. The fourth step detects the binary rating of each spoken utterance of the target speaker with

reference to the corresponding utterances by RS1 and RS2 and the determined threshold τ .
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For the cross-attention-based approach, the block diagram is presented in Figure 5.2. In this ap-

proach, after the intermediate speech representations are obtained for the selected thirty speakers’

speeches are obtained a cross-attention model is trained using the same word-level utterances of all

the selected speakers iteratively. Once the training is completed, the trained model is further fine-tuned

on the 30% dataset selected for training from the IIITH MM2 Speech-Text dataset. After training, the

threshold τ is obtained based on the PRB criterion for which the attention scores between same-same

word pair and different-different word pairs are treated as two classes. Once the threshold τ is deter-

mined, inferencing is performed on the remaining 70 % of the dataset and based on the same-same

word cross attention score a binary classification for the word is done. If any target sentence contains at

least one word whose cross-attention score falls below the threshold, then that target sentence is said to

contain the spoken content mismatch.

This procedure is iteratively applied to each pair of reference and target speakers. The underlying

hypothesis being smaller alignment distances and higher attention scores between the self-supervised

speech representations indicate a higher similarity in specific speech features between the utterances

of reference speakers and the target speakers. Thus the hypothesis is extended to form the assumption

that if the utterance level alignment distance exceeds the obtained threshold using the PRB criterion,

the utterances in comparison are different and vice versa. Similarly, for the cross-attention scores, the

hypothesis is that cross-attention would learn an association between the same and different words,

assigning higher attention scores to the same words and lower attention scores to the different words.

This entire flow as showcased in Figure 5.1 and Figure 5.2 is repeated independently for each of

the Wav2Vec-2.0 and HuBERT-based representations in combination with both the variants of DTW

namely Phone level cost maximized DTW and Phone level cost maximized Weighted DTW as well as

the cross-attention approach. The detailed explanations for each of them are present in sub-sections

5.5.1, 5.5.2, and 5.5.3 respectively.

5.3 Motivation for using self-supervised speech represenations

We obtain Wav2Vec-2.0 as well as HuBERT speech representations for performing the experiments

discussed in section 5.7. The rationale behind choosing them is that these models have proven to provide

robust and generalizable speech representations. Since a detailed discussion regarding the choice of
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Wav2Vec-2.0 as an intermediate speech representation is presented in section 4.4, we shall only discuss

the rationale behind choosing HuBERT as an intermediate speech representation here.

HuBERT just like Wav2Vec-2.0 is another self-supervised model, which is known for generating

robust speech representation. Since it leverages the self-supervised learning framework, its training

is independent of the labeled data. Instead, it utilizes large volumes of unlabeled speech to learn the

sequence patterns via selective masking and leverages masked language modeling as well as acoustic

modeling techniques simultaneously with its uniquely designed loss function which computes cross-

entropy loss [116] on both its masked as well as unmasked frames.

The pseudo-labels are generated via clustering which are refined iteratively throughout the training

process, drawing inspiration from the DeepCluster method for self-supervised learning of visual fea-

tures [117]. Since HuBERT focuses on predicting the labels for the masked regions of the speech, it

inherently develops a good high-level representation for the unmasked inputs. By predicting the cluster

assignments of these masked regions iteratively, it learns to interpret the acoustic properties, enhancing

its ability to capture subtle pronunciation details over time. To further improve the label prediction task

for the masked regions, HuBERT also learns to capture more complex syntactic and semantic infor-

mation. This occurs because the model must understand the broader context in which specific sounds

and words appear, including the relationships between sequential elements in speech to minimize the

prediction error.

Due to this robust its robust speech feature representation it is used in a wide variety of tasks such

as end-to-end speech recognition [118] [119], Speech emotion recognition [120] [121] [122], speaker

verification [123], spoken language understanding [124], dysarthric speech recognition [125] [126],

speech pronunciation assessment [127] to name a few.

5.4 Distance measures utilised

MSE is the distance metric used to compute the alignment distance between the utterances for all

the three proposed approaches presented in section 5.5. It measures the average of the squares of the

differences between two vectors re and r̃l bearing D dimensions. It has a range of [0,∞).

MSE(re, r̃t) = cMSE(e, t) =
1

D

D∑
i=1

(
rie − r̃t

i
)2

(5.1)

41



5.5 Spoken content mismatch detection approaches

Building upon the DTW-based baseline presented in Chapter 3 we extend it to derive two more

variants of DTW namely Phone level cost maximized DTW and Phone level cost maximized Weighted

DTW towards unsupervised spoken content mismatch detection. Furthermore, we also propose a cross-

attention-based implementation towards achieving the aforementioned goal. All these three approaches

are discussed in detail in the sub-sections 5.5.1, 5.5.2, and 5.5.3 respectively.

5.5.1 Phone level cost maximized DTW approach (Ph-DTW):

In the Phone-level cost-maximized DTW approach (Ph-DTW), instead of computing the entire ac-

cumulated cost and then normalizing it with the path length as in the case of DTW, we identify the

phone-level boundaries and normalize the accumulated cost between the starting and end of the phone

with the respective path length covered. Once all the phone-level normalized cost is obtained, we iden-

tify all the phonemes belonging to each word. This is again done by obtaining word-level boundaries.

The cost per word is then determined as the maximum cost among all the phonemes belonging to the tar-

get word. The aforementioned phone and word level boundaries are obtained using the force-alignment

process. The ASR [128] utilized for this is trained in-house on Librispeech [57] corpus using Kaldi [63]

toolkit.

The idea behind this focuses on making the DTW cost robust to capture even the slightest mis-

matches between the reference and the target utterance. In a normal DTW setting for a long utterance

the overall accumulated cost is normalized with the overall path length at the end of the sequences. Thus

the smallest mismatches, say at a single phone somewhere in the entire utterance are quite likely to go

unnoticed, as the contribution of a single phone to the entire accumulated cost of DTW sequence for a

long speech utterance is negligible. Ph-DTW effectively overcomes this limitation of DTW by normal-

izing the accumulated cost for each phone with its corresponding path length, thereby highlighting the

match quality of each target phone with its corresponding reference phone.

A better understanding of Ph-DTW is showcased in Algorithm 2. Let R = {re; 1 ≤ e ≤ r} and

T = {r̃t; 1 ≤ t ≤ T} represent the D-dimensional feature sequences of reference and target utterances,

with lengths r and T , respectively. In the Ph-DTW approach, the alignment between these sequences is
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Algorithm 2 Phoneme-level Dynamic Time Warping (Ph-DTW) for Utterance Alignment
Input: R = {r1, r2, ..., rR} and T = {r̃1, r̃2, ..., r̃T }, Phone boundaries P , Word boundariesW;

Initialization: Initialize C̃(e, t)←∞, for all e, t; C̃(0, 0)← 0;

Distance (cost) C̃ matrix updation:

e← 1, t← 1;

while e ≤ r do

while t ≤ T do

Compute c(e, t);

C̃(e, t) = c(e, t) + min[C̃(e− 1, t), C̃(e, t− 1), C̃(e− 1, t− 1)]; t← t+ 1;

end

e← e+ 1;

end

Normalize cost per phone:

for each phone p in P do

Sp, Ep ← start and end indices of phone p;

Normalize C̃(Ep, T ) over the path length from Sp to Ep;

end

Compute maximum cost per word:

for each word w inW do

Identify phonemes Pw in word w;

Cw = max
p∈Pw

C̃(p);

end

Output: Word-level costs {Cw} for each word inW
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Algorithm 3 Phoneme-level Weighted Dynamic Time Warping (Ph-WDTW) for Utterance Alignment
Input: R = {re; 1 ≤ e ≤ r} and T = {r̃t; 1 ≤ t ≤ T}, Phone boundaries P , Word boundariesW;

Initialization: Initialize C̃(e, t)←∞, for all e, t; C̃(0, 0)← 0;

Distance (cost) C̃ matrix updation:

e← 1, t← 1;

while e ≤ r do

while t ≤ T do

Compute c(e, t);

C̃(e, t) = c(e, t) + min[C̃(e− 1, t), C̃(e, t− 1), C̃(e− 1, t− 1) ∗
√
2]; t← t+ 1;

end

e← e+ 1;

end

Normalize cost per phone:

for each phone p in P do

Sp, Ep ← start and end indices of phone p;

Normalize C̃(Ep, T ) over the path length from Sp to Ep;

end

Compute maximum cost per word:

for each word w inW do

Identify phonemes Pw in word w;

Cw = max
p∈Pw

C̃(p);

end

Output: Word-level costs {Cw} for each word inW
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computed using a modified Dynamic Time Warping algorithm. This revised method constructs a cost

matrix C̃(e, t) that accumulates costs up to the e-th frame of R and the t-th frame of T . The cost at

each matrix point includes the local cost c(e, t), which measures the distance between re and r̃t, and is

determined using the Equation 5.1. The recursive accumulation at each point considers the minimum of

three possible preceding costs: C̃(e− 1, t), C̃(e, t− 1), and C̃(e− 1, t− 1).

5.5.2 Phone level cost maximized Weighted DTW approach (Ph-WDTW):

Weighted DTW [129] provides the flexibility to emphasize certain paths based on their relative im-

portance. This leads to better performance in comparison to the vanilla DTW, especially for time-series

classification tasks [130] [131]. Extending this idea to Ph-DTW we update the diagonal path weight

to
√
2, whereas the non-diagonal path weights remain as 1. The rest operations for Ph-WDTW remain

the same as Ph-DTW. A better understanding of Ph-WDTW is showcased in Algorithm 3. While all

the steps remain exactly same as Algorithm 2, the recursive accumulation at each point considers the

minimum of three possible preceding costs: C̃(e− 1, t), C̃(e, t− 1), and C̃(e− 1, t− 1) ∗
√
2 instead

of C̃(e− 1, t), C̃(e, t− 1), and C̃(e− 1, t− 1).

5.5.3 Cross attention based approach:

Cross-attention [132] is all about comparing two sequences from different sources and assigning the

weights in the range of zero to one that mimics the importance of each token in the target sequence from

the reference sequence token acting as the query. This way we get the corresponding scores in the target

token referred to as attention scores which implies the importance of the target tokens for the query

token. For the computation of cross-attention scores, each reference token acts as the query iteratively.

This way we get a matrix of dimension [ Dref x Dtarget ] where Dref and Dtarget are the total token

counts in the reference and the target sequences. Since the attention scores are computed using Equation

5.2, where Q, K and V represent the ”queries”, ”keys”, and ”values”, respectively, which are all inputs

into the cross-attention mechanism. In the context of cross-attention specifically, Q comes from one

set of data called the reference set and K as well as V comes from a different dataset called the target

set. The dot product of Q and KT is scaled down by
√
dk where dk is the dimensionality of the keys

and queries. This scaling helps in stabilizing the gradients during training, as it prevents the softmax

function [133] from having extremely small gradients when the dot products are large.
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Drawing inspiration from this, we implement the cross-attention architecture with a small modifi-

cation to compute only the attention map as showcased in Equation 5.3. We only compute the dot

product of Q and KT and normalize it by dividing with
√
dk followed by applying the softmax func-

tion. Here Q and K represent the intermediate representations of word sequences in the reference and

the target set and dk represents their dimensionalities. These intermediate representations are obtained

from Wav2Vec-2.0 and HuBERT. We then compute the MSE loss between the obtained attention map

and an identity matrix IDrXDt where Dr and Dt is the length of word sequences in any given reference

and corresponding target sequence. This is represented in Equation 5.4 where Ai,j is the element at the

ith row and jth column in the attention map A. Ii,j is the element at the ith row and jth column in the

identity matrix IDr×Dt which equals 1 if i = j and 0 otherwise.

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (5.2)

Attention map(Q,K) = softmax
(
QKT

√
dk

)
(5.3)

CrossAttentionLossMSE =
1

Dr ·Dt

Dr∑
i=1

Dt∑
j=1

(Ai,j − Ii,j)
2 (5.4)

5.6 Classification Approach

We consider the final word level score for Ph-DTW, Ph-WDTW as well as for cross-attention-based

approach. Each sentence gives us an array of scores, where the length of the array corresponds to the

word count per sentence. We compare the word level scores iteratively to the PRB-based obtained

threshold τ for deriving a word level binary label marking the correctly spoken word with 1 and the

misspoken word with 0. If the score is less than or equal to τ we say the the target word has been

spoken correctly else the target word is misspoken. This rating is then extended to a sentence level

wherein if the sentence contains at least one misspoken word it too is labeled as misspoken.

5.7 Experiments

The entire IIITH MM2 Speech-Text dataset was utilized for the experiments for implementing the

Ph-DTW and Ph-WDTW approaches. Using the intermediate representations of the correct set of IIITH
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MM2 Speech-Text dataset, word-level scores were obtained for all combinations of the same stimulus

spoken across all the speakers. Hence for all such combinations a matrix of dimension [WSai
X WSbi

],

where WSai
and WSbi

are the words spoken by speaker Sa and Sb for the ith stimulus of the dataset.

All the diagonal values in all such matrices obtained represent the scores between same - same word

pairs, whereas all the non-diagonal values represent the scores between different - different word pairs

across all speaker combinations. Using these two set of scores, their respective distributions are obtained

namely Distcorr and Distincorr. The PRB-based thresholding τ is then obtained based on Distcorr and

Distincorr.

However, for the cross-attention-based approach, the selected subset of thirty speakers from Indic

TIMIT, as well as the IIITH MM2 Speech-Text dataset, is utilized. The pre-training of the cross-

attention model followed by fine-tuning on the selected subsets of Indic TIMIT and IIITH MM2 Speech-

Text dataset is performed respectively. Then, the next step is to obtain the threshold τ which is identical

to the approach followed for Ph-DTW and Ph-WDTW methods.

Once the threshold τ is obtained, the next step is to obtain word-level scores across all stimuli

between the reference speakers( RS1 and RS2) and the other speakers, taking into account all the

respective speaker utterances in the correct as well as misspoken set and assigning binary label for the

same. The performance is then assessed across these obtained scores with classification accuracy being

the performance indicator. This approach is repeated for both Wav2vec-2.0 as well as HuBERT-based

representations for all three approaches.

5.8 Results

The results of the experiments performed for all three proposed approaches are presented in Table

5.1. It compares the performance of the baseline which is a DTW-based method with the three proposed

approaches namely Ph-DTW, Ph-WDTW, and CAA. Performance metrics include Accuracy, Precision,

Recall, and F1-score, leveraging speech embeddings from Wav2vec-2.0 and HubERT models. The

evaluation is performed under the thresholding criterion of PRB.

The baseline DTW approach achieves an F 1-score of 0.927 with Wav2vec-2.0-based speech em-

beddings. The Ph-DTW and Ph-WDTW methods show substantial improvements in Recall, especially

when employing HubERT embeddings where the highest recall is reported to be 0.992 for the Ph-DTW

approach. The CAA approach demonstrates the highest Accuracy of 89.226% and the best F 1-score
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Table 5.1: Classification accuracy (Accuracy) (in percentage), Precision, Recall, F1-score (F1) at PRB

for the Baseline (DTW based approach) as well as all the three proposed approaches Ph-DTW, Ph-

WDTW and CAA.

Embeddings Accuracy Precision Recall F1

Baseline (DTW) Wav2vec-2.0 77.731 0.871 0.870 0.927

Ph-DTW
Wav2vec-2.0 86.780 0.883 0.970 0.927

HubERT 86.849 0.873 0.992 0.929

Ph-WDTW
Wav2vec-2.0 86.832 0.871 0.990 0.929

HubERT 86.884 0.868 0.990 0.929

CAA
Wav2vec-2.0 88.913 0.967 0.900 0.933

HubERT 89.226 0.959 0.914 0.936

of 0.936 with HubERT embeddings, reflecting an overall superior performance in terms of precision

and recall balance. These results suggest that the proposed approaches outsmart the presented base-

line. These findings demonstrate that the proposed approaches especially CAA significantly advance

the performance for the unsupervised spoken content mismatch detection task over the conventional

DTW approach.
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Chapter 6

Conclusion

This thesis consolidates a set of approaches towards developing solutions in automatic spoken data

validation for non-native English speakers in the Indian context, which is crucial for enhancing HCI

systems. This work has unfolded across multiple layers of analysis and experimentation, culminating in

the approaches that significantly improve the process of automatic spoken data validation.

The first chapter of this thesis introduces the problem statement and motivates the necessity of de-

veloping unsupervised spoken data validation approaches. Chapter two then introduces the IIITH MM2

Speech-Text dataset, a unique corpus that includes both matched and naturally misspoken read speech

utterances from a diverse group of Indian speakers. The dataset is not only robust due to its incorporation

of various Indian nativities but also versatile, facilitating the development and evaluation of algorithms

designed for automatic mismatch detection and correction. Experimental baselines established using

DTW and Wav2vec-2.0 representations have shown promising results, setting a strong foundation for

further enhancements and expansion of the dataset.

In chapter three, the focus shifts to the pronunciation quality assessment of second language learners

using an unsupervised approach that utilizes DTW between expert and learner speech representations

from Wav2Vec-2.0. This is done to highlight that indeed the choice of self-supervised features is a good

choice for speech representation. The analysis highlighted the effectiveness of synthesized speech as

a viable alternative to human expert speech in CALL systems, marking a significant advancement in

the accessibility and scalability of pronunciation training tools. Although the approach showed sub-

stantial improvements in most assessed factors, further research is required to enhance intelligibility

assessments, suggesting a direction for future studies.

Chapter four addresses the automatic validation of speech data with the help of enhanced DTW

approaches namely Ph-DTW and Ph-WDTW as well as a cross-attention mechanism-based approach.
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These approaches are implemented on speech representations obtained from self-supervised models

such as Wav2Vec-2.0 and HuBERT. The results from applying these methods on the Indic TIMIT and II-

ITH MM2 Speech-Text datasets showcase the significance and reliability of these automated approaches

over traditional manual validation in terms of accuracy, precision, and recall.

Overall, this thesis acts as the stepping stone towards reliable automatic spoken data validation. The

showcased approaches effectively handle the challenges posed by India’s linguistic diversity, enhancing

the potential of HCI systems to work efficiently across speech from diverse speaker backgrounds. Mov-

ing forward, the continued exploration and refinement of these validation techniques will undoubtedly

contribute to the development of more robust and inclusive speech-based applications.
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adaptation for wav2vec2 based dysarthric asr,” arXiv preprint arXiv:2204.00770, 2022. 28

61



[100] C. Yi, J. Wang, N. Cheng, S. Zhou, and B. Xu, “Transfer ability of monolingual wav2vec2. 0 for

low-resource speech recognition,” in 2021 International Joint Conference on Neural Networks

(IJCNN). IEEE, 2021, pp. 1–6. 28

[101] M. Yang, K. Hirschi, S. D. Looney, O. Kang, and J. H. Hansen, “Improving mispronunciation

detection with wav2vec2-based momentum pseudo-labeling for accentedness and intelligibility

assessment,” arXiv preprint arXiv:2203.15937, 2022. 28

[102] X. Xu, Y. Kang, S. Cao, B. Lin, and L. Ma, “Explore wav2vec 2.0 for mispronunciation detec-

tion.” in Interspeech, 2021, pp. 4428–4432. 28
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