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Abstract

Assessing the quality of biometric images is key to making recognition technologies more accurate and
reliable. Our research began with fingerprint recognition systems and later expanded to facial recognition
systems, underscoring the importance of image quality in both areas.

For fingerprint recognition, image quality is vital for accuracy. We developed the Fingerprint Recognition-
Based Quality (FRBQ) metric, which improves on the limitations of the NFIQ2 model. FRBQ leverages
deep learning algorithms in a weakly supervised setting, using matching scores from DeepPrint, a Fixed-
Length Fingerprint Representation Model. Each score is labeled to reflect the robustness of fingerprint image
matches, providing a comprehensive metric that captures diverse perspectives on image quality. Comparative
analysis with NFIQ2 reveals that FRBQ correlates more strongly with recognition scores and performs better
in evaluating challenging fingerprint images. Tested with the FVC 2004 dataset, FRBQ has proven effective
in assessing fingerprint image quality.

After our success with fingerprint recognition, we turned to facial recognition systems. In facial recog-
nition, image quality involves more than just perceptual aspects; it includes features that convey identity
information. Existing datasets consider factors like illumination and pose, which enhance robustness and
performance. However, age variations and emotional expressions can still pose challenges. To tackle these, we
introduced the Unified Tri-Feature Quality Metric (U3FQ). This framework combines age variance, facial
expression similarity, and congruence scores from advanced recognition models like VGG-Face, ArcFace,
FaceNet, and OpenFace. U3FQ uses a Regression Network model specifically designed for facial image
quality assessment. We compared U3FQ to general image quality assessment techniques like BRISQUE,
BLINDS-II, and RankIQA, as well as specialized facial image quality methodologies like PFE, SER-FIQA,
and SDD-FIQA. Our results, supported by analyses such as DET plots, expression match heat maps, and
EVRC curves, show U3FQ’s effectiveness.

Our study highlights the transformative potential of artificial intelligence in biometrics, capturing critical
details that traditional methods might miss. By providing precise quality assessments, we emphasize its role
in advancing both fingerprint and facial recognition systems. This work sets the stage for further research
and innovation in biometric analysis, underlining the importance of image quality in improving recognition
technologies.
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Chapter 1

Biometric Image Quality Assessment

1.1 Introduction

The advent of deep learning has signi�cantly transformed biometrics, revolutionizing identity veri�cation

and authentication methods. At the heart of this technological advancement is image quality assessment

(IQA), which is crucial for ensuring the reliability and ef�ciency of biometric recognition systems. The

quality of biometric data, whether from �ngerprint scans or facial recognition, directly affects a system's

ability to match and verify identities accurately. This thesis is about the complex world of biometric IQA,

exploring the challenges and proposing innovative solutions tailored to the unique requirements of �ngerprint

and facial recognition systems.

Traditional IQA methods [38, 29, 6, 57] often do not meet the speci�c needs of biometric applications.

Hence, this work introduces deep learning-based metrics to enhance IQA for biometric systems, setting a new

benchmark in pursuing more secure and effective biometric authentication processes. By comprehensively

examining both Fingerprint IQA and Face IQA, we aim to improve the accuracy and reliability of biometric

recognition systems. This introduction lays the groundwork for our exploration, setting the stage for a detailed

discussion on the evolution of IQA methods, the development of novel quality assessment metrics, and their

signi�cant implications for the future of biometric security and identi�cation.

1.1.1 Quality in General

Image quality assessment is crucial in image processing, emphasizing human perception of quality, which

favors clear images, with minimal noise, distortion, or motion blur. As shown in Figure 1.1, we can see

the impact of different levels of compression artifacts on image quality, with the least compression in the

image (b) and the most in the image (e). These images are sourced from [57]. Traditionally, image quality

is measured against a reference image, serving as a standard for comparing the quality of other images.

However, this approach changes when a reference image is not available, such as in images taken in natural

or uncontrolled settings. To address this challenge, image quality assessment has branched into two main

categories: reference-based and no-reference-based quality assessment.

In reference-based quality assessment, methods aim to measure image quality by comparing a given image

to a high-quality reference image. This approach is suitable for scenarios where a clear reference image is
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Figure 1.1: This �gure demonstrates the variations in image quality after applying different levels of
compression artifacts, ranging from minimal (b) to signi�cant (e), based on the study from [57].

available for quality benchmarking. Various techniques have been developed in this category to score the

quality of images effectively, drawing from established research in the �eld [64, 51, 30].

Conversely, no-reference-based quality assessment methods tackle the challenge of assessing image

quality when no reference image is present. These methods are designed to evaluate the quality of images

independently, without relying on a reference point. Notable works in this category include [39, 47, 57],

which have explored the development of quality metrics that do not require a reference image.

1.2 Biometric Image Quality Assessment

Image Quality Assessment (IQA) traditionally revolves around human visual perception and aesthetic

judgment. IQA is specialized and rede�ned in biometric recognition for the imperatives of accurate identity

veri�cation [5]. This subset of IQA is pivotal for the performance of face and �ngerprint recognition systems,

focusing on the utility of images for precise biometric identi�cation rather than their visual appeal.

1.2.1 Motivation

The motivation for this work stems from the quality paradox in biometric systems. This paradox highlights

the discrepancy between general IQA standards and the stringent requirements of biometric image quality,

emphasizing the need for a specialized approach to IQA in biometric applications. Figure 1.2 we can see

how general image quality and biometric image quality vary.
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The deep learning revolution in IQA has brought a paradigm shift in biometric systems, seamlessly

integrating IQA into recognition models. This shift allows for proactive image capture enhancement and data

quality assessment at the source, which is crucial for the system's recognition capabilities.

Figure 1.2: Image quality vs biometric quality. While the images (obtained from
SCface database) in (a) are of poor image quality, the images in (b) may have lower
biometric quality. [5]

Figure 1.3: Three aspects of quality assessment: naturality, �delity, and utility, in a
typical biometric pipeline [5]

The intricacies of biometric systems demand IQA methodologies that can quantify the impact of various

factors on recognition accuracy. This includes analyzing facial feature clarity, occlusions, and lighting

conditions for facial recognition. Ridge de�nition, pattern integrity, and artifact absence are crucial for

�ngerprint systems. While deep learning-based IQA models automate and re�ne these assessments, challenges

in interpretability and transparency persist, especially where decision-making has signi�cant repercussions.
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1.3 Biometric Systems and IQA

The complexity of biometric systems necessitates specialized IQA methodologies capable of discerning

subtle details that in�uence recognition accuracy. These methodologies must consider factors such as the

clarity of facial features, the presence of occlusions, and lighting conditions for facial recognition systems, as

well as ridge de�nition and pattern integrity for �ngerprint systems.

1.3.1 Challenges in Deep Learning-Based IQA Models

The advent of deep learning models in IQA presents promising advancements in the automation and

re�nement of quality assessments. However, the ”black box” nature of these models poses signi�cant

challenges, particularly regarding interpretability and the need for transparency in sensitive decision-making

processes.

1.3.2 Fingerprint Image Quality Assessment:

In the specialized �eld of �ngerprint image quality assessment (Fingerprint IQA), the objective is

to evaluate the quality of �ngerprint images to ensure they adhere to the exacting standards required by

�ngerprint recognition systems. These systems are crucial for biometric authentication, and their effectiveness

largely hinges on the quality of the input �ngerprint images. Initially, traditional Fingerprint IQA methods

predominantly utilized handcrafted features, relying on the comparison with reference images to gauge

quality [52, 54, 56, 55]. However, these methods encounter challenges in effectively addressing various

image distortions, such as blurring, noise, and compression artifacts, which can signi�cantly impact the

accuracy of biometric authentication. Figure 1.3 shows how the biometric system looks for �ngerprints and

how we see it.

Figure 1.4: (a) High-quality �ngerprint with clear ridge patterns.(b) Overexposed
�ngerprint with excessive contrast results in loss of ridge pattern detail. (c) Degraded
quality �ngerprint with reduced clarity and disrupted ridge patterns.
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Figure 1.5: Figure showing high quality, middle quality and low quality �nger print
images.

Figure 1.6: Sample Images of Varying Fingerprint Image Quality

Figure 1.4 shows the scanner output after we capture the �ngerprint. It shows how an ideal capture should

look and what a poor capture is. Figure 1.5 and 1.6 show a sample of how quality changes in the �ngerprint

images.

Initially, Fingerprint IQA techniques depended on analyzing a mix of local and global image quality

features [27, 32, 31, 52, 12, 13, 22]. These features include variations in Gabor �lter responses, frequency

and orientation measures, and pixel intensity quality, or a combination thereof, to evaluate the �ngerprint

image quality. To bring a standard approach to assessing these diverse and intricate features, the National

Institute of Standards and Technology (NIST) developed the NIST Fingerprint Image Quality (NFIQ) [56, 55]

algorithm. NFIQ synthesizes numerous local and global features intrinsic to the �ngerprint image, enabling a

more comprehensive and standardized quality assessment. These features are considered handcrafted because

they are speci�cally designed and selected based on prede�ned image quality criteria.
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The introduction of NFIQ marked a signi�cant advancement in Fingerprint IQA by providing a uni�ed

metric that encapsulates various aspects of �ngerprint image quality. By leveraging such a standardized

framework, it became possible to more accurately and consistently determine the suitability of �ngerprint

images for biometric identi�cation purposes. This development underscores the importance of sophisticated

quality assessment methods in enhancing the reliability and ef�ciency of �ngerprint recognition systems.

1.3.3 Face Image Quality Assessment:

The core of this thesis is a comprehensive examination of the current landscape of IQA, focusing on face

images and the intricate patterns of �ngerprints. We investigate the conceptual frameworks, methodologies,

and applications, noting the shift towards deep learning paradigms that offer promising improvements in

accuracy and interpretability.

In the context of Face IQA, this involves parsing facial features and expressions, environmental conditions,

and sensor interoperability. For Fingerprint IQA, it includes analyzing ridge patterns, minutiae clarity, and

the impact of presentation attacks. We further discuss the application scenarios of IQA in biometric systems,

from pre-enrollment image selection to real-time capture quality enhancement.

We identify the pressing need for standardization in algorithm evaluations to ensure comparability and

highlight the challenges that lie ahead, such as developing interpretable deep learning methods that go beyond

mere accuracy and utility predictions.

This thesis aims to bridge the gap between Fingerprint IQA and Face IQA by proposing a uni�ed

framework that addresses their individual challenges while leveraging their respective strengths. We posit

that the future of biometric IQA lies in models that are adept at quality assessment and contribute to the

proactive improvement of data capture processes, ensuring that biometric systems are more accurate, reliable,

and effective in real-world scenarios.

Within the sequence from �g 1.7, we observe various distortions and their effects on facial images.

However, these visual representations alone do not provide clear insights into how such distortions in�uence

the matching process in facial recognition systems. Speci�cally, the distinction in matching outcomes

between poor-quality images paired with different or identical subjects remains unexplored through these

images alone. Consequently, while these images may offer a perceptual or subjective assessment of quality,

they fall short of predicting the performance during actual recognition tasks.

Recognition quality, in essence, hinges on the ability to gauge the similarity between a facial image and

other images within a database, which in turn affects the system's recognizability and, by extension, the

overall image quality from a biometric standpoint. This similarity metric is crucial for understanding how

distortions impact the recognition capabilities of biometric systems. Therefore, without this comparative

analysis, making de�nitive claims about performance based on image quality alone is challenging.

To address this gap, a more nuanced approach is needed, incorporating the assessment of recognizability

alongside traditional quality measures. This involves analyzing how distortions affect the facial recognition

system's ability to match a given image against a database, considering both 'different-pair' and 'same-pair'

comparisons.
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Figure 1.7: A biometric system may process samples that exhibit a wide range of quality variations
(Images from MBGC database). Therefore, effective quality assessment metrics that accurately re�ect
these variations are crucial for the functionality of an automated biometric system. [5]

Furthermore, Face Image Quality Assessment techniques are generally classi�ed into two main categories:

regression-based and learning-based approaches. Learning-based strategies align with the operational

mechanisms of facial recognition models, adopting similar principles to predict image quality. These methods

leverage the recognition model's understanding to estimate the quality of facial images. On the other hand,

regression-based methods employ deep neural networks to learn the representation of how a facial image

is decomposed, subsequently identifying features crucial for the quality prediction task based on these

learned representations. One notable limitation of regression-based approaches is their reliance on labeled

data for training to generate quality scores. This requirement for labeled training data can be a constraint,

as it necessitates a pre-existing, accurately labeled dataset to train the model for quality assessment tasks

effectively.

1.3.4 Contributions:

The contributions of this thesis are multifaceted and signi�cant in advancing the �eld of biometric image

quality assessment. They are summarized as follows:

1. Development of a Deep Learning-Based Fingerprint Quality Assessment Metric (FRBQ):This

thesis introduces the FRBQ (Fingerprint Recognition-Based Quality) metric, a novel approach in the realm of

�ngerprint image quality assessment. Unlike traditional metrics, FRBQ is designed to operate independently

of ground truth label data, relying instead on deep learning techniques to evaluate the quality of �ngerprint
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images. This innovation represents a signi�cant leap forward, offering a more �exible and potentially more

accurate method for assessing �ngerprint image quality.

2. Effective Performance on Low-Resolution Images:One of the standout features of the FRBQ

metric is its ability to assess the quality of low-resolution �ngerprint images accurately. This capability is

particularly noteworthy as it addresses a common limitation faced by state-of-the-art models, which often

struggle to perform effectively on images of lower resolution. By overcoming this challenge, the FRBQ

metric enhances the reliability and applicability of �ngerprint quality assessment, especially in scenarios

where high-resolution images may not be available.

3. Introduction of U3FQ for Systematic Analysis of Facial Age and Expression Similarity:The thesis

also pioneers the U3FQ framework, marking the �rst systematic effort to analyze facial age and expression

similarity within the context of Facial Image Quality Assessment (FIQA). This analysis sheds light on the

age-related dynamics and expression variance in face recognition systems, offering novel insights into how

these factors impact recognition performance.

4. Semantic Insights into Face Age Images:The research provides a detailed examination of face age

images across various age groups, elucidating the differences in how different models represent and interpret

these images. This aspect of the study highlights the nuanced ways in which age affects facial recognition,

contributing to a deeper understanding of the challenges and opportunities in age-based biometric veri�cation.

5. Enhanced Accuracy and Robust Generalization:Through implementing the U3FQ framework,

this thesis demonstrates signi�cant improvements in accuracy and robust generalization across a range of

benchmark datasets. This achievement not only sets a new standard for FIQA and IQA methodologies but

also underscores the potential for further advancements in the �eld.

Together, these contributions underscore the thesis's role in pushing the boundaries of biometric image

quality assessment. By introducing innovative metrics and frameworks, this work aims to improve the

accuracy and reliability of biometric recognition systems, paving the way for more secure and ef�cient

authentication processes.

By exploring both Fingerprint IQA and Face IQA domains, this thesis aims to shed light on the sophisti-

cated techniques required to ensure high-quality biometric data, thereby supporting the development of more

accurate and reliable biometric recognition systems.
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Chapter 2

Related Works

2.1 Related Works

The advent of deep learning has ushered in a transformative shift in the �eld of biometrics, marking a new

era characterized by unprecedented levels of accuracy and reliability across various biometric tasks, with a

notable emphasis on face recognition. This paradigm shift has facilitated the development of more robust

and ef�cient biometric systems, applicable in diverse domains such as security, authentication, and personal

identi�cation.

2.2 Fingerprint Image Quality Assessment

In scenarios where explicit label information is unavailable, No Reference Image Quality Assessment

(NR-IQA) plays a crucial role [38, 29, 6, 57]. To address this challenge, adopting a weakly supervised

learning approach has been proposed [68, 43]. Additionally, Remy et al. have explored �ngervein quality

assessment [46], and Oblak et al. have conducted a comprehensive survey on deep learning ensemble models

for �ngerprint image quality assessment [42]. These studies offer valuable insights and alternative methods

to enhance recognition accuracy in scenarios with limited label information.

2.2.1 Deep Learning in Biometric Applications

DL models have shown signi�cant improvement in accuracy and robustness in various biometric applica-

tions, including face recognition, �ngerprint recognition, and iris recognition. These models have been shown

to outperform traditional feature extraction and classi�cation methods by learning complex representations

directly from the raw biometric data. This has led to a paradigm shift in biometric recognition, where deep

learning models are becoming the go-to solution for a wide range of biometric recognition tasks. However,

challenges remain to be addressed, such as ensuring the privacy and security of biometric data, addressing

potential biases and discrimination, and improving the interpretability and transparency of deep learning

models.
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Figure 2.1: Overview of the Fingerprint Image Quality Assessment Process: This �gure maps out the
multifaceted approach to assessing �ngerprint image quality, from preprocessing and feature extraction
techniques to the evaluation of existing and proposed quality assessment methods within computer vision
algorithms.

Deep learning models such as DeepPrint [18] have been utilized for �ngerprint recognition to improve

accuracy. DeepPrint extracts important information from �ngerprint images without extracting varying

feature information through a �xed-length �ngerprint representation. It combines deep features extracted by

deep networks with minutiae handcrafted features to get the critical feature information. The architecture

of DeepPrint uses multitask branches to �rst extract the �ngerprint image representation and subsequently

learn how to classify it. The information from both branches is then fused to get a recognition score. Other

deep networks have improved speci�c sub-modules of �ngerprint recognition systems such as segmentation

[69, 14, 19, 53], orientation �eld estimation [9, 50, 45], and minutiae extraction [41, 58, 15, 10, 65].

MiDeCon [59] is one of the few works that have utilized an approach incorporating minutiae information

for quality score generation in �ngerprint recognition. However, this approach has not been widely imple-

mented, and DeepPrint provides a more advanced method for learning quality features. By incorporating

minutiae maps during training, DeepPrint's feature-guided deep network has shown superiority over tradi-

tional methods in quality-based recognition tasks. As a result, DeepPrint is used in this study to generate

matching scores and create proxy ground truth labels for accurate quality score prediction.

Figure 2.1 provides a comprehensive overview of the different components and methodologies employed

in Fingerprint Image Quality Assessment (FIQA). It outlines a structured approach that spans from the

initial preprocessing of �ngerprint images to applying sophisticated computer vision algorithms and quality

assessment methods, culminating in the proposed approach for enhancing the assessment process.

In the realm of quality prediction for recognition systems, prior research predominantly relied on hand-

crafted local and global features. In the �gure 2.2, These features were meticulously designed to capture

relevant information from the data. However, our novel approach diverges from this tradition. Instead of
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Figure 2.2: Overview of our proposed quality prediction method. Instead of relying solely on handcrafted
features, we explore inter and intra-class similarities by labeling them. The matching scores obtained from
these labeled similarities serve as the foundation for our quality prediction model.

focusing solely on feature engineering, we delve into the data's intricate inter and intra-class similarities. By

meticulously labeling these similarities, we construct a more nuanced representation. Our method leverages

matching scores derived from these labeled similarities to predict quality. This shift in perspective promises

to enhance recognition system performance signi�cantly.

2.3 Face Image Quality Assessment:

The �gure 2.3 outlines a structured taxonomy for Face Image Quality Assessment (FIQA), an integral

component in ensuring the ef�cacy of face recognition systems. FIQA methodologies are classi�ed into

various categories, each addressing distinct aspects of image quality and their implications for recognition

accuracy.

Under the factor-speci�c category, the taxonomy identi�es critical variables such as size, including

inter-eye distance and image resolution, which are fundamental for maintaining consistent quality in facial

recognition. Illumination is dissected into sub-factors like brightness moments and contrast, signi�cantly

affecting facial features' visibility. The pose is analyzed through facial landmarks and appearance templates,

among others, to account for variations in face orientation that can impede accurate identi�cation. Additional

factors such as noise, skin tone, and other attributes further contribute to the comprehensive nature of this

quality assessment framework.

The monolithic section of the taxonomy encompasses methods that treat the image as a whole, employing

techniques like edge analysis and symmetry assessment through holistic and whole-image approaches,

including opaque machine-learning strategies that do not offer transparency in their assessment process.

The data-driven aspect of FIQA is addressed through various approaches: hand-crafted (Dhc), utility-

agnostic (Duat), and several forms of ground truth training, including human-based (Dhgt) and face recogni-

tion (FR)-based (Drft, Dfri), as well as FR-integration (Dint). Fusion methods are delineated into explicit

(Fe), trained (Ft), and cascade (Fc), with an additional note on instances where fusion is not applied.
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Figure 2.3: Comprehensive Framework for Face Image Quality Assessment (FIQA): This �gure categorizes
the multifaceted approaches to FIQA, detailing factor-speci�c metrics, monolithic image evaluation
techniques, data-driven methods, fusion strategies, and the application of deep learning and video data
analysis in the pursuit of enhancing face recognition systems. Taken from Survey Study [48]

Deep Learning (DI) is recognized as a pivotal component in contemporary FIQA methods, clearly

distinguishing between its usage and non-usage. Incorporating video data (V) acknowledges the dynamic

nature of image capture, considering both video-frame and single-image contexts.

Facial Image Quality Assessment (FIQA) has become a cornerstone in enhancing the performance of

face recognition (FR) systems, especially when faced with the challenges posed by the wide spectrum of

image qualities encountered in real-world scenarios. Traditional FIQA methodologies have primarily focused

on evaluating the biometric utility of facial images in isolation. However, the integration of FIQA within

the broader context of FR systems introduces a conceptual challenge, termed the “Quality Paradox.” This

paradox, as discussed by Schlett et al. [48], highlights the need for a nuanced representation of the reliability

of comparison scores for image pairs that include the assessed image, adding complexity to FIQA's role in

optimizing FR performance.

Despite signi�cant advances by contemporary FR technologies in handling high-quality frontal images

under varied quality conditions [36, 23], challenges persist in fully unconstrained environments [7, 63], where

the consistency of facial image quality cannot be guaranteed. FIQA methodologies are invaluable in these

scenarios, providing crucial insights into image quality and enabling FR models to identify and potentially

exclude inferior quality images, thus mitigating the risk of erroneous non-matches.
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Table 2.1: Comparative Overview of Recent Face Recognition Quality Assessment Methods

Work Methodology Evaluation Criteria Evaluation
Dataset

SER-
FIQ
[61]

Embedding Variability Analysis:
This method utilizes statistical
variability in face embeddings to
infer image quality.

FNMR, EER: These metrics indicate
the frequency of incorrect rejections
and the balance point where false
acceptances and rejections are equal.

Adience, Color
Feret, LFW

SDD-
FIQA
[44]

Similarity Distribution Distancing:
This method evaluates the distance
in feature space by measuring the
distribution of similarity scores.

FMR: The False Match Rate
measures the rate of incorrect
acceptances, a critical security
metric.

Adience, LFW,
IJB-C

CR-
FIQA
[8]

Relative Classi�ability to assess
the ease of correctly classifying a
given face image.

FNMR, TAR re�ecting the
proportion of genuine users correctly
veri�ed.

Adience, LFW,
AgeDB, CFP-FP,
CA-LFW,
CP-LFW,
XQ-LFW, IJB-C

Mag-
Face
[37]

Enhancing ArcFace with a
magnitude-aware loss function for
better discriminative learning.

FNMR indicating the frequency of
false rejections.

AgeDB, LFW,
CFP-FP

Face-
Qnet
[26]

Neural Network Quality
Assessment to directly predict the
quality score of face images.

Correlation between predicted
quality scores and actual biometric
utility.

BioSecure
Database

Auto-
matic
FIQ
[4]

CNN Approaches for feature
extraction and quality assessment.

FNMR, FMR indicating the
reliability of the authentication
system.

LFW

PC-
Net
[66]

Predictive Uncertainty And
Con�dence Estimation for
assessing the quality of face
images.

FMR representing the likelihood of
incorrect authentications.

IJB-C

Opti-
miza-
tion
Based
[21]

Employing Quality Label
Supervision to guide the quality
assessment in a more targeted
manner.

FMR, AUC indicating the overall
performance of the model.

LFW, CFP-FP,
CA-LFW,
CP-LFW,
XQ-LFW

Face-
QAN
[2]

Adversarial Noise Pro�ling to
measure the robustness of face
images against noise.

FMR, AUC to assess the accuracy
and reliability across different noise
conditions.

LFW, CFP–FP,
XQLFW ,IJB–C

QMag-
Face
[60]

Quality Aware Face Recognition FNMR and EER plots AgeDB, XQLFQ,
CFP-FP
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Contemporary FIQA methodologies are categorized into two main groups: regression-based and model-

based approaches. Regression-based strategies [11, 26, 66] establish a direct correlation from the image

domain to quality labels, often generated in a semi-automated manner. These labels are typically based

on comparison scores from matched image pairs or similarity scores between probe samples and reference

images. Conversely, model-based approaches [61, 37] integrate quality assessment directly within the FR

model, evaluating quality based on certainty or statistical attributes extracted from generated facial features

or embeddings.

Our proposed approach extends the FR model paradigm by incorporating the impact of age variations and

emotional expressions on matching scores. Understanding how aging and emotions alter facial features is

crucial, as they signi�cantly in�uence recognition accuracy.

This thesis introduces the Uni�ed Tri-Feature Quality (U3FQ) metric, a novel approach to FIQA. U3FQ

rede�nes FIQA by integrating recognizability and quality estimation through a unique, learning-based

methodology. Diverging from traditional paradigms, it leverages match scores in a weakly supervised manner

as the primary indicator of quality. Furthermore, U3FQ emphasizes the signi�cant role of facial expressions

and age disparity in quality assessment, providing insights into the in�uence of these factors on matching

accuracy.

In addition to facial recognition, this work addresses limitations in �ngerprint image quality assessment

with the introduction of FRBQ (Fingerprint Recognition-Based Quality), a deep learning-based methodology

for no-reference image quality assessment. FRBQ aims to evaluate the recognition performance of �ngerprint

images across quality scores, utilizing a Convolutional Neural Network (CNN) architecture adapted from

the ResNet18 framework. This approach has demonstrated effectiveness even with low-resolution images,

surpassing the established NFIQ2 model in accuracy and resilience to various image distortions.

The integration of advanced deep learning models such as U3FQ for facial image quality assessment and

FRBQ for �ngerprint image quality assessment represents a signi�cant advancement, promising to enhance

the accuracy and reliability of biometric identi�cation systems. These developments have far-reaching

implications in real-world applications, including security, forensic analysis, authentication, and identi�cation

processes.
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Chapter 3

Advancing Fingerprint Recognition Quality Assessment: Introducing the

FRBQ Metric

3.1 Introduction

The assessment of �ngerprint image quality is crucial for the ef�ciency of biometric recognition systems.

In this work, we introduce a novel methodology that employs deep learning networks in a weakly super-

vised setting to learn features speci�c to �ngerprint images. This approach is grounded in the concept of

matching �ngerprints, where the network is trained to produce a quality score that directly corresponds to the

�ngerprint's matching capability. By using simulated ground truth data derived from labeled �ngerprints, our

network can identify and learn the most relevant features for assessing �ngerprint quality, thereby improving

the precision and reliability of the quality assessment process.

3.2 Pipeline

Our pipeline begins with the generation of pseudo ground truth labels, which serve as the foundation for

our approach. This process involves using the matching scores between �ngerprint images, derived from their

cosine similarity, as a basis for label generation. These scores, produced by our DeepPrint model, re�ect the

degree of similarity between �ngerprints, with the threshold set at a prede�ned value (e.g., 0.4) to distinguish

between different quality levels. This step is critical for our weakly supervised learning methodology, as it

enables the network to learn from a practical, albeit indirect, representation of �ngerprint quality.

3.2.1 DeepPrint Feature Extraction and Matching

The DeepPrint [18] model plays a pivotal role in our pipeline, as depicted in Figure 3.1. It processes input

�ngerprint images to generate a 192-dimensional vector, encapsulating both texture and minutiae details.

These vectors are then utilized to compute matching scores through cosine similarity, providing a robust basis

for comparing �ngerprints. The process of generating these scores, alongside the extraction of minutiae and

texture details, is essential for creating a detailed representation of �ngerprint features, which is subsequently

used for label generation.
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Figure 3.1:Block 1: The input image,I , undergoes processing to generate
a 192-dimensional vector. Texture and minutiae details are extracted and
combined to form a DeepPrint representationFd. Block 2: Embedding
vectors from DeepPrint are compared using cosine similarity to produce a
matching score for �ngerprint comparison.

Our purpose for using DeepPrint was to achieve better matching performance due to several key advan-

tages:

• Fixed-Length Representation: DeepPrint uses a �xed-length representation, which avoids the need for

graph matching and is computationally ef�cient.

• High Discriminative Power: It maintains high discriminative power even with low-quality �ngerprints.

• Performance Metrics: In a large-scale test with 1.1 million �ngerprints from the NIST SD4 dataset,

DeepPrint achieved a rank-1 search accuracy of 98.80% in just 0.3 seconds. In comparison, a top

COTS matcher had a slightly higher accuracy of 98.85% but took 27 seconds to complete the search.

Additionally, we experimented with Veri�nger and Morpho, but they did not yield satisfactory results.

Thus, DeepPrint's combination of ef�ciency, speed, and high accuracy made it the optimal choice for our

work.
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Figure 3.2: The methodology for generating pseudo ground truth labels by evaluating matching scores, a
crucial step in our weakly supervised learning approach for assessing �ngerprint quality.

3.2.2 Proxy Groundtruth label generation

As shown in Figure 3.2, the generation of proxy ground truth labels involves analyzing matching scores to

produce quality indicators for �ngerprints. This process is crucial for de�ning the quality of �ngerprints in

relation to their matching performance. The labels generated through this method inform our network about

the expected quality outcomes based on matching scores, facilitating a targeted learning process that focuses

on the most relevant features for quality assessment.

3.2.3 Quality Score Calculation and Network Training

The core of our methodology lies in the calculation of quality scores and the training of a neural network

to accurately predict these scores. We utilize a ResNet architecture, or a similar quality regression network,

which is �ne-tuned using the labels generated from our initial processing steps. This network learns

to differentiate between high and low-quality �ngerprints based on their matching scores, as detailed in

Figure 3.3. The training process involves a specially designed loss function that accounts for the matching

scores and label information, allowing the network to adapt its predictions to closely match the ground truth

data.

The network processes two distinct input images,I 1 andI 2, predicting a quality score for each, denoted

asP1 andP2. Utilizing the matching scoreM from DeepPrint, a proxy ground truth for quality is obtained.

This process necessitates both images to ensure the precise calculation of the quality score. Alongside the

matching score, label informationK augments the accuracy of the quality score calculation. The harmonic

mean of the quality score, rather than the average matching score, is utilized for calculating the matching

score. This use of harmonic average emphasizes the lower values in the set, capturing the impact of low

scores more prominently, and consequently offering a more precise quality score for images with limited

matching ability.

Loss Function Overview: The employed network, as shown in Figure 3.3, incorporates a specially designed

loss function denoted asL (M;Q i ;K;W i ) or L Q to enhance its �ne-tuning. In this notation:
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Figure 3.3: In this proposed method, the ResNet neural network takes in the input images, (I 1) and (I 2), and
produces predicted quality scores, (P1

I ) and (P2
I ). These predicted scores are used in a loss function, along

with proxy ground truth quality scores that are matching scores (M ) with their label info, generated by the
DeepPrint model, in order to train the ResNet to produce scores that are as close as possible to the ground
truth. The output of this process is a �ngerprint quality score, (Q).

• Qi speci�es the two input images.

• M speci�es the matching score of these images.

• K indicates whether the two images are from the same class or different classes.

• Wi weights for balancing.

The primary objective of this loss function is to ensure robust performance under imbalanced data conditions.

It aims to minimize the discrepancy between the predicted quality scores and the true quality of the input

images, particularly in scenarios where:

• The label is 0 (indicating high quality) with a low matching score.

• The label is 1 (indicating low quality) and the matching score is low.

Conversely, the loss should increase when:

• There's a low matching score combined with a label of 1.

• There's a high matching score paired with a label of 0.

This loss function is applied as binary cross-entropy loss for labels 0 and 1.

Expressed asL Q(M ; Q1; Q2; K; W0; W1),:

L i (M ; Qi ;K; W0; W1) = log Qi (�W 1M +

(1 � K )W0(1 � M )) ; 8i = 1 ; 2 (3.1)

L Q(M ; Q1; Q2; K; W0; W1) = L 1 + L 2 (3.2)

18



L Q is a combination of the above two losses whereL 1 is calculated forQ1 the predicted quality of

image-1and theL 2 is calculated onQ2 the predicted quality ofimage-2whereM represents the Matching

score obtained on a pair of images that are used as a proxy ground truth to �netune the network.Q1 andQ2

represent the Quality Score ofimage-1andimage-2respectively andK represents the Label information

that is 0 for different images and 1 for same images. WhenK is 1 loss functions try to reduce the loss

directly proportional toM in predicting theQ1 andQ2 and whenK is 0 loss function learns the loss in in-

versely proportional and try to reduce loss incorporates in predicting theQ1 andQ2 based on the inverse ofM .

Weight Calculation: To address the unbalanced nature of the training data, weightsW0 andW1 are assigned

to balance the loss function. The weights are determined based on the relative proportions of the samples in

each class. Speci�cally, they are calculated as:

Wk =
1

Nk

�
N
2

�
(3.3)

Where:

• k represents the class label (either 0 or 1).

• N is the total number of samples in the dataset.

• Nk denotes the count of samples in classk.

The weightsW0 andW1 effectively balance the contribution of each class by inversely scaling with their

prevalence, ensuring that neither class dominates the loss due to its abundance or scarcity.

3.3 Label Information effect on Quality Scores

In the context of �ngerprint image quality assessment in our research, we employ proxy ground truths

obtained from a DeepPrint matcher. The DeepPrint matcher leverages label information to enhance recognition

accuracy concerning quality scores.

Labelling of Pairs: Table 3.1 presents an overview of the labeling process. Our approach involves

training a deep learning model using labeled data that consists of pairs of �ngerprint images. Each pair can

either be from the same �nger or from different �ngers. The DeepPrint matcher utilizes this label information

to distinguish between genuine pairs and impostors.

Training with Labels: During model training, we incorporate these fake ground truth labels, which are

derived from matching scores obtained from the DeepPrint matcher. These scores serve as indicators of

the likelihood of a pair of �ngerprint images matching, with high scores signifying a good match and low

scores indicating a poor match. This approach allows us to harness recognition-based information that cannot

be obtained through manual image quality annotation, enabling our model to predict the quality score of

�ngerprint images accurately.
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3.4 Analytical Study on Match Score:

We have explored alternative approaches that show promise for future applications, especially in the

context of large �ngerprint image datasets. These methods not only open up new avenues for further research

but also provide valuable insights into the potential enhancements of �ngerprint image analysis on a larger

scale. In this paper, we have introduced an approach that involves utilizing a pair of images during model

training. However, for scenarios where only a single image is available, it becomes essential to derive a

representative score that indicates its recognizability. This score guides the model in accurately assessing

image quality.

To compute a match score for a single image, it is imperative to gather a collection of match samples

encompassing a wide range of both good and bad matches.

Match Score of Single ImageTo derive a single representative score from multiple match scores, statistical

methods such as mean, harmonic mean, and median percentile prove valuable. The selection between these

methods depends on the speci�c dataset characteristics and requirements. Here's a concise overview of both

methods

• Harmonic Mean:

– The harmonic mean is a type of average that gives more weight to lower values in the set. It is

particularly effective at handling situations where extreme outliers or very low scores need to be

taken into account.

– The harmonic mean is suitable when the impact of the worst or lowest scores in the dataset. It

can help in scenarios where you want to ensure that the overall quality is not solely driven by a

few high scores.

– It is important to note that the harmonic mean is sensitive to extremely low scores, and a single

low score can signi�cantly affect the resulting average.

• Percentile:

– The percentile represents the relative position of a particular score within a distribution. It

indicates the percentage of scores that are equal to or below a given value.

– Using percentiles allows you to determine where a speci�c score lies within the distribution of all

scores. It helps capture the overall quality of a matched image compared to others in the dataset.

– Percentiles are useful when you want to establish a threshold or cutoff point to classify images as

poor or good quality based on their relative position in the score distribution.

The choice between the harmonic mean and percentile depends on the speci�c requirements and charac-

teristics of the dataset, as well as the signi�cance that we want to place on different scores.
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Label Info Matching Score Quality Score
0 High Low
1 High High
0 Low High
1 Low Low

Table 3.1: The table shows that when the matching score is high and the label information is positive, the
quality score is high. Conversely, when the matching score is low and the label information is negative, the
quality score is also low.The matching scores are used along with label information to predict the quality
score of �ngerprint images accurately.

Dealing with non-mated pairs: In this paper, we have conducted a comprehensive study encompassing the

utilization of both mated and non-mated pairs, which are commonly referred to as genuine and impostor

pairs, respectively. This inclusion allows us to thoroughly assess the performance of our proposed method

across diverse scenarios, re�ecting real-world �ngerprint recognition challenges.

• Exclusive Mated Pair Analysis

– Looking ahead, we envision conducting further experiments focused on exclusively using mated

pairs. This aligns with real-world scenarios where the primary objective is to verify the matching

of images for authorized individuals.

– On the other hand, non-mated pairs present a distinct challenge, where the emphasis on recogniz-

ability may not be as critical.

For these cases, we consider the possibility of assigning lower or even negative recognizability scores,

given that these pairs do not belong to authorized individuals or are not among the designated matches.

• Non-Mated Image Quality Assessment:

– One key aspect is the ability to predict scores for non-mated pairs, potentially indicating zero

or negative recognizability. It would greatly impact the quality score, as it would enable us to

identify images that do not match any individual.

– Although, we recognize that solving this complex problem for a single image without using

additional references presents signi�cant challenges. Notwithstanding, we maintain a positive

outlook on future developments that could potentially empower us to forecast such results.

By conducting these additional experiments, we aim to gain a deeper understanding of the effectiveness

of our method across different use cases, and re�ne its performance to suit speci�c �ngerprint recognition

scenarios. This research contributes to the broader �eld of �ngerprint image quality assessment and holds

promise for advancing the reliability and accuracy of �ngerprint recognition systems in practical applications.
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Database Genuine Pair Impostor Pairs Total Pairs
DB A 2800 4950 7750
DB B 280 45 325

Table 3.2: FVC dataset information

3.5 Experiments

This section begins with an overview of the datasets utilized for our experiments, outlined in subsection 3.6.

It then proceeds to elaborate on the implementation process and the work�ow, as detailed in subsection 3.6.1.

The experimental setup and its speci�cs are discussed in subsection 3.6.2, followed by an analysis of the

results derived from these experiments in subsection 3.6.3. Lastly, the limitations inherent to the proposed

methodology are examined in subsection 3.6.4.

3.6 Dataset Overview

Our study leveraged the FVC 2004 dataset[34], a benchmark dataset for �ngerprint image evaluation.

The dataset's composition, detailed in Table 3.2, includes four distinct databases from different sensor

technologies. For our experiments, we focused on two speci�c databases:DB A andDB B . DB A was a

primary source, providing 7751 pairs of genuine and impostor images. In contrast,DB B contributed 326

pairs of images. Each image within this dataset maintains a resolution exceeding 500 DPI, aligning with

NFIQ's recommendations for capturing high-quality �ngerprint images.

3.6.1 Work�ow and Implementation details

To enhance the �ngerprint recognition capabilities of the ResNet18 model, an alternative ground truth

for assessing the quality of �ngerprints was derived from matching scores courtesy of the DeepPrint model.

This approach entails calculating matching scores through DeepPrint and correlating these scores with labels

indicating the authenticity of the image pairs. A label of 1 signi�es that the image pair is genuine, originating

from the same set, while a label of 0 indicates an impostor pair coming from different sets.

Employing DeepPrint for Alternate Ground Truth Generation: This strategy enables the creation of a

reliable substitute ground truth for quality assessment, essential for training the ResNet18 model effectively.

This technique allows us to overcome the shortcomings of the NFIQ2 standard, which falls short of accurately

determining the quality scores necessary for �ngerprint veri�cation.

The use of DeepPrint to create an alternative ground truth underpins our evaluation of the FRBQ method-

ology, showcasing its effectiveness in precise �ngerprint image quality assessment. Matching scores and

corresponding label information for select image pairs are detailed in Table 3.3. Additionally, this table

compares the NFIQ2 and FRBQ quality scores for these pairs, showing the enhanced accuracy of our

approach.
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Figure 3.4: The performance of two quality score methods, NFIQ2 and FRBQ, were evaluated using matching
scores generated from DeepPrint on four databases in the FVC Dataset A. The correlation between the quality
scores and matching scores was analyzed at different quality thresholds. Results showed that FRBQ had
higher correlation scores than NFIQ2 at varying quality thresholds for all the datasets.

3.6.2 Experiment Setup

In our study, we employed a pre-trained ResNet model, speci�cally �ne-tuned with 7750 image pairs

from Database A. For detailed information about the dataset used in our experiments, reference is made to

Table 3.2, which outlines the FVC 2004 dataset details, including the number of genuine and impostor pairs,

types of sensors used, and the recommended resolution for images.

Feature Learning with ResNet: ResNet architectures are renowned for their ef�cacy in image classi�ca-

tion tasks, wherein early layers capture universal features such as textures and edges, while deeper layers are

adept at identifying more intricate attributes like parts of objects and their shapes. By locking the early layers,

our model capitalizes on these universal features, which are crucial for assessing image quality.

Model Fine-tuning Process: During �ne-tuning, each image pair is processed through the model

individually. A loss function that integrates the predicted scores, matching scores, and label data is employed

to re�ne the model's ability to ascertain a quality score for identi�cation purposes. Initially, the DeepPrint
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Img1

Img2

Matching Score 0.25 0.66 0.42 0.05 0.27
FRBQs Img1 0.24 0.53 0.41 0.51 0.53
NFIQ2 Img1 56 39 71 36 26
FRBQs Img2 0.51 0.61 0.53 0.57 0.37
NFIQ2 Img2 72 19 61 23 5
Label 1 1 1 0 0

Table 3.3: The table presents information on image pairs, featuring their matching scores, FRBQ, and NFIQ2
scores, along with the label status for each pair. NFIQ2 scores are measured on a scale from 0 to 100,
whereas FRBQ scores, ranging from 0 to 1, re�ect the capability of the quality score to predict recognition
performance. In instances where matching scores are low for distinct images, FRBQ scores are instrumental
in pinpointing image pairs of high quality. Furthermore, FRBQ scores are comprehensive, encompassing
scenarios where lower matching scores occur for identical images.

model generates a substitute ground truth for the �ne-tuning of the ResNet model. After gathering all

matching scores, the ResNet model is adapted by substituting its �nal layer with a one-dimensional fully

connected layer, focusing on enhancing the accuracy of predictions by utilizing only this layer's output and

freezing the preceding layers.

Quality Score Estimation: The determination of the quality score involves processing the image via the

ResNet model, which then predicts a probability score indicative of image quality. The FRBQ (Fingerprint

Recognition Based Quality) model, once trained, offers precise quality score predictions that mirror the

recognition capabilities of the �ngerprints.

Experimental Setup Details:The experiments were conducted using the PyTorch framework on an NVIDIA

GPU, with the �ne-tuning process optimized through the Adam algorithm. The experimental parameters were

con�gured as follows: the training was conducted over 100 epochs, with a learning rate of10� 5 and a batch

size of 8.

3.6.3 Findings

The image pairs were evaluated by averaging their respective scores to maintain fairness in comparison.

Scores exceeding a predetermined threshold were classi�ed as high quality, indicating a favorable match.

Additionally, matching scores derived from DeepPrint were assessed, and their correlation with the quality

scores was analyzed using Pearson correlation coef�cients, as depicted in the correlation graphs in Figure

3.4. These graphs incorporate data from Figure 4.1, which shows the quality scores for �ngerprint images

determined by NFIQ2 and FRBQ (N and F, respectively). The analysis involved adjusting the quality

threshold across various datasets to benchmark FRBQ's ef�cacy against NFIQ2.
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Figure 3.5: The quality scores for �ngerprint images are obtained using two different methods, namely
NFIQ2 and FRBQ, referenced as N and F, respectively.

Figure 3.5 provides an introductory comparison of the quality scores for �ngerprint images obtained using

the two different methods, NFIQ2 and FRBQ, which are crucial for understanding the foundation of our

analysis. Following this foundational understanding, Figure 3.6 highlights a signi�cant advancement the

FRBQ method offers.

Score Reliability: NFIQ2 scores provide a dependable measure of recognition accuracy primarily for

high-quality �ngerprint images, but they do not universally apply. Speci�cally, for quality scores below 40,

NFIQ2's predictive capability for image recognition performance diminishes.

The investigation revealed that the model pro�ciently identi�es images with superior matching scores as

high quality. Comparatively, it exhibits a higher correlation with the DeepPrint matcher across all quality

thresholds (scaled from 0 to 100) relative to NFIQ2. This suggests that the introduced method is more adept

at accurately evaluating the quality of matches and their applicability in �ngerprint-matching systems.

Table 3.3 highlights the superiority of FRBQ over NFIQ2 in generating quality scores, with the following

insights:

• A threshold of 0.4 was established as optimal for the FRBQ model by analyzing performance across

various levels within the FVC 2004 databases.

• FRBQ consistently outperforms NFIQ2 in predicting recognition performance across different quality

thresholds, rendering it a more effective tool for assessing the suitability of �ngerprints for matching
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