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Abstract

We move our bodies as a response to listening to music. These responses could range from simple
movements such as head-banging, finger-tapping, and feet-tapping to a complex dance. Dance often
occurs in social settings, where individuals entrain their movements to the music being played along
with the visual cues derived from others. This phenomenon is termed rhythmic social entrainment.
Moving in synchrony with others has been shown to foster social bonding. Dyadic dancing emerges as
a first step in investigating rhythmic-social entrainment. This thesis examines the dyadic dance context
from two angles: interpersonal coordination and individual identification. We first predict perceived
interaction and similarity using kinematic and gestural features. Then, we explore the existence of
unique signatures of individuals within dyads amidst interpersonal coordination. As an extension, we
also look at the presence of unique movement signatures in a markerless-choreographic setting.

Interpersonal coordination has been studied using two perceptual variables: Interaction and Similar-
ity. Studies have identified many postural and gestural features that exhibit moderate correlation with
perceptual variables. However, several aspects of interpersonal coordination remain underexplored,
particularly the role of musical features and energy levels of individuals in dyads. This thesis addresses
these gaps by investigating the influence of music’s danceability, which is primarily characterized by
pulse clarity on interpersonal coordination, revealing a very strong statistically significant correlation
between danceability of musical stimulus and mean perceived interaction ratings across all dyads danc-
ing on that stimulus. This finding highlights the facilitative role of danceable music in enabling coupling.
Furthermore, this study explores the link between the energy levels of dancers and interpersonal coor-
dination, demonstrating perceived similarity is associated with similar energy levels within a dyad . In
addition to this, energetic dyads are also perceived as more interactive, likely due to the impression of
enjoyment and engagement they convey and vice versa. As a final step, we take dyad recordings and
attempt to classify the perceptual variables into three classes: low, medium, and high. We employ novel
features, such as Energy and Covariance Matrix, in addition to the ones from the literature, to train
the model. We achieved reasonable accuracies in predicting “Interaction” and “Similarity.” We also
examined the joints that are important in the classification of these variables. This analysis revealed the
significance of hands in predicting interaction relative to other body parts, which is consistent with other
modalities, including spoken communication.

Carlson et al. [17] demonstrated the existence of motoric fingerprints by identifying individuals
dancing freely to the music stimulus using only the movement features with notably high accuracy.
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It is interesting to examine whether an individual has a unique signature even while dancing with a
partner in the presence of interpersonal coordination. We achieved noteworthy dancer identification
accuracy, signifying the existence of motoric fingerprints in the dyadic contexts. In addition to this, we
demonstrated the joint pairs and joints that are key to the classification model. We employed the dyadic
model to predict individual dancers based on features extracted from their solo performances. The high
identification accuracy achieved indicates a strong consistency of unique movement signatures across
both solo and dyadic settings. However, our misclassification analysis identified certain individuals who
were not correctly predicted by the dyadic model. This anomaly was explained in terms of empathy
dynamics of individuals within dyads.

Studies in the domain of music-induced movements predominantly rely on marker-based methods
for movement capture. However, these methods suffer many limitations, with a primary concern being
the potential alteration of natural movements due to the presence of markers on subjects. This poses
a threat to the ecological validity of such studies. We examined the markerless data of professional
dancers executing the same choreography. We investigated the notion of the personal style of a dancer by
training a dancer identification model based on movement features. We achieved a dancer identification
accuracy at least two times higher than the chance level, signifying the existence of motoric fingerprints
in a choreographic-markerless setting.

In summary, this thesis contributes novel insights into interpersonal coordination in dyadic dance.
It also shows the presence of motoric fingerprints in dyadic as well choreographic dance contexts, ver-
ifying the external validity of Carlson et al. [17]’s methods in dancer identification from movement
features and explores the applicability of markerless movement data.
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Chapter 1

Introduction

Figure 1.1: Music Induced Movements

Music can evoke emotions, stimulate cognitive processes, increase social bonding, and improve
mental and physical health. Among its multifaceted functions, a particularly salient aspect is its ability
to induce movements. These music-induced movements, more commonly known as dance, have been
central to human experiences in all cultures since time immemorial [65]. After a comprehensive review
of dance literature, Christensen et al. [19] suggested six positive effects of dance:

• Dance helps to focus attention on a singular activity. This sustained attention is shown to be bene-
ficial after prolonged sensory overstimulation and stress, perhaps even providing an evolutionary
advantage.

• Engaging in or watching dance helps to fulfill our emotional needs.
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• Dance can function as a imagery for both the audience and the dancer.

• Dance serves as a medium for storytelling and dissemination of knowledge.

• It enhances self-awareness.

• It fosters social bonding.

He also highlighted some secondary benefits, including aesthetic pleasure, physical and psychological
well-being, and advantages in sexual selection. Given these extensive benefits and the undeniable role
of music and dance in human life, numerous studies have delved into music-induced movements. We
primarily study music-induced movements within the framework of embodied cognition.

1.1 Embodied Cognition

Humans instinctively respond to music through bodily movements like finger tapping, head banging,
or air-playing instruments, aligning our movements with the music’s rhythm [30, 48, 62, 61]. Specif-
ically, music that maintains a periodic beat at a frequency of 2Hz facilitates motoric entrainment [54].
Evidence also shows that motoric entrainment can occur at various beat levels, with vertical bouncing
aligning with each beat and mediolateral swaying occurring at every fourth beat [79, 77]. Lesaffre et al.
[50] found that around 95% of participants spontaneously moved in reaction to the music they heard.
The intricate connection between sound and movement is deeply rooted in our brains [63, 45]. In an
experiment by Bangert [3] involving trained pianists who listened to piano music, fMRI scans revealed
activations in brain areas associated with motor control, indicating that listening to music involves more
than just auditory processing. Furthermore, research has illustrated that the characteristics of music
directly influence the movements it elicits [79, 73, 10].

The relationship between movement and music goes beyond being a response; some argue that move-
ment is integral to parsing and comprehending musical sounds. Basing their argument on music perfor-
mance studies, sound-tracing studies where listeners depict their impressions of audio stimuli through
drawing, and dance movement studies, Godøy et al. [31] offered support for the concept of sound-
motion similarity, rooted in the motor theory of perception. This theory suggests that we move our
bodies to comprehend the sounds we hear, akin to the movements involved in producing those sounds.
This bold assertion aligns with the idea of embodied cognition from psychology.

Embodied cognition challenges the conventional perspective that cognition solely relies on stimuli
collected through sensory organs by acknowledging the role of the body in cognitive processes [69, 87].
The embodied cognition framework places sensorimotor processes at the center of understanding human
cognition and behavior. According to this framework, actions and perceptions can be affected by one
another instead of being linked linearly: perception, computation, and action. The state of our mind
affects the way we move our bodies. Research has shown that emotions affect how we walk or dance
[66, 38, 55] Conversely, our actions can shape our perceptions. One study illustrated this by finding that
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individuals who mimicked a smiling expression by holding a pen between their teeth found cartoons
funnier compared to those who simulated a frown by holding a pen between their lips [74]. Similarly,
another study reported that men perceived themselves as more assertive when they adopted fist-making
gestures instead of neutral hand positions [67].

Embodied music cognition, as articulated by Leman [47], stems from the broader concept of embod-
ied cognition. Leman posits a direct experience with music where the listener parses the moving sonic
forms in the music through bodily imitation, either internally or externally.

1.2 Dyadic Dancing

Beyond coupling our movements with the audio stimuli, studies have shown that individuals can
align their movements with visual stimuli, such as flashing lights [32]. We can also engage in visual
coupling with the movements of others, a phenomenon termed social entrainment by Phillips-Silver
and Keller [60]. Dyadic dancing becomes the most fundamental avenue to explore rhythmic-social
entrainment, where the two individuals in the dyads might entrain their movements to visual stimuli
from each other and also to the music stimulus being played.

In this thesis, we explore dyadic dancing from the following angles:

• Interpersonal coordination: Predicting interpersonal coordination measured by using perceptual
variables using kinematic and gestural features.

• Individual Identification: Identifying individuals within dyads using only movement features,
signifying the presence of unique signatures despite interpersonal coordination between the indi-
viduals.

1.3 Interpersonal coordination

Interpersonal coordination enables us to synchronize seamlessly with others during conversations,
typically through turn-taking. The importance of such coordination becomes apparent when disruptions
occur. For instance, even minor delays can disrupt the flow of a telephone conversation, leading to
interruptions and awkward silences. Under these circumstances, we rely on explicit verbal cues, such
as ”Your turn to speak,” to navigate and facilitate smooth communication. Bernieri and Rosenthal [6]
define interpersonal coordination as “the degree to which the behaviors in an interaction are nonrandom,
patterned, or synchronized in both timing and form.” Interpersonal coordination can be divided into
behavior matching and interactional synchrony. Behavior matching involves mirroring actions/postures.
Interactional synchrony comprises three elements: rhythm, the co-occurrence of movements, and the
seamless integration of actions between individuals.

Some evidence suggests that our ability for interpersonal coordination may be innate. Research
involving newborns revealed that infants, only a few days old, could synchronize their movements
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with human speech, regardless of whether the language was native or foreign to their parents. This
synchronization occurred even when the speech was delivered indirectly via tape recordings. A notable
discovery was that this synchronization did not manifest when the stimulus consisted of non-speech
sounds [21]. Kato et al. [41] later replicated these findings in Japan.

The advantages of interpersonal coordination are well-documented across various studies. Research
highlights that during conversations, we move our bodies to synchronize with the rhythm of not only
our own speech but also that of the other person. Synchronizing with the speaker’s speech rhythm might
facilitate smooth communication, allowing for the anticipation of when the speaker will finish without
inadvertently interrupting them [24, 25]. Furthermore, Interpersonal coordination, primarily postural
and postural shifts congruency, has been linked with enhanced social rapport [23, 44, 43].

1.3.1 Measuring Interpersonal coordination

Various methodologies have been employed in the literature to measure interpersonal coordination.
Microanalysis, for example, entails a frame-by-frame examination to identify instances of movement
change, referred to as movement boundaries, and then comparing these boundaries between individuals
[20]. Spectral analysis is another technique used to assess the periodicity of behaviors [58]. Other
metrics include phonetic boundaries, discrepancies in turn-taking, and the degree of behavior matching.

1.3.1.1 Perceptual Ratings

The contemporary approach, the one adopted in this thesis, involves the use of perceptual ratings.
This method is predicated on the hypothesis that humans are capable of directly perceiving stimuli in
their environment. Baron and Boudreau [4] argue that relational behavior contains stimulus for various
social properties. These properties are directly perceptible rather than being inferred, assuming the
observer can witness the joint action unfold over time. This methodology was validated by a series of
studies by Newtson et al. [58]. Participants in these studies were asked to give interaction ratings while
observing a series of coordinated tasks. The tasks could include, for example, two people setting up tents
together. These ratings reflected the interactant’s coordination while doing the task. Furthermore, the
relationship between ratings and coordination deteriorated when observers were engaged in perceptual
interference tasks while giving ratings. No such effect was found when a cognitive interference task was
given, signifying that the participants were perceiving the Interaction directly and not inferring it.

1.3.2 Interpersonal coordination in dance

Recent research has delved into the study of interpersonal coordination, particularly motoric cou-
pling within dance. This exploration can be approached through two distinct methods: choreographed
sequences and naturalistic, free-form movement. Lee et al. [46] noted an enhanced perception of group
cohesion and fitness in choreographed performances that are temporally aligned compared to those ex-
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perimentally misaligned. In a study by Chauvigné et al. [18], professional dancers performed two
well-known Greek folk choreographies under four conditions: control, without holding hands, without
auditory stimulus, and without visual stimulus. This study aimed to discern the impact of each type
of stimulus on group synchrony. It was found that visual coupling has a more significant contribution
in the horizontal plane, whereas auditory coupling has a more significant contribution in the vertical
axes. Among all three conditions, the absence of haptic feedback was observed to disrupt group syn-
chrony the most and affect all three axes. Concerns regarding the ecological validity of these studies
have led to a shift towards investigating naturalistic free-form movements akin to those observed in club
or party environments. This approach assesses interpersonal coordination through perceptual ratings,
allowing for the identification of relationships between these ratings and kinematic coupling features.
Two perceptual variables are employed: “Interaction” and “Similarity”. Hartmann et al. [37] studied
dyads dancing to pop music and found that Interaction closely relates to torso orientation, measuring the
extent to which partners in a dyad face each other, which reflects gaze behavior. They also discovered
that temporal-spatial coupling had a stronger correlation with similarity, highlighting the importance of
similar movements in space and time for perceived similarity. They also showed that while interaction
and similarity ratings correlated strongly, there’s a notable pattern in some dyads where high similarity
can coexist with low Interaction. This suggests that Interaction may be viewed as a specific instance of
similarity where mutual orientation plays a key role. In a subsequent study, Hartmann et al. [36] exam-
ined the dyads with high torso orientation to unravel other kinematic and gestural features linked with
the perceptual variables. A gestural feature, called postural bounding volume, measuring the similarity
of postures of two individuals, was linked with perceived similarity. Exploring the dynamics between
sequentiality-simultaneity and interaction-similarity revealed that similarity is associated with slower,
simultaneous horizontal movements. In contrast, Interaction correlates with sequential coupling and
quicker simultaneous movements. Additionally, the study discovered that mirroring movements foster
increased coupling within dyads. Currently, we have many features that exhibit moderate correlations
with these perceptual variables. However, further investigation is warranted to deepen our understanding
of interpersonal coordination in dyadic dance.

Accordingly, the objectives to investigate interpersonal coordination in dyadic dance are:

• To explore additional features linked with perceived Interaction and Similarity.

• To utilize machine learning for the prediction of these perceptual variables.

• To identify key joints and joint pairs crucial for predicting perceptual variables.

1.4 Individual Identification

The richness of music-induced movements is extensively documented in many studies. Hufschmidt
et al. [39] demonstrated that both adults and children can accurately identify gender from dance an-
imations, with physical strength significantly influencing male gender identification by adults but not
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children. Camurri et al. [11] focused on the emotional expression within dance, instructing dancers
to embody the intended emotions of Anger, Fear, Grief, and Joy in a choreography. They found that
grief was the most accurately identified emotion, followed by anger, joy, and fear, with all above chance
levels. Van Dyck et al. [85] also studied the embodiment of emotion in dance. They induced happy or
sad emotions in the participants through a series of imagery sentences and accompanying music of the
intended emotion. The participants were then asked to dance to a piece of neutral music. They found
that the movements were faster, grander, and more impulsive in a happy state than in a sad-induced
state. Luck et al. [52] showcased that music-induced movements reflect the personality type of the
dancers and the musical genre that they are dancing to. Carlson et al. [13] found that conscientiousness
and extraversion personality trait is linked with how one responds to small tempo changes. Machine
learning methods have also been used to predict gender and personality traits [1] and musical genres
[17] from free-form dance movements. As music-induced movements can reflect distinct individual
characteristics such as gender, personality, and mood, it is reasonable to expect different individuals to
move differently to the same music stimulus.

Johansson’s [40] seminal study laid the foundation for investigations into the individuality of move-
ment. His findings demonstrated that humans possess the ability to perceive walking from point-light
animations featuring key joints. Cutting and Kozlowski’s [22] study illustrated that friends could iden-
tify each other based on point-light displays of their gait. Troje et al. [81] extended this line of inquiry,
revealing that human observers have the ability to learn to distinguish individuals from the point-light
animations of their walk. In their investigation, identification performance was measured under various
conditions, including displays normalized for size, shape, and walking frequency, as well as rotations of
the walker by 90 degrees. Remarkably, the identification performance was three times higher than the
chance level. In a subsequent study, Westhoff and Troje [86] used Fourier analysis and removed the first
harmonic, which contains the majority of individual information, yet the performance remained above
the chance level.

Music-induced movements can also be considered a motoric fingerprint, encompassing information
that can be used to identify an individual. Both human observers and machine learning algorithms have
demonstrated success in this area. Humans can recognize themselves from their motion-captured dance
movements [68, 7]. Carlson et al. [17] employed machine learning methods and achieved a remarkably
high accuracy of 94% in identifying individuals from their motion-captured data using only movement
features while doing free-form dance movements to the music of eight genres. The presence of unique
signatures or motoric fingerprints has not been studied in the dyadic context. In this thesis, we verify
whether these movements can retain their status of motoric fingerprints in the dyadic context. As an
extension to this work, we also look at individual identification in a markerless-choreographic setting
where professional dancers perform identical choreographies.

Accordingly, the objectives to investigate the presence of motoric fingerprints in varied contexts are:

• Identifying individuals in dyadic context and markerless-choreographic settings using only their
movement features.
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• To identify key joints and joint pairs crucial for the classification.

1.5 Anatomical Planes and Axes

Figure 1.2: Anatomical Planes and Axes

In this thesis, we explore the movements of the human body, necessitating a comprehensive under-
standing of the anatomical planes and axes, as illustrated in Figure 1.2. These would serve as a reference
point to describe directions and transformations applied across any plane. The three anatomical planes
are:

• Sagittal: This vertical plane divides the body into left and right halves.

• Transverse: This horizontal plane divides the body into upper and lower parts.

• Coronal: This vertical plane divides the body into anterior (front) and posterior (back) sections.

The three axes are:

• Anteroposterior (X-axis): This axes is perpendicular to the coronal plane and runs from the front
to the back side of the body.

• Mediolateral (Y-axis): This axis is perpendicular to the sagittal plane and runs from one side of
the body to another side.
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• Vertical (Z-axis): This axis is perpendicular to the transverse plane and runs from top to bottom.

1.6 The Scope and Contributions

Dyadic dancing is the topic of interest of this thesis. Our exploration revolves around two key
aspects of dyadic dance: Interpersonal Coordination and Individual Identification in the presence of
interpersonal coordination. Additionally, we extend our investigation to individual identification within
a markerless-choreographic setting. The following are the major contributions of this thesis:

• Additional features, including musical features and energy level of individuals in dyads that are
linked with perceived Interaction and similarity.

• Machine learning model to predict perceived Interaction and similarity. We also unveil the impor-
tance of hands relative to other body parts in predicting Interaction.

• The presence of motoric fingerprints in the dyadic dance setting.

• The presence of motoric fingerprints in the choreographic dance setting.

• Demonstrating the robustness of Carlson et al. [17]’s methods and findings in individual identifi-
cation from only movement features.

1.7 Thesis Organization

• Chapter 2 delves into interpersonal coordination in dyadic dancing.

• Chapter 3 explores the presence of motoric fingerprints in dyadic dance settings by predicting
individuals using only movement features.

• Chapter 4 explores the presence of motoric fingerprints in markerless-choreographic settings by
predicting individuals using only movement features.

• Chapter 5 is about conclusions and future work.
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Chapter 2

Interpersonal coordination in Dyadic Dance

Interpersonal coordination is a well-studied topic in social psychology and has recently gained atten-
tion in the context of naturalistic movements in dyadic dancing [15, 37, 36]. Interaction and Similarity
are two perceptual variables that are utilized to study interpersonal coordination in a dyadic dance con-
text. While studies have successfully identified numerous features showing moderate correlations with
these perceptual variables, many aspects remain yet to be uncovered, necessitating further exploration
to enhance our understanding of interpersonal coordination in dyadic dance.

2.1 Objectives and Hypothesis

Despite the significant influence of music on dance, research on interpersonal coordination has pri-
marily focused on movement-related factors, neglecting the potential role of musical features like dance-
ability in facilitating coupling between dancers. Danceable music is characterized by its ability to induce
pleasure and the desire to groove, and it typically exhibits high pulse clarity [28], a tempo range of 100-
120 BPM [27], a low-frequency range [76], and a moderate level of syncopation [88]. In dyadic dance,
individuals allocate their cognitive resources between processing auditory stimuli from the music and
visual stimuli from their partner. We propose that danceable music, by virtue of its inherent rhythmic
clarity, can alleviate the cognitive demands of rhythmic entrainment, allowing dancers to dedicate more
cognitive resources to social entrainment. Therefore, we hypothesize that music’s danceability scores
positively correlate with perceived interaction.

Dance, as a form of physical activity, demands a significant expenditure of energy. We hypothesize
for individuals in dyads to be considered similar, they should be dancing with similar energy levels. In
other words, the absolute value of the energy difference between two dancers correlates negatively with
similarity. Upon inspection of animations, we hypothesize that dyads with greater levels of energy are
perceived as more interactive and vice-versa.

While several features identified in the literature have shown a moderate correlation with perceptual
variables [37, 36], no one has tried to predict these variables using machine learning. Incorporating ma-
chine learning models to predict these variables with reasonable accuracy could significantly streamline
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future research in this field, eliminating the need for the time-consuming task of collecting perceptual
ratings. Such an advancement could pave the way for studies investigating the relationship between
social closeness and motoric coupling or identifying individual characteristics that contribute to higher
levels of Interaction within a dyad.

Studies have established the importance of hand gestures in spoken communication [5, 42, 71]. In
the context of dyadic dancing, Carlson et al. [15] found that the dyads where individuals move their
hands faster are perceived as more interactive and vice-versa. However, the relative role of hands in the
entire body coupling has not been studied yet. Understanding this distinction is crucial for evaluating
the impact of localized movements, such as hand gestures, compared to more global movements like
bouncing. Hartmann et al. [36] calculated coupling features for the whole body and the entire body
without hands. However, they couldn’t justify the importance of hands in coupling as similar correla-
tions between coupling estimates and perceptual variables were obtained in both cases. We hypothesize
that hands play a pivotal role compared to other body parts in predicting Interaction.

In summary, we propose the following hypotheses:

• H1: The danceability of the music is positively correlated with mean perceived interaction ratings
of the various dyads dancing to that music.

• H2: The absolute value of the energy difference between two dancers in the dyad correlates
negatively with similarity.

• H3: The energy of dyads is positively correlated with interaction.

• H4: Hands play a pivotal role compared to other body parts in predicting interaction.

2.2 Methods

2.2.1 Dataset

2.2.1.1 Participants

We utilized Carlson et al. [17]’s dataset in which 73 participants (54 females) aged 19–40 years
(M = 25.75, SD = 4.72) were recruited for the motion capture study. The participants were from 24
nationalities and had diverse musical and dance training backgrounds.

2.2.1.2 Apparatus

The motion capture was conducted using a twelve-camera optical system (Qualisys Oqus 5+), track-
ing 21 reflective body markers in three dimensions of the subject at a frame rate of 120 Hz. Marker
locations are represented in Figure 2.1(A).
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2.2.1.3 Procedure

The participants were grouped in sets of three or four. Within each group, data was recorded both
individually and between every pair in the group. While every participant completed the individual
recording, 64 participants (52 in groups of four and 12 in groups of three) completed the dyadic record-
ing. Notably, in some groups of size four, certain markers of a participant were not captured in any of
their dyad recordings. These participants were excluded from the analysis, effectively converting the
groups to size three. During the recording, participants were instructed to move freely, either individu-
ally or in dyads, in response to each musical stimulus, simulating a dance club or party setting.

2.2.1.4 Stimuli Selection

The stimuli were selected based on social tagging data. Social tagging refers to associating free
text labels to musical tracks facilitated by music streaming services such as “Last.fm”. The selection
pipeline ensured that selected stimuli represented the selected genres and were danceable. From the
initial pool, 2407 tracks from Last.fm were retained such that they were associated strongly with only
one genre label. The tracks were annotated with genre labels using the Short Test of Music Preferences
(STOMP-R). The danceability of the musical tracks was ensured using three filtering steps. Firstly, only
tracks associated with some dancing-related tags, like “danceable” or ‘head banging,” were retained.
Secondly, tracks with non-zero danceability scores from Echo Nest API were retained. Echo Nest API
estimates the danceability of a particular track using its acoustic features. Finally, tracks whose tempos
were near the preferred tempo were retained, specifically 120 ± 12 Hz. Four tracks were randomly
selected from each genre and manually checked for tempo and style consistency. We got 16 stimuli
of length 35 seconds covering eight genres(2 stimuli per genre): Dance, Blues, Country, Metal, Jazz,
Reggae, Pop, and Rap. For a detailed account of the selection process, please refer to Carlson et al. [16].

2.2.1.5 Preprocessing

The Motion Capture (MoCap) Toolbox ([9]) was employed for data pre-processing in MATLAB.
The movement data for the 21 markers in the three dimensions underwent initial trimming to align with
the duration of the musical excerpts. Linear interpolation was applied to address missing data and then
resampled to 60Hz. Subsequently, the data was transformed into a set of 20 secondary markers called
joints. Figure 2.1(B) illustrates the locations of these 20 joints. Although the majority of joints were
situated at the same location as a specific marker, certain joints represented the average location of two
or more markers. Please refer to 2.1 for a detailed understanding of the transformation process.

2.2.1.6 Perceptual Experiment

From the 90 dyads, Hartmann et al. [36] selected eight dyads that had maximum average torso orien-
tation across all stimuli for the perceptual rating task to understand other factors linked with perceived

11



Figure 2.1: A) Marker locations B) Transformed joint locations

Source: Carlson et al. [17]

Interaction and similarity besides torso orientation. Computational details of torso orientation are re-
ported later. The selected dyads are comprised of eleven unique individuals (five individuals were part
of two dyads). Animations were created without music, with the markers of the left dancer depicted in
green and those of the right dancer in red. Consistency in stick figure size was maintained across all
animations. To control for potential biases due to positioning, the left and right dancers were randomly
swapped in half of the animations.

To mitigate fatigue associated with rating all animations, the animations were divided into four par-
titions using a Latin rectangle combinatorial design (see Figure 2.2). This design ensured that each
partition comprised of 32 animations had each dyad and each musical stimulus appearing twice.

Participants with diverse dance and musical training backgrounds and belonging to different nation-
alities were recruited through online platforms for the rating task. Participants were presented with ani-
mations in loop mode and asked to indicate their level of agreement or disagreement with two statements
using sliders: “These dancers are dancing similarly to each other” and “These dancers are interacting
with each other” and thereby rating the given animation on interaction and similarity between 0 and 100.
Several measures were implemented to address the potential limitations of collecting ratings outside of
a controlled setting to ensure data validity. Outliers were identified and removed, and participants were
matched across the four partitions based on age and gender, resulting in 108 raters per partition. Finally,
perceived interaction and similarity scores are computed by taking the mean across all raters.
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Original Transformed Joint
8,9 A Root
8 B Right Hip
16 C Right Knee
18 D Right Ankle
20 E Right Toe
9 F Left Hip
17 G Left Knee
19 H Left Ankle
21 I Left Toe
4,5,8,9 J Torso
4,5 K Neck
1,2,3 L Head
4 M Right Shoulder
10 N Right Elbow
12 O Right Wrist
14 P Right Fingers
5 Q Left Shoulder
11 R Left Elbow
13 S Left Wrist
15 T Left Fingers

Table 2.1: Transformation of markers to joints

2.2.2 Features

2.2.2.1 Postural Features

• Torso Orientation [37]: Torso orientation measures the extent to which dancers in a dyad are
oriented toward each other. The orientation of a dancer is estimated by a vector perpendicular
to the line joining the two shoulders projecting toward the anteroposterior direction. The torso
orientation at a particular time frame is calculated as defined in Equation 2.1.

∑
cos(α) + cos(β)

T
(2.1)

Where:

– α and β are the angles between the projected vector and line connecting the mid-point of
two shoulders to the other dancer’s torso for each dancer, respectively.

– T is the number of frames

The torso orientation measure ranges from −2 (when both dancers are facing away from each
other) to +2 (when both dancers are facing toward each other). Finally, the average is taken
across the time dimension.

• Volumetric Matching [36]: Volumetric matching measures the congruency between the postures
of two dancers. In line with previous research [2, 35], we use the convex hull of the position of
joints to compute this feature. The convex hull can be considered the smallest convex polygon
that bounds all the joints. Volumetric matching is defined as the average of the absolute difference
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Figure 2.2: Division of 128 animations into 4 partitions where each color depicts a partition.

Source: Hartmann et al. [36]

between the volume of the convex hull of each dancer at each time frame. It ranges from 0 (perfect
postural congruency) to +∞ (perfect postural incongruency).

2.2.2.2 Gestural Features

Before extracting the kinematic features, the recordings of each dancer were transformed into a
local coordinate system to account for the fact that different individuals may have oriented themselves
differently in the recording space. In this coordinate system, the root marker (marker A in Figure 2.1(B)
is the origin, and the line joining the hip markers defines the mediolateral axis. Individuals in the dyads
tend to mirror each other. Therefore, one of the individuals was randomly mirrored before the gestural
features were computed. This was done by following Fujiwara and Daibo [29]’s work that involves the
reflection of joints in the sagittal plane and inverting the mediolateral coordinate. Instantaneous velocity
was computed through time differentiation and a Butterworth smoothing filter (2nd order; 12 Hz cutoff
frequency) for all markers in all three dimensions, as outlined in Burger and Toiviainen [9].

• Imitation [36]: The imitation feature measures sequential coupling between two dancers at dif-
ferent time lags defined by a cross-similarity matrix. Algorithm 1 taken from Hartmann et al.
[36] lists step-by-step computation of imitation feature. In order to make the imitation estimate
comparable between songs of different tempi, linear interpolation was used to rescale the measure
to a beat lag scale. The various symbols used in the algorithm are as follows:

– A,B : A and B are time series velocity data of both dancers respectively consisting of T
number of frames and N number of channels.

– M : M is the cross similarity matrix
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– d : d is the imitation vector.

Algorithm 1: Imitation Algorithm

Input: A ∈ RT×N ,B ∈ RT×N

Output: d ∈ RT

M ∈ RT×T := AB>;1

//dot products between any two time points
d0 = sum(diag(M, 0)) ;2

for i← 1 to T − 1 do3

di = sum(diag(M,−i)) + sum(diag(M, i)) ;4

//summing over each diagonal
return d;5

• Synchrony [36]: Synchrony feature consists of the temporal average of coupling estimates at
different movement frequencies. It is computed using Generalized cross wavelet transform [78],
and it involves the conversion of the frequency axis to beat relative scale ranging from 0.5 beat
level to 4 beat level to compare the stimulus with different tempi. The step-by-step computation
of this feature is listed in the algorithm 2 taken from Hartmann et al. [36]. The various symbols
used in the algorithm are as follows:

– A,B : A and B are time series velocity data of both dancers respectively consisting of T
number of frames and N number of channels.

– U, V : U and V are channel wise wavelet transforms

– C: Generalized cross wavelet transform

– d : d is the synchrony vector.

• Covariance Matrix: Covariance Matrix consists of entries having covariance scores between any
two marker’s velocity time series. Such Covariance-based features have been successfully used
in various machine learning classification tasks, including time series classification [26], action
recognition [34], pedestrian detection [84], individual identification [17], and the prediction of
individual characteristics such as gender and personality [1]. The covariance of velocity between
markers of two dancers xi and xj across X, Y, and Z dimensions is measured using correntropy—a
non-linear covariance measure that is shown in Equation 2.2. With 60 time series for each dancer,
we get a 60x60 covariance matrix. Flattening the covariance matrix results in a 3600-length
feature vector.

K (xi, xj) = e
−‖xi−xj‖22

2σ2T2 (2.2)

Where:
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Algorithm 2: Synchrony Algorithm

Input: A ∈ RT×N ,B ∈ RT×N

Output: d ∈ RF

U ∈ CF×T×N ,V ∈ CF×T×N ,C ∈ RF×T ;1

for i← 1 to N do2

U0 ∈ CF×T := cwt(A[:, i]), V0 ∈ CF×T := cwt(A[:, i]) ;3

U0 := resample(U0), V0 := resample(V0) ;4

U [:, :, i] := U0, V [:, :, i] := V05

//Computing wavelet transform for each channel
for f ← 1 to F do6

for t← 1 to T do7

u := flatten(U [f, t, :]), v := flatten(V [f, t, :]) ;8

C[f, t] = abs(sqrt(mean((u · v)2))) ;9

//Generalized cross wavelet transformation using pair wise approach
d := 1

T

∑T
t=1C(:, t) ;10

//Computing average for each frequency across all time points
return d;11

– ‖xi − xj‖2 denotes the L2 norm.

– T denotes the number of frames employed to accommodate samples of varying lengths.

– σ governs the steepness of the distribution of the generated features, with higher σ values
yielding negatively skewed feature distribution and vice versa. To improve the discriminabil-
ity of the produced covariance-based features between different subjects, the optimization of
σ for each feature separately was achieved through the downhill simplex algorithm, aiming
to minimize the absolute value of skewness in the produced features. We utilized the Python
library “scipy.optimize” with the “Nelder-Mead” method for this optimization step. Ulti-
mately, these optimized features were normalized to zero mean and one standard deviation.

• Energy: The dancer’s energy is defined as the mean square velocity across markers and time
frames as shown in Equation 2.3. Consequently, the dyad’s energy is the sum of the two dancers’
energies.

∑
i

∑
j

∑
k v

2
ijk

T ∗ 20 ∗ 3
(2.3)

Where:

– i denotes a particular marker.

– j denotes a particular dimension.

– k denotes a particular time frame.

– T denotes the number of frames.
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2.2.3 Machine Learning Analysis

Joints Body parts
Root Root
Hip Hip (L,R)
Leg Knee (L,R), Ankle (L,R), Toe (L,R)
Torso Torso
Neck Neck
Head Head
Arm Shoulder (L,R), Elbow (L,R)
Hand Wrist (L,R), Fingers (L,R)

Table 2.2: Transformation of joints to body parts

SVM works by identifying the line that optimally segregates data points into distinct classes to cor-
rectly classify future data points. This line, known as the Optimal Separating Hyperplane (OSH), is
positioned to maximize the margin between the two classes, thereby minimizing the risk of misclassi-
fication for new data ([33]; [53]). The data points closest to the hyperplane are referred to as support
vectors. It is hard to draw separating lines in real-world data without making some errors. The SVM has
a parameter C, which plays a crucial role in balancing the trade-off between training error and margin
size. By regulating the penalty for misclassified data points during training, C influences the width of
the margin. A smaller C value favors a larger margin, allowing more misclassifications, while a larger
C prioritizes minimizing training error, resulting in a narrower margin. Relevant feature identification is
important when working with SVM; otherwise, the SVM algorithm might struggle to classify samples
accurately. It is essential to note that SVM can work with any number of dimensions and is also not
limited to linearly separable classes.

2.2.3.1 Feature Selection

With numerous features, employing feature selection becomes crucial to diminish dimensionality
and mitigate the risk of model overfitting. We utilized PCA (principal component analysis) for the
feature selection.

2.2.3.2 Classification

We chose to model the problem of predicting perceived interaction and similarity as classification
over regression; a key consideration is the nature of the perceptual variables rating themselves. These
ratings represent an average across multiple participants, and the specific numerical difference between
individual ratings may not be as meaningful as the categorical distinctions in perceived interaction and
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similarity levels. Consequently, classification offers a more suitable approach, as it allows for the predic-
tion of discrete categories rather than attempting to model precise numerical differences in the ratings.
The perceptual variables were categorized based on quantiles: ’low’ (< 1/3 quantile), ’medium’ (1/3 to
2/3 quantile), and ’high’ (> 2/3 quantile).

Linear SVM with an L2 penalty, squared hinged loss, and one vs all strategy was used to predict
the dancer from the selected features. A nested cross-validation technique was employed to check the
generalizability of the model. The outer cross-validation holds a part of the dataset as the test set.
The inner cross-validation helps in hyperparameter tuning, as well as the number of components to be
retained in PCA and parameter ‘C’ of SVM in our case. This approach is superior to the single cross-
validation, as it utilizes only a portion of the dataset provided by the outer cross-validation, reducing the
risk of overfitting the entire dataset. We also utilized stratified sampling to ensure the same proportion
of classes in training and test sets. We take three different feature set groups:

• Covariance Matrix

• Postural and Gestural Features from literature + Energy (Features)

• Combined

We train the model on the covariance matrix feature alone to identify significant joint pairs between
dancers for predicting the perceptual variables. This will help us check the relative contribution of
various joints in predicting the variables and, therefore, help us verify the hypothesis that hands are
relatively more important.

We train each feature set on a two-class classification where we take on “high” and “low” classes as
well as three-class classifications.

2.2.3.3 Feature Importance

We used weights from the linear SVM to identify the principal component with the highest weight
and then used its loadings’ absolute values to measure joint pair importance. In matrix form, the dimen-
sions of the joint pair importance matrix are 60x60. We summed the importance values across the three
dimensions, leaving us with a 20x20 matrix. To eliminate the distinction between individual dancers,
we summed the values along the diagonal, resulting in a symmetrical matrix. The further transformation
involved grouping joints into meaningful body parts and amalgamating left-right distinctions (see table
2.2), ultimately yielding an 8x8 matrix.

2.3 Results

The correlation between the danceability of the musical stimulus (extracted from the Echo nest API)
which ranges from 0 to 1 and the mean of the interaction and similarity ratings of all the dyads dancing
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Figure 2.3: Danceability of musical stimulus vs the interaction it elicits

Interaction Similarity
Danceability (H1) 0.79∗∗∗ 0.56∗

Absolute difference of energy of dyad members (H2) −0.33∗∗∗ −0.48∗∗∗
Energy of dyads (H3) 0.38∗∗∗ 0.24∗∗∗

Table 2.3: Correlation values for different hypotheses. ∗p < 0.05 ; ∗∗p < 0.01 ; ∗∗∗p < 0.001

to that stimuli was computed (see Figure 2.3). We also compute the energy of each individual and
test the hypothesis H2 and H3. The one-tailed Pearson correlation values for the first three hypotheses
are reported in Table 2.3. As there is a strong correlation between interaction and similarity, partial
correlations were also computed for the different hypotheses and are reported in Table 2.4.

4-fold mean cross-validation classification accuracies of perceived interaction and similarity are re-
ported in Table 2.5a and Table 2.5b respectively. The feature importance analysis in predicting interac-
tion and similarity is shown in Figure 2.4 and 2.5, respectively.

2.4 Discussion

Interpersonal coordination is a fundamental aspect of human interaction that plays a pervasive role
in our daily lives. From navigating busy roads to engaging in conversations, this ability to seamlessly
coordinate our actions with others is crucial for effective social interaction and task performance. The
study of interpersonal coordination spans diverse contexts, and this chapter specifically focuses on in-
terpersonal coordination in dyadic dance, building upon the work of Hartmann et al. (2023). In his
work, perceptual variables such as ”Interaction” and ”Similarity” have been employed to quantify in-
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Interaction Similarity
Danceability (H1) 0.67∗∗∗ −0.09
Absolute difference of energy of dyad members (H2) 0.03 −0.37∗∗∗
Energy of dyads (H3) 0.30∗∗∗ −0.04

Table 2.4: Partial Correlation values for different hypotheses. ∗p < 0.05 ; ∗∗p < 0.01 ; ∗∗∗p < 0.001

Two class Three class
Covariance 0.72 0.41
Features 0.65 0.46
Combined 0.74 0.40

(a) Perceived Interaction
Two class Three class

Covariance 0.73 0.51
Features 0.53 0.34
Combined 0.77 0.48

(b) Perceived Similarity

Table 2.5: 4-fold mean cross-validated accuracies

terpersonal coordination in dance, and numerous postural and gestural features exhibiting moderate
correlations with these variables have been identified.

Dyad r
1 0.54∗

2 0.60∗

3 0.15
4 0.10
5 0.66∗

6 0.28
7 0.26
8 0.12

Table 2.6: Correlation between danceability and interaction for each dyad. ∗p < 0.05

Musical features have been overlooked in the study of interpersonal coordination in dyadic dance.
We found a strong statistically significant correlation (refer Table 2.3) between danceability scores of
musical stimulus mean perceived interaction across all dyads dancing to that music. This correlation
remained significant even after controlling for similarity through partial correlation analysis (refer Table
2.4), providing robust support for our first hypothesis. These results indicate that danceable music
characterized by high pulse clarity could facilitate coupling between individuals by reducing the effort
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(a) Perceived Interaction (b) Perceived Similarity

Figure 2.4: Importance of Body-part pairs

required in rhythmic entrainment as the music has more rhythmic clarity and allows more cognitive
resources to be allocated to visual coupling, thereby improving interpersonal coordination. As each
dyad danced on every musical stimulus, we calculated the correlation between the danceability scores
of the music and the corresponding perceived interaction ratings for each dyad. The results, presented
in Table 2.6, reveal positive correlations, with several showing statistical significance.

This study introduced a novel feature, termed ”Energy,” defined as the mean squared velocity across
all markers and time frames. The results supported both hypotheses related to this feature. We found
statistically significant negative correlations between the absolute value of the difference in energy of
both dancers and similarity even after controlling for interaction, thereby validating the second hypoth-
esis. As hypothesized, the energy of the dyads was associated with interaction. This was indicated by
statistically significant correlation, even after controlling for similarity. Dyads exhibiting higher energy
may be perceived as having more enjoyment and engagement, resulting in higher interaction ratings and
vice-versa. The partial correlation between the energy of the dyad and similarity is not significant, as
dancers can execute similar movements with varying degrees of energy expenditure.

We also introduced a novel feature called the covariance matrix, where each entry in the matrix
represents the non-linear covariance between any two velocity time series of markers of any dimensions
of the two dancers in dyads. We employed three different feature sets in our analysis. The first set solely
included the covariance matrix to estimate the relative contribution of various joint pairs. The second
feature set comprised all postural and gestural features from the literature, along with energy. Finally, the
third feature set combined all available features. We conducted both two-class classification (High and
Low) and three-class classification tasks. Our best accuracy results were 74% for two-class, and 46%
for three-class classification of interaction; 77% for two-class, and 51% for three-class classification
of similarity. A notable observation is that our feature sets are more effective at predicting similarity
compared to interaction. The relatively lower accuracy in the three-class classification task can be
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(a) Perceived Interaction (b) Perceived Similarity

Figure 2.5: Importance of various body parts

justified by considering that final perceptual ratings are averages across multiple raters. Consequently,
small numerical differences between two ratings may not accurately reflect the actual difference in the
coupling, leading to misclassifications at the boundaries in the three-class scenario.

The weights of the two-class SVM model trained on only the covariance matrix were used to select
the prime principal component. The loading values of this component were taken as representative of
feature importance. As we had features between every pair of joints of any direction, this could be
visualized as a 60X60 matrix. Finally, through a series of transformations, we get an 8X8 body-parts
pair importance matrix (see Figure 2.4). The importance of each body part is visualized in Figure 2.2,
revealing the importance of hands in predicting interaction relative to other body parts, showing support
for the hypothesis 4.

To mitigate rater fatigue, the animation ratings were collected in four partitions. Each individual was
matched for age and gender in all partitions. Each partition contained two animations per dyad and two
animations per musical stimulus. Therefore, it is reasonable to expect similar rating distributions across
partitions (see Figures 2.6a and 2.6b). However, Kruskal-Wallis ANOVA revealed statistically signif-
icant differences between partitions for perceived interaction. Post-hoc Dunn’s test further identified
significant differences between Partitions 1 and 2, as well as Partitions 1 and 3. A closer examination of
the animations within each partition showed that while the ordering of animations by interaction values
made perceptual sense within each group, the overall order across partitions did not. This indicated that
the values from different partitions were not directly comparable. Kruskal-Wallis ANOVA showed no
group differences in perceived similarity. This suggests that perceived similarity is a more stable and
well-defined notion compared to perceived interaction.

To address the problem of different distribution of interaction ratings in different partitions, a nor-
malization solution was implemented, aiming to adjust the ratings within each partition such that the
mean ratings would reflect the same level of coupling across all groups. This measure was based on
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(a) Perceived Interaction (b) Perceived Similarity

Figure 2.6: Distribution of perceptual variables across various partitions.

Original Normalized Good Partitions Good Partitions Normalized
Covariance 0.72 0.78 0.70 0.74
Features 0.65 0.70 0.61 0.75
Combined 0.74 0.78 0.82 0.79

(a) Two class classification
Original Normalized Good Partitions Good Partitions Normalized

Covariance 0.41 0.47 0.42 0.48
Features 0.46 0.41 0.41 0.39
Combined 0.40 0.47 0.41 0.53

(b) Three class classification

Table 2.7: 4-fold mean cross-validated accuracies in predicting Interaction under different conditions

the assumption that the average rating in each partition represents the same coupling. The prediction
results after normalization are presented in Table 2.7 and show improved accuracy in both two-class and
three-class classifications. Poor internal consistency for perceived interaction was observed in partitions
2 and 3 (see Table 2.8). Consequently, only the data from partitions 1 and 4, exhibiting good internal
consistency, were utilized for further analysis, with the results also reported in Table 2.7.

In our current study, we observed a strong and statistically significant correlation between the dance-
ability of musical stimuli and the mean perceived interaction ratings for those stimuli. However, dyad-
level analysis indicated that this correlation does not hold consistently across all individuals. This dis-
crepancy highlights an anomaly that warrants further investigation in future research. One significant
limitation identified in the utilized dataset is the comparability of ratings across different partitions. The
normalization solution that is suggested in this chapter is based solely on the assumption that average
ratings in each partition reflect equivalent levels of interaction, which may not be accurate. To address
this, future studies linking danceability and interaction in dyads should consider having all ratings for a
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I II III IV
Similarity .75 .68 .72 .74
Interaction .74 .66 .63 .79

Table 2.8: Internal consistency of perceptual variables partition-wise

particular dyad conducted by the same evaluator. To mitigate fatigue involved in rating multiple dyads,
dyads could be allocated to different partitions. This approach would also facilitate a more detailed
analysis of the effects of time on these interaction ratings, providing deeper insights into how temporal
factors influence perceived dynamics within dyads.
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Chapter 3

Individual Identification in Dyadic Dance

Music-induced movements embody rich information about gender [39], mood, emotion, personality
[11, 52, 85, 13, 14], and culture [80]. Therefore, it is reasonable to expect different individuals to move
differently to the same music stimulus. Historically, the individuality of movements was first examined
through gait analysis, which has been shown to contain individual identifying information [22, 81, 86].
Sevdalis and Keller [68] demonstrated that the uniqueness of movements extends beyond mere walking.
In their research, participants were asked to engage in dancing, clapping, and walking. Subsequently,
they were required to determine whether motion capture recordings of these three activities were of
themselves or others. The self-identification accuracy surpassed random chance for all activities, with
dancing exhibiting the highest accuracy. Bläsing and Sauzet [7] studied action recognition in addi-
tion to self-recognition in dance through a two-part experiment. In the first phase, participants were
either blindfolded and instructed to create movements, learned movements that others created while
being blindfolded, or simply observed the movements of others. In the subsequent phase, participants
were tasked with categorizing recordings into four distinct categories: unfamiliar, only observed, ob-
served and learned, and self-created. Findings indicated that self-recognition was influenced by action
recognition, as participants more accurately identified themselves from the movements that they created
despite having no visual memory of the creation process as compared to those they had learned from
others. Carlson et al. [17] employed machine learning methods and achieved a remarkably high accu-
racy of 94% in identifying individuals from their motion-captured data using only movement features
while doing free-form dance movements to the music of eight genres. We have evidence to conclude
that music-induced movements can serve as motoric fingerprints, encompassing information that can
be used to identify an individual [17, 68, 7]. Dance is a social activity and, therefore, often occurs in
groups. In particular, we look at the presence of motoric fingerprints in the dyadic dance context.

3.1 Objectives and Hypothesis

Interpersonal coordination between individuals of dyads leads to mimicking and mirroring of move-
ments either simultaneously or after some delay [36]. Carlson et al. [14] showed that individuals in
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Figure 3.1: A portion of the dyadic dataset for the dancer identification study.

dyads tend to move their hands more than when dancing alone for the same music stimulus, and this
difference is statistically significant. They also showed individuals with higher empathy attune their
movements according to their partner. The individuality of movements in the context of dyadic settings
has not been studied yet. We hypothesize that the unique signature of individual movements persists
when individuals dance with a partner.

3.2 Methods

3.2.1 Dataset

We use the entire dyadic part of the dataset that was described in Chapter 2. An individual can dance
in two or three dyads depending on whether they were part of groups of sizes three or four, respectively.
In order to ensure balanced classes, we selected two dyads with the highest torso orientation from groups
of size four and one dyad from groups of size three, ensuring each participant was present in only one
dyad. Following these filtering steps, we arrived at a total of 864 recordings comprising 27 dyads (54
participants) dancing to 16 musical stimuli for the final classification analysis. The recordings were
preprocessed using Motion Capture (MoCap) Toolbox ([9]) in Matlab as outlined in Chapter 2, and
instantaneous velocity was computed for each joint for further feature engineering.
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Figure 3.2: Machine Learning pipeline

3.2.2 Machine Learning Analysis

A support vector machine (SVM) algorithm was used to identify the dancer. We rigorously adhered
to the machine-learning pipeline outlined in Carlson et al. [17], which is illustrated in Figure 3.2.

3.2.2.1 Feature Extraction

Based on the findings by Troje et al. [81] that show how markers move in relation to each other (as
opposed to their spatial relationships) plays some role in the human perceptual identification of walkers,
the covariance measure between the velocity of any two marker time series of any dimension was used
for feature extraction. The process to compute the covariance matrix is the same as in Chapter 2. The
resulting covariance matrix is symmetric, and the diagonals have zero values. Consequently, only the
lower triangular portion is flattened to generate a feature vector. This vector has a length of 1770, given
20 markers in three dimensions.

3.2.2.2 Feature Selection

With numerous features, employing feature selection becomes crucial to diminish dimensionality
and mitigate the risk of model overfitting. We utilized Linear SVM with an L1 penalty, squared hinged
loss, and one vs all strategy for feature selection. ([89]). This approach results in many feature weights
learned by the model having almost zero values, facilitating the filtering of irrelevant features. The L1
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Table 3.1: Dancer Identification accuracy when that musical genre was held as test-set (Dyadic)

Musical Genre Accuracy
Reggae 98.15
Pop 99.07
Metal 87.96
Jazz 95.37
Dance 100.00
Country 96.30
Blues 99.07
Rap 98.11

norm SVM is better suited at feature selection than the L2 norm, and it also avoids overfitting ([59]).
Employing the one-vs-all strategy for training the classifier yields feature weights for each class. The L1
norm of these weights is computed across each class and feature, serving as a measure of the importance
of that particular feature. The classifier is trained on features iteratively introduced in decreasing order
of importance. The number of features to be retained becomes a hyperparameter.

3.2.2.3 Classification

Linear SVM with an L2 penalty, squared hinged loss, and one vs all strategy was used to predict
the dancer from the selected features. A nested cross-validation technique was employed to check the
generalizability of the model. It is important to note that optimal hyperparameters were computed using
only the training fold in the outer cross-validation. The dyadic dataset used the leave-one-genre-out
technique for the outer cross-validation to ensure the generalizability of dancer identification in new
genres.

3.3 Results

We attained an exceptionally high mean cross-validation accuracy of 96.75% with a standard devia-
tion of 0.04. Accuracy, when each musical genre was held as a test set, is depicted in Table 3.1.

3.4 Discussion

Inspired by the findings of Carlson et al. [17], who demonstrated high accuracy in predicting in-
dividuals solely based on their movement features using machine learning, our study delves into the
exploration of whether music-induced movements retain their status as motoric fingerprints within the
novel dyadic dance context.
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(a) Number of individuals vs Misclassification count.

(b) The confusion matrix for the five individuals with > 10 misclassification in (a), namely 257, 239, 244, 274,
280, is depicted. The color bar shows the number of misclassifications (darker being more misclassifications)

Figure 3.3: Misclassification analysis when utilizing features from individual dance settings to predict
dancers using the dyadic model.

We accomplished a mean cross-validation accuracy of 96.75% in the dyadic dataset. To further
unravel the factors contributing to surpassing the accuracy Carlson et al. [17] achieved, we extended our
analysis to include training on the individual portion of the dataset. Employing a nested cross-validation
approach, we achieved a notable mean cross-validation accuracy of 97.04%, surpassing Carlson et al.
[17] results. This improvement can be attributed to the use of nested cross-validation rather than single
cross-validation. These results underscore the notion that our movements retain unique characteristics
even when dancing with a partner. We observed lower accuracy in metal and jazz genres compared to
pop, rap, and others, which is consistent with Carlson et al. [17]. Metal and jazz genres are associated
with stereotypical moves, which may cause individuals to move more similarly than in other genres.
Headbanging is common in the Metal subculture [72, 8, 75], and moves like Charleston and swing
are common in the Jazz subculture [49, 56]. The influence of distinctive movement stereotypes within
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these subcultures may contribute to a higher degree of movement similarity and potentially impact
identification accuracy.

(a) Importance of Joint pairs

Marker Importance
R Hip(ML) 18.25
R Shoulder(ML) 16.93
Head(AP) 16.35
L Shoulder(AP) 15.33
L Hip(ML) 14.44
L Knee(ML) 13.50
R Elbow(AP) 13.47
R Shoulder(V) 12.78
R Knee(ML) 12.41
R Ankle(AP) 11.96
L Ankle(AP) 11.94
L Shoulder(ML) 11.69
L Knee(AP) 11.44
L Toe(V) 11.42
Head(V) 11.40

(b) Importance of joints

Figure 3.4: Feature Importance analysis

Feature importance analysis revealed a pattern consistent with Carlson et al. [17], illustrated in Fig-
ure 3.4. Joint pairs aligned in the same direction, such as both Antero-Posterior (AP), hold greater
importance compared to pairs in different directions, like one in AP and the other vertical. Proxim-
ity also plays a role, with pairs occurring in nearby locations, such as fingers and wrists, being more
important. Further, individual joint importance was determined by summing the importance values of
pairs involving that joint. The analysis underscores the significance of limb joints, including shoulders,
ankles, wrists, and knees, along with hips, in predicting individuals.

Utilizing data encompassing both individual and dyadic dance performances for the same individ-
uals, we employed the model trained on dyadic performances to predict individuals based on features
extracted from their individual performances. Two individuals from the dyadic dataset were excluded
due to labeling issues in their individual recordings. Remarkably, we achieved an accuracy of 86.44%
using the important features derived from the dyadic model for the prediction task. This high level of
dancer identification accuracy suggests that unique movement signatures are consistently maintained
across solo and dyadic dancing scenarios. Our subsequent misclassification analysis revealed intriguing
patterns (refer to Figure 3.3a). Notably, certain individuals were accurately predicted by the dyad model
without any errors, while others remained unpredicted by the dyad model altogether.

We further analyzed five individuals (257, 239, 244, 274, 280) who were poorly predicted by the
dyadic model. We found that the two dyads make up four out of the five individuals, and the one
remaining individual’s partner was accurately predicted. This suggests that the prediction challenges
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may be related to specific dynamics within these dyadic interactions. We focused on three dyads: A(274-
280), B(244-239), and C(257,268). Upon reviewing the performances of these individuals in both solo
and dyadic settings, Dyad A was excluded from further analysis due to significant recording errors,
even though the data markers were fully recorded. For Dyads B and C, a common pattern emerged:
one individual displayed minimal movement, such as swaying left to right with limited hand and leg
movements and occasional walking, while the other performed complex movements involving both
hands and legs in a solo setting. When dancing together, they exhibited strongly coupled sways with
minimalistic hand and leg movements. In both dyads, the individuals who adjusted their movements
from complex in solo settings to more limited in dyadic settings had higher empathy levels, as measured
by EQ scores, compared to their partners. This finding supports previous research suggesting that dyads
comprising one individual with a higher EQ score and the other one with lower EQ tend to be more
interactive compared to dyads where both individuals have high or low EQ scores [15]. This pattern
indicates that individuals with higher empathy may be more attuned to their partners with lower empathy,
adapting their movements to facilitate a more harmonious interaction, which is in line with the findings
of Carlson et al. [14]. Interestingly, the individual exhibiting complex movements in solo settings was
not recognized by the dyadic model. This discrepancy likely arises because the interaction within the
dyad forces these individuals to adopt restrained movements that do not capture their unique signature.
In Dyad B, the individual with minimalistic movements was also not recognized, being misidentified as
their partner instead, as illustrated by the confusion matrix 3.3.

Analyzing the animations of the dyads where individuals were accurately predicted by the dyadic
model revealed that either there is very little interaction between the individuals or the interaction is
there, but the movements are free enough to capture their unique signature.

We selected dyads based on high torso orientation scores to ensure that the individuals in the dyads
were interacting with each other. High torso orientation scores only ensure that the individuals in the
dyad are facing each other. The future work could involve selecting dyads based on high perceptual
ratings of interaction, strengthening the validity of the obtained results.

In this chapter, we examined the presence of motoric fingerprints in dyadic settings and found that
these unique movement patterns are generally consistent for an individual across both solo and dyadic
setting, with few exceptions. As an extension of this work, the next chapter delves into the challenge of
individual identification in a constrained choreographic setting, where dancers perform the same routine.
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Chapter 4

Indiviudal Identification in Markerless-choreographic setting

In the previous chapter, we have shown the presence of motoric fingerprints in the dyadic dance con-
text. In this chapter, we attempt the problem of individual identification in a constrained choreographic
setting, where professional dancers are dancing to the same routine in markerless motion capture.

4.1 Objectives and Hypothesis

Dancer identification has been studied in the context of naturalistic free-form movements [17, 68, 7].
These movements could be influenced by gender [39], mood, emotion, personality [11, 52, 85, 13, 14],
and culture [80]. This leads to an intriguing question: To what extent can we identify individuals based
on their movements within a more constrained setting, where each subject performs the same routine?
Unlike free-form environments, constrained settings offer limited scope for variations between subjects.
The distinctions, if they exist, are subtle and may manifest, for instance, in aspects like flowy versus jerky
renditions of the same choreography 1. To investigate choreographic settings, it becomes imperative to
involve professional dancers with substantial experience, ensuring strict adherence to the prescribed
choreography. This work tries to verify the notion of the personal style of a dancer.

These dancer identification studies have employed a marker-based motion capture system for record-
ing dance movements. However, there are several challenges associated with using marker-based sys-
tems for capturing movements. Marker-based systems necessitate extensive preparation time for sub-
jects, limiting their practicality. They cannot be used in environments where their placement could im-
pede the studied activity, such as sports. Furthermore, the placement of markers can alter the naturalness
of subjects’ movements. Hence, it is important to capture music-induced movements in a markerless
setting. Advancements in computer vision, particularly leveraging modern deep learning methods, have
significantly enhanced the efficacy of human pose estimation in a markerless setting. Human pose es-
timation and tracking, a computer vision task, includes detecting, associating, and tracking semantic
key points such as ”right shoulders” and ”left knees” from images and videos. OpenPose stands out as

1Please note that in the two videos video1 and video2, despite doing the same routine, each dancer infuses a personal touch
to it
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(a) 17 key-points locations

Keypoint No. Name
1 Nose
2 Left Eye
3 Left Ear
4 Right Eye
5 Right Ear
6 Left Shoulder
7 Left Elbow
8 Left Wrist
9 Right Shoulder
10 Right Elbow
11 Right Wrist
12 Left Hip
13 Left Knee
14 Left Ankle
15 Right Hip
16 Right Knee
17 Right Ankle

(b) 17 key-points names

Figure 4.1: COCO Format

a noteworthy library capable of 2D/3D pose estimation ([12]). Despite the challenges in human pose
estimation, including occlusions due to viewing angles, several research studies have substantiated the
accuracy of these systems in tracking the key points. Nakano et al. [57] conducted a study involving
participants engaging in activities like walking, countermovement jumping, and ball throwing, utilizing
both marker-based and Openpose-based markerless motion capture systems to record the activity. The
differences were quantitatively analyzed using mean absolute errors, revealing that 80% of the errors
were less than 30mm. Notably, recent studies have underscored the success of markerless systems, of-
fering a promising alternative in overcoming the limitations associated with marker-based approaches.
Hence, we should be able to validate Carlson et al. [17]’s findings in a markerless setting. We hy-
pothesize that despite dancing to the same choreography, there is a unique signature of a dancer that is
identifiable in a markerless setting.

4.2 Methods

4.2.1 Dataset

We employed the AIST++ dataset from Li et al. [51] for the choreographic-markless setting. AIST++
is a large-scale 3D dance motion dataset generated from the AIST dance database ([83]). AIST is just
a collection of dance videos in 9 camera angles without any 3D information. AIST++ provides 17
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Figure 4.2: Summary of AIST++ dataset

COCO-format [64] human joint locations in 2D and 3D for each frame, along with camera and SMPL
pose parameters. 17 COCO-format joint locations are depicted in the Figure 4.1.

The subjects of the study were 40 professional dancers (15 females) with more than five years of
experience specializing in a particular dance genre. It is a rich dataset covering ten dance genres: Ballet
Jazz, Street Jazz, Krump, House, LA-style Hip-hop, Middle Hip-hop, Waack, Lock, Pop, and Break.

The dataset, summarized in Figure 4.2, comprises 1,408 dance sequences; basic dance constitutes
85%, and advanced dance includes the remaining 15%. Within the basic dance category, each genre in-
cludes ten choreographies performed by three dancers in four impressions: intense, loose, hard, and soft.
In the advanced dance category, dancers were asked to choreograph their own moves. Some dancers
shared their choreographies with others. For each genre, there were seven choreographies performed by
three dancers. We will be using the basic dance category for our analysis.

4.2.2 Preprocessing

The recordings were initially in the form of (T,17,3), with T representing the number of frames. It
was then flattened to (T,54) to facilitate further processing in the Motion Capture (MoCap) Toolbox
[9]. Gaps were filled linearly, and an additional step of smoothing was carried out using a Butterworth
smoothing filter (2nd order; 12 Hz cutoff frequency) for all markers in all three dimensions. Finally,
instantaneous velocity was computed for each joint for further feature engineering.
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4.2.3 Machine Learning Analysis

We utilized the machine-learning pipeline from the previous chapter. In this dataset, we have 17 key
points as opposed to 20 from the dyadic dataset. Therefore, the resulting feature vector generated from
flattening the lower triangular half of the covariance matrix has a length of 1275.

4.2.3.1 Classification

We aim to capture the subtle differences between dancers following the same routine. Hence, it
is crucial to train the model for each dance genre while also ensuring that no choreography overlaps
between the training and test datasets. We have 120 data points for each genre covering 3 partici-
pants. Employing a Stratified k-fold with five folds for the outer cross-validation ensures that classes
are evenly distributed in both training and test sets. We also trained a dance genre classifier using the
same pipeline and employed a Stratified K-fold with three folds. We also ensured that different partici-
pants were present in both the training and test sets for the dance genre classifier. Consequently, dancer
identification becomes a two-step process: initially predicting the dance genre from the movements and
subsequently using the model specific to that genre to predict the individual dancer. Additionally, a
dancer identification model was trained on the entire dataset for comparison purposes.

4.3 Results

We attained a mean cross-validation accuracy of 47.6% with a standard deviation of 0.05 for dancer
identification across the entire dataset. The dance genre classifier demonstrated a mean cross-validation
accuracy of 88.25% with a standard deviation of 0.02. The mean cross-validation dancer identification
accuracy for each dance genre is presented in Table 4.1.

Dance Genres Mean Std
Break 63.89 0.07
House 91.67 0.08
B Jazz 79.07 0.12
S Jazz 65.51 0.14
Krump 67.72 0.11
L Hip-hop 81.67 0.09
Lock 85.00 0.09
M Hip-hop 86.67 0.07
Pop 70.00 0.12
Waack 78.90 0.14

Table 4.1: Cross-validation dancer identification accuracy for each dance genre (AIST++)
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4.4 Discussion

This study delves into the notion of the personal style of a dancer by trying to identify the dancer in a
choreographic setting, where each dancer performs the same routine using only the movement features.
It is a more constrained setting than the free-form setting. In an effort to overcome the limitations
associated with marker-based systems, we opted for markerless data acquisition in this setting. AIST++
dataset [51] was utilized, where there are ten dance genres. Each dance genre consists of 3 individuals
performing ten choreographies.

In our training over the entire AIST++ dataset, we attained an accuracy of 47.6%, surpassing the
chance level of 3.33%. However, given the model’s dual challenge, that is, discriminating between
individuals across diverse genres with distinct movements and discerning subtle differences within each
genre, the achieved accuracy is reasonable.

Figure 4.3: Confusion matrix of dance genre prediction model.

Recognizing these complexities, we adopted a two-step approach to dancer identification. First,
we performed genre classification using the same machine learning pipeline, achieving an impressive
88.25% accuracy (against a 10% chance level). We also performed a misclassification analysis using a
confusion matrix (see Figure 4.3) to examine which dance genres were often confused with each other.
It is important to note that we don’t have 40 data points for some of the genres because certain videos
were placed on the ignore list by the dataset’s author due to inaccurate keypoint captures. The confusion
matrix shows that most genres were accurately predicted, with some confusion between Ballet Jazz and
Street Jazz, as well as LA style hip hop and Middle Hip Hop. This is expected since these pairs are
variants of the same dance styles and share common elements.
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In the second step, we use the model specific to that genre to predict the individual. The dancer
identification accuracy ranged from 63.89% to 91.67% across different dance genres, all surpassing the
chance level of 33.33%. These outcomes underscore the existence of a distinctive personal style for each
dancer, further corroborating the efficacy and robustness of Carlson’s methods in dancer identification.

Feature importance analysis conducted across all dance genres within the AIST++ dataset reveals a
consistent pattern with Carlson et al. [17] and dyadic setting, providing a consistent narrative across
studies. Please refer to the Appendix A for the detailed visualization of important key points/joints pairs
and key points/joints.

In our current study, the sample was limited to just three dancers for each dance genre performing
the same routine. To broaden the scope and enhance the generalizability of our findings, future research
could replicate these studies with a larger cohort. One promising approach is to leverage short video
platforms like TikTok, Instagram Reels, and YouTube Shorts, where millions of users engage with trend-
ing dance challenges. This would provide a rich dataset of varied dance styles and routines followed by
a diverse group of individuals. Recent advancements in technology have also shown a growing inter-
est in generating smooth dance animations that synchronize well with music, as evidenced by research
utilizing the AIST++ dataset [51, 70, 82]. Moving forward, an exciting direction would be to generate
dance animations that not only replicate a given choreography but also incorporate the unique style of a
particular dancer.
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Chapter 5

Expert-based Qualitative Analysis

In this chapter, we take a qualitative approach to gain deeper intuition about the perceived interaction
between dyads and the personal style of a dancer from a movement perspective. To achieve this, a dance
expert was interviewed and shown animations from both datasets.

Regarding the concept of perceived interaction, the expert explained that an individual’s technical
strength lies in the lower body, while creativity and the tendency to interact with others are expressed
through the upper body. Our feature importance analysis in predicting interaction supports this asser-
tion, as the importance scores for the upper body parts, namely the head, neck, and hand, were higher
than those for the lower body parts, namely the root, hip, and leg. He also added that not only mirrored
movements or similar movements done simultaneously or after a lag lead to enhanced perceived interac-
tion, but the different movements done at the same time also add to the notion of perceived interaction.
For example, if one individual sway left and right and the other individual takes a spin at the same time,
then this movement pattern would be considered interactive.

Regarding the dancer’s personal style in the choreographic setting, the expert noted that a choreog-
raphy can be broken down into postures and the transitions between them. A dancer’s technical strength
and personal style are actually captured in these transitions—the way they move from one posture to an-
other. Future studies could delve into pinpointing the personal style of a dancer within the time domain
and thereby verifying the notion that it’s the transition that captures the personal style of the dancer as
opposed to the postures.
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Chapter 6

Conclusions

This thesis contributes to the dyadic dance literature in various aspects. The first half of the thesis
examines dyadic dance from the perspective of interpersonal coordination. Interpersonal coordination
plays a pervasive roles in our life. It has been studied in dyadic dance context using two perceptual
dimensions: Interaction and Similarity. However, the role of musical features and energy levels of indi-
viduals in dyads in interpersonal coordination has not received attention in the literature. Our findings
indicate a strong and statistically significant correlation between the danceability of a music stimulus
and the average perceived interaction it elicits across all dyads. Furthermore, we found that similar-
ity is associated with synchronized energy levels among individuals, while interaction correlates with
the overall energy of the dyads. Finally, we introduced a new feature called the covariance matrix and
trained a machine-learning model to predict interaction and similarity. The model achieved accuracies
above the chance level, with our feature sets proving to be more effective at predicting similarity than
interaction. The feature importance analysis revealed the importance of hands in predicting interaction
relative to other body parts. We also discovered that interaction ratings across all partitions were not
directly comparable. To address this issue, we implemented a normalization solution that enhanced the
accuracy of our models.

The implications of these findings are significant: danceable music not only gets us moving but also
facilitates interaction among individuals, making it particularly effective for engaging people in party
settings. Furthermore, for live group performances or dance animations to captivate an audience, it is
crucial that all involved individuals maintain high and similar energy levels.

The analysis linking danceability and interaction for each dyad revealed that the correlation was
not statistically significant for some dyads. Future studies should investigate the reasons behind these
anomalies while also ensuring that the anomalies are not simply due to group differences between par-
titions. To address this, it is crucial for future research to involve having all ratings for a specific dyad
conducted by the same evaluator. Additionally, future studies could explore how interpersonal coordi-
nation evolves over time for each dyad.

The second half of the thesis focused on individual identification within dyadic dance settings. Pre-
vious research has shown that each individual possesses a unique movement signature or a motoric

39



fingerprint when dancing freely. Our study extends these findings to dyadic interactions, demonstrating
that these unique signatures persist even when dancing with partners. This is evident by high dancer
identification in dyadic settings. We also used the dyadic model to predict individual dancers based
on features extracted from their solo performances. We achieved high identification accuracy that un-
derscores the consistency of movement signatures across both solo and dyadic contexts. However, our
misclassification analysis revealed that specific individuals were not accurately predicted by the dyadic
model. Further investigation involved analyzing these individuals’ animations in both solo and dyadic
settings. We observed a common pattern: in these dyads, an individual with high empathy was paired
with a less empathetic partner who barely danced. This pairing forced the empathetic dancer to adopt
constrained movements to synchronize with their partner, which did not reflect their unique movement
signature from solo performances. Future research could explore selecting dyads based on interaction
ratings rather than torso orientation to prevent samples where there is no interaction.

As an extension of the thesis, we examined markerless data from professional dancers, each follow-
ing the same choreography. We addressed the problem of dancer identification within this context and
discovered that the accuracy was at least twice as high as the chance level, varying with the dance genre.
This analysis substantiates the concept of a ”personal style” of a dancer and carries significant impli-
cations for dance generation technologies. These findings suggest that dance generation solutions can
progress beyond merely producing animations that synchronize well with music. Now, they can also
incorporate a dancer’s personal style, enhancing the authenticity and appeal of the generated anima-
tions. Additionally, given that this study was conducted in a markerless setting, the approach holds the
potential for further validation on a broader scale. Platforms like TikTok, Instagram Reels, and YouTube
Shorts, where millions of users participate in dance trend challenges, provide an ideal environment for
testing our findings across diverse and extensive samples.

To conclude, this thesis examined dyadic dancing from two angles: Interpersonal coordination and
Individual Identification. As an extension, we also looked into the problem of individual identification
in the markerless-choreographic setting. We showed how danceability and energy level of individuals
are linked with interpersonal coordination and these findings have significant real-world implications.
Further, we proposed machine learning models to predict Interaction and Similarity. We also showed
the presence of motoric fingerprints in both dyadic and markerless-choreographic settings. Our research
also uncovered that how high levels of empathy could sometimes restrain an individual’s movements
in a dyad, potentially changing their unique signatures from solo setting. The successful adaptation
of markerless data in this thesis paves the way for leveraging the vast array of video content available
on platforms like TikTok, Instagram Reels, and YouTube Shorts to further enhance and expand dance
research.
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Appendix A

Supplementary Material

A.1 Feature Importance Analysis of AIST++ Dataset

For each dance genre, we show the importance of key-point pairs and keypoints in the predicition of
the dancer for that particular genre.

Marker Importance
Nose(AP) 2.73
R Hip(V) 2.72
L Hip(AP) 2.50
L Hip(ML) 2.39
L Knee(AP) 2.39
R Wrist(AP) 2.22
L Elbow(AP) 2.20
R Shoulder(V) 2.00
R Elbow(ML) 1.84
R Hip(ML) 1.74
L Ankle(AP) 1.64
R Shoulder(ML) 1.64
R Ear(AP) 1.64
R Knee(V) 1.55
L Wrist(V) 1.44

Figure A.1: Ballet Jazz
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Marker Importance
R Shoulder(V) 4.23
R Elbow(AP) 3.53
L Elbow(AP) 3.31
R Knee(ML) 2.91
R Ear(ML) 2.72
R Eye(ML) 2.65
L Elbow(V) 2.58
R Ankle(V) 2.18
L Wrist(AP) 2.09
R Knee(AP) 2.09
R Eye(AP) 1.97
L Knee(ML) 1.97
L Elbow(ML) 1.95
L Hip(AP) 1.88
L Hip(V) 1.85

Figure A.2: Street Jazz

Marker Importance
R Ear(ML) 3.53
R Ear(V) 3.15
L Ankle(V) 3.13
L Ankle(ML) 3.03
L Wrist(ML) 2.88
L Hip(ML) 2.62
L Shoulder(ML) 2.57
R Wrist(ML) 2.57
L Ankle(AP) 2.55
R Knee(ML) 2.30
R Knee(V) 1.94
Nose(ML) 1.83
L Elbow(ML) 1.78
L Ear(ML) 1.67
L Shoulder(V) 1.66

Figure A.3: Krump
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Marker Importance
R Wrist(V) 1.27
L Ear(V) 1.26
L Shoulder(AP) 1.14
R Ear(ML) 0.95
R Wrist(ML) 0.93
L Ear(ML) 0.87
L Elbow(AP) 0.85
L Eye(V) 0.77
R Knee(V) 0.76
L Ear(AP) 0.74
L Knee(V) 0.72
R Eye(V) 0.69
L Wrist(AP) 0.69
L Eye(ML) 0.66
R Ear(V) 0.66

Figure A.4: House

Marker Importance
L Elbow(AP) 3.42
R Shoulder(V) 3.03
L Knee(V) 2.24
R Elbow(AP) 2.22
R Ear(AP) 1.99
R Wrist(AP) 1.92
L Eye(AP) 1.69
L Shoulder(V) 1.64
L Eye(V) 1.48
L Wrist(V) 1.41
R Elbow(V) 1.39
R Knee(AP) 1.36
R Hip(ML) 1.25
R Ear(V) 1.15
Nose(V) 1.11

Figure A.5: LA-style hip hop
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Marker Importance
R Elbow(V) 2.20
R Eye(V) 1.79
L Wrist(ML) 1.65
L Wrist(AP) 1.59
L Elbow(V) 1.46
R Knee(ML) 1.46
L Eye(V) 1.32
Nose(V) 1.32
L Ear(V) 1.30
R Eye(AP) 1.28
R Wrist(AP) 1.28
L Knee(ML) 1.21
L Shoulder(ML) 1.16
R Shoulder(ML) 1.15
L Wrist(V) 1.12

Figure A.6: Middle Hip hop

Marker Importance
L Elbow(AP) 3.66
L Ankle(AP) 3.50
L Ear(AP) 3.20
L Shoulder(ML) 2.17
R Hip(V) 2.02
L Eye(ML) 1.92
R Eye(AP) 1.92
L Knee(AP) 1.85
R Hip(AP) 1.85
R Ear(AP) 1.60
L Shoulder(AP) 1.60
R Elbow(AP) 1.58
L Hip(AP) 1.56
R Ankle(AP) 1.47
R Wrist(V) 1.43

Figure A.7: Waack
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Marker Importance
L Ear(V) 2.53
L Ear(ML) 2.25
L Eye(V) 1.91
L Shoulder(AP) 1.84
R Elbow(V) 1.84
L Ear(AP) 1.81
R Ear(ML) 1.70
Nose(ML) 1.64
R Shoulder(V) 1.32
R Ankle(AP) 1.29
L Hip(V) 1.26
L Hip(AP) 1.20
L Elbow(V) 1.17
R Eye(AP) 1.08
Nose(AP) 1.08

Figure A.8: Lock

Marker Importance
R Knee(AP) 4.24
L Knee(V) 3.46
R Hip(AP) 3.30
R Shoulder(AP) 3.04
L Ankle(V) 2.82
L Shoulder(ML) 2.65
L Wrist(ML) 2.44
L Knee(ML) 2.24
R Knee(V) 2.17
R Elbow(AP) 2.14
R Shoulder(ML) 1.74
R Ankle(ML) 1.72
L Wrist(AP) 1.70
L Hip(V) 1.65

Figure A.9: Pop
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Marker Importance
L Ear(V) 3.35
L Elbow(AP) 2.90
R Knee(AP) 2.56
L Ear(AP) 2.52
R Ear(V) 2.48
R Ankle(AP) 2.24
R Eye(V) 2.14
R Knee(ML) 2.10
L Hip(V) 2.00
R Elbow(AP) 2.00
R Shoulder(V) 2.00
R Wrist(AP) 1.99
R Elbow(ML) 1.94
L Knee(AP) 1.92
L Ankle(V) 1.82

Figure A.10: Break
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