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Abstract

Assessing the quality of biometric images is key to making recognition technologies more accurate and
reliable. Our research began with fingerprint recognition systems and later expanded to facial recognition
systems, underscoring the importance of image quality in both areas.

For fingerprint recognition, image quality is vital for accuracy. We developed the Fingerprint Recognition-
Based Quality (FRBQ) metric, which improves on the limitations of the NFIQ2 model. FRBQ leverages
deep learning algorithms in a weakly supervised setting, using matching scores from DeepPrint, a Fixed-
Length Fingerprint Representation Model. Each score is labeled to reflect the robustness of fingerprint image
matches, providing a comprehensive metric that captures diverse perspectives on image quality. Comparative
analysis with NFIQ2 reveals that FRBQ correlates more strongly with recognition scores and performs better
in evaluating challenging fingerprint images. Tested with the FVC 2004 dataset, FRBQ has proven effective
in assessing fingerprint image quality.

After our success with fingerprint recognition, we turned to facial recognition systems. In facial recog-
nition, image quality involves more than just perceptual aspects; it includes features that convey identity
information. Existing datasets consider factors like illumination and pose, which enhance robustness and
performance. However, age variations and emotional expressions can still pose challenges. To tackle these, we
introduced the Unified Tri-Feature Quality Metric (U3FQ). This framework combines age variance, facial
expression similarity, and congruence scores from advanced recognition models like VGG-Face, ArcFace,
FaceNet, and OpenFace. U3FQ uses a Regression Network model specifically designed for facial image
quality assessment. We compared U3FQ to general image quality assessment techniques like BRISQUE,
BLINDS-II, and RankIQA, as well as specialized facial image quality methodologies like PFE, SER-FIQA,
and SDD-FIQA. Our results, supported by analyses such as DET plots, expression match heat maps, and
EVRC curves, show U3FQ’s effectiveness.

Our study highlights the transformative potential of artificial intelligence in biometrics, capturing critical
details that traditional methods might miss. By providing precise quality assessments, we emphasize its role
in advancing both fingerprint and facial recognition systems. This work sets the stage for further research
and innovation in biometric analysis, underlining the importance of image quality in improving recognition
technologies.
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Chapter 1

Biometric Image Quality Assessment

1.1 Introduction

The advent of deep learning has significantly transformed biometrics, revolutionizing identity verification
and authentication methods. At the heart of this technological advancement is image quality assessment
(IQA), which is crucial for ensuring the reliability and efficiency of biometric recognition systems. The
quality of biometric data, whether from fingerprint scans or facial recognition, directly affects a system’s
ability to match and verify identities accurately. This thesis is about the complex world of biometric IQA,
exploring the challenges and proposing innovative solutions tailored to the unique requirements of fingerprint
and facial recognition systems.

Traditional IQA methods [38, 29, 6, 57] often do not meet the specific needs of biometric applications.
Hence, this work introduces deep learning-based metrics to enhance IQA for biometric systems, setting a new
benchmark in pursuing more secure and effective biometric authentication processes. By comprehensively
examining both Fingerprint IQA and Face IQA, we aim to improve the accuracy and reliability of biometric
recognition systems. This introduction lays the groundwork for our exploration, setting the stage for a detailed
discussion on the evolution of IQA methods, the development of novel quality assessment metrics, and their
significant implications for the future of biometric security and identification.

1.1.1 Quality in General

Image quality assessment is crucial in image processing, emphasizing human perception of quality, which
favors clear images, with minimal noise, distortion, or motion blur. As shown in Figure 1.1, we can see
the impact of different levels of compression artifacts on image quality, with the least compression in the
image (b) and the most in the image (e). These images are sourced from [57]. Traditionally, image quality
is measured against a reference image, serving as a standard for comparing the quality of other images.
However, this approach changes when a reference image is not available, such as in images taken in natural
or uncontrolled settings. To address this challenge, image quality assessment has branched into two main
categories: reference-based and no-reference-based quality assessment.

In reference-based quality assessment, methods aim to measure image quality by comparing a given image
to a high-quality reference image. This approach is suitable for scenarios where a clear reference image is
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Figure 1.1: This figure demonstrates the variations in image quality after applying different levels of
compression artifacts, ranging from minimal (b) to significant (e), based on the study from [57].

available for quality benchmarking. Various techniques have been developed in this category to score the
quality of images effectively, drawing from established research in the field [64, 51, 30].

Conversely, no-reference-based quality assessment methods tackle the challenge of assessing image
quality when no reference image is present. These methods are designed to evaluate the quality of images
independently, without relying on a reference point. Notable works in this category include [39, 47, 57],
which have explored the development of quality metrics that do not require a reference image.

1.2 Biometric Image Quality Assessment

Image Quality Assessment (IQA) traditionally revolves around human visual perception and aesthetic
judgment. IQA is specialized and redefined in biometric recognition for the imperatives of accurate identity
verification [5]. This subset of IQA is pivotal for the performance of face and fingerprint recognition systems,
focusing on the utility of images for precise biometric identification rather than their visual appeal.

1.2.1 Motivation

The motivation for this work stems from the quality paradox in biometric systems. This paradox highlights
the discrepancy between general IQA standards and the stringent requirements of biometric image quality,
emphasizing the need for a specialized approach to IQA in biometric applications. Figure 1.2 we can see
how general image quality and biometric image quality vary.
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The deep learning revolution in IQA has brought a paradigm shift in biometric systems, seamlessly
integrating IQA into recognition models. This shift allows for proactive image capture enhancement and data
quality assessment at the source, which is crucial for the system’s recognition capabilities.

Figure 1.2: Image quality vs biometric quality. While the images (obtained from
SCface database) in (a) are of poor image quality, the images in (b) may have lower
biometric quality. [5]

Figure 1.3: Three aspects of quality assessment: naturality, fidelity, and utility, in a
typical biometric pipeline [5]

The intricacies of biometric systems demand IQA methodologies that can quantify the impact of various
factors on recognition accuracy. This includes analyzing facial feature clarity, occlusions, and lighting
conditions for facial recognition. Ridge definition, pattern integrity, and artifact absence are crucial for
fingerprint systems. While deep learning-based IQA models automate and refine these assessments, challenges
in interpretability and transparency persist, especially where decision-making has significant repercussions.
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1.3 Biometric Systems and IQA

The complexity of biometric systems necessitates specialized IQA methodologies capable of discerning
subtle details that influence recognition accuracy. These methodologies must consider factors such as the
clarity of facial features, the presence of occlusions, and lighting conditions for facial recognition systems, as
well as ridge definition and pattern integrity for fingerprint systems.

1.3.1 Challenges in Deep Learning-Based IQA Models

The advent of deep learning models in IQA presents promising advancements in the automation and
refinement of quality assessments. However, the ”black box” nature of these models poses significant
challenges, particularly regarding interpretability and the need for transparency in sensitive decision-making
processes.

1.3.2 Fingerprint Image Quality Assessment:

In the specialized field of fingerprint image quality assessment (Fingerprint IQA), the objective is
to evaluate the quality of fingerprint images to ensure they adhere to the exacting standards required by
fingerprint recognition systems. These systems are crucial for biometric authentication, and their effectiveness
largely hinges on the quality of the input fingerprint images. Initially, traditional Fingerprint IQA methods
predominantly utilized handcrafted features, relying on the comparison with reference images to gauge
quality [52, 54, 56, 55]. However, these methods encounter challenges in effectively addressing various
image distortions, such as blurring, noise, and compression artifacts, which can significantly impact the
accuracy of biometric authentication. Figure 1.3 shows how the biometric system looks for fingerprints and
how we see it.

Figure 1.4: (a) High-quality fingerprint with clear ridge patterns.(b) Overexposed
fingerprint with excessive contrast results in loss of ridge pattern detail. (c) Degraded
quality fingerprint with reduced clarity and disrupted ridge patterns.

4



Figure 1.5: Figure showing high quality, middle quality and low quality finger print
images.

Figure 1.6: Sample Images of Varying Fingerprint Image Quality

Figure 1.4 shows the scanner output after we capture the fingerprint. It shows how an ideal capture should
look and what a poor capture is. Figure 1.5 and 1.6 show a sample of how quality changes in the fingerprint
images.

Initially, Fingerprint IQA techniques depended on analyzing a mix of local and global image quality
features [27, 32, 31, 52, 12, 13, 22]. These features include variations in Gabor filter responses, frequency
and orientation measures, and pixel intensity quality, or a combination thereof, to evaluate the fingerprint
image quality. To bring a standard approach to assessing these diverse and intricate features, the National
Institute of Standards and Technology (NIST) developed the NIST Fingerprint Image Quality (NFIQ) [56, 55]
algorithm. NFIQ synthesizes numerous local and global features intrinsic to the fingerprint image, enabling a
more comprehensive and standardized quality assessment. These features are considered handcrafted because
they are specifically designed and selected based on predefined image quality criteria.
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The introduction of NFIQ marked a significant advancement in Fingerprint IQA by providing a unified
metric that encapsulates various aspects of fingerprint image quality. By leveraging such a standardized
framework, it became possible to more accurately and consistently determine the suitability of fingerprint
images for biometric identification purposes. This development underscores the importance of sophisticated
quality assessment methods in enhancing the reliability and efficiency of fingerprint recognition systems.

1.3.3 Face Image Quality Assessment:

The core of this thesis is a comprehensive examination of the current landscape of IQA, focusing on face
images and the intricate patterns of fingerprints. We investigate the conceptual frameworks, methodologies,
and applications, noting the shift towards deep learning paradigms that offer promising improvements in
accuracy and interpretability.

In the context of Face IQA, this involves parsing facial features and expressions, environmental conditions,
and sensor interoperability. For Fingerprint IQA, it includes analyzing ridge patterns, minutiae clarity, and
the impact of presentation attacks. We further discuss the application scenarios of IQA in biometric systems,
from pre-enrollment image selection to real-time capture quality enhancement.

We identify the pressing need for standardization in algorithm evaluations to ensure comparability and
highlight the challenges that lie ahead, such as developing interpretable deep learning methods that go beyond
mere accuracy and utility predictions.

This thesis aims to bridge the gap between Fingerprint IQA and Face IQA by proposing a unified
framework that addresses their individual challenges while leveraging their respective strengths. We posit
that the future of biometric IQA lies in models that are adept at quality assessment and contribute to the
proactive improvement of data capture processes, ensuring that biometric systems are more accurate, reliable,
and effective in real-world scenarios.

Within the sequence from fig 1.7, we observe various distortions and their effects on facial images.
However, these visual representations alone do not provide clear insights into how such distortions influence
the matching process in facial recognition systems. Specifically, the distinction in matching outcomes
between poor-quality images paired with different or identical subjects remains unexplored through these
images alone. Consequently, while these images may offer a perceptual or subjective assessment of quality,
they fall short of predicting the performance during actual recognition tasks.

Recognition quality, in essence, hinges on the ability to gauge the similarity between a facial image and
other images within a database, which in turn affects the system’s recognizability and, by extension, the
overall image quality from a biometric standpoint. This similarity metric is crucial for understanding how
distortions impact the recognition capabilities of biometric systems. Therefore, without this comparative
analysis, making definitive claims about performance based on image quality alone is challenging.

To address this gap, a more nuanced approach is needed, incorporating the assessment of recognizability
alongside traditional quality measures. This involves analyzing how distortions affect the facial recognition
system’s ability to match a given image against a database, considering both ’different-pair’ and ’same-pair’
comparisons.
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Figure 1.7: A biometric system may process samples that exhibit a wide range of quality variations
(Images from MBGC database). Therefore, effective quality assessment metrics that accurately reflect
these variations are crucial for the functionality of an automated biometric system. [5]

Furthermore, Face Image Quality Assessment techniques are generally classified into two main categories:
regression-based and learning-based approaches. Learning-based strategies align with the operational
mechanisms of facial recognition models, adopting similar principles to predict image quality. These methods
leverage the recognition model’s understanding to estimate the quality of facial images. On the other hand,
regression-based methods employ deep neural networks to learn the representation of how a facial image
is decomposed, subsequently identifying features crucial for the quality prediction task based on these
learned representations. One notable limitation of regression-based approaches is their reliance on labeled
data for training to generate quality scores. This requirement for labeled training data can be a constraint,
as it necessitates a pre-existing, accurately labeled dataset to train the model for quality assessment tasks
effectively.

1.3.4 Contributions:

The contributions of this thesis are multifaceted and significant in advancing the field of biometric image
quality assessment. They are summarized as follows:

1. Development of a Deep Learning-Based Fingerprint Quality Assessment Metric (FRBQ): This
thesis introduces the FRBQ (Fingerprint Recognition-Based Quality) metric, a novel approach in the realm of
fingerprint image quality assessment. Unlike traditional metrics, FRBQ is designed to operate independently
of ground truth label data, relying instead on deep learning techniques to evaluate the quality of fingerprint
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images. This innovation represents a significant leap forward, offering a more flexible and potentially more
accurate method for assessing fingerprint image quality.

2. Effective Performance on Low-Resolution Images: One of the standout features of the FRBQ
metric is its ability to assess the quality of low-resolution fingerprint images accurately. This capability is
particularly noteworthy as it addresses a common limitation faced by state-of-the-art models, which often
struggle to perform effectively on images of lower resolution. By overcoming this challenge, the FRBQ
metric enhances the reliability and applicability of fingerprint quality assessment, especially in scenarios
where high-resolution images may not be available.

3. Introduction of U3FQ for Systematic Analysis of Facial Age and Expression Similarity: The thesis
also pioneers the U3FQ framework, marking the first systematic effort to analyze facial age and expression
similarity within the context of Facial Image Quality Assessment (FIQA). This analysis sheds light on the
age-related dynamics and expression variance in face recognition systems, offering novel insights into how
these factors impact recognition performance.

4. Semantic Insights into Face Age Images: The research provides a detailed examination of face age
images across various age groups, elucidating the differences in how different models represent and interpret
these images. This aspect of the study highlights the nuanced ways in which age affects facial recognition,
contributing to a deeper understanding of the challenges and opportunities in age-based biometric verification.

5. Enhanced Accuracy and Robust Generalization: Through implementing the U3FQ framework,
this thesis demonstrates significant improvements in accuracy and robust generalization across a range of
benchmark datasets. This achievement not only sets a new standard for FIQA and IQA methodologies but
also underscores the potential for further advancements in the field.

Together, these contributions underscore the thesis’s role in pushing the boundaries of biometric image
quality assessment. By introducing innovative metrics and frameworks, this work aims to improve the
accuracy and reliability of biometric recognition systems, paving the way for more secure and efficient
authentication processes.

By exploring both Fingerprint IQA and Face IQA domains, this thesis aims to shed light on the sophisti-
cated techniques required to ensure high-quality biometric data, thereby supporting the development of more
accurate and reliable biometric recognition systems.
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Chapter 2

Related Works

2.1 Related Works

The advent of deep learning has ushered in a transformative shift in the field of biometrics, marking a new
era characterized by unprecedented levels of accuracy and reliability across various biometric tasks, with a
notable emphasis on face recognition. This paradigm shift has facilitated the development of more robust
and efficient biometric systems, applicable in diverse domains such as security, authentication, and personal
identification.

2.2 Fingerprint Image Quality Assessment

In scenarios where explicit label information is unavailable, No Reference Image Quality Assessment
(NR-IQA) plays a crucial role [38, 29, 6, 57]. To address this challenge, adopting a weakly supervised
learning approach has been proposed [68, 43]. Additionally, Remy et al. have explored fingervein quality
assessment [46], and Oblak et al. have conducted a comprehensive survey on deep learning ensemble models
for fingerprint image quality assessment [42]. These studies offer valuable insights and alternative methods
to enhance recognition accuracy in scenarios with limited label information.

2.2.1 Deep Learning in Biometric Applications

DL models have shown significant improvement in accuracy and robustness in various biometric applica-
tions, including face recognition, fingerprint recognition, and iris recognition. These models have been shown
to outperform traditional feature extraction and classification methods by learning complex representations
directly from the raw biometric data. This has led to a paradigm shift in biometric recognition, where deep
learning models are becoming the go-to solution for a wide range of biometric recognition tasks. However,
challenges remain to be addressed, such as ensuring the privacy and security of biometric data, addressing
potential biases and discrimination, and improving the interpretability and transparency of deep learning
models.
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Figure 2.1: Overview of the Fingerprint Image Quality Assessment Process: This figure maps out the
multifaceted approach to assessing fingerprint image quality, from preprocessing and feature extraction
techniques to the evaluation of existing and proposed quality assessment methods within computer vision
algorithms.

Deep learning models such as DeepPrint [18] have been utilized for fingerprint recognition to improve
accuracy. DeepPrint extracts important information from fingerprint images without extracting varying
feature information through a fixed-length fingerprint representation. It combines deep features extracted by
deep networks with minutiae handcrafted features to get the critical feature information. The architecture
of DeepPrint uses multitask branches to first extract the fingerprint image representation and subsequently
learn how to classify it. The information from both branches is then fused to get a recognition score. Other
deep networks have improved specific sub-modules of fingerprint recognition systems such as segmentation
[69, 14, 19, 53], orientation field estimation [9, 50, 45], and minutiae extraction [41, 58, 15, 10, 65].

MiDeCon [59] is one of the few works that have utilized an approach incorporating minutiae information
for quality score generation in fingerprint recognition. However, this approach has not been widely imple-
mented, and DeepPrint provides a more advanced method for learning quality features. By incorporating
minutiae maps during training, DeepPrint’s feature-guided deep network has shown superiority over tradi-
tional methods in quality-based recognition tasks. As a result, DeepPrint is used in this study to generate
matching scores and create proxy ground truth labels for accurate quality score prediction.

Figure 2.1 provides a comprehensive overview of the different components and methodologies employed
in Fingerprint Image Quality Assessment (FIQA). It outlines a structured approach that spans from the
initial preprocessing of fingerprint images to applying sophisticated computer vision algorithms and quality
assessment methods, culminating in the proposed approach for enhancing the assessment process.

In the realm of quality prediction for recognition systems, prior research predominantly relied on hand-
crafted local and global features. In the figure 2.2, These features were meticulously designed to capture
relevant information from the data. However, our novel approach diverges from this tradition. Instead of
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Figure 2.2: Overview of our proposed quality prediction method. Instead of relying solely on handcrafted
features, we explore inter and intra-class similarities by labeling them. The matching scores obtained from
these labeled similarities serve as the foundation for our quality prediction model.

focusing solely on feature engineering, we delve into the data’s intricate inter and intra-class similarities. By
meticulously labeling these similarities, we construct a more nuanced representation. Our method leverages
matching scores derived from these labeled similarities to predict quality. This shift in perspective promises
to enhance recognition system performance significantly.

2.3 Face Image Quality Assessment:

The figure 2.3 outlines a structured taxonomy for Face Image Quality Assessment (FIQA), an integral
component in ensuring the efficacy of face recognition systems. FIQA methodologies are classified into
various categories, each addressing distinct aspects of image quality and their implications for recognition
accuracy.

Under the factor-specific category, the taxonomy identifies critical variables such as size, including
inter-eye distance and image resolution, which are fundamental for maintaining consistent quality in facial
recognition. Illumination is dissected into sub-factors like brightness moments and contrast, significantly
affecting facial features’ visibility. The pose is analyzed through facial landmarks and appearance templates,
among others, to account for variations in face orientation that can impede accurate identification. Additional
factors such as noise, skin tone, and other attributes further contribute to the comprehensive nature of this
quality assessment framework.

The monolithic section of the taxonomy encompasses methods that treat the image as a whole, employing
techniques like edge analysis and symmetry assessment through holistic and whole-image approaches,
including opaque machine-learning strategies that do not offer transparency in their assessment process.

The data-driven aspect of FIQA is addressed through various approaches: hand-crafted (Dhc), utility-
agnostic (Duat), and several forms of ground truth training, including human-based (Dhgt) and face recogni-
tion (FR)-based (Drft, Dfri), as well as FR-integration (Dint). Fusion methods are delineated into explicit
(Fe), trained (Ft), and cascade (Fc), with an additional note on instances where fusion is not applied.
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Figure 2.3: Comprehensive Framework for Face Image Quality Assessment (FIQA): This figure categorizes
the multifaceted approaches to FIQA, detailing factor-specific metrics, monolithic image evaluation
techniques, data-driven methods, fusion strategies, and the application of deep learning and video data
analysis in the pursuit of enhancing face recognition systems. Taken from Survey Study [48]

Deep Learning (DI) is recognized as a pivotal component in contemporary FIQA methods, clearly
distinguishing between its usage and non-usage. Incorporating video data (V) acknowledges the dynamic
nature of image capture, considering both video-frame and single-image contexts.

Facial Image Quality Assessment (FIQA) has become a cornerstone in enhancing the performance of
face recognition (FR) systems, especially when faced with the challenges posed by the wide spectrum of
image qualities encountered in real-world scenarios. Traditional FIQA methodologies have primarily focused
on evaluating the biometric utility of facial images in isolation. However, the integration of FIQA within
the broader context of FR systems introduces a conceptual challenge, termed the “Quality Paradox.” This
paradox, as discussed by Schlett et al. [48], highlights the need for a nuanced representation of the reliability
of comparison scores for image pairs that include the assessed image, adding complexity to FIQA’s role in
optimizing FR performance.

Despite significant advances by contemporary FR technologies in handling high-quality frontal images
under varied quality conditions [36, 23], challenges persist in fully unconstrained environments [7, 63], where
the consistency of facial image quality cannot be guaranteed. FIQA methodologies are invaluable in these
scenarios, providing crucial insights into image quality and enabling FR models to identify and potentially
exclude inferior quality images, thus mitigating the risk of erroneous non-matches.
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Table 2.1: Comparative Overview of Recent Face Recognition Quality Assessment Methods

Work Methodology Evaluation Criteria Evaluation
Dataset

SER-
FIQ
[61]

Embedding Variability Analysis:
This method utilizes statistical
variability in face embeddings to
infer image quality.

FNMR, EER: These metrics indicate
the frequency of incorrect rejections
and the balance point where false
acceptances and rejections are equal.

Adience, Color
Feret, LFW

SDD-
FIQA
[44]

Similarity Distribution Distancing:
This method evaluates the distance
in feature space by measuring the
distribution of similarity scores.

FMR: The False Match Rate
measures the rate of incorrect
acceptances, a critical security
metric.

Adience, LFW,
IJB-C

CR-
FIQA
[8]

Relative Classifiability to assess
the ease of correctly classifying a
given face image.

FNMR, TAR reflecting the
proportion of genuine users correctly
verified.

Adience, LFW,
AgeDB, CFP-FP,
CA-LFW,
CP-LFW,
XQ-LFW, IJB-C

Mag-
Face
[37]

Enhancing ArcFace with a
magnitude-aware loss function for
better discriminative learning.

FNMR indicating the frequency of
false rejections.

AgeDB, LFW,
CFP-FP

Face-
Qnet
[26]

Neural Network Quality
Assessment to directly predict the
quality score of face images.

Correlation between predicted
quality scores and actual biometric
utility.

BioSecure
Database

Auto-
matic
FIQ
[4]

CNN Approaches for feature
extraction and quality assessment.

FNMR, FMR indicating the
reliability of the authentication
system.

LFW

PC-
Net
[66]

Predictive Uncertainty And
Confidence Estimation for
assessing the quality of face
images.

FMR representing the likelihood of
incorrect authentications.

IJB-C

Opti-
miza-
tion
Based
[21]

Employing Quality Label
Supervision to guide the quality
assessment in a more targeted
manner.

FMR, AUC indicating the overall
performance of the model.

LFW, CFP-FP,
CA-LFW,
CP-LFW,
XQ-LFW

Face-
QAN
[2]

Adversarial Noise Profiling to
measure the robustness of face
images against noise.

FMR, AUC to assess the accuracy
and reliability across different noise
conditions.

LFW, CFP–FP,
XQLFW ,IJB–C

QMag-
Face
[60]

Quality Aware Face Recognition FNMR and EER plots AgeDB, XQLFQ,
CFP-FP
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Contemporary FIQA methodologies are categorized into two main groups: regression-based and model-
based approaches. Regression-based strategies [11, 26, 66] establish a direct correlation from the image
domain to quality labels, often generated in a semi-automated manner. These labels are typically based
on comparison scores from matched image pairs or similarity scores between probe samples and reference
images. Conversely, model-based approaches [61, 37] integrate quality assessment directly within the FR
model, evaluating quality based on certainty or statistical attributes extracted from generated facial features
or embeddings.

Our proposed approach extends the FR model paradigm by incorporating the impact of age variations and
emotional expressions on matching scores. Understanding how aging and emotions alter facial features is
crucial, as they significantly influence recognition accuracy.

This thesis introduces the Unified Tri-Feature Quality (U3FQ) metric, a novel approach to FIQA. U3FQ
redefines FIQA by integrating recognizability and quality estimation through a unique, learning-based
methodology. Diverging from traditional paradigms, it leverages match scores in a weakly supervised manner
as the primary indicator of quality. Furthermore, U3FQ emphasizes the significant role of facial expressions
and age disparity in quality assessment, providing insights into the influence of these factors on matching
accuracy.

In addition to facial recognition, this work addresses limitations in fingerprint image quality assessment
with the introduction of FRBQ (Fingerprint Recognition-Based Quality), a deep learning-based methodology
for no-reference image quality assessment. FRBQ aims to evaluate the recognition performance of fingerprint
images across quality scores, utilizing a Convolutional Neural Network (CNN) architecture adapted from
the ResNet18 framework. This approach has demonstrated effectiveness even with low-resolution images,
surpassing the established NFIQ2 model in accuracy and resilience to various image distortions.

The integration of advanced deep learning models such as U3FQ for facial image quality assessment and
FRBQ for fingerprint image quality assessment represents a significant advancement, promising to enhance
the accuracy and reliability of biometric identification systems. These developments have far-reaching
implications in real-world applications, including security, forensic analysis, authentication, and identification
processes.
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Chapter 3

Advancing Fingerprint Recognition Quality Assessment: Introducing the

FRBQ Metric

3.1 Introduction

The assessment of fingerprint image quality is crucial for the efficiency of biometric recognition systems.
In this work, we introduce a novel methodology that employs deep learning networks in a weakly super-
vised setting to learn features specific to fingerprint images. This approach is grounded in the concept of
matching fingerprints, where the network is trained to produce a quality score that directly corresponds to the
fingerprint’s matching capability. By using simulated ground truth data derived from labeled fingerprints, our
network can identify and learn the most relevant features for assessing fingerprint quality, thereby improving
the precision and reliability of the quality assessment process.

3.2 Pipeline

Our pipeline begins with the generation of pseudo ground truth labels, which serve as the foundation for
our approach. This process involves using the matching scores between fingerprint images, derived from their
cosine similarity, as a basis for label generation. These scores, produced by our DeepPrint model, reflect the
degree of similarity between fingerprints, with the threshold set at a predefined value (e.g., 0.4) to distinguish
between different quality levels. This step is critical for our weakly supervised learning methodology, as it
enables the network to learn from a practical, albeit indirect, representation of fingerprint quality.

3.2.1 DeepPrint Feature Extraction and Matching

The DeepPrint [18] model plays a pivotal role in our pipeline, as depicted in Figure 3.1. It processes input
fingerprint images to generate a 192-dimensional vector, encapsulating both texture and minutiae details.
These vectors are then utilized to compute matching scores through cosine similarity, providing a robust basis
for comparing fingerprints. The process of generating these scores, alongside the extraction of minutiae and
texture details, is essential for creating a detailed representation of fingerprint features, which is subsequently
used for label generation.
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Figure 3.1: Block 1: The input image, I , undergoes processing to generate
a 192-dimensional vector. Texture and minutiae details are extracted and
combined to form a DeepPrint representation Fd. Block 2: Embedding
vectors from DeepPrint are compared using cosine similarity to produce a
matching score for fingerprint comparison.

Our purpose for using DeepPrint was to achieve better matching performance due to several key advan-
tages:

• Fixed-Length Representation: DeepPrint uses a fixed-length representation, which avoids the need for
graph matching and is computationally efficient.

• High Discriminative Power: It maintains high discriminative power even with low-quality fingerprints.

• Performance Metrics: In a large-scale test with 1.1 million fingerprints from the NIST SD4 dataset,
DeepPrint achieved a rank-1 search accuracy of 98.80% in just 0.3 seconds. In comparison, a top
COTS matcher had a slightly higher accuracy of 98.85% but took 27 seconds to complete the search.

Additionally, we experimented with Verifinger and Morpho, but they did not yield satisfactory results.
Thus, DeepPrint’s combination of efficiency, speed, and high accuracy made it the optimal choice for our
work.
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Figure 3.2: The methodology for generating pseudo ground truth labels by evaluating matching scores, a
crucial step in our weakly supervised learning approach for assessing fingerprint quality.

3.2.2 Proxy Groundtruth label generation

As shown in Figure 3.2, the generation of proxy ground truth labels involves analyzing matching scores to
produce quality indicators for fingerprints. This process is crucial for defining the quality of fingerprints in
relation to their matching performance. The labels generated through this method inform our network about
the expected quality outcomes based on matching scores, facilitating a targeted learning process that focuses
on the most relevant features for quality assessment.

3.2.3 Quality Score Calculation and Network Training

The core of our methodology lies in the calculation of quality scores and the training of a neural network
to accurately predict these scores. We utilize a ResNet architecture, or a similar quality regression network,
which is fine-tuned using the labels generated from our initial processing steps. This network learns
to differentiate between high and low-quality fingerprints based on their matching scores, as detailed in
Figure 3.3. The training process involves a specially designed loss function that accounts for the matching
scores and label information, allowing the network to adapt its predictions to closely match the ground truth
data.

The network processes two distinct input images, I1 and I2, predicting a quality score for each, denoted
as P1 and P2. Utilizing the matching scoreM from DeepPrint, a proxy ground truth for quality is obtained.
This process necessitates both images to ensure the precise calculation of the quality score. Alongside the
matching score, label information K augments the accuracy of the quality score calculation. The harmonic
mean of the quality score, rather than the average matching score, is utilized for calculating the matching
score. This use of harmonic average emphasizes the lower values in the set, capturing the impact of low
scores more prominently, and consequently offering a more precise quality score for images with limited
matching ability.

Loss Function Overview: The employed network, as shown in Figure 3.3, incorporates a specially designed
loss function denoted as L(M,Qi,K,Wi) or LQ to enhance its fine-tuning. In this notation:
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Figure 3.3: In this proposed method, the ResNet neural network takes in the input images, (I1) and (I2), and
produces predicted quality scores, (P1

I ) and (P2
I ). These predicted scores are used in a loss function, along

with proxy ground truth quality scores that are matching scores (M) with their label info, generated by the
DeepPrint model, in order to train the ResNet to produce scores that are as close as possible to the ground
truth. The output of this process is a fingerprint quality score, (Q).

• Qi specifies the two input images.

• M specifies the matching score of these images.

• K indicates whether the two images are from the same class or different classes.

• Wi weights for balancing.

The primary objective of this loss function is to ensure robust performance under imbalanced data conditions.
It aims to minimize the discrepancy between the predicted quality scores and the true quality of the input
images, particularly in scenarios where:

• The label is 0 (indicating high quality) with a low matching score.

• The label is 1 (indicating low quality) and the matching score is low.

Conversely, the loss should increase when:

• There’s a low matching score combined with a label of 1.

• There’s a high matching score paired with a label of 0.

This loss function is applied as binary cross-entropy loss for labels 0 and 1.
Expressed as LQ(M,Q1,Q2,K,W0,W1),:

Li(M,Qi,K,W0,W1) = logQi (−W1M+

(1−K)W0(1−M)) , ∀i = 1, 2 (3.1)

LQ(M,Q1,Q2,K,W0,W1) = L1 + L2 (3.2)
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LQ is a combination of the above two losses where L1 is calculated for Q1 the predicted quality of
image-1 and the L2 is calculated on Q2 the predicted quality of image-2 whereM represents the Matching
score obtained on a pair of images that are used as a proxy ground truth to finetune the network. Q1 and Q2

represent the Quality Score of image-1 and image-2 respectively and K represents the Label information
that is 0 for different images and 1 for same images. When K is 1 loss functions try to reduce the loss
directly proportional toM in predicting the Q1 and Q2 and when K is 0 loss function learns the loss in in-
versely proportional and try to reduce loss incorporates in predicting theQ1 andQ2 based on the inverse ofM.

Weight Calculation: To address the unbalanced nature of the training data, weightsW0 andW1 are assigned
to balance the loss function. The weights are determined based on the relative proportions of the samples in
each class. Specifically, they are calculated as:

Wk =
1

Nk

(
N

2

)
(3.3)

Where:

• k represents the class label (either 0 or 1).

• N is the total number of samples in the dataset.

• Nk denotes the count of samples in class k.

The weightsW0 andW1 effectively balance the contribution of each class by inversely scaling with their
prevalence, ensuring that neither class dominates the loss due to its abundance or scarcity.

3.3 Label Information effect on Quality Scores

In the context of fingerprint image quality assessment in our research, we employ proxy ground truths
obtained from a DeepPrint matcher. The DeepPrint matcher leverages label information to enhance recognition
accuracy concerning quality scores.

Labelling of Pairs: Table 3.1 presents an overview of the labeling process. Our approach involves
training a deep learning model using labeled data that consists of pairs of fingerprint images. Each pair can
either be from the same finger or from different fingers. The DeepPrint matcher utilizes this label information
to distinguish between genuine pairs and impostors.

Training with Labels: During model training, we incorporate these fake ground truth labels, which are
derived from matching scores obtained from the DeepPrint matcher. These scores serve as indicators of
the likelihood of a pair of fingerprint images matching, with high scores signifying a good match and low
scores indicating a poor match. This approach allows us to harness recognition-based information that cannot
be obtained through manual image quality annotation, enabling our model to predict the quality score of
fingerprint images accurately.
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3.4 Analytical Study on Match Score:

We have explored alternative approaches that show promise for future applications, especially in the
context of large fingerprint image datasets. These methods not only open up new avenues for further research
but also provide valuable insights into the potential enhancements of fingerprint image analysis on a larger
scale. In this paper, we have introduced an approach that involves utilizing a pair of images during model
training. However, for scenarios where only a single image is available, it becomes essential to derive a
representative score that indicates its recognizability. This score guides the model in accurately assessing
image quality.

To compute a match score for a single image, it is imperative to gather a collection of match samples
encompassing a wide range of both good and bad matches.

Match Score of Single Image To derive a single representative score from multiple match scores, statistical
methods such as mean, harmonic mean, and median percentile prove valuable. The selection between these
methods depends on the specific dataset characteristics and requirements. Here’s a concise overview of both
methods

• Harmonic Mean:

– The harmonic mean is a type of average that gives more weight to lower values in the set. It is
particularly effective at handling situations where extreme outliers or very low scores need to be
taken into account.

– The harmonic mean is suitable when the impact of the worst or lowest scores in the dataset. It
can help in scenarios where you want to ensure that the overall quality is not solely driven by a
few high scores.

– It is important to note that the harmonic mean is sensitive to extremely low scores, and a single
low score can significantly affect the resulting average.

• Percentile:

– The percentile represents the relative position of a particular score within a distribution. It
indicates the percentage of scores that are equal to or below a given value.

– Using percentiles allows you to determine where a specific score lies within the distribution of all
scores. It helps capture the overall quality of a matched image compared to others in the dataset.

– Percentiles are useful when you want to establish a threshold or cutoff point to classify images as
poor or good quality based on their relative position in the score distribution.

The choice between the harmonic mean and percentile depends on the specific requirements and charac-
teristics of the dataset, as well as the significance that we want to place on different scores.
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Label Info Matching Score Quality Score
0 High Low
1 High High
0 Low High
1 Low Low

Table 3.1: The table shows that when the matching score is high and the label information is positive, the
quality score is high. Conversely, when the matching score is low and the label information is negative, the
quality score is also low.The matching scores are used along with label information to predict the quality
score of fingerprint images accurately.

Dealing with non-mated pairs: In this paper, we have conducted a comprehensive study encompassing the
utilization of both mated and non-mated pairs, which are commonly referred to as genuine and impostor
pairs, respectively. This inclusion allows us to thoroughly assess the performance of our proposed method
across diverse scenarios, reflecting real-world fingerprint recognition challenges.

• Exclusive Mated Pair Analysis

– Looking ahead, we envision conducting further experiments focused on exclusively using mated
pairs. This aligns with real-world scenarios where the primary objective is to verify the matching
of images for authorized individuals.

– On the other hand, non-mated pairs present a distinct challenge, where the emphasis on recogniz-
ability may not be as critical.

For these cases, we consider the possibility of assigning lower or even negative recognizability scores,
given that these pairs do not belong to authorized individuals or are not among the designated matches.

• Non-Mated Image Quality Assessment:

– One key aspect is the ability to predict scores for non-mated pairs, potentially indicating zero
or negative recognizability. It would greatly impact the quality score, as it would enable us to
identify images that do not match any individual.

– Although, we recognize that solving this complex problem for a single image without using
additional references presents significant challenges. Notwithstanding, we maintain a positive
outlook on future developments that could potentially empower us to forecast such results.

By conducting these additional experiments, we aim to gain a deeper understanding of the effectiveness
of our method across different use cases, and refine its performance to suit specific fingerprint recognition
scenarios. This research contributes to the broader field of fingerprint image quality assessment and holds
promise for advancing the reliability and accuracy of fingerprint recognition systems in practical applications.
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Database Genuine Pair Impostor Pairs Total Pairs
DBA 2800 4950 7750
DBB 280 45 325

Table 3.2: FVC dataset information

3.5 Experiments

This section begins with an overview of the datasets utilized for our experiments, outlined in subsection 3.6.
It then proceeds to elaborate on the implementation process and the workflow, as detailed in subsection 3.6.1.
The experimental setup and its specifics are discussed in subsection 3.6.2, followed by an analysis of the
results derived from these experiments in subsection 3.6.3. Lastly, the limitations inherent to the proposed
methodology are examined in subsection 3.6.4.

3.6 Dataset Overview

Our study leveraged the FVC 2004 dataset[34], a benchmark dataset for fingerprint image evaluation.
The dataset’s composition, detailed in Table 3.2, includes four distinct databases from different sensor
technologies. For our experiments, we focused on two specific databases: DBA and DBB . DBA was a
primary source, providing 7751 pairs of genuine and impostor images. In contrast, DBB contributed 326
pairs of images. Each image within this dataset maintains a resolution exceeding 500 DPI, aligning with
NFIQ’s recommendations for capturing high-quality fingerprint images.

3.6.1 Workflow and Implementation details

To enhance the fingerprint recognition capabilities of the ResNet18 model, an alternative ground truth
for assessing the quality of fingerprints was derived from matching scores courtesy of the DeepPrint model.
This approach entails calculating matching scores through DeepPrint and correlating these scores with labels
indicating the authenticity of the image pairs. A label of 1 signifies that the image pair is genuine, originating
from the same set, while a label of 0 indicates an impostor pair coming from different sets.

Employing DeepPrint for Alternate Ground Truth Generation: This strategy enables the creation of a
reliable substitute ground truth for quality assessment, essential for training the ResNet18 model effectively.
This technique allows us to overcome the shortcomings of the NFIQ2 standard, which falls short of accurately
determining the quality scores necessary for fingerprint verification.

The use of DeepPrint to create an alternative ground truth underpins our evaluation of the FRBQ method-
ology, showcasing its effectiveness in precise fingerprint image quality assessment. Matching scores and
corresponding label information for select image pairs are detailed in Table 3.3. Additionally, this table
compares the NFIQ2 and FRBQ quality scores for these pairs, showing the enhanced accuracy of our
approach.
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Figure 3.4: The performance of two quality score methods, NFIQ2 and FRBQ, were evaluated using matching
scores generated from DeepPrint on four databases in the FVC Dataset A. The correlation between the quality
scores and matching scores was analyzed at different quality thresholds. Results showed that FRBQ had
higher correlation scores than NFIQ2 at varying quality thresholds for all the datasets.

3.6.2 Experiment Setup

In our study, we employed a pre-trained ResNet model, specifically fine-tuned with 7750 image pairs
from Database A. For detailed information about the dataset used in our experiments, reference is made to
Table 3.2, which outlines the FVC 2004 dataset details, including the number of genuine and impostor pairs,
types of sensors used, and the recommended resolution for images.

Feature Learning with ResNet: ResNet architectures are renowned for their efficacy in image classifica-
tion tasks, wherein early layers capture universal features such as textures and edges, while deeper layers are
adept at identifying more intricate attributes like parts of objects and their shapes. By locking the early layers,
our model capitalizes on these universal features, which are crucial for assessing image quality.

Model Fine-tuning Process: During fine-tuning, each image pair is processed through the model
individually. A loss function that integrates the predicted scores, matching scores, and label data is employed
to refine the model’s ability to ascertain a quality score for identification purposes. Initially, the DeepPrint
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Img1

Img2

Matching Score 0.25 0.66 0.42 0.05 0.27
FRBQs Img1 0.24 0.53 0.41 0.51 0.53
NFIQ2 Img1 56 39 71 36 26
FRBQs Img2 0.51 0.61 0.53 0.57 0.37
NFIQ2 Img2 72 19 61 23 5
Label 1 1 1 0 0

Table 3.3: The table presents information on image pairs, featuring their matching scores, FRBQ, and NFIQ2
scores, along with the label status for each pair. NFIQ2 scores are measured on a scale from 0 to 100,
whereas FRBQ scores, ranging from 0 to 1, reflect the capability of the quality score to predict recognition
performance. In instances where matching scores are low for distinct images, FRBQ scores are instrumental
in pinpointing image pairs of high quality. Furthermore, FRBQ scores are comprehensive, encompassing
scenarios where lower matching scores occur for identical images.

model generates a substitute ground truth for the fine-tuning of the ResNet model. After gathering all
matching scores, the ResNet model is adapted by substituting its final layer with a one-dimensional fully
connected layer, focusing on enhancing the accuracy of predictions by utilizing only this layer’s output and
freezing the preceding layers.

Quality Score Estimation: The determination of the quality score involves processing the image via the
ResNet model, which then predicts a probability score indicative of image quality. The FRBQ (Fingerprint
Recognition Based Quality) model, once trained, offers precise quality score predictions that mirror the
recognition capabilities of the fingerprints.

Experimental Setup Details: The experiments were conducted using the PyTorch framework on an NVIDIA
GPU, with the fine-tuning process optimized through the Adam algorithm. The experimental parameters were
configured as follows: the training was conducted over 100 epochs, with a learning rate of 10−5 and a batch
size of 8.

3.6.3 Findings

The image pairs were evaluated by averaging their respective scores to maintain fairness in comparison.
Scores exceeding a predetermined threshold were classified as high quality, indicating a favorable match.
Additionally, matching scores derived from DeepPrint were assessed, and their correlation with the quality
scores was analyzed using Pearson correlation coefficients, as depicted in the correlation graphs in Figure
3.4. These graphs incorporate data from Figure 4.1, which shows the quality scores for fingerprint images
determined by NFIQ2 and FRBQ (N and F, respectively). The analysis involved adjusting the quality
threshold across various datasets to benchmark FRBQ’s efficacy against NFIQ2.
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Figure 3.5: The quality scores for fingerprint images are obtained using two different methods, namely
NFIQ2 and FRBQ, referenced as N and F, respectively.

Figure 3.5 provides an introductory comparison of the quality scores for fingerprint images obtained using
the two different methods, NFIQ2 and FRBQ, which are crucial for understanding the foundation of our
analysis. Following this foundational understanding, Figure 3.6 highlights a significant advancement the
FRBQ method offers.

Score Reliability: NFIQ2 scores provide a dependable measure of recognition accuracy primarily for
high-quality fingerprint images, but they do not universally apply. Specifically, for quality scores below 40,
NFIQ2’s predictive capability for image recognition performance diminishes.

The investigation revealed that the model proficiently identifies images with superior matching scores as
high quality. Comparatively, it exhibits a higher correlation with the DeepPrint matcher across all quality
thresholds (scaled from 0 to 100) relative to NFIQ2. This suggests that the introduced method is more adept
at accurately evaluating the quality of matches and their applicability in fingerprint-matching systems.

Table 3.3 highlights the superiority of FRBQ over NFIQ2 in generating quality scores, with the following
insights:

• A threshold of 0.4 was established as optimal for the FRBQ model by analyzing performance across
various levels within the FVC 2004 databases.

• FRBQ consistently outperforms NFIQ2 in predicting recognition performance across different quality
thresholds, rendering it a more effective tool for assessing the suitability of fingerprints for matching
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Figure 3.6: FRBQ provided quality scores for images that NFIQ2 could not predict scores on, even though
these images were highly distorted and noisy.

applications. Moreover, FRBQ’s generated quality score accurately forecasts the matching score, un-
derscoring the advantage of integrating quality and matching data in fingerprint recognition endeavors.

The approach progresses by leveraging label and matching score data to compute precise quality scores,
though the assessment process becomes more intricate with lower matching and image quality scores.

Emerging Scenarios:

1. Lower quality in one or both images of a pair may lead to an erroneously high matching score due to
noise presence. Conversely, in scenarios of high scores, both images may inherently possess similar
high quality, or low-quality images might inaccurately reflect high matching scores.

2. Addressing these complexities necessitates the utilization of an extensive and diverse dataset. Such a
dataset should cover all imaginable conditions of image quality and matching scores, enriched with a
robust collection of image pairs to enable comprehensive evaluation of label and matching score data.

A model’s resilience to effectively manage noise is imperative, ensuring a clear demarcation between authentic
and noise-generated matches, thereby facilitating precise quality evaluations even in challenging scenarios.
The histograms of match scores and quality scores illustrate the correlation between predicted quality scores
and average match scores. Match scores range from 0 to 100, while quality scores span from 0 to 1. As
demonstrated in Figure 3.7, this distribution reveals a crucial insight: quality scores fill the gaps left by
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Figure 3.7: The histogram illustrates the match scores derived from the DeepPrint model and the correspond-
ing quality scores obtained from our model, demonstrating improved separation between label 0 scores and
label 1 scores.

missing match scores, showcasing their strong predictive capacity even when extensive matching data is
unavailable.

3.6.4 Discussion and ablation study

This study benchmarks NFIQ2, revealing its shortcomings in accurately determining the quality of
fingerprint images.
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• Utilizing the specific NFIQ2.2.0 version brought to light its limitations, particularly its failure to
provide quality scores for images of low resolution or compromised capture quality, resulting in a
default score of zero.

• Conversely, FRBQ demonstrated its robustness by assigning meaningful scores to images that NFIQ2
failed to rate, as shown in Figure 6. This difference highlights FRBQ’s enhanced capability to
evaluate fingerprint image quality with greater detail, improving the accuracy of fingerprint recognition
technologies.

• The consistent and reliable performance of FRBQ, especially with images deemed unassessable by
NFIQ2, emphasizes its precision and dependability. Initial results suggest FRBQ’s potential dominance
in fingerprint recognition technology, particularly for handling images of inferior quality or those
captured inadequately.

The findings of this research are pivotal in advancing more accurate and reliable fingerprint recognition
systems, with wide-ranging applications in sectors like law enforcement, security, and access management.

Figure 3.8: Training loss and accuracy results.

Training of the Model: Figure 3.8 displays the FRBQ model’s loss and training progression, shedding
light on its training efficacy. The graph of the loss curve depicts the optimization journey, while the training
accuracy graph showcases the model’s ability to learn from the data provided. Simultaneously, the graph
for validation accuracy showcases the model’s ability to generalize to new, unseen data, offering a holistic
view of the model’s convergence and its success in maintaining high accuracy levels for both training and
validation sets.
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3.7 Conclusion

In summary, the developed FRBQ model, which leverages deep learning to evaluate the quality of
fingerprint images, demonstrates significant potential. It excels in producing reliable quality scores for newly
scanned fingerprints, outperforming traditional models. The benefits of this method are manifold, including
the improvement of fingerprint matching systems, reduction of manual checking and labeling efforts, and its
compatibility with existing recognition frameworks. The inclusion of label data and matching scores provides
a more comprehensive assessment of image quality. However, accurately evaluating images of poor quality
presents a considerable hurdle, necessitating a nuanced approach to understand the relationship between
image quality and matching accuracy. The solution to these challenges may be found in advanced algorithms
adept at managing the complexities of data and incorporating additional types of information, such as specific
features of the fingerprints. Furthermore, a broader training dataset could unveil more about the challenges
associated with low-quality fingerprints, helping to surpass the current limitations of using proxy ground truth
for training. Ultimately, the FRBQ model has the potential to enhance the precision of fingerprint recognition
systems and streamline the process of quality assessment. Overcoming the obstacles related to the evaluation
of low-quality images requires further research into optimizing the correlation between image quality and
matching scores, aiming to improve the overall effectiveness of the FRBQ model in fingerprint recognition
technologies.
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Chapter 4

Advancing FIQA with Age and Expressions: Introducing the U3FQ (Unified

Tri-Feature Quality) Metric

4.1 Introduction

In recent advancements in biometric identification technology, the development of U3FQ marks a signifi-
cant milestone. U3FQ integrates advanced machine learning and deep learning frameworks to analyze and
interpret facial data accurately. This innovative approach allows for a nuanced quantification of the effects of
age and expression on match scores, offering a comprehensive assessment tool that transcends traditional
metrics by considering the dynamic nature of human faces. Positioned as a holistic, context-aware solution,
U3FQ enhances biometric systems’ reliability and effectiveness across diverse scenarios, establishing itself
as a pivotal tool in the evolution of biometric identification technologies.

4.2 Theoretical Background

4.2.1 Facial Age Difference

The efficacy of face-matching systems is significantly influenced by the age difference between the anchor
image and the comparison image, as shown in Figure 4.1. This influence varies notably with the anchor’s age,
necessitating a nuanced approach to modeling age difference penalties. For anchors aged between 20 and 30
years, negative age differences typically correlate with child images, which presents a considerable challenge
due to the substantial change in facial features that occur during maturation. Conversely, for anchors over 35
years of age, negative age differences represent younger adult images, where changes in facial features are
less pronounced.

One of the critical challenges in facial recognition is understanding how age differences between images
can affect identity matching. Our algorithm, as detailed in Algorithm 1, specifically addresses this by
calculating an age-based match score. This score takes into account the age difference (d) and the anchorage
(a), reflecting the reality that the same age difference can have different implications depending on the age of
the individual.
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Our algorithm adapts to these variations with a conditional approach based on the anchor’s age. In
Figures 4.16, 4.17, and 4.15, we present a comprehensive analysis of how age variations impact facial
matching accuracy across different age groups, as depicted by the False Non-Match Rate (FNMR) plots.
These figures provide a detailed comparison of the recognition performance of various face recognition
models in the context of age-related variations. Furthermore, Figures 4.18a, 4.18b, 4.19a, 4.19b, 4.20a, and
4.20b present the probability density plots, showcasing the distribution and variability of matching scores for
different age groups across multiple face recognition models. This visual representation offers a nuanced
understanding of the models’ performance and shows how age factors into the accuracy and reliability of face
recognition technologies.

(0.78, 15, -37)

(0.69, 17, -35)

(0.40, 30, -22)

(0.12, 52, 0)
(0.15, 57, 5)

(0.20, 65, 13)

(0.45, 70, 18)

52

Figure 4.1: The efficacy of face-matching systems is significantly impacted by the noticeable age variation
between the images being compared. The comprehensive triplet representation emphasizes the similarity
distance, the specific age of the compared image, and the notable age difference relative to the anchor image,
with Image 6 serving as the reference. The match score mentioned here is similarity distance, which means
more the distance, the lesser the matching.
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4.2.2 Development of the Nonlinear Function

We explored various mathematical models to formulate the function for calculating the match score. The
nonlinear function used in our algorithm emerged as the most effective in correlating the age difference with
the match score.

Initially, we tested polynomial and exponential functions. However, these models did not exhibit the
same level of correlation with the match scores as our chosen function. The nonlinear function we adopted
uniquely captures the nuanced effects of age differences, particularly in how these differences impact the
recognition process at different ages.

Adopting this nonlinear function in our algorithm demonstrates its superior ability to accommodate the
complex nature of age-related changes in facial features. The mathematical formulation is discussed in detail
in Algorithm 1. This approach provides a more accurate and reliable method for facial recognition across
different age groups, enhancing the overall effectiveness of identity-matching systems.

The implications of our findings are substantial. By integrating a logarithmic function into our model,
we effectively capture the complex influence of age differences on facial recognition. This methodology
facilitates a more refined and accurate evaluation of facial matches, particularly when there is a significant
age disparity between the images under comparison.

4.2.3 Analysis of the Correlation Matrix

The correlation matrix derived from our dataset provides insightful observations regarding the relationships
between various factors in our facial recognition (FR) model. Notably, the matrix reveals a significant
correlation between the age difference-based match score and the overall match score, which underscores the
effectiveness of our model in capturing the nuances associated with age differences in FR.

The correlation matrix presented in Figure 4.4 (sub-figure 2) substantiates our approach in accommodating
age variations within facial recognition algorithms. The pronounced correlation observed between the
age-adjusted match score and the comprehensive match score underscores the effectiveness of our method.
Simultaneously, the negligible correlation between mere age differences and the match score validates our
decision to employ a logarithmic function, which offers a more sophisticated solution than simpler linear
models.

Key Observations: A critical finding from the matrix is the strong correlation between the age difference-
based match score (Adj MS) and the normalized combined score (Norm Combined Score). This correlation
indicates that our model effectively adjusts match scores based on age differences, a crucial aspect in
improving the accuracy of facial recognition across varying age groups.

Lack of Correlation with Age Difference Alone: Interestingly, the matrix shows a lack of significant
correlation between the age difference and the match score (Adj MS). This observation reinforces the need
for a more sophisticated approach, like our nonlinear logarithmic function, to accurately capture the impact
of age differences. Simple linear or direct correlations do not adequately represent the complex dynamics of
age-related changes in facial features.
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Figure 4.2: Demonstrates the process of calculating
similarity and dissimilarity scores for facial images.
By comparing emotion similarity within the same
image set, each face is assigned a score reflecting
its degree of resemblance or deviation. This ap-
proach enables a nuanced assessment of facial iden-
tity through a concise scoring system.
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Figure 4.3: Showing the variability in match scores
under diverse scenarios, highlighting how age differ-
ences and facial expression dissimilarities between
anchor and target images influence recognition accu-
racy. It contrasts the stability in scores when compar-
ing images of the same age and expression against
the fluctuating scores observed with varying ages and
dissimilar expressions, underscoring the dynamic na-
ture of facial recognition performance.

4.2.4 The Influence of Facial Expressions

Similar to age variation in facial images, which can cause identity loss in biometric authentication, facial
expressions also impact the matching performance of biometric systems. In unconstrained environments,
varying facial expressions are common, and their influence extends beyond mere variations in illumination
and pose. These expressions, driven by human emotions such as happiness, sadness, anger, fear, and others,
significantly affect the recognition process.

Many face recognition models can predict emotions; however, this ability largely depends on the dataset’s
diversity. If a particular emotion is present in the dataset, the model can predict it, but its depth of understand-
ing is limited. Consequently, while face recognition models can provide a rough estimation of emotion, they
don’t significantly impact the matching.

In our study, as shown in Figure 4.2, we develop similarity and dissimilarity metrics to analyze facial
expressions and emotions. This approach allows us to assign a quality value associated with these features.
We observed that weak emotions such as smiling, neutrality, and fear have a lesser impact than stronger ones.
Accordingly, our paper assigns different values to these emotions, reflecting their varying influence on the
authentication process. Ultimately, we compute a match score that considers facial expressions, providing a
more nuanced understanding of their effect on biometric systems.

The similarity in facial expressions between two images notably influences recognition performance, as
variations in expressions can distort critical facial features used in establishing a match. This impacts the
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Figure 4.4: Sub-Figure 1: Correlation Matrix of Key Variables in Facial Recognition Model. This heatmap
displays the correlations among age difference, image age, normalized combined score, and age-based match
score (Adj MS). The matrix highlights the strong correlation between the age-based match score and the
overall match score, while indicating a negligible correlation between age difference alone and the match
score, underscoring the necessity of our sophisticated model approach. Sub-Figure 2: The differential impact
of facial expressions on the match score is notable, with weak emotions having a relatively constant effect
and strong emotions significantly modifying the score proportionally to their intensity.

overall quality of recognition. Figure 4.4 (sub-figure 2) shows the impact of facial expression discrepancies
on matching performance, evidenced by average match scores across expression pairs.

Our methodology ensures a more refined and context-sensitive assessment of facial expression similarity,
considering the physical resemblance and the nuanced expressive context of each face. This approach leads to
a more accurate and realistic evaluation of facial images, particularly relevant in dynamic real-world scenarios
where facial expressions can vary significantly.

To empirically underpin this observation, we present Detection Error Tradeoff (DET) plots that demonstrate
the variance in performance with different age groups for all four models: VGG-Face[62], OpenFace[1],
ArcFace[16], and FaceNet[49]. Here, we have added the DET plots from VGG-Face in Figure 4.14, which
show the False Non-Match Rate (FNMR) for different age groups. These plots highlight that there is a
pronounced increase in FNMR as the age difference becomes more negative. The trend gradually inverts
with increasing anchor age, reflecting the maturation and stabilization of facial features over time.

4.3 Match Score in different Scenario

This analysis serves as the concluding remark, highlighting the implications of match score performance
under varying scenarios. It specifically examines how matching accuracy is influenced when the ages and
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facial expressions in the compared images are either identical or different. These variations have a significant
impact on matching accuracy, as demonstrated in Figure 4.3.

Figure 4.3 critically analyzes how match scores fluctuate under different scenarios, focusing on the
variations caused by age differences and facial expression dissimilarities between anchor and target images.
It visually captures the influence of these two key factors on the effectiveness of face recognition systems. As
the age gap between the compared images widens, or as the disparity in their facial expressions increases, the
match scores exhibit notable changes.

This analysis is crucial for understanding the dynamic nature of facial recognition accuracy and its
sensitivity to age-related and expressive variations. The data presented in the figure is instrumental in
developing more adaptive and nuanced face recognition technologies that can effectively handle a wide range
of real-world variations.

Our study reveals that these factors profoundly affect the performance of advanced models like VGG-Face
and ArcFace. By acknowledging and accounting for age differences and dissimilarities in facial expressions,
our model presents a more robust and reliable approach to facial recognition. .

4.4 Formulations and Optimization

Building on the observations from empirical evidence, we formulate the mathematical model to incorporate
a logistic adjustment based on age difference and anchor age into the facial match score. The adjusted match
score function is defined as follows:

Figure 4.5: Showing Face Expression Impact on Face Recognition.

Figure 4.5 shows Face Expression impacts on matching performance. We can see weak emotions impact
less and strong emotions impact more; hence, we penalize the strong emotions while using them for matching.
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Algorithm 1 Calculate Age-Based Match Score Based on Age Difference and Anchor Age

1: procedure CALCULATEAGEBASEDMATCHSCORE(d, a, params)
2: Initialize Λ, κ, ξ0, α, β, γ, δ, ϵ, ζ, η from params
3: if a ≤ 30 then
4: ξ ← α · d+ β · a+ γ · d2
5: else
6: ξ ← δ · d+ ϵ · a+ ζ · log(max(a, 1)) + η · d · a
7: end if
8: score← Λ

1+e−κ·(ξ−ξ0)

9: return score
10: end procedure

f(d, a) =

 Λ
1+e−κ(ξ−ξ0)

if a ≤ 30,

Λ
1+e−κ(ξ−ξ0)

if a > 30,
(4.1)

where:

• ξ = αd+ βa+ γd2 for a ≤ 30,

• ξ = δd+ ϵa+ ζ log(max(a, 1)) + ηda for a > 30,

• d represents the age difference between the anchor and the comparison image,

• a denotes the anchor’s age,

• Λ is the curve’s maximum value,

• κ is the logistic growth rate,

• ξ0 is the x-value of the sigmoid’s midpoint,

• Parameters α, β, γ, δ, ϵ, ζ, and η control the shape of the function.

The reason for using 30 as a reference point is based on our experiments and observations in the dataset.
We found that after the age of 30, facial dynamics do not change significantly, making it a suitable reference.
Initially, we considered using 25, but ultimately chose 30 because facial features tend to stabilize after this
age.

Our methodology also accounts for the subtle yet significant influence of facial expressions on the match
score. This is achieved through the facial expression impact function g(e), which distinguishes between
’weak’ and ’strong’ emotions, as detailed below. The rationale for using ’weak’ and ’strong’ emotions as key
indicators is evident in the confusion matrix. Weak emotions generally result in higher matching performance,
whereas strong emotions lead to lower matching performance.

g(e) =

c if e is a weak emotion,

d · EXPR SCORE(e) if e is a strong emotion,
(4.2)
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where c is a constant factor for weak emotions, and d scales the expression score EXPR SCORE(e) for
strong emotions.

Here, utilizing the equation 4.2 designed for face expression similarity function. Our function is calibrated
to assign higher scores to faces that are similar, effectively distinguishing them from dissimilar ones.

A key feature of our approach is the nuanced consideration of facial expressions in determining these
scores. For instance, neutral expressions, which are generally more predictable and consistent for recognition
purposes, are assigned the highest scores. In contrast, despite being similar, faces exhibiting strong emotions
such as surprise or happiness receive comparatively lower scores. This adjustment acknowledges the impact
of expressive variability on the recognizability of faces.

These formulations and empirical insights collectively enhance the fidelity of the FIQA model’s predictions.
By incorporating the dynamics of human aging and expressions, we ensure that our facial recognition system
is secure and user-friendly, accommodating the complexities of human features and behaviors.

Once the functions f(d, a) and f(e) are computed, they are integrated with the Normalized Average
Match Score (NAMS) to derive the Normalized Age Variation Score (NAVS) and Normalized Emotion
Similarity Score (NESS). The integration process combines these individual scores to produce comprehensive
metrics that reflect both age variations and emotional similarities in facial images. Specifically, NAVS and
NESS are formulated as follows:

NAVS = Integration(f(d, a),NAMS),

NESS = Integration(f(e),NAMS).

These integrated scores, NAVS and NESS, provide a nuanced understanding of facial image quality,
capturing the subtle interplays between age-related features, emotional expressions, and overall image match
quality.

The algorithm detailed below outlines the process for computing the contextual quality score and estimating
the age for a given input image using a ResNet model. The procedure leverages a feature vector that
encompasses age, expression, and congruence score, which are derived from the input image and used to
predict the quality score.

37



4.5 Architecture

Algorithm 2 U3FQ: Unified Tri-Feature Quality Assessment for Contextual Facial Image Quality

Require: Single input image I , ResNet model RN , age a, expression e, match score distance models
M = {M1,M2,M3,M4}

Ensure: U3FQ Score or Quality Score
1: S ← 0
2: MatchScore← 0
3: NAMS← 0 ▷ Normalized Average Matching Score
4: NAVS← 0 ▷ Normalized Age Variation Score
5: NESS← 0 ▷ Normalized Emotion Similarity Score
6: for all model ∈M do
7: d← ComputeMatchScoreDistance(I,model)
8: MatchScore← MatchScore + Normalize(d)
9: end for

10: NAMS← Average(MatchScore)/(0.476)
11: for all model ∈M do
12: AgeDiffScore← AgeDiffScore + fage(NAMS, a, d)
13: EmotionSimScore← EmotionSimScore + femotion(NAMS, e)
14: end for
15: S ← 0.1 · NAMS + 0.7 · NAVS + 0.2 · NESS
16: procedure U3FQ ASSESSMENT(I , RN , m = 100)
17: QualityScores← []
18: for i = 1 to m do
19: quality← RN.Predict(I, S)
20: QualityScores← QualityScores + [quality]
21: end for
22: finalQuality← Average(QualityScores) return finalQuality
23: end procedure

The U3FQ algorithm initially commences with the detailed and precise calculation of the match score dis-
tance using four distinct and highly sophisticated Face Recognition models, denoted as M = {M1,M2,M3,M4}.
This crucial distance metric, accurately and effectively represented as d, is computed based on the pairwise
discrepancies in the features meticulously extracted by each model for a specific given image I . It is vital to
note that different models have varying embedding spaces, leading to significant and notable differences in
distance calculations between images. To effectively address this challenge, we diligently apply thorough and
careful normalization to these scores. The normalized scores are then rigorously and systematically evaluated
against various thresholds, acknowledging that different models have their own unique and distinct threshold
criteria. For instance, models like VGG and FaceNet utilize a threshold of 0.4, whereas ArcFace employs a
threshold of 0.6. Through a process of comprehensive maximum voting, we establish an optimal threshold
value of 0.476, which is found to be universally effective for most images. Subsequently, this NAMS is used
to derive the NAVS and the NESS.

The age difference function, expressed as f(d, a,NAMS), adjusts d in accordance with the age a of
the anchor image to calculate NAVS. In contrast, NESS is determined using the expression impact function
g(e), which modifies the congruence score based on the facial expression e. Here, c represents a constant
factor for weak emotions, and d is a scaling factor for strong emotions. This adjustment is complemented
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Figure 4.6: The figure presents a method for generating pseudo ground truth labels in face recognition
by assessing age-related variations and expression similarity. It starts by calculating similarity distances
between images of the same individuals at different ages using face recognition models. These distances
are then normalized and combined with age and expression data to get NMS(Normalized Match Score,
NESS(Normalized Emotion Similarity Scores) and NAVS (Normalized Age Variation Scores). These Scores
are combined based on weighting to provide a combined score that is used are for fine-tuning regression
network, leading to a comprehensive quality score that encapsulates recognition accuracy, age differences,
and expression similarities.

by the expression score EXPR SCORE(e). Given that the emotion parameters are also derived from face
recognition models, their impact is considered in conjunction with NAMS.

The algorithm calculates a composite score S that integrates three key elements: the matching score, age
difference score, and emotion similarity score. These elements are combined in a weighted sum manner,
where each feature is assigned a specific weight based on its relative importance. In this revised approach,
the weights are 0.1 for the matching score, 0.7 for the age difference score, and 0.2 for the emotion similarity
score. This weighting scheme places a higher emphasis on the age difference score, reflecting its greater
significance in the evaluation process.

The age difference score and emotion similarity score are derived from the matching score, but are
modified by functions that introduce nonlinearity, accounting for variations in age difference and expression.
These functions ensure that the scores reflect minute aspects of the facial comparison.

The composite score S is calculated as follows:

S = 0.1 ·M + 0.7 · fage(M,a) + 0.2 · femotion(M, e)

Here, M represents the basic matching score, a is the age difference, e is the emotional expression, fage is
the function modifying the matching score based on age difference, and femotion is the function modifying the
matching score based on emotional similarity.
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Figure 4.7: Regression Network Utilizing Feed-Forward Mechanism for Precise Quality Score Estimation.

A set of stochastic embeddings are generated through the ResNet model RN across m iterations to
provide robust estimates of the image quality Q and the subject’s age. The embeddings are processed to
yield a final quality score, reflecting the stability and robustness of the features in the presence of inherent
variabilities in facial images.

This mathematical and algorithmic formulation of the U3FQ model demonstrates a robust mechanism
for assessing facial image quality, providing insights into the complex interplay between age, expression,
and recognition robustness. The model’s efficacy is further corroborated through empirical evaluations,
showcasing its potential to enhance the performance of biometric systems significantly.

4.6 Regression Network and Quality Estimation

We have advanced and thoroughly refined an existing Convolutional Neural Network (CNN), originally pre-
trained extensively for face recognition tasks, through a meticulous process of fine-tuning. This established
approach of expertly adapting deep learning models to tasks closely akin to their initial training has been
consistently and effectively demonstrated in numerous influential studies. In figure 4.7 shows overview of
Quality Regression Network used in this work. Such versatile networks have been successfully repurposed
for detecting a wide range of facial attributes distinct from identity, including gender, age, and race. In the
specific context of comprehensive face quality assessment, it is firmly posited that a robust feature vector
containing highly discriminative facial information should inherently encapsulate critical aspects of image
quality.

For our specific adaptation, we selected the ResNet50 architecture as the foundational network. During
the fine-tuning process, we removed the classification layers and augmented the network with fully connected
layers, which were then fused with the existing feature vector. This amalgamation was subjected to a sigmoid
activation function, designed to yield a quality score.
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Table 4.1: AOC at FMR of 1 × 10−2 , 1 × 10−3 and 1 × 10−4. The Blue color text indicates the best
overall performance, whereas green represents the second best in comparison, and red signifies the lowest
performance.

LFW

Method FMR@1e-2 FMR@1e-3 FMR@1e-4 Avg

BRISQUE [39] 0.0467 0.0900 0.1279 0.1127
BLINDS-II [47] 0.1944 0.2354 0.2765 0.2612
RankIQA [33] 0.1346 0.1120 0.1459 0.1435
PFE [26] 0.2035 0.2557 0.2905 0.2499
SDD-FIQA [44] 0.8101 0.7881 0.7784 0.7979
SER-FIQA [61] 0.5673 0.6534 0.7477 0.6701
U3FQ (Ours) 0.8160 0.7653 0.7880 0.8035

Adience

Method FMR@1e-2 FMR@1e-3 FMR@1e-4 Avg

BRISQUE [39] 0.1845 0.2103 0.2412 0.2235
BLINDS-II [47] 0.1856 0.1546 0.1476 0.1710
RankIQA [33] 0.3412 0.2978 0.2876 0.3063
PFE [26] 0.3526 0.2768 0.2823 0.2870
SDD-FIQA [44] 0.5970 0.6423 0.5720 0.5996
SER-FIQA [61] 0.5123 0.5687 0.4562 0.4890
U3FQ (Ours) 0.7036 0.6782 0.5610 0.6539

AgeDB

Method FMR@1e-2 FMR@1e-3 FMR@1e-4 Avg

BRISQUE [39] 0.2856 0.3235 0.3656 0.3123
BLINDS-II [47] 0.3781 0.3452 0.3708 0.3689
RankIQA [33] 0.3215 0.3076 0.2765 0.2887
PFE [26] 0.3892 0.3187 0.2956 0.3054
SDD-FIQA [44] 0.7292 0.7238 0.7563 0.7320
SER-FIQA [61] 0.6238 0.5982 0.6286 0.6129
U3FQ (Ours) 0.7630 0.7432 0.7412 0.7520

Crucially, we implemented a training strategy where the weights of the pre-existing layers were frozen,
ensuring that only the newly integrated layers were subject to training. This training utilized the pseudo
ground truth quality labels generated in the preceding step. The outcome of this refined model is a quality
score, ranging from 0 to 1, which correlates with the performance of face recognition, offering a robust
measure of the quality of facial images in terms of recognition efficacy.
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Table 4.2: Summary of the Experimental Setup

Dataset #Images #IDs Main Quality Factors‡

P-I AV-E N-D
AgeDB [40] 16,487 568 H H M
Adiance [17] 5,000 1,159 H H L
LFW [28] 5,000 1,135 M H H
MEDSII [20] 1,306 518 M H L
† P-I - Pose and Illumination; AV-E - Age-Variation, Expression; N-D - Other Noise &

Distortions - Scale.
‡ L - Low; M - Medium; H - High; Lr - Large; Values estimated subjectively by the

authors.

4.7 Experiments And Results

The AgeDB dataset plays a critical role in our comprehensive study, as cited in Moschoglou et al. [40].
This dataset, comprising 16,487 images, is a foundational resource for examining age variations across
different identities. A key visual element in our analysis is presented in Figure 4.8. This figure is composed
of two informative pie charts. The first chart offers a detailed description of the age group distribution
within the AgeDB dataset, providing a clear overview of the demographic composition. The second chart is
particularly insightful, highlighting the age differences between pairs of images. This aspect is fundamental
for understanding and improving identity matching in the context of age-related changes.

Figure 4.8 is pivotal in our study, showing the distribution of age gaps between image pairs and the overall
age distribution of the dataset.

As detailed in Table 4.2, a key aspect of our analysis involved generating approximately 279,000 pairs
from AgeDB. This was achieved by using 568 subjects, each with 15-20 images, resulting in a total of 279K
pairs to cover a wider range of identities. An average match score was computed from about 20 images for
each identity. This approach allows for in-depth insights into age-related identity matching.

Figure 4.13 shows the intricate distribution of the combined match scores, which are influenced by
variations in age and facial expressions. These scores have been utilized as pseudo-ground truth labels to
generate quality scores. This depiction showcases the correlation between age and expression factors in facial
recognition and highlights their collective impact on the perceived quality of images. The visual representation
is a crucial tool in understanding how these variables interact to influence the overall effectiveness of face
image quality assessment methodologies.

Additionally, we include the LFW [28] and Adience [17] datasets in the table, while MEDSII [20] is
presented in the distribution but not included in the table. These datasets provide diverse facial images,
enabling a comprehensive analysis and demonstrating the robustness of our methodologies in age-variant
facial recognition.
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Figure 4.8: Distribution of Age-groups in AgeDB dataset.

4.7.1 Implementation Details and Setup

Our computational network is developed using the PyTorch framework following same as [44] and
operates on a machine equipped with four NVIDIA GeForce RTX 2080 Ti. For preprocessing, face images
are uniformly aligned, scaled, and cropped to a resolution of 112×112 pixels utilizing the MTCNN algorithm
as detailed in [67]. In the training phase, all networks undergo optimization using the Adam optimizer, with a
weight decay parameter set to 1× 10−4. The training process starts with an initial learning rate of 1× 10−3,
which is subsequently reduced by a factor of 5× 10−2 after every 5 epochs. This systematic adjustment in
the learning rate ensures efficient convergence and optimal network performance.

We compared U3FQ with different state-of-the-art Image Quality Assessment methods: BRISQUE [39],
BLINDSII [47], RankIQA [33], PFE [26], SDD-FIQA [44], SER-FIQA [61]. Our experiments employed
four popular Face Recognition(FR) models: VGG-Face [62], FaceNet [49], ArcFace [16] and OpenFace [3]
for computing scores. In our study, we used MobileFaceNet as the backbone for our method, emphasizing its
efficiency and suitability in the real world.

4.7.2 Evaluation Metrics

In our study, the performance evaluation of the U3FQ was conducted by plotting the Error-Reject Curve
(ERC). The ERC is a well-established method for representing Face Image Quality Assessment (FIQA)
performance, as documented in the literature [24, 25]. It effectively demonstrates the impact of discarding a
proportion of face images—specifically those of the lowest quality—on the face verification performance.
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Figure 4.9: Comparative Analysis of Quality Score Distributions for AgeDB, MEDSII, Adience and LFW
Datasets.

This impact is measured in terms of the False Non-Match Rate (FNMR) [35] at a predetermined threshold,
set at a constant False Match Rate (FMR) [35]. For our analysis, the ERC curves for all benchmarks were
plotted at two fixed FMRs: 1e-3, as recommended for border control operations by Frontex, and 1e-4, details
of which are included at the end of the thesis. Additionally, we quantified the verification performance using
the ERC’s Area Over the Curve (AOC). This provides a comprehensive aggregate performance across all
rejection ratios.

4.7.3 Performance on different recognition models

In the evaluation of U3FQ, as detailed in Table 4.1 and Figures 4.10, 4.11, 4.12, the metric was rigorously
compared against both general Image Quality Assessment (IQA) techniques and specialized Face Image
Quality Assessment (FIQA) methodologies. General IQA models like BRISQUE, BLINDS-II, and RankIQA,
known for their broad application in IQA, were benchmarked alongside U3FQ. Additionally, specialized
FIQA techniques such as PFE, SERFIQA, and SDD-FIQA, which are tailored for facial image quality, were
also included in the comparison. This comprehensive evaluation using metrics like AUC (Area Under the
Curve) or TAR (True Accept Rate) offers a nuanced understanding of U3FQ’s performance relative to these
established methods. The comparison highlights U3FQ’s effectiveness in various contexts and provides
valuable insights into its strengths and limitations in the field of FIQA.

4.7.4 Quality Score Distribution:

The quality distribution analysis of the U3FQ metric, as shown in Figure 4.9, thoroughly evaluates its
performance and versatility across various datasets. This metric exhibits a remarkable ability to adapt,
consistently assessing the quality of facial data with diverse characteristics. Such adaptability emphasizes
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Figure 4.10: Effectiveness of Low-Quality Face Image Rejection in Face Verification: The EVRC (Expected
Verification Rate Curve) Graphically Demonstrating FNMR (False Non-Match Rate) at a 1e-3 FMR (False
Match Rate) Threshold Based on Predicted Quality Scores

U3FQ’s robustness in facial quality assessment and showcases its ease of implementation in multiple contexts.
The uniformity of its performance across different datasets reinforces its reliability and efficacy as a facial
recognition tool. U3FQ’s versatility is invaluable in facial analysis, ensuring high levels of accuracy and
efficiency in a broad spectrum of applications.

4.8 Conclusion

Through the Unified Tri-Feature Quality Metric (U3FQ), we propose a pivotal advancement in the domain
of Facial Image Quality Assessment (FIQA). By integrating age variance and facial expression impact, U3FQ
presents a novel and comprehensive method for evaluating facial images. This research emphasizes the
significance of these biometric features in enhancing the accuracy and reliability of recognition models,
thereby transcending the conventional FIQA metrics that predominantly rely on subjective human visibility
assessments. Through rigorous evaluations on an extensive set of face-quality image datasets and benchmark
comparisons with state-of-the-art techniques, U3FQ has demonstrated its superiority in delivering relevant
and precise quality assessments. Looking ahead, our future work aims to augment the predictive power of
U3FQ with additional features such as illumination and pose to refine the accuracy of reference quality labels
further, ensuring that U3FQ remains at the forefront of FIQA methodologies. We intend to broaden the scope
and effectiveness of U3FQ, making it an even more robust tool for assessing facial image quality in diverse
and challenging recognition scenarios under the new version of UXFQ.

45



0.0 0.2 0.4 0.6
Rejection Rate

0.0

0.1

0.2

0.3

0.4

0.5

FN
M

R

Adience At 1X10^-2

0.0 0.2 0.4 0.6
Rejection Rate

0.0

0.1

0.2

0.3

0.4

FN
M

R

AgeDB At 1X10^-2

0.0 0.2 0.4 0.6
Rejection Rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

FN
M

R

LFW At 1X10^-2

0.0 0.2 0.4 0.6
Rejection Rate

0.1

0.2

0.3

0.4

0.5

FN
M

R

MEDSII At 1x10^-2

U3FQ PFE BRISQUE BLINDSII RANK-IQA SER-FIQ SDD-FIQA

Figure 4.11: Comparative Analysis of U3FQ Perfor-
mance at an FMR of 0.01 Across Diverse Datasets.
This graph shows U3FQ’s exceptional performance
using four state-of-the-art Face Recognition mod-
els on the Adience, LFW, AGEDB, and MEDSII
datasets. It demonstrates its competitive edge over
contemporary baselines and robustness in varied fa-
cial recognition scenarios.
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Figure 4.12: Comparative Analysis of U3FQ Perfor-
mance at an FMR of 0.0001 Across Diverse Datasets.
This graph shows U3FQ’s exceptional performance
using four state-of-the-art Face Recognition mod-
els on the Adience, LFW, AGEDB, and MEDSII
datasets. It demonstrates its competitive edge over
contemporary baselines and robustness in varied fa-
cial recognition scenarios.
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FNMR plots for VGG-Face scores

Figure 4.14: The VGG-Face DET plots, displaying the False Non-Match Rate (FNMR) across various age
groups and age difference categories, reveal significant insights about the effects of anchor age on facial
recognition accuracy. Notably, the age group of 35-45 years aligns closely with facial images across a wide
age range, suggesting enhanced feature consistency within this demographic. For individuals over 60 years, a
broad age difference (-30 to 30 years) exhibits minimal impact on FNMR, indicating a decreased variation in
facial features with age.These observations were drawn from the AgeDB dataset[40] using the deepface face
verification library.
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FNMR plots for OpenFace scores

Figure 4.15: OpenFace, renowned for its facial behavior analysis toolkit, excels in facial landmark detection
and eye gaze tracking. The Open-Face Detection Error Tradeoff (DET) plots have been meticulously crafted
using this advanced technology. These plots display the False Non-Match Rate (FNMR) across a spectrum
of age groups and various categories of age differences. The data for these insightful visualizations is
sourced from the AgeDB dataset [40] and analyzed using the DeepFace face verification library, showcasing
OpenFace’s robust capabilities in handling diverse and complex facial recognition scenarios.
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FNMR plots for ArcFace scores

Figure 4.16: ArcFace stands out in the field of facial recognition with its state-of-the-art architecture that
focuses on enhancing the discriminative features of faces. Known for its angular margin loss, which
significantly boosts the accuracy and robustness of face recognition tasks, ArcFace is particularly adept at
capturing subtle facial details. Utilizing this advanced technology, ArcFace has been employed to generate
insightful Detection Error Tradeoff (DET) plots. These plots demonstrate the False Non-Match Rate (FNMR)
across various age groups and categories of age differences, offering a detailed analysis of recognition
performance under different demographic scenarios. The data for these plots is sourced from the AgeDB
dataset [40], showing the efficacy of the ArcFace model in managing the complexities inherent in age-diverse
facial recognition tasks.
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FNMR plots for Facenet scores

Figure 4.17: FaceNet, distinguished for its innovative approach to facial recognition, leverages deep neural
networks to generate a unified embedding for face verification and recognition. Notably proficient in achieving
high accuracy with lower computational costs, FaceNet excels in creating compact representations of facial
features. The FaceNet-generated Detection Error Tradeoff (DET) plots employ this sophisticated framework
and provide insightful analysis. These plots elucidate the False Non-Match Rate (FNMR) across various
age groups and different categories of age differences. The underlying data for these comprehensive plots
is derived from the AgeDB dataset [40], processed through the high-precision capabilities of the FaceNet
model. This approach underscores FaceNet’s exceptional performance in diverse facial recognition tasks,
particularly in scenarios involving significant age variations.
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(a)

(b)

Figure 4.18: Distribution showing the matching scores of different face recognition models with the Normal-
ized Combined Score for image pairs in the 20-35 age group.
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(a)

(b)

Figure 4.19: Distribution showing the matching scores of different face recognition models with the Normal-
ized Combined Score for image pairs in the 35-55 age group.
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(a)

(b)

Figure 4.20: Distribution showing the matching scores of different face recognition models with the Normal-
ized Combined Score for image pairs in the 55 and above age group.
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Chapter 5

Future Work and Conclusion

The FRBQ and U3FQ models represent significant strides in the domain of biometric quality assessment,
each targeting crucial but distinct aspects of biometric recognition—fingerprint and facial image quality.
Both models leverage deep learning to transcend traditional assessment methods, showcasing a remarkable
ability to generate reliable quality scores. The FRBQ model’s proficiency in evaluating fingerprint images
and the U3FQ model’s innovative approach to facial image quality, especially considering age variance and
emotional expression, underline a broader shift towards more nuanced and comprehensive quality assessments
in biometrics.

5.1 Achievements and Challenges

The accomplishments of the FRBQ and U3FQ models are manifold, offering substantial improvements
over existing methodologies. By reducing manual inspection efforts and enhancing the compatibility with
current recognition frameworks, these models streamline the quality assessment process. Furthermore, the
integration of label data and matching scores into the FRBQ model, alongside U3FQ’s incorporation of age
and expression, provide a richer, more detailed evaluation of biometric quality.

However, challenges remain, notably in accurately assessing images of poor quality. The FRBQ model’s
struggle with low-quality fingerprints and the ongoing quest to expand U3FQ’s capabilities with additional
biometric features such as illumination and pose underscore the complexity of biometric quality assessment.
These hurdles necessitate a deeper understanding of the intricate relationships between biometric features
and recognition accuracy.

5.2 Future Directions

In envisioning the future of biometric quality assessment, the development and refinement of the FRBQ
and U3FQ models mark a significant leap forward. These models, by leveraging deep learning, have
showcased the potential to surpass traditional assessment methods, offering more reliable, comprehensive
evaluations of fingerprint and facial image qualities. As we chart the course for future explorations and
advancements in this field, several key areas emerge as pivotal to pushing the boundaries of what these
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technologies can achieve. Among these, the expansion into and development of the Unified eXtensible
Feature Quality (UXFQ) framework stands out as a particularly promising direction.

5.2.1 Advanced Algorithmic Development:

Future research will undoubtedly benefit from delving into more sophisticated algorithms that can adeptly
navigate the complexities inherent in biometric data. This includes enhancing the FRBQ and U3FQ models
to integrate additional biometric features—illuminating the path for a more nuanced understanding and
assessment of quality across diverse biometric modalities. The goal is to develop algorithms that are not
only more inclusive of various biometric characteristics but also capable of distinguishing between subtle
variations in quality with greater precision.

5.2.2 Expansion of Comprehensive Training Datasets:

To further refine the accuracy and applicability of biometric quality assessment models, there is a pressing
need to expand training datasets. These datasets should encompass a wider array of quality variations
and biometric features, including those beyond fingerprints and facial images. By integrating a broader
spectrum of data, from pristine to significantly degraded quality across multiple biometric modalities, we can
significantly enhance the models’ generalizability and performance.

5.2.3 Integration of Multimodal Biometric Features and UXFQ:

A particularly exciting avenue for future exploration is the integration of multimodal biometric features
within a Unified eXtensible Feature Quality (UXFQ) framework. The UXFQ framework aims to provide
a holistic, comprehensive platform for assessing the quality of various biometric modalities, including but
not limited to fingerprints and facial images. By bringing these different modalities under a single, unified
framework, the UXFQ promises to revolutionize biometric quality assessment, offering a more versatile,
robust tool for enhancing recognition accuracy across a range of applications.

5.2.4 Real-world Application, Testing, and UXFQ Implementation:

The real-world application and testing of these models, particularly within the UXFQ framework, will be
crucial. Deploying FRBQ, U3FQ, and UXFQ models in live biometric recognition systems will not only
assess their efficacy in practical scenarios but also help bridge the gap between theoretical advancements
and their operational utility. This step is essential for understanding how these models perform outside of
controlled environments and for identifying areas for further improvement.

5.2.5 Ethical and Privacy Considerations:

As we advance in developing more sophisticated biometric quality assessment models, it is imperative to
address the ethical and privacy concerns associated with biometric data analysis. Ensuring the ethical use
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of technologies, especially within the UXFQ framework, requires a commitment to respecting individual
privacy and adhering to strict ethical standards. This is particularly important as models become capable of
extracting and analyzing increasingly detailed information from biometric data.

5.3 Conclusion

The journey ahead for biometric quality assessment is both challenging and exciting. With the FRBQ and
U3FQ models laying the groundwork, and the envisioned UXFQ framework set to expand this foundation,
the future holds the promise of more accurate, reliable, and comprehensive biometric recognition systems.
By focusing on these key areas—advanced algorithmic development, expansive training datasets, multimodal
integration, real-world application, and ethical considerations—the field is poised for significant advance-
ments. The ultimate goal is to not only enhance the precision of biometric recognition systems but to also
ensure these technologies are developed and utilized in a manner that is ethical, respectful of privacy, and
beneficial to society at large.
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