
Leveraging Latent Temporal Features for Robust Fault Detection and
Isolation in Hexarotor UAVs

Thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science
in

Computer Science and Engineering
by Research

by

Shivaan Sehgal
2018111026

shivaan.sehgal@research.iiit.ac.in

International Institute of Information Technology
Hyderabad - 500 032, INDIA

May, 2024

Copyright © Shivaan Sehgal, 2024

All Rights Reserved

International Institute of Information Technology
Hyderabad, India

CERTIFICATE

It is certified that the work contained in this thesis, titled “Leveraging Latent Temporal Features for
Robust Fault Detection and Isolation in Hexarotor UAVs ’ by Shivaan Sehgal, has been carried out
under my supervision and is not submitted elsewhere for a degree.

Date Adviser: Dr. Harikumar Kandath

To all my teachers, within and beyond the walls of the classroom.

Acknowledgments

I would like to express my sincere gratitude to my advisor, Dr. Harikumar Kandath, whose unwaver-
ing support and guidance have been instrumental in nurturing my passion for research in the interdisci-
plinary domain of hardware and software integration. Dr. Kandath’s mentorship, insightful feedback,
and encouragement have been invaluable throughout my academic journey. I am profoundly grateful
for the opportunity to learn and grow under his guidance. I am also thankful to Dr. K. Madhava Krishna
for his invaluable support and guidance during the formative stages of my research in robotics.

My deepest gratitude extends to Gunjan, Vikrant, KV, Mukund, and Nomaan. Their enduring sup-
port, expertise, wit, wisdom, and integrity were essential throughout my research. I would not have
been able to achieve this without them. I am incredibly grateful to my wingmates: Vedant, Jay, Tan-
may, Akash and Aakash, Vishal, Dhruv, Abhijit, Shikhar, Sanskar, Varun, and my part-time wingmates
Mehul, Amit, Aman, Thathagath, Bharat, Ishan, and Rishab. They made my college journey an un-
forgettable experience filled with fun sleepless nights, great trips, and deep (sometimes directionless)
discussions. I am thankful to all the seniors, batchmates, and juniors who were part of the Art Soc,
Felicity, and Parliament. Working passionately for these endeavors was a source of immense joy and
learning, and their support made it all worthwhile.

Finally, I am eternally grateful to my family for their unwavering support throughout my life. To my
mother and father, thank you for your hard work and dedication. To my naani and nanaji, thank you for
your courage and inspiration. To my mamaji, thank you for your guidance. And to my sister, thank you
for always bringing a smile to my face.

v

Abstract

Unmanned Aerial Vehicles (UAVs), commonly known as drones, have revolutionized various sectors
including surveillance, agriculture, and disaster management due to their versatility and maneuverabil-
ity. Hexacopter UAVs, equipped with six rotors, offer enhanced stability and payload capacity compared
to their quadcopter counterparts. However, their operational effectiveness is contingent upon reliable
fault detection and isolation mechanisms. In the dynamic operational contexts of hexacopter UAVs,
potential faults such as motor failures, sensor malfunctions, or communication disruptions can lead to
catastrophic consequences including loss of control, collisions, or data loss. Detecting and isolating
these faults accurately and swiftly is imperative to ensure safe and efficient UAV operations.

Our objective is to improve the reliability and accuracy of fault detection and isolation for a single
motor failure in hexacopter UAVs. Commencing with a foundational exposition on hexacopter UAV dy-
namics, prevalent fault conditions, and classical machine learning classifiers, the research subsequently
introduces LSTM networks and conducts a review of pertinent literature in fault detection and isolation,
laying the groundwork for the proposed methodology.

The principal contribution of this thesis revolves around the formulation of a fault detection and
isolation paradigm that combines LSTM networks for latent temporal feature extraction with ensem-
ble classifiers, notably Random Forests, aimed at enhancing fault detection efficacy. By harnessing the
temporal intricacies inherent in UAV data using LSTM networks, the proposed model exhibits robust
performance under measurement noise in fault detection and isolation tasks. The evaluation of the pro-
posed approach encompasses comprehensive analyses conducted on synthetic and real-world datasets,
encompassing examinations of noise resilience, fault detection and isolation timing, and the deployment
on resource-constrained platforms such as the Raspberry Pi.

Comparative assessments are conducted with benchmark models from both classical and deep learn-
ing domains, wherein our proposed approach demonstrates superior performance with an accuracy of
96.8% for stimulated datasets and 83.2% for real-world datasets. Furthermore, noise analysis highlights
the resilience of our proposed method across varying noise intensities, underscoring its adaptability and
robustness. The analysis conducted on synthetic data serves as a crucial validation step, instilling confi-
dence in the model’s efficacy for real-world applications where data collection is inherently challenging.

Subsequent experiments investigate fault detection and inference times, yielding insights into the
temporal efficiency of the proposed approach. On an onboard microcontroller like the Raspberry Pi,
the average inference time for our model is measured at 6.512 milliseconds, with additional statistical

vi

vii

analyses providing further insights into performance metrics such as minimum and maximum algorithm
run time and delay in prediction, alongside standard deviation.

In conclusion, the thesis summarizes key findings and contributions, emphasizing the efficacy of
the proposed approach in enhancing fault detection and isolation in hexacopter UAVs. Furthermore,
it outlines potential avenues for future research, thereby underscoring the practical applicability of ad-
vanced machine learning techniques within real-world UAV systems. In essence, this thesis presents a
novel fault detection and isolation framework that integrates LSTM networks with ensemble classifiers,
thereby advancing fault detection and isolation capabilities in hexacopter UAVs operating in real-world
scenarios.

Contents

Chapter Page

1 Introduction . 1
1.1 Thesis Outline . 2
1.2 Thesis Contributions . 3
1.3 Preliminaries . 4

1.3.1 Dynamics of Hexacopter UAV . 4
1.3.2 Fault Conditions in Hexacopter . 6
1.3.3 Overview of Classical Machine Learning Classifiers 10

1.3.3.1 Decision Trees . 10
1.3.3.2 Random Forest . 13

1.3.4 Introduction to Long Short-Term Memory (LSTM) 13
1.4 Related Work . 16

1.4.1 Fault Detection and Isolation . 16
1.4.2 Classical Approaches . 16
1.4.3 Deep Learning based FDI . 16
1.4.4 LSTM-based Approaches . 17

2 Fault Detection and Isolation in Hexacopter UAVs using Ensemble Classifier-Enhanced LSTM 19
2.1 Problem Formulation . 19
2.2 Methodology . 20

2.2.1 State-Forecasting LSTM . 21
2.2.2 Random-Forest Ensemble Classifier . 21
2.2.3 Addressing Class-imbalance . 23

2.3 Implementation and Experimental Setup . 24
2.3.1 Metrics Used . 24

2.3.1.1 Correctness . 24
2.3.1.2 Latency . 25

2.3.2 Baseline Models . 26
2.3.3 Implementation Details . 27
2.3.4 Dataset . 28

3 Results and Analysis . 33
3.1 Results on Simulated Dataset . 33

3.1.1 Overall Performance . 34
3.1.2 Motor-Wise Performance . 35
3.1.3 Noise Tolerance Analysis . 36

viii

CONTENTS ix

3.1.4 Detection Time . 37
3.2 Results on Real-World Dataset . 37

3.2.1 Outdoor Dataset Collection . 37
3.2.2 Experiment Setup . 39
3.2.3 Model Performance Comparison . 39
3.2.4 Motor-wise Results . 41
3.2.5 Detection Time . 43

3.3 Performance on Raspberry Pi . 44
3.3.1 Experiment Setup . 44
3.3.2 Overall Performance on Raspberry Pi . 46
3.3.3 Statistical Analysis on Inference Time . 47

4 Conclusions . 50

Bibliography . 52

List of Figures

Figure Page

1.1 (a) Healthy motor, (b) Propeller failure (c) Eccentric failure (d) Bearing failure 1
1.2 Fault Scenario Overview . 2
1.3 FBD of a Hexcopter UAV: The hexacopter is depicted with six rotors, the arms of the

hexacopter with length l. The body-fixed coordinate frame is represented by the axes X,
Y, and Z. The rotational directions of the rotors are indicated, with the green and orange
color. 5

1.4 Effect of Motor 1 Failure on Torque on UAV Body. When Motor 1 is turned off, as
described in Table 1.2, the Roll and Yaw responses become positive due to the resultant
positive torque, while the Pitch remains mostly unchanged due to zero torque. Here,
Fig. (a), (b), and (c) describe the UAV’s angular rate in roll, yaw, and pitch directions
along the body axis. The orange line represents the actual values, while the blue line
represents the desired values. The red dotted line indicates the timestep of the inception
of the fault in the given motor. 8

1.5 Effect of Motor 3 Failure on Torque on UAV Body. As described in Table 1.2, the
Roll and Pitch responses become negative due to the resultant negative torque, while
the Yaw increases due to the positive torque. Here, Fig. (a), (b), and (c) describe the
UAV’s angular rate in roll, yaw, and pitch directions along the body axis. The orange
line represents the actual values, while the blue line represents the desired values. The
red dotted line indicates the timestep of the inception of the fault in the given motor. . 9

1.6 Decision tree Overview: This diagram illustrates the structure of a decision tree with
examples of both binary and multi-way branching. The root node at the top represents
the starting point of the decision-making process. From the root node, the tree can
branch out into decision nodes, which are the points where the data is split. 10

1.7 Unrolled RNN: This diagram depicts an unrolled recurrent neural network (RNN),
where each node A represents a neural network layer at a different time step. The input
at each time step xt is processed by the node, resulting in an output ht that is passed on
to the same network at the next time step, illustrating the network’s ability to maintain
state over time. 14

1.8 Architecture of a LSTM Cell: An LSTM cell at time step t showing the flow of infor-
mation through various gates. The forget gate ft determines which parts of the cell state
Ct−1 are to be discarded. The input gate it and the candidate cell state C̃t decide which
values are to be added to the cell state. The cell state Ct is updated by combining the
past cell state and new candidate values. The output gate ot controls which parts of the
cell state make it to the output ht. 15

x

LIST OF FIGURES xi

2.1 Seq2Seq State-forecasting Model Φ: The figures illustrates the sequence-2-sequence
(seq2seq) prediction of our state-forecasting model. The input to our model is a the state
vector Xt = [XT XT−1 . . . XT−P]. The LSTM initial state (ci, hi) is updated at each
prediction, and at the last step gets updated to (cP+1, hP+1) after the LSTM outputs
X̂T+1. 21

2.2 Ensemble-Classifier LSTM Pipeline: Hexacopter system onboard consists of on-board
microcontroller and a flight controller chip. The sensors onboard collect the time-series
flight data X. We propose an Ensemble classifier which is trained over the temporal fea-
tures ϕ derived from the LSTM state and current state. During inference, our proposed
Ensemble Classifier-enhanced LSTM takes the data X, and predicts the states for the
next timestep X̂T+1 in a sequence-2-sequence (seq2seq [1]) fashion. The hidden state
updated till the end hP+1 is passed onto the Random Forest [2] to obtain the fault detec-
tion and localization ŶT . If a fault is detected, based on the motor localized, the onboard
microcontroller can give corrective signals to the flight controler chip and reconfigure
to resume stable flight. 27

2.3 Training Simulated Data: For Motor 1 (Fig. (a)) and Motor 2 (Fig. (b)) during simulated flight
1, each subfigure describes the roll (R), yaw (Y), and pitch (P) angular rates with respect to the
body frame. 29

2.4 Training Simulated Data: For Motor 3 (Fig. (a)) and Motor 4 (Fig. (b)) during simulated flight
1, each subfigure describes the roll (R), yaw (Y), and pitch (P) angular rates with respect to the
body frame. 30

2.5 Training Simulated Data: For Motor 5 (Fig. (a)) and Motor 6 (Fig. (b)) during simulated flight
1, each subfigure describes the roll (R), yaw (Y), and pitch (P) angular rates with respect to the
body frame.. 31

2.6 Test Data with Noise: For Motor 1, (a), (b), and (c) represent the varying levels of noise at
10%, 50%, 90%, respectively. Within each fig., i, ii, and iii are the roll(R), yaw(Y), and pitch(P)
angular rates. 32

3.1 Accuracy with Noise Level: The x-axis represents the range of noise levels, spanning from 0%
to 180%, in 20% increments. The y-axis shows the accuracy of each approach. The proposed
LSTM-based fault localization approach outperforms traditional methods. 36

3.2 Trajectory Features and Fault Detection Motorwise: The above graphs showcase tra-
jectory features with time steps (sequence numbers) along with fault introduction and
detection times. The x-axis indicates the sequence number (n), with each unit corre-
sponding to a time-step at a rate of 36 frames per second, thus showcasing a truncated
sequence of the full operation. The y-axis displays the angular velocity values in radi-
ans per second (rad/s). Red vertical lines represent the sequence step at which a fault is
introduced, and green vertical lines denote the step at which the fault is detected by our
model. Our detection system identifies the occurrence of a fault within 2-5 frames of its
inception. 38

3.3 Hexacopter UAV ZD850 used for data collection. 39
3.4 The figure presents real-world data illustrating UAV Hexcopter motion, detailing the

actual and desired values for roll (R), yaw (Y), and pitch (P). As evident, real data often
exhibits significantly more noise and uncertainty in behavior compared to simulated
datasets.Figures (a), (b), and (c) denote the data for Motors 1, 2, and 3, respectively,
with subfigures (i), (ii), and (iii) corresponding to Roll, Pitch, and Yaw, respectively. . . 40

xii LIST OF FIGURES

3.5 Raspberry Pi: This figure depicts a Raspberry Pi Model B, a low-cost, single-board
computer employed in this research as a micro controller. The image highlights several
key components: a microSD card slot for expandable storage, HDMI and USB ports for
connecting peripherals, GPIO pins for interfacing with electronic components, and an
LED power indicator. 45

3.6 This heatmap visualizes the prediction time of our model. 48

List of Tables

Table Page

1.1 Rotation Matrices along x, y and z axis. 4
1.2 Changes in the torque on the body due to motor failure. 7

2.1 Hexacopter Parameter Description and Value . 28

3.1 Benchmark Comparison: The table denotes results aggregated over all types of faults
on motors and no fault in the dataset mentioned above. Our method outperforms the
baselines in all metrics. 34

3.2 Motor-Wise Accuracy: The table presents a comprehensive comparison of models’
performance for fault detection and isolation across various motors, including scenar-
ios where there are ’No Faults.’ The models evaluated include both classical statistical
methods (Logistic Regression, SVM, Random Forest, Rotation Forest) and deep learn-
ing approaches (ANN, LSTM), with our proposed approach highlighted for comparison.

. 35
3.3 Hexacopter parameters . 41
3.4 Comparison of Accelerometer and Gyroscope Specifications present in flight controller

px4 cauv5 nano[3] which has 3 sensors ICM-20602,ICM-20689, and BMI055. 42
3.5 Outdoor Benchmark Comparison: This table presents aggregated results across var-

ious fault types in outdoor motor conditions, as well as scenarios without faults, using
the dataset specified. 42

3.6 Outdoor Motor-Wise Accuracy: This table compares fault detection and isolation ac-
curacy across motors for various models, including classical methods (Logistic Regres-
sion, SVM, Random Forest, Rotation Forest) and DL approaches (ANN, LSTM), high-
lighting our proposed approach. 43

3.7 Median Detection Steps and Bounds for Each Motor. The timesteps are measured at a
sampling rate of 50Hz. 44

3.8 Comparison of Raspberry Pi 3 Model B and 16” MacBook Pro with M1 Pro 46
3.9 Inference Time (in seconds): Comparative Analysis of Model Performance on Dif-

fering Hardware Configurations summed for 1000 Data Points. The table presents the
inference time for various machine learning models executed on Raspberry Pi 3 and
Apple M1 Pro hardware platforms. 47

3.10 Comparison of Model Performance in Terms of Execution Time over 1000 Data Points. 47

xiii

Chapter 1

Introduction

Unmanned Aerial Vehicles (UAVs) have witnessed an exponential growth in applications across var-
ious industries, including surveillance [4], agriculture [5], aerial photography [6], and delivery services
[7]. These versatile machines are propelled by multiple motors, each of which plays a crucial role in
ensuring the UAV’s stability and maneuverability. However, just like any mechanical system, these
motors(including its associated propeller) are susceptible to wear and tear, manufacturing defects, and
operational anomalies, which can lead to potential failures[8]. Fig. 1.1 describe some of the scenarios
of UAV failure. The potential detecting and diagnosing these faults in a timely and accurate manner is
imperative to ensure the safety and reliability of UAV operations.

(a) (b)

(c) (d)

Figure 1.1: (a) Healthy motor, (b) Propeller failure (c) Eccentric failure (d) Bearing failure

Image Source : [8]

1

Figure 1.2: Fault Scenario Overview

The Figure 1.3 illustrates the sequence of events following a single motor failure in a UAV, upto
its reconfiguration. When the motor fails inflight (red), the UAV begins to deviate from its intended
path (1). The system onboard UAV detects and localizes the fault (green). The timespan between
these two events is termed the “detection time”. Once the problematic motor is identified, the UAV is
reconfigured (blue) so it can operate with the remaining functional motors. The primary objective of
our work is to accurately detect and pinpoint the faulty motor within a time to ensure the UAV can be
safely maneuvered and recovered, and that the UAV can resumes stable flight and prevent crash-causing
paths (2) that can happen due to delay or error in detection and localization of the fault. The UAV
strays off course when a motor fails (red line) until the fault is detected and localized by the green line,
representing the detection time. The UAV is then reconfigured to function with the remaining motors,
stabilizing its flight by the blue line. Our paper’s goal is to accurately locate faulty motor, enabling safe
UAV recovery.

1.1 Thesis Outline

This thesis presents a comprehensive study on Fault Detection and Isolation (FDI) in Hexacopter
Unmanned Aerial Vehicles (UAVs) using a novel approach that combines ensemble classifiers with
Long Short-Term Memory (LSTM) networks. The focus is on enhancing the reliability and accuracy of

2

fault detection and isolation in the complex dynamics of hexacopter UAVs under various fault conditions
and operational environments.

Chapter 1 provides foundational knowledge required to understand the complexities involved in the
dynamics of hexacopter UAVs, outlines common fault conditions, and reviews classical machine learn-
ing classifiers including Decision Trees and Random Forests. This chapter also introduces LSTM net-
works, setting the stage for their application in fault detection and isolation. Additionally, it surveys re-
lated work in the field, categorizing existing approaches into classical approaches, deep learning-based
fault detection, and specifically, LSTM-based approaches.

Fault Detection and Isolation in Hexacopter UAVs using Ensemble Classifier-Enhanced LSTM (Chap-
ter 2) delves into the core contribution of this thesis. It begins with the problem formulation, followed
by a detailed description of the proposed methodology which integrates a state-forecasting LSTM with
a Random-Forest ensemble classifier to enhance FDI performance. This chapter also addresses the
challenge of class imbalance in training data and describes the implementation and experimental setup,
including metrics used for evaluation, baseline models for comparison, implementation details, and
dataset characteristics. Chapter 3 presents the findings of this study. It is divided into sections that
discuss the performance of the proposed method on both synthetic and real-world datasets, providing
insights into overall and motor-wise performance, noise tolerance, and detection times. Additionally,
the feasibility of deploying this solution on low-power devices like the Raspberry Pi is evaluated, high-
lighting the practical implications of this research.

Finally we summarizes the key findings of the research, emphasizing the effectiveness of the ensem-
ble classifier-enhanced LSTM approach in improving fault detection and isolation in hexacopter UAVs.
It also outlines potential areas for future research, suggesting ways to extend and refine this work to
further advance the field of UAV fault detection and isolation. Throughout the thesis, the emphasis is on
the practical application of sophisticated machine learning techniques to real-world problems, demon-
strating the potential of combining classical classifiers with advanced neural networks to significantly
improve the reliability and efficiency of FDI systems in UAVs.

1.2 Thesis Contributions

In this work, we make several significant contributions to the field of fault detection and localization
in hexacopters. Our contributions in this thesis are as follows:

• We introduce an innovative approach that combines pre-trained Long Short-Term Memory (LSTM)
networks with ensemble learning, achieving an impressive accuracy of 96.78%. This hybrid
method leverages the strengths of deep learning to effectively identify and localize faults.

• To address the challenge of imbalanced data, which is common in real-world scenarios, we incor-
porate Weighted Class Loss into our model. This enhances the model’s ability to generalize from
data that closely mimic real-world conditions.

3

• We have developed a synthetic dataset that simulates a broad spectrum of motor behaviors, in-
cluding both normal operations and faulty conditions. This dataset not only serves as a robust
platform for training and evaluating our model but also stands as a valuable resource for future
research in UAV FDI.

• Our experiments extend to analyzing the model’s noise tolerance, showcasing its resilience in
handling data with a high signal-to-noise ratio.

• We demonstrate the practical applicability of our approach by conducting experiments with real-
world data and evaluating the execution time of our model on a Raspberry Pi, highlighting its
potential for real-time applications in UAV systems.

Further in this chapter, we present an overview of fundamentals of hexacopters, alongside an expla-
nation of the basic functioning of LSTM networks and Random Forest algorithms, which are integral to
our proposed FDI model. The latter part of the chapter is dedicated for the existing literature in the do-
main of fault detection and isolation for hexacopters, emphasizing both classical and machine learning
methodologies, and also Long Short-Term Memory (LSTM) networks for handling time series data.

1.3 Preliminaries

1.3.1 Dynamics of Hexacopter UAV

This section will deal with the methods used to build the mathematical model for the hexacopter. The
angular orientation of the aircraft is described by the three angles (Roll, Pitch, and Yaw) that govern the
flight of the hexacopter, these are called the Euler Angles. The Euler angles Yaw (ψ), Pitch (θ), and Roll
(ϕ) define the angular position of the Body frame with respect to the Inertial frame. The schematic of
the hexacopter is presented in Fig. 1.3.

Let us take linear position vector and rotational position (Euler angle) vector in the inertial frame
by means of X = [x y z]T and η = [ϕ θ ψ]T , respectively. Therefore, the linear velocities and angular
velocities in the inertial frame will be Ẋ = [ẋ ẏ ż]T and η̇ = [ϕ̇ θ̇ ψ̇]T [9]. Now, we define the transfor-
mation from the body frame to the inertial frame using the rotation matrix R which is orthogonal. R

can be defined by the combined rotation along x, y, and z-axis as :

Rx =


1 0 0

0 cosϕ − sinϕ

0 sinϕ cosϕ

 Ry =


cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 Rz =


cosψ − sinψ 0

sinψ cosψ 0

0 0 1


Table 1.1: Rotation Matrices along x, y and z axis.

4

Figure 1.3: FBD of a Hexcopter UAV: The hexacopter is depicted with six rotors, the arms of the

hexacopter with length l. The body-fixed coordinate frame is represented by the axes X, Y, and Z. The

rotational directions of the rotors are indicated, with the green and orange color.

The motion of a rigid body can be decomposed into the translational and rotational components.
Therefore, in order to describe the dynamics of the hexacopter, assumed to be a rigid body, the Newton-
Euler equations, that govern linear and angular motion, are taken into account. First of all, the force
acting on the hexacopter is provided by Eq. 1.1 where ν is the angular velocity of UAV and vB is the
translation velocity. Rotation metric from world to bodyframe is denoted by RT .

F =
d(mvB)

dt
+ ν × (mvB) (1.1)

Every rotor i has an angular velocity ωi, which generates a force fi = [0 0 kω2
i] being k the lift constant,

thus the total thrust TB is given by TB = [0 0T]T with

T =

6∑
i=1

fi = k

6∑
i=1

ωi (1.2)

Total thrust together with gravitational force represents the total force acting on the hexacopter,

F = RTFg + TB. (1.3)

As a consequence, the translation component of the motion referred to the body frame is

mv̇B + ν × (mvB) = RTFg + TB. (1.4)

5

Let I be the inertia matrix. The hexacopter has a symmetric structure with respect to the XB-axis,
YB-axis, and ZB-axis, thus the inertia matrix is the diagonal one I = diag(Ixx, Iyy, Izz). As the total
external moment M concerns, the rate of change of the angular momentum H = Iν is considered and
the moment acting on the hexacopter is provided by

M =
d(Iν)

dt
+ ν × (Iν). (1.5)

Moreover, angular velocity and acceleration of the rotor create a torque

τMi = bω2
i (1.6)

around the rotor axis, where b is the drag constant and IM is the inertia moment of the rotor i. From the
geometrical structure of the hexacopter and from the components of fi and τMi over the body frame, it
is possible to get the information on roll, pitch, and yaw moment, namely

τrτp
τy

 =


kl

(
−ω2

1 −
ω2
5
4 +

ω2
3
4 + ω2

2 +
ω2
6
4 −

ω2
4
4

)
−3

4kl
(
ω2
5 + ω2

3 − ω2
6 − ω2

4

)
b
(
−ω2

1 + ω2
5 − ω2

3 + ω2
2 − ω2

6 + ω2
4

)
 (1.7)

Here l is the distance between the rotor and the center of gravity of the hexacopter and ω̇i denotes the
derivative of ωi(t) with respect to time, i.e., dωi(t)

dt . Afterwards, the equation that governs the rotational
dynamic can be summarized as

Iν̇ + ν × (Iν) + Γ = τB, (1.8)

in which Γ represents the gyroscopic forces and τB the external torque.

1.3.2 Fault Conditions in Hexacopter

In the event of motor failure within a hexacopter UAV system, where the velocity of a particular
motor diminishes to zero, a deviation occurs between the actual and desired torque values. Our research
focus on such cases where one of the motor stops functioning i.e. ωi = 0 for i in [1..6]. In this section
we analyse effect of such motor failure on the dynamics of Hexcopter UAV.

Consider a scenario where motor 1 experiences a fault, resulting in its angular velocity (ω1) being
reduced to zero. Consequently, the torque experienced by the UAV undergoes a transformation, as
depicted in Equation ??, differing from the baseline torque representation outlined in Equation ??.

τrτp
τy

 =


kl

(
0− ω2

5
4 +

ω2
3
4 + ω2

2 +
ω2
6
4 −

ω2
4
4

)
−3

4kl
(
ω2
5 + ω2

3 − ω2
6 − ω2

4

)
b
(
0 + ω2

5 − ω2
3 + ω2

2 − ω2
6 + ω2

4

)
 (1.9)

Here, τr, τp, and τy represent the roll, pitch, and yaw torques, respectively. The term klf1 symbolizes
the loss of force contribution from motor 1 in the roll direction, while τ1 denotes the corresponding

6

torque loss in the yaw direction. Upon motor 1 failure, it becomes evident that there is an increase in
both roll and yaw torques, while the pitch remains unaffected. This observation finds validation through
real flight experiments as depicted in Figure 1.4.

τr = τrd + lf1, (1.10)

τp = τpd, (1.11)

τy = τyd + τ1, (1.12)

When motor 3 experiences a failure, resulting in its cessation of operation, the alteration in body
torque can be described by Equation 1.13. This equation presents the difference in body torque before
and after the motor failure, outlined in terms of roll (τr), pitch (τp), and yaw (τy) torques is also illus-
trated in 1.5 for real flight data. Here, the negative signs in the torque components indicate a reduction in
torque magnitude due to the failure of motor 3. Specifically, the roll torque (τr) experiences a decrease
as motor 3 contributes negatively to this torque component.

τrτp
τy


new

−

τrτp
τy


old

=


−kl

(
ω2
3
4

)
−3

4kl(ω
2
3)

b(ω2
3)

 (1.13)

To comprehensively understand the impact of motor failure on the hexacopter’s body torque, Table
1.2 is provided. This table summarizes the changes in body torque resulting from the failure of each
motor. Each row corresponds to a specific type of torque (roll, pitch, or yaw), while each column
represents a different motor within the hexacopter system. The entries in the table indicate whether the
torque value increases (+), decreases (-), or remains unchanged (0) when a particular motor fails. The
table only considers the relative changes in torque magnitude and does not provide absolute values.

M1 M2 M3 M4 M5 M6

∆τr + - - + + -

∆τp 0 0 - + - +

∆τy + - + - - +

Table 1.2: Changes in the torque on the body due to motor failure.

Additionally, Figures 1.4 and 1.5 visually illustrate the relationship between motor failure and body
torque for motors 1 and 3 in a real flight scenario. These visual representations further aid in verify-
ing the theoretical conclusions regarding the dynamic behavior of the hexacopter system under such
circumstances.

7

Figure 1.4: Effect of Motor 1 Failure on Torque on UAV Body. When Motor 1 is turned off, as

described in Table 1.2, the Roll and Yaw responses become positive due to the resultant positive torque,

while the Pitch remains mostly unchanged due to zero torque. Here, Fig. (a), (b), and (c) describe the

UAV’s angular rate in roll, yaw, and pitch directions along the body axis. The orange line represents

the actual values, while the blue line represents the desired values. The red dotted line indicates the

timestep of the inception of the fault in the given motor.

8

Figure 1.5: Effect of Motor 3 Failure on Torque on UAV Body. As described in Table 1.2, the Roll

and Pitch responses become negative due to the resultant negative torque, while the Yaw increases due

to the positive torque. Here, Fig. (a), (b), and (c) describe the UAV’s angular rate in roll, yaw, and

pitch directions along the body axis. The orange line represents the actual values, while the blue line

represents the desired values. The red dotted line indicates the timestep of the inception of the fault in

the given motor.

9

Figure 1.6: Decision tree Overview: This diagram illustrates the structure of a decision tree with

examples of both binary and multi-way branching. The root node at the top represents the starting point

of the decision-making process. From the root node, the tree can branch out into decision nodes, which

are the points where the data is split.

1.3.3 Overview of Classical Machine Learning Classifiers

1.3.3.1 Decision Trees

A Decision Tree[10] is a simple yet effective model that divides the data into branches to form
a tree structure. Each internal node of the tree represents a test on an attribute, and each leaf node
represents a class label. The paths from root to leaf represent classification rules. It operates by breaking
down a dataset into smaller and smaller subsets, while at the same time an associated decision tree is
incrementally developed. The final result is a tree with decision nodes and leaf nodes. A decision node
has two or more branches, each representing values for the attribute tested. Leaf nodes represent a
classification or decision.

The core idea is to select the best attribute to split the dataset into smaller subsets based on certain
conditions. The type of branching primarily depends on the nature of the attributes (features) used for
making decisions. As show in 1.6 on the left, within the sub-tree enclosed by a dashed outline, we
see an example of binary branching: a decision node splits the data into two paths based on a binary
condition. Depending on whether the condition is true or false, the flow moves to the respective leaf
node, where a classification or decision is made. When dealing with numerical values, the decision tree
algorithm looks for a point to split the data into two groups. This is usually done by sorting the values
and trying different split points, which are typically between two adjacent values in the sorted list. On

10

the right side, the tree demonstrates multi-way branching: a decision node splits the data into multiple
paths based on categorical values.With categorical values, the branching is more straightforward as each
unique value or category can form a branch. For instance, if the feature is ”color” with categories like
[Red, Blue, Green], the tree might split into three branches, one for each color.

Branching in a decision tree is performed through a process known as recursive partitioning. This
process divides the data into subsets based on an attribute value. The goal is to partition the data in a
way that increases the homogeneity regarding the target variable within those subsets.Homogeneity, in
this context, means that the members of each group after the split should be as similar as possible in
terms of the target variable. A perfectly homogeneous node is one where all instances belong to a single
class. To achieve this, decision tree algorithms employ measures of purity to evaluate potential splits.

Gini Impurity is a metric used to gauge the purity of a node. The Gini impurity of a set is calculated
as in Eq. 1.14. A Gini score of 0 indicates that the node is perfectly pure, with all instances belonging to
a single class, while a higher Gini score indicates a higher level of impurity. Entropy, another measure,
reflects the randomness or disorder within a node. The entropy of a dataset is defined as Eq. 1.15. The
entropy is zero when all samples at a node are from a single class, signifying no disorder.

Gini(S) = 1−
C∑
i=1

(pi)
2 (1.14)

Entropy(S) = −
C∑
i=1

pi log2 pi (1.15)

where S is the dataset for a node, C is the number of classes, and pi is the proportion of samples
belonging to class i within the set S.

Information Gain is based on the concept of entropy and is used to determine which feature split
will yield the most homogeneous branches. Information Gain is the change in entropy as a result of
dividing a dataset according to a given attribute. It is calculated as the difference between the entropy of
the parent node and the sum of the entropies of each child node, weighted by the proportion of instances
at each child node:

Gain(S,A) = Entropy(S)−
∑

v∈V alues(A)

|Sv|
|S|

Entropy(Sv) (1.16)

Here, S is the dataset of the parent node, A is the attribute by which the node is being split,
V alues(A) are the unique values of attribute A, Sv is the subset of S for which attribute A has value v,
and |Sv|/|S| is the proportion of the number of instances in Sv to the number of instances in the parent
set S.

The decision tree algorithm will evaluate each potential split based on these criteria, opting for the
one that yields the greatest purity gain, that is, the most homogenous branches. This process is recur-
sively continued for each branch until a stopping criterion is reached, ensuring that the tree does not
overfit the data.

11

Algorithm 1 Decision Tree Algorithm

Require: Training dataset D, feature set F , target variable Y

1: function DECISIONTREE(D, F , Y)

2: Create a node N

3: if all samples in D belong to the same class C then

4: Mark N as a leaf node with class C return N

5: else if F is empty OR stopping criteria are met then

6: Mark N as a leaf node with the most common class in D return N

7: end if

8: f ← SELECTBESTFEATURE(D, F , Y)

9: for each possible value v of feature f do

10: Partition D into subsets Dv where feature f has value v

11: if Dv is empty then

12: Create a leaf node with the most common class in D

13: else

14: Nv ← DECISIONTREE(Dv, F \ {f}, Y); Add branch to N with label v and subtree Nv

15: end if

16: end for

17: return N

18: end function

Algorithm 2 Select Best Feature for Split

1: function SELECTBESTFEATURE(D, F , Y)

2: maxGain← −∞ ; fbest ← null

3: for all feature f ∈ F do

4: infoGain← CALCULATEINFORMATIONGAIN(D, f , Y)

5: if infoGain > maxGain then

6: maxGain← infoGain ; fbest ← f

7: end if

8: end for

9: return fbest

10: end function

12

1.3.3.2 Random Forest

Random Forest[11] is an ensemble method that builds multiple decision trees and merges them to-
gether to obtain a more accurate and stable prediction. It effectively addresses the overfitting problem
often faced by decision trees[12]. While a single decision tree makes its decision based on the paths from
root to leaf, a Random Forest combines the output of multiple decision trees to make a final decision,
thereby enhancing the overall predictive quality and robustness of the model.

In the context of ensemble methods in machine learning, particularly when discussing Random
Forests, a fundamental question arises: given a single dataset, how can we produce a collection of
decision trees that are each unique? To create diversity among the decision trees in a Random Forest,
several techniques are employed. Bagging, or Bootstrap Aggregating, involves drawing random subsets
of the data with replacement to train each tree, ensuring that each one has a different subset and thus a
different perspective on the data.

Bagging (Bootstrap Aggregating)[13]: For a given dataset X = {x1, x2, ..., xn} with corresponding
responses Y = {y1, y2, ..., yn}, we generate B distinct bootstrap samples. Each of these samples is
constructed by randomly selecting N observations with replacement from the original dataset, which
results in new sample sets Xb and Yb for each b in 1, ..., B. Through bootstrap sampling, each decision
tree fb is trained on a slightly different data set. This variability is intentional and crucial as it introduces
diversity among the trees in the forest, which in turn enhances the ensemble’s overall performance by
reducing the variance of the aggregated predictions.

Prediction: The output of the Random Forest is the class selected by most trees (mode) in the
case of classification, or the average prediction (mean) of the individual trees in the case of regression.
For classification problems, the Random Forest output (f̂(x)) is the mode of the classes predicted by
individual trees as:

f̂(x) = mode{f1(x), . . . , fB(x)} (1.17)

The principle underlying Random Forests is the collaboration of ”weak learners” (individual decision
trees) to form a robust ”strong learner” capable of mitigating noise and overfitting. Notably, Random
Forests possess key hyperparameters such as the number of trees (B), the features considered for split-
ting at each leaf node (m), and the maximum tree depth. Fine-tuning these parameters contributes to
achieving an optimized model. It’s important to highlight that Random Forests often perform admirably
with minimal tuning requirements, handling both categorical and numerical features while inherently
performing feature selection[12]. This versatility has established Random Forests as a widely adopted
and effective algorithm across various machine learning tasks.

1.3.4 Introduction to Long Short-Term Memory (LSTM)

Recurrent Neural Network (RNN) maintain a form of memory, allowing them to incorporate the
context of previous inputs in their processing, Unlike standard networks, which process inputs in isola-
tion. In a conventional neural network, the ability to consider sequential information is notably absent.

13

Figure 1.7: Unrolled RNN: This diagram depicts an unrolled recurrent neural network (RNN), where

each node A represents a neural network layer at a different time step. The input at each time step xt is

processed by the node, resulting in an output ht that is passed on to the same network at the next time

step, illustrating the network’s ability to maintain state over time.

RNNs, however, introduce loops within their architecture, enabling the persistence of information. This
characteristic is illustrated in Fig. 1.7 when a segment of the network, denoted as A, processes an input
xt and produces an output ht. The inclusion of a loop mechanism facilitates the transfer of information
from one step to the next within the network.

RNNs are capable, in theory, of processing such long-term dependencies, and indeed, with carefully
chosen parameters, they can solve simple problems that exhibit this characteristic. However, in practice,
standard RNNs often fail to learn in the presence of long temporal gaps between relevant information
and its point of use. This difficulty was highlighted in seminal works by Hochreiter[14] in 1991 and
Bengio et al.[15] in 1994, which pointed to inherent issues in the network’s architecture that make
learning these dependencies challenging. The problem lies in the network’s inability to maintain the
influence of input information over long sequences, an issue commonly referred to as the vanishing
gradient problem.

Long Short Term Memory(LSTM) networks are a special kind of RNN, capable of learning long-
term dependencies. They were introduced by Hochreiter & Schmidhuber (1997) [16]. An LSTM unit
has the following components:

• Cell State (Ct): The essential innovation of LSTMs is the cell state, which acts like a conveyor
belt, carrying relevant information throughout the process of sequential data handling with min-
imal alteration. Information is added or removed from the cell state via the gates, which are
controlled by sigmoid layers that determine how much information should pass through.

• Hidden State (ht): This is the output state of the LSTM, used for predictions and passed to the
next time step.

• Gates: Gates are a way to optionally let information through. They are composed of a sigmoid
neural net layer and a point-wise multiplication operation. The sigmoid layer outputs numbers
between zero and one, describing how much of each component should be let through. An LSTM
has three of these gates:

14

Figure 1.8: Architecture of a LSTM Cell: An LSTM cell at time step t showing the flow of informa-

tion through various gates. The forget gate ft determines which parts of the cell state Ct−1 are to be

discarded. The input gate it and the candidate cell state C̃t decide which values are to be added to the

cell state. The cell state Ct is updated by combining the past cell state and new candidate values. The

output gate ot controls which parts of the cell state make it to the output ht.

– Forget Gate (ft): Decides what information to discard from the cell state.

– Input Gate (it): Updates the cell state with new information.

– Output Gate (ot): Determines what the next hidden state should be.

The operations of an LSTM can be described by the equations below. Equation 1.18 describes the
forget gate, equations 1.19 and 1.20 describe the input gate, equation 1.21 is for the cell state update,
and equations 1.22 and 1.23 are for the output gate.

ft = σ(Wf · [ht−1, xt] + bf) (1.18)

it = σ(Wi · [ht−1, xt] + bi) (1.19)

C̃t = tanh(WC · [ht−1, xt] + bC) (1.20)

Ct = ft ∗ Ct−1 + it ∗ C̃t (1.21)

ot = σ(Wo · [ht−1, xt] + bo) (1.22)

ht = ot ∗ tanh(Ct) (1.23)

In these equations σ represents the sigmoid function, tanh is the hyperbolic tangent function, W and
b are the weights and biases for different gates, and [ht−1, xt] denotes the concatenation of the previous
hidden state and the current input. These equations collectively describe how an LSTM unit processes
data at each time step, updating its cell state and hidden state based on the current input, the previous
hidden state, and the learned parameters (weights and biases).

15

1.4 Related Work

1.4.1 Fault Detection and Isolation

Fault Detection and Isolation in control systems is an active area of research [17]. In recent years,
several studies have addressed the critical task of identifying and mitigating faults in UAV systems
[18]. FDI techniques in these systems are primarily divided into two categories: model-based and data-
driven methods. Historically, model-based methods have been predominant, but data-driven approaches
have been gaining significant traction and momentum in the field recently. This study reported an
average accuracy of 97.8% in speed estimation and a fault detection and isolation accuracy ranging
from 33.1% to 100%, averaging 82.75%. These tests demonstrated the method’s sensitivity to even
weak disturbances, with high accuracy despite low computational requirements.

1.4.2 Classical Approaches

In the classical approach to UAV fault detection and isolation, several papers have contributed in-
sights into the mathematical modeling and actuator fault detection for UAV systems. [19], [20] claims
to be effective for internal motor failures (no chnage to structure of UAV), however their performance
quickly deteriorates if the UAV or the propeller incurs damage. The reason can be attributed to their
assumption of rigid body dynamics.

In [21] they developed a random forest classifier trained on datasets generated on flight simulator,
which utilizes the hexacopter’s attitude and motor signals as inputs to detect and identify motor fail-
ures. The classifier demonstrated high accuracy, detecting and isolating faults in less than 100ms post-
occurrence with fewer than one false positive per hour of flight. The authors of [22] design a 2-stage
approach - fault detection followed by isolation, employing a Rotation Forest at each stage. Rotation
Forest is an implementation of Random Forest tailored for sequential data.

In contrast to [22], our approach requires far lesser number of trees, and is able to output a accu-
rate prediction faster. Classical methods discussed above often rely on handcrafted features and fixed
thresholds making them not able to effectively capture intricate patterns in large datasets, limiting their
adaptability and generalization across diverse scenarios. Our model uses features generated using LSTM
enabling it to effectively capture intricate patterns in dataset.

1.4.3 Deep Learning based FDI

Deep-learning based approaches like [23, 24, 25] addresses the challenges of classical methods.
J.J. Tong et. al. [23] presents a model for quadcopter propeller fault detection, the authors developed
a hybrid data-generative model combining data-driven models and dynamic UAV models to simulate
various fault scenarios and normal conditions. The model uses Long Short-Time Memory (LSTM)
networks to estimate the performance drop in faulty propellers and a Convolutional Neural Network
(CNN) for fault classification. The study focuses on identifying faulty propellers and their fault levels

16

using the propellers’ RPM and flight data. The tests were conducted to validate the model, with an
observed diagnosis accuracy over 80%.

Whereas [24] proposes the CNN model using the transfer learning. They proposes a method for diag-
nosing physical damage to quadrotor UAV propellers using only the audio data generated during flight.
The method employs a Convolutional Neural Network (CNN) trained on time-frequency spectrograms
of flight audio data. The model is capable of detecting and isolating propeller damage by analyzing the
audio signal’s amplitude and frequency characteristics. Additionally, the model utilizes transfer learn-
ing to adapt to UAVs with different characteristics, requiring only minimal new data for retraining. The
approach was validated with an accuracy higher than 90%, demonstrating its effectiveness for propeller
fault diagnosis in quadrotors. The approach in the paper primarily relies on audio data, which may be
influenced by external noise and environmental factors, potentially affecting diagnostic accuracy. Addi-
tionally, it necessitates the installation of additional audio sensors on the UAV, adding to the complexity
and potential weight of the onboard system. In [25], the dataset utilized for UAV fault detection and
analysis is sourced exclusively from real-world UAV flight scenarios. This approach, while providing
authentic data, inherently limits the diversity and range of fault scenarios that can be captured. Partic-
ularly, it’s challenging to introduce and record data on fatal or severe faults in real-flight conditions, as
this would pose significant risks to both the UAV and its surrounding environment.

1.4.4 LSTM-based Approaches

Long Short-Term Memory (LSTM) networks, a type of recurrent neural network, have emerged
as a powerful tool in FDI, particularly for their ability to effectively capture and analyze time-series
data, extending to areas such as industrial machinery[26, 27], financial markets[28, 29], and healthcare
systems[30, 31]. Their proficiency in handling time-series data makes them exceptionally well-suited
for tasks that require the analysis of sequential information over extended periods.

In Unmanned Aerial Vehicles (UAVs), FDI involves processing complex flight sequence data, which
often needs to be handled on-board. The inherent capability of LSTMs to learn from and make pre-
dictions based on sequential data is particularly beneficial in this context. [32] presents an innovative
Fault Detection and Isolation framework for highly redundant Multirotor UAVs, specifically a hexade-
carotor UAV with sixteen rotors. Utilizing LSTM networks they introduces FDI framework comprises
a region classifier model for detecting and isolating faults and fault locator models for precise actuator
location determination. While achieving high accuracy, the framework’s dependence on a large, multi-
stage model can increase the time required to identify and localize faults. Meanwhile, [33] emphasizes
the utility of on-board LSTM techniques specifically for pinpointing the cause of faults. The research
demonstrates over 90% accuracy in detecting faults and up to 85% accuracy in classifying various types
of drone misoperations using both simulation and experimental data.

Inspired by the previous approaches, we utilize the weights of an LSTM-based model, which has
been pre-trained for state-forecasting objectives and then fed to the LSTM embeddings to train a Ran-
dom Forest ensemble algorithm to act as a classifier for detecting and localizing faults in hexacopter

17

UAVs. This approach capitalizes on the strengths of both deep learning and classical methods to pro-
vide more accurate and robust FDI.

18

Chapter 2

Fault Detection and Isolation in Hexacopter UAVs using Ensemble

Classifier-Enhanced LSTM

Further, in this chapter we addresses this challenge by proposing a novel approach combining en-
semble classifiers with Long Short-Term Memory (LSTM) networks tailored for hexacopter UAVs. The
chapter begins by formulating the problem, delineating the necessity for accurate fault detection and
isolation. Subsequently, the methodology is expounded, comprising a state-forecasting LSTM for tra-
jectory prediction and a random-forest ensemble classifier for fault identification. Notably, techniques
to handle class-imbalance issues are discussed. Implementation and experimental setups, including
metrics for evaluation and baseline models, are detailed, along with dataset descriptions.

2.1 Problem Formulation

For a Hexacopter UAV system M consisting of N motors, each motor is represented by Mi. The
state of the motors at timestep t is represented by Yt, where Yt ∈ {0, 1, . . . , N} such that:

M = {Mi}, i ∈ {1, 2, . . . N} (2.1)

Yt = 0 ⇐⇒ No motor is faulty (2.2)

Yt = i ⇐⇒ Motor Mi is faulty (2.3)

We assume that in one simulation, at most one motor may be faulty. For this UAV system, at each
timestep t, where t ∈ {T−P, T−P+1, . . . , T}, we assume the availability of a feature vectorXt ∈ R6

(Eq. 2.4) by concatenating the angular velocity around the x, y, and z-axis respectively wxt , wyt , wzt ,
along with the desired angular velocity around the x, y, and z-axis respectively wxdt , wydt , wzdt .

Xt = [wxt wyt wzt wxdt wydt wzdt]
⊤, (2.4)

X = [XT XT−1 . . . XT−P]. (2.5)

Problem Statement: Given state vectors for the current timestep T and the previous P timesteps
X ∈ RP×6, the task of fault detection and isolation involves the prediction of the UAV state at the

19

current timestep T , i.e., ŶT . A successful fault detection involves correctly predicting when the state is
non-zero 2.6. A successful fault isolation, on the other hand, involves correctly identifying the motor
number causing the fault 2.7.

Ŷt ̸= 0 ⇐⇒ Yt ̸= 0. (2.6)

ŶT = YT . (2.7)

Given F (Xi) = 1, determine the Mi such that:

F (Xi) = Yi = 1⇒Mi. (2.8)

Given F (Xi) = 0 for all Xi ∈ X , this implies that no motor is faulty:

{F (Xi) = Yi = 0,∀Xi ∈ X} ⇒ ∅. (2.9)

The problem is to develop a model that can accurately classify the state of each motor (Yi) and, when
a fault is detected, identify which specific motor (Mi) is at fault based on the extracted features Xi.
Additionally, the model should be able to determine when no motor is faulty.

2.2 Methodology

Temporal features are characteristics of data that capture information about the timing and ordering
of events within a sequence. In the context of sequence data, like time series or signal data, temporal
features reflect the dynamics that unfold over time. These features are crucial for understanding patterns
that are dependent on the progression of time and are often leveraged in tasks that require the analysis
of data across time intervals.

We use LSTM networks, as they are particularly well-suited for tasks involving sequential and tem-
poral data [34] in the context of UAV data. These networks can capture complex dependencies in motor
behavior, making them ideal for applications such as fault localization in hexacopter UAVs. We use them
for modeling and predicting motor parameters over time. We first train a LSTM-based state-forecasting
model, Φ which is capable of accurately predicting the next state, X̂t+1 from the previous state Xt,
in a seq2seq [1] fashion. The recurrent architecture is able to encode and learn the dynamics of the
UAV system. At test time, we use the LSTM-based model as an temporal-aware encoder and pass the
input state vector, X to obtain the prediction of the next state, Xt+1 and the LSTM state (cP+1, hP+1).
We then train the Random Forest model conditioned on the hidden state, hP+1 obtained from LSTM
along with the current state vector, Xt. We first describe the state-forecasting model, Φ followed by a
discussion on the Random Forest ensemble.

20

Figure 2.1: Seq2Seq State-forecasting Model Φ: The figures illustrates the sequence-2-sequence

(seq2seq) prediction of our state-forecasting model. The input to our model is a the state vector

Xt = [XT XT−1 . . . XT−P]. The LSTM initial state (ci, hi) is updated at each prediction, and at

the last step gets updated to (cP+1, hP+1) after the LSTM outputs X̂T+1.

2.2.1 State-Forecasting LSTM

To create temporal features, we train a state forecasting model offline for next state prediction prob-
lem in a sequence-2-sequence (seq2seq) fashion. The input horizon to our model is P steps, and the
prediction horizon is F = 1. We use a single LSTM layer as illustrated in Fig 2.1. The hidden state
size of the LSTM is chosen to be 256, and the projection size (the size of the final output) is set to be
6. The LSTM model here takes the current state vector Xt as input, and generates the output vector
X̂t+1 ∈ R6, updating its cell state and the hidden state (cP , hP) to the next state (cP+1, hP+1). Note
that ck, hk ∈ R256. We train our forecasting model in a sequence-to-sequence (seq2seq [1]) fashion,
with the Mean Squared Error (MSE) loss function as given in Fig 2.1. The algorithm to train is stated
in Algorithm 3.

The hidden state of LSTM cell at timestep T , hP+1 is temporally aware of the past history. At
test time, we have state vectors for the the previous P timesteps and the current T timestep, X =

[XT XT−1 . . . XT−P], we pass the observed state vector X to the forecasting model Φ in a seq2seq
fashion, and obtain the hidden state hT+1 at the end, from the LSTM encoder E. We concatenate
it with state vector for the current timestep XT to produce the input to our ensemble method: ϕ =

[hT+1 | XT], ϕ ∈ R262. We next describe the ensemble method used.

2.2.2 Random-Forest Ensemble Classifier

We employ Random Forest [2] as an ensemble learning approach to combine the raw as well as the
extracted temporal features for better fault detection. We aim to leverage both the temporal features
extracted from the hidden state of the LSTM, as well as the raw data from the data to train the Random
Forest classifier. We use L constituent trees (D1, D2, . . . DL), each of which acts as “weak learners”,

21

Algorithm 3 Feature Extractor LSTM Φ Pretraining

Input: Sequence of feature vectors {Xj
T−P :T }, j ∈ [0, n)

Output: LSTM Model Φ

1: function LSTMPRETRAINING({Xj
T−P :T })

2: θΦ ← initialize(0) ▷ Initialize model weights

3: η ← 0.002 ▷ Set learning rate

4: for j = 1→ n do

5: (c0, h0)← initialize(0,0)

6: pred, gt← initialize({}, {})

7: for i = 0→ P − 1 do

8: X̂T−P+i+1, {ci+1, hi+1} ← Φ(Xj
T−P+i, {ci, hi})

9: pred← pred ∪ {X̂T−P+i+1}

10: gt← gt ∪ {Xj
T−P+i+1}

11: end for

12: loss← ∥pred− gt∥2

13: ∇θΦ ← gradient(loss, θΦ)

14: θΦ ← θΦ − η · ∇θΦ ▷ Gradient Descent Update using Backpropagation

15: end for

16: end function

22

often capturing only a subset of features at once. The combined prediction of the trees however can
prove to significantly outperform a monolithic decision tree. The training algorithm for the random
forest is given in the algorithm 4. At test time, majority voting of the L decision trees decides the class
as is given by Eqn. 2.10

Ŷt = mode
(
D1(ϕ), D2(ϕ), . . . DL(ϕ)

)
(2.10)

Algorithm 4 Training Random Forest with class-imbalance

Require: Set of tuples {(Xj
T−P :T , YT)}, j ∈ (0, n), Class Weights: W

Ensure: Random Forest ModelR

1: R ← {D1, . . . , D20} ▷ Initialize decision trees

2: θR ← θpretrained ▷ Load pretrained weights

3: F ← {} ▷ Feature data list

4: for j = 0→ n do

5: {c0, h0} ← initialize(0,0)

6: for i = 0, . . . , P do

7: (X̂T−P+i+1, ci+1, hi+1)← Φ(Xj
T−P+i, ci, hi)

8: end for

9: F ← F ∪ { [hP+1 | xT] }

10: end for

11: TrainR with F , YT , and W

2.2.3 Addressing Class-imbalance

Class-Imbalance: Sequence-based classification tasks, including those discussed in our paper,
frequently encounter significant imbalances in class distributions within the dataset. This is similar
to scenarios described in papers [22] and [21], where a simulated flight primarily consists of normal
operation time, corresponding to a ‘no fault’ class, and only briefly exhibits a ‘fault in motor’ class. Such
an imbalance poses a substantial challenge in training effective models, as the overwhelming prevalence
of the ‘no fault’ class can bias the model against accurately identifying the rare ‘fault’ instances.

Modified Random Forests: To alleviate the effect of this skew on the model performance, we assign
weights to the classes. For a decision tree Di, if is pj is the proportion of samples of class j at node n,
the decision tree algorithm will try to maximize the decrease in impurity when making each split, by

23

using a quantity called as the Gini impurity. The Gini impurity for a node n is calculated as:

IG(n) = 1−
7∑

j=1

p2j (2.11)

We introduce class weights wi for each class, and adjust the impurity calculation as:

IG(n) = 1−
7∑

j=1

(wj · pj)2 (2.12)

The impurity is now a weighted sum, which biases the tree towards correctly classifying the classes
with higher weights, because errors in these classes will now result in a higher impurity. When the
decision tree algorithm looks for the best split, this new weighted impurity measure is what’s minimized.
This affects the thresholds chosen for splits and the selection of features used for those splits.

Choice of Class-Weight wi: We assign weights proportional to the frequency of each class, giving
higher importance to the rare fault classes. Eq. 2.13 is used for calculating wc for particular class c,
using nsamples, total number of samples in a dataset and ncount being the frequency of class, c, is as
follows:

wc =
nsamples

ncount(c)
(2.13)

This approach ensures that rare fault classes receive higher weights, allowing the model to focus on
their effective detection, even in cases where they occur infrequently. It contributes to a balanced and
robust fault detection and localization model in the presence of class imbalance.

2.3 Implementation and Experimental Setup

2.3.1 Metrics Used

In this section, we discuss the evaluation metrics used to assess the performance of our fault detection
and localization model for hexacopter UAVs. These metrics provide insights into the model’s accuracy,
precision, recall, F1-score, as well as its inference and detection times.

2.3.1.1 Correctness

We evaluate on accuracy, precision, recall and F1-score.

• Normalized Accuracy: Accuracy measures the overall correctness of our model’s predictions.
Weighted accuracy takes into account the class distribution by normalizing for classes that are
underrepresented. This method of calculating accuracy ensures that each class contributes equally

24

to the overall accuracy metric, thus compensating for any class imbalance. Consider the confusion
matrix C where the element Ci,j would be the number of observations that were originally in
classes i but predicted to be in class j. We calculate the accuracy as the average of diagonals
of normalised confusion matrix. The true positives a class i are normalized by dividing by the
number of instances in actual class i. Mathematically, the accuracy can written in Eq. 2.14.

Accuracy =
1

N

N∑
i=0

(Ci,i∑N
j=0Ci,j

)
(2.14)

Here N=7 represents the 6 faulty motors and the no fault class.

• Precision: Precision evaluates the model’s ability to make accurate positive predictions. It mea-
sures the ratio of true positives to the total number of positive predictions made by the model. A
high precision is obtained by low number of false positives. In our case, False positive is when
there is no fault but algorithm predicts one thus reconfiguration occurs. This not only reduces effi-
ciency of the UAV, but if it occurs more than one time it leads to 2 motor failure which depending
on the arrangement is uncontrollable. This has to be minimized but has lesser priority than below
sections.

Precision =
TP

TP + FP
(2.15)

• Recall: Recall, also known as Sensitivity, measures the model’s ability to correctly identify all
positive instances. It is calculated as the ratio of true positives to the total number of actual
positive instances. A high recall is obtained by low number of false negatives. In our case, a False
negative is when there is a fault but algorithm doesn’t detect it would lead to a crash or a huge
delay which are undesirable.

Recall =
TP

TP + FN
(2.16)

• F1-Score: The F1-Score is the harmonic mean of precision and recall. It provides a balanced
measure of a model’s performance, especially when class imbalance is present. If the wrong
motor is classified as faulty then the reconfiguration would essentially make it into 2 motor failure
which can be uncontrollable.

F1-Score = 2× Precision× Recall
Precision + Recall

(2.17)

2.3.1.2 Latency

The model can incur delay in detecting a fault, either due to computation time or due to the in
capabilities of itself. If the delay is large enough the UAV might take a unrecoverable state. Seeing as
timely detection is a crucial aspect in such tasks, in addition to the above classification metrics, we also
report and compare model performance for fault detection time ie. the amount of time, i.e. the number

25

of timesteps, between the timestep of the actual failure and the point where failure was first detected by
the model.

• Model Inference Time: In the context of our system, refers to the duration it takes for our model
to predict the results once it’s provided with the input data. This metric provides insights into
the complexity and computational efficiency of our model, as it measures the response time from
input to output.

• Fault Detection Time: Detection time is a critical metric in our fault detection and localization
system. It signifies the actual time elapsed from the occurrence of a fault, such as a malfunc-
tioning motor, until the system successfully detects and identifies the fault. It’s important to note
that the Detection Time may vary and depend on the number of time frame data points it takes
for the prediction to indicate a fault. This metric plays a crucial role in assessing the system’s
responsiveness and effectiveness in addressing real-time faults in our hexcopter UAV.

2.3.2 Baseline Models

In this section, we present the extensive experiments conducted to evaluate the effectiveness of our
fault detection and localization system for hexcopter UAVs. Our evaluation encompasses a wide array
of models, ranging from statistical approaches to deep learning networks.

• Statistical Models: In our analysis, we evaluate statistical models, including Logistic Regres-
sion[35], Support Vector Machine (SVM)[36], Random Forest[2], and Rotational Forest[37],
on the dataset described above. These established models provide valuable insights into the
dataset’s fundamental characteristics and their simplicity and efficiency in fault detection. These
act as a good baseline for comparison.

• MLP Classifier: The architecture of the Multi-Layer Perceptron (MLP) for fault localization
consists of four linear layers of size 256, 128, 128, and 64 neurons, respectively. Each linear layer
is followed by a batch Normalization[38] and the ReLU activation function [39]. The input to the
MLP network is X ∈ RP×6.

• LSTM Classifier: We train a Long Short-Term Memory (LSTM) model offline in a seq2seq
fashion. We then freeze the weights of LSTM and train a Logistic Layer, which takes the hidden
state ht+1, applies a linear layer followed by a Softmax and outputs a probability vector of size
7 (number of classes). The LSTM is trained on MSE loss, and the logistic layer is trained on
Cross-entropy loss. In this model, in contrast to our approach, we do not apply Random Forest,
and instead pass the hidden state from LSTM directly to a linear layer.

26

2.3.3 Implementation Details

In our approach, the LSTM architecture, as described earlier, remains consistent. However, its pur-
pose is distinct. Instead of predicting the faulty motor, the LSTM is pre-trained on the dataset using
Xt, ht as input and predicting the next feature vector ht+1 of size 256. This pretraining process enables
the network to learn and encode temporal dependencies effectively. After the LSTM layer, we added
a dense layer of size 6 predicting the next data vector, X ′

t+1, from UAV. It is different from the dense
layer added in the previous section. As mentioned, the loss used to pre-train the LSTM is MSE loss.
Subsequently, the last layer of the LSTM is utilized to extract essential temporal features. These feature
vectors are concatenated with a range of raw features, Xt i.e. combining the LSTM-learned temporal
insights with the original data. As in described in Fig. 2.2 demonstrating the end-to-end pipeline, the
concatinated features are passes to the ensembled classifier.

Figure 2.2: Ensemble-Classifier LSTM Pipeline: Hexacopter system onboard consists of on-board

microcontroller and a flight controller chip. The sensors onboard collect the time-series flight data

X. We propose an Ensemble classifier which is trained over the temporal features ϕ derived from the

LSTM state and current state. During inference, our proposed Ensemble Classifier-enhanced LSTM

takes the data X, and predicts the states for the next timestep X̂T+1 in a sequence-2-sequence (seq2seq

[1]) fashion. The hidden state updated till the end hP+1 is passed onto the Random Forest [2] to obtain

the fault detection and localization ŶT . If a fault is detected, based on the motor localized, the onboard

microcontroller can give corrective signals to the flight controler chip and reconfigure to resume stable

flight.

27

Training Details: For experimentation purposes, we have used the P as 3, batch size as 8. We use
the Adam optimiser [40] with the learning rate of 0.0002. For the task of classification, we have used
cross-entropy loss and for pre-training the LSTM, the mean-square error (MSE) loss is used. For the
Random Forest, we use L = 20 decision trees.

2.3.4 Dataset

Train data collection: We collect data in the Gazebo Simulation Framework [41]. We setup a
custom PX4 firmware to introduce fault, and chose the vehicle as Typhoon H480 whose parameters are
described in table 2.1. Our mission in simulation consists of UAV take off followed by hovering for 5
seconds, wherein we introduce a fault. We do 10 such missions for each motor failure with 90% signal-
to-noise ratio. Note that for every mission, we only introduce fault in a single motor. Fig. 2.3,2.4,2.5
illustrates some of the cases of such data. These graphs provided represent the real-time monitoring data
for a hexacopter’s three motors during a test sequence.

Parameter Description Value

Jxx Inertia about x-axis 6.89× 10−3 kg.m2

Jyy Inertia about y-axis 6.89× 10−3 kg.m2

Jzz Inertia about z-axis 3.44× 10−2 kg.m2

l Arm length 0.33m

Jr Rotor inertia 6× 10−4 kg.m2

m Hexacopter Mass 0.95 kg

kT Aerodynamic Force constant 3.13× 10−4 N.s2

kM Aerodynamic Moment constant 7.5× 10−6 Nm.s2

Rmot Motor circuit resistance 0.6Ω

Kmot Motor torque constant 5.2mNm/A

Table 2.1: Hexacopter Parameter Description and Value

Test data synthesis: To create test data fig. 2.6, we further add Gaussian noise η to stimulate
real world conditions [42] and increase the signal-to-noise ratio. Given train data S with distribution
N(µ, σ), we sample a Gaussian and generate a noise signal η, such that -

S′ = S + η (2.18)

η ∼ N
(
0,
σ

k

)
(2.19)

Here k is the Signal-to-Noise Ratio (SNR) of the resulting signal S′. We perform experiments with
varying signal-to-noise ratios, and demonstrate that our method’s tolerance to higher values of k.

28

(a) Motor 1 (b) Motor 2

Figure 2.3: Training Simulated Data: For Motor 1 (Fig. (a)) and Motor 2 (Fig. (b)) during simulated flight 1,

each subfigure describes the roll (R), yaw (Y), and pitch (P) angular rates with respect to the body frame.

29

(a) Motor 3 (b) Motor 4

Figure 2.4: Training Simulated Data: For Motor 3 (Fig. (a)) and Motor 4 (Fig. (b)) during simulated flight 1,

each subfigure describes the roll (R), yaw (Y), and pitch (P) angular rates with respect to the body frame.

30

(a) Motor 5 (b) Motor 6

Figure 2.5: Training Simulated Data: For Motor 5 (Fig. (a)) and Motor 6 (Fig. (b)) during simulated flight 1,

each subfigure describes the roll (R), yaw (Y), and pitch (P) angular rates with respect to the body frame..

31

Figure 2.6: Test Data with Noise: For Motor 1, (a), (b), and (c) represent the varying levels of noise at 10%,

50%, 90%, respectively. Within each fig., i, ii, and iii are the roll(R), yaw(Y), and pitch(P) angular rates.

32

Chapter 3

Results and Analysis

Here we presents a comprehensive analysis of the results obtained from both simulated and real-
world datasets, along with an evaluation of the system’s performance on a Raspberry Pi platform. The
chapter is structured into several sections, each focusing on distinct aspects of the experiment. Initially,
the overall performance of the system is discussed, highlighting key metrics and observations derived
from the simulated dataset. Subsequently, the analysis delves into motor-wise performance and noise
tolerance, shedding light on the system’s robustness in varying conditions. Transitioning to real-world
scenarios, the chapter outlines the dataset collection process and experiment setup for outdoor condi-
tions, followed by a comparative analysis of model performance. Furthermore, insights into motor-wise
results and detection time are provided. Lastly, the chapter concludes with an exploration of the system’s
performance on a Raspberry Pi, encompassing experimental setups and statistical analyses of inference
time. This comprehensive examination aims to provide a holistic understanding of the proposed sys-
tem’s efficacy across different environments and platforms.

3.1 Results on Simulated Dataset

In this section, we present the testing results on simulated data, comparing various baseline models
with our proposed model. We initiate the analysis by evaluating the overall performance and comparing
metrics defined in Chapter 2. Additionally, we delve into motor-wise performance for a comprehensive
examination of various baseline models, encompassing classical models such as Logistic Regression,
SVM, Random and Rotation Forest, as well as deep learning approaches like MLP, LSTM, and our pro-
posed model. Moreover, a crucial aspect of our evaluation involves conducting noise tolerance analysis.
Here, we assess the robustness of our model by subjecting it to real-world-like noise introduced to the
testing data. This analysis is essential for understanding how well our model can handle variations and
disturbances, mimicking the challenges encountered in practical scenarios.

Finally, we conduct experiments on detection time for the simulated dataset. This involves measuring
the number of time steps required for each model, including our proposed one, to detect faults within

33

the simulated data. Examining detection time is crucial for applications where timely responses to
anomalies are essential, ensuring the efficiency and effectiveness of the models in real-world scenarios.

3.1.1 Overall Performance

In Table 3.1, we present a comprehensive benchmark comparison of various models for fault detec-
tion and localization. It demonstrates the effectiveness of our method in accurately identifying faulty
motors and localizing faults, even in the presence of complex real-world scenarios.

Logistic
Regression SVM

Random
Forest

Rotation
Forest

MLP
Classifier

LSTM
Classifier Ours

Accuracy 0.71 0.71 0.76 0.81 0.87 0.94 0.968

Precision 0.73 0.71 0.79 0.80 0.81 0.91 0.966

Recall 0.63 0.69 0.72 0.82 0.85 0.94 0.972

F1-Score 0.67 0.70 0.75 0.81 0.83 0.93 0.969

Table 3.1: Benchmark Comparison: The table denotes results aggregated over all types of faults on

motors and no fault in the dataset mentioned above. Our method outperforms the baselines in all metrics.

Despite the similar accuracies of 70.97% and 71.42% for Logistic Regression and SVM, their pre-
cision and recall values differ significantly. Logistic Regression tends to be conservative, making fewer
positive predictions, but these predictions have a higher confidence level in their correctness. In contrast,
SVM is slightly more liberal in making positive predictions, leading to different precision and recall val-
ues. Random Forest and Rotation Forest exhibit better accuracies than SVM, hovering around 75-80%.
Rotation Forest performs better than Random Forest due to its feature transformation techniques, as
discussed in [22]. The MLP classifier achieves a significantly better accuracy(87.29%) than statisti-
cal models above. This performance gap is due to their limitations in effectively capturing temporal
features, which are crucial for fault detection and localization.

The LSTM classifier model fairs further better in performance than MLP classifier. This gain can be
attributed to its specialized architecture designed for temporal sequence modeling. Its role as a feature
extractor is pivotal in transforming raw sensor data into meaningful representations. The LSTM excels
in identifying actual positive cases (recall of 0.941), minimizing the chances of missing faulty motors.
Our approach, LSTM+RF, combines the strengths of LSTM’s feature extraction and temporal modeling
with the robust classification capabilities of Random Forest. Our method outperforms all other models
not only along the overall accuracy (96.83%), but also beats past approaches along precision and recall.

34

3.1.2 Motor-Wise Performance

Across the different motor types, the results in table 3.2 show that the classical methods, including
Logistic Regression, SVM, and Random Forest, perform relatively well in situations with ‘No Faulty
Motor’ (Yt = 0) achieving high accuracy close to 1.0. However, their performance drops significantly
when it comes to accurately detecting and localizing faulty motors. For instance, the accuracy of Lo-
gistic Regression and SVM drops to around 0.70 to 0.78 for Motor 1, indicating that these methods
have difficulty distinguishing between faulty and non-faulty motors. On the other hand, deep learning
approaches, specifically MLP classifier and LSTM, exhibit significantly improved performance across
all motor types, with accuracy consistently close to 1.0. This demonstrates their capability to effectively
detect and localize faults in various motors. Our proposed approach outperforms all other methods,
achieving perfect accuracy (1.0) for ‘No Faulty Motor’ and near-perfect accuracy for the detection and
localization of faulty motors, with accuracy ranging from 0.88 to 0.99 across different motorsMi. These
results emphasize the effectiveness of our approach, where a combination of LSTM feature extraction
and Random Forest classification excels in fault detection and localization tasks for hexacopter motors.

Motor
No Fault

Motor
1

Motor
2

Motor
3

Motor
4

Motor
5

Motor
6

Classical
Approach

Logistic
Regression 0.95 0.70 0.24 0.75 0.80 0.61 0.92

SVM 0.98 0.78 0.39 0.72 0.65 0.68 0.80

Random Forest 1.00 0.76 0.55 0.83 0.72 0.63 0.86

2-Stage
Rotation Forest 1.00 0.93 0.42 0.92 0.88 0.57 0.94

Deep
Learning
Approach

ANN 1.00 0.82 0.77 0.72 0.93 0.91 0.96

Vanilla-LSTM 1.00 0.97 0.91 0.98 0.96 0.85 0.89

Ours
(LSTM+RF) 1.00 0.99 0.95 0.99 1.00 0.88 0.97

Table 3.2: Motor-Wise Accuracy: The table presents a comprehensive comparison of models’ perfor-

mance for fault detection and isolation across various motors, including scenarios where there are ’No

Faults.’ The models evaluated include both classical statistical methods (Logistic Regression, SVM,

Random Forest, Rotation Forest) and deep learning approaches (ANN, LSTM), with our proposed ap-

proach highlighted for comparison.

35

3.1.3 Noise Tolerance Analysis

This section seeks to evaluate the robustness of various fault localization models under different
noise conditions, emphasizing the importance of noise tolerance in ensuring reliable UAV operations in
real-world, unpredictable environments. We performed an analysis by examining the impact of varying
noise levels on the performance of different models on the task of fault localization. As we increase the
noise level, we observe a consistent decline in accuracy across all approaches, which is an anticipated
outcome. However, it’s worth noting the significant variations in accuracy among the different meth-
ods. Random Forest, (depicted by blue), exhibits a steady decline in accuracy as noise levels increase.
It remains relatively stable until the noise level reaches 100%, after which it experiences a sharper
drop whereas rotation forest, (depicted in orange), displays a more resilient performance, maintaining
a higher accuracy even as noise levels rise. This method proves to be more noise-tolerant compared
to random forest. MLP (green) and LSTM (red) classifier approaches demonstrate the advantages of
deep learning approaches. Both methods maintain reasonably high accuracy levels, even at elevated
noise levels. They showcase robustness and resilience to noise, highlighting their potential in real-
world, noisy UAV environments. Our proposed approach (purple) consistently outperforms all other
methods, maintaining the highest accuracy across the entire noise spectrum. Even at the highest noise
level of 180%, our approach maintains a remarkable accuracy level, emphasizing its adaptability and
noise-resilient characteristics. Our innovative approach leverages the LSTM’s pretraining capabilities
for feature extraction and complements them with traditional features, contributing to enhanced fault
localization in hexacopter UAVs.

Figure 3.1: Accuracy with Noise Level: The x-axis represents the range of noise levels, spanning from 0% to

180%, in 20% increments. The y-axis shows the accuracy of each approach. The proposed LSTM-based fault

localization approach outperforms traditional methods.

36

3.1.4 Detection Time

We showcase the detection time within a sequence in Fig. 3.2. Our classifier is able to detect and
localize the fault within 3-5 timesteps of introduction. The UAV thus has a buffer of 3∆t to 5∆t delay
from the time the fault was introduced, so that the UAV can reconfigure its control allocation matrix,
and ensure a stable system.

3.2 Results on Real-World Dataset

The collection and analysis of real-world outdoor data for fault detection in UAVs represent a criti-
cal step towards understanding model performance in practical scenarios. Despite the challenges posed
by real-world conditions, such as noise and dynamic environmental factors, the insights gained from
this data contribute to the development of robust fault detection algorithms. Through deliberate fault
introduction and data collection, we simulate real-world scenarios, providing valuable insights into
model performance and its ability to generalize beyond simulated data. Additionally, our models un-
dergo benchmarking against alternative methodologies, enabling a comparative evaluation of their per-
formance. We conduct an in-depth analysis of motor-wise performance and examine the number of
detection steps necessary for accurate fault identification.

3.2.1 Outdoor Dataset Collection

Real-world data is collected through a series of multiple test flights conducted on a hexacopter. The
hexacopter ZD850 Carbon Fiber Frame Hexacopter 850 [43], characterized by parameters outlined in
Table 3.3, is launched at a height ranging from 1 to 3 meters from the ground and placed on hold.
Subsequently, a fault is deliberately introduced in one of the motors. Data is then gathered while the
UAV is stabilized within a timeframe of 2 seconds.

We present a selection of real-world flight logs in Figure 3.4. It is evident that these logs exhibit
a significantly higher level of noise in comparison to simulated data. However, they closely resemble
the noisy data employed for testing our model. This disparity in noise levels may be attributed to
various factors inherent in real-world flight environments, such as atmospheric disturbances, sensor
inaccuracies, and mechanical imperfections in the UAV hardware.

Furthermore, an observation can be made regarding the instability of the desired control by the
controller[44], which contrasts with the smoother trajectories evident in the simulated data. This dis-
crepancy in control stability could stem from differences in the dynamic response of the UAV between
simulation and reality. Factors such as unmodeled aerodynamic effects, varying payload configurations,
and environmental conditions not accurately represented in simulation may contribute to the observed
instability in real-world control.

37

Figure 3.2: Trajectory Features and Fault Detection Motorwise: The above graphs showcase trajec-

tory features with time steps (sequence numbers) along with fault introduction and detection times. The

x-axis indicates the sequence number (n), with each unit corresponding to a time-step at a rate of 36

frames per second, thus showcasing a truncated sequence of the full operation. The y-axis displays the

angular velocity values in radians per second (rad/s). Red vertical lines represent the sequence step at

which a fault is introduced, and green vertical lines denote the step at which the fault is detected by our

model. Our detection system identifies the occurrence of a fault within 2-5 frames of its inception.

38

Figure 3.3: Hexacopter UAV ZD850 used for data collection.

3.2.2 Experiment Setup

The flight sequences are partitioned into a training-test split with a ratio of 70%:30%. Similar to the
methodology employed for simulated data, each data point is constructed with P time steps, encompass-
ing the current time step T and the preceding T-P time steps. These data points are utilized to predict
the state of the drone at time T. The state of the drone may encompass either a ”No Fault” state denoted
by 0, or a state belonging to the set 1, 2, ..., 6, indicating a fault in the corresponding motor.

We present a comprehensive analysis of the overall and motor-wise performance against our bench-
mark models, which encompass classical models such as Logistic Regression, Support Vector Machine
(SVM), Random Forest, and Rotation Forest. Additionally, we include deep learning models such as
Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM) networks in our evaluation. Fur-
thermore, we observe and analyze the number of time steps required for our model to predict faults. This
metric holds crucial significance as it reflects the temporal aspect of fault prediction. Understanding the
number of time steps necessary for fault detection aids in assessing the responsiveness and efficiency of
the model in identifying potential issues in real-time scenarios.

3.2.3 Model Performance Comparison

Table 3.5 analyse model performance on real-world data for fault detection and localization high-
lights distinct challenges compared to simulated data, primarily due to the complexities and noise in-
herent in real-world scenarios. Logistic Regression (LR) and Support Vector Machines (SVM) exhibit
significantly reduced effectiveness on real-world data, with accuracies of 34% and 21%, respectively.
Their limited ability to handle the non-linear patterns typical of real-world data results in poor fault
detection capabilities. Random Forest (RF) and Rotation Forest (RoF) perform better, with accuracies

39

Figure 3.4: The figure presents real-world data illustrating UAV Hexcopter motion, detailing the actual

and desired values for roll (R), yaw (Y), and pitch (P). As evident, real data often exhibits significantly

more noise and uncertainty in behavior compared to simulated datasets.Figures (a), (b), and (c) denote

the data for Motors 1, 2, and 3, respectively, with subfigures (i), (ii), and (iii) corresponding to Roll,

Pitch, and Yaw, respectively.

40

Table 3.3: Hexacopter parameters

Parameter Value

Frame Material Carbon Fiber

Frame Size 850mm

Carbon Fiber Arm Thickness 20mm

Tripod Stand Tube Thickness 16mm + 10mm

Total Frame Weight 1210 grams

Propeller Size 15 inches

Motor Size 34mm

Motor Emax ECO II Series 2807

Motor Testltem 1500KV

Motor Weight 46.9g

Flight Controller px4 cauv5 nano

of 45% and 61%. These methods, especially RoF with its feature transformation strategy, show im-
proved handling of real-world data complexities but still fall short of their simulated data performance.
The Multi-Layer Perceptron (MLP) and Long Short-Term Memory (LSTM) networks mark a further
improvement, with accuracies of 69% and 74%, respectively. Their advanced capabilities in capturing
non-linear relationships and temporal dependencies demonstrate their suitability for complex real-world
applications.

Our approach, which combines LSTM’s temporal feature extraction with robust classification, out-
performs all others with an 83% accuracy. This high performance indicates a substantial step forward
in fault detection and localization under real-world conditions, showcasing our method’s ability to not
only accurately identify faults but also minimize false positives, a critical aspect in practical scenarios.

3.2.4 Motor-wise Results

The tables 3.6 provided offer a comparative analysis of fault detection and isolation models’ per-
formance across different motors, encompassing scenarios with and without faults, based on both real-
world. In the case of real-world data, classical approaches like Logistic Regression and SVM exhibit
varied performance across different motors, highlighting challenges in generalizing well to real-world
conditions. While 2-Stage Rotation Forest and Random Forest show improvements, they still encounter
difficulties in accurately detecting faults across all motors. On the other hand, deep learning approaches
such as ANN and Vanilla-LSTM demonstrate higher accuracy, indicating their potential to capture com-

41

Parameter ICM-20602 ICM-20689 BMI055

Accelerometer

Acceleration Ranges ±2g, ±4g, ±8g, ±16g ±2g, ±4g, ±8g, ±16g ±2g/±4g/±8g/±16g

Filter Bandwidths 100 Hz 1kHz − < 3.91Hz 1kHz − < 8Hz

On-chip FIFO 1 KB 4 Kbyte 32 frames depth

Temperature Sensor 16-bit ADCs 16-bit ADCs 8-bit

Ultra-low Power IC 9.4-171.1 µA 8.4-194.9 µA 130µA

Gyroscope

Ranges ±250,500,1000,2000/s ±250,500,1000,2000/s ±125°/s to ±2000°/s

Low Power IC 0.7-1.78 µA 1.3-2.6 µA < 5mA

Table 3.4: Comparison of Accelerometer and Gyroscope Specifications present in flight controller px4

cauv5 nano[3] which has 3 sensors ICM-20602,ICM-20689, and BMI055.

Logistic
Regression SVM

Random
Forest

Rotation
Forest

MLP
Classifier

LSTM
Classifier Ours

Accuracy 0.34 0.21 0.45 0.61 0.69 0.74 0.832

Precision 0.26 0.29 0.43 0.72 0.75 0.83 0.922

Recall 0.34 0.21 0.45 0.61 0.70 0.74 0.857

F1-Score 0.29 0.24 0.44 0.66 0.72 0.78 0.888

Table 3.5: Outdoor Benchmark Comparison: This table presents aggregated results across various

fault types in outdoor motor conditions, as well as scenarios without faults, using the dataset specified.

plex patterns present in real-world data. Notably, our proposed LSTM+RF approach consistently out-
performs other models, achieving remarkable accuracy in both fault and no-fault scenarios.

The disparity in performance between real-world and simulated data underscores the importance of
evaluating models in real-world conditions to ensure their practical applicability. Despite the challenges
posed by real-world data, the LSTM+RF model emerges as a promising solution, offering reliable per-
formance across different data settings and demonstrating its potential for real-world fault detection and
isolation tasks.

42

Motor
No Fault

Motor
1

Motor
2

Motor
3

Motor
4

Motor
5

Motor
6

Classical
Approach

Logistic
Regression 0.96 0.03 0.90 0.12 0.05 0.33 0.02

SVM 0.98 0.04 0.02 0.11 0.02 0.29 0.02

2-Stage
Random Forest 0.98 0.05 0.89 0.07 0.83 0.26 0.07

Rotation Forest 0.99 0.10 0.98 0.17 0.50 0.83 0.68

Deep
Learning
Approach

ANN 1.00 0.01 0.98 0.52 0.92 0.99 0.41

Vanilla-LSTM 0.99 0.10 0.99 0.16 0.99 0.99 0.98

Ours
LSTM+RF 1.00 0.87 0.98 0.19 0.99 0.82 0.98

Table 3.6: Outdoor Motor-Wise Accuracy: This table compares fault detection and isolation accuracy

across motors for various models, including classical methods (Logistic Regression, SVM, Random

Forest, Rotation Forest) and DL approaches (ANN, LSTM), highlighting our proposed approach.

3.2.5 Detection Time

We conducted an analysis to determine the temporal extent required by our model to anticipate faults
subsequent to their occurrence. Table 3.7 delineates and contrasts the Median Detection Steps observed
for both Simulated and Real Data within our model framework, utilizing a data window encompassing
5 timesteps. As evident from the analysis, the model exhibited prompt fault detection in the case of
simulated data, characterized by sudden and drastic changes in values. This efficiency in detection can
be attributed to the model’s ability to recognize abrupt deviations from normal operating conditions.
However, the scenario differs significantly in real-world data, where changes in rotational values tend to
occur gradually over time.

The table presents data on the median detection steps, along with lower and upper bounds, for six
different motors under both simulated and real conditions, as well as the number of datapoints available
for each motor. The median detection steps vary across motors and conditions, indicating differences
in performance. Motors like M1 and M6 exhibit notable changes in detection steps between simulated
and real conditions, while others, like M3, demonstrate consistency. The bounds provide insight into
the variability of detection steps, with some motors showing wider ranges than others. Overall, the table
offers valuable insights into the performance characteristics of these motors, highlighting potential areas
for further analysis and comparison.

43

Motor
Median Detection
Steps (Simulated)

Median Detection
Steps (Real) Lower Bound Upper Bound

Number of
Datapoints

M1 2 6 2 8 3

M2 3 6 3 9 7

M3 3 4 0 6 2

M4 4 5 1 7 6

M5 3 4 1 7 9

M6 2 6 2 8 3

Table 3.7: Median Detection Steps and Bounds for Each Motor. The timesteps are measured at a

sampling rate of 50Hz.

In conclusion, the analysis of real-world outdoor data underscores the importance of evaluating fault
detection models under realistic conditions. By comparing model performance across different motors
and fault scenarios, we gain valuable insights into their effectiveness and generalizability. These findings
pave the way for further refinement and optimization of fault detection algorithms, ultimately enhancing
the reliability and safety of UAV systems in real-world applications.

3.3 Performance on Raspberry Pi

The efficiency of fault detection algorithms in real-time scenarios holds significant importance. In
this section, we present a detailed account and analysis of the real-time experiments conducted. Our
experiments were conducted on a Raspberry Pi microcontroller, which was interfaced with a UAV flight
controller, as depicted in Figure 2.2. We evaluate the time performance comprehensively, encompassing
both overall system performance and individual motor performance. Additionally, we delve into the
statistical distribution of time-related metrics.

3.3.1 Experiment Setup

We conducted time experiments using two distinct computing platforms: the Raspberry Pi 3 [45]
and the Apple MacBook Pro. Table 3.8 provides detailed specifications for both machines, highlighting
disparities in processing speed and architectural nuances.

The Raspberry Pi 3, chosen as the onboard computer, offers several advantages conducive to our
fault detection algorithm’s real-time execution. Firstly, its compact size and low power consumption
make it well-suited for integration into UAV systems. Furthermore, the Raspberry Pi’s ARM-based
architecture aligns closely with embedded systems, facilitating seamless interfacing with the UAV flight

44

Figure 3.5: Raspberry Pi: This figure depicts a Raspberry Pi Model B, a low-cost, single-board com-

puter employed in this research as a micro controller. The image highlights several key components: a

microSD card slot for expandable storage, HDMI and USB ports for connecting peripherals, GPIO pins

for interfacing with electronic components, and an LED power indicator.

45

controller. Despite its relatively modest processing power compared to the MacBook Pro, the Raspberry
Pi’s real-time capabilities are commendable, owing to its optimized design for embedded applications.

Specification Raspberry Pi 3 Model B 16” MacBook Pro with M1 Pro

Processor Quad Core Broadcom BCM2837 Apple M1 Pro

Frequency 1.2 GHz 2.06 - 3.22 GHz

AMU 64 bit 64 bit

RAM 1GB 16GB

Wireless Connectivity
BCM43438 wireless LAN &
Bluetooth Low Energy (BLE) Wi-Fi 6 (802.11ax)

GPIO 40-pin extended GPIO Not available

Storage 32 GB Micro SD 512GB SSD storage

Power Source
Switched Micro USB
power source up to 2.5A 140W USB-C Power Adapter

Weight 42 g 2.1 kg

Table 3.8: Comparison of Raspberry Pi 3 Model B and 16” MacBook Pro with M1 Pro

3.3.2 Overall Performance on Raspberry Pi

The data presented in Table 3.9 offers a comprehensive comparative analysis of the inference perfor-
mance of various machine learning models across two distinct hardware platforms: Raspberry Pi 3 and
the Apple M1 Pro, utilizing a dataset of 1000 data points. The table delineates the inference times, mea-
sured in seconds, thereby illustrating the computational efficiency of each model on the aforementioned
hardware configurations. Notably, our proposed model demonstrates the capability to detect and isolate
faults within a remarkably swift timeframe of 6ms when deployed on an onboard microcontroller. This
slight increment in inference time, as observed in comparison to the LSTM classifier, can be attributed
to the integration of an RF (Random Forest) classifier within our model’s architecture. However, it is
imperative to highlight that our model employs a reduced number of trees (L=20) in the RF classifier,
a modification made feasible by the sophisticated data processing technique that extracts temporal fea-
tures utilizing LSTM. This strategic approach not only enhances the model’s fault detection capabilities
but also optimizes its computational efficiency, making it a viable solution for real-world applications
where speed and accuracy are paramount.

46

Model Raspberry Pi 3 Apple M1 Pro

Logistic Regression 0.7252 0.0294

SVM 1.3160 0.0504

Random Forest 46.1344 1.9090

MLP Classifier 4.7844 0.5204

LSTM Classifier 5.9172 0.8247

Ours 6.5129 0.8946

Table 3.9: Inference Time (in seconds): Comparative Analysis of Model Performance on Differing

Hardware Configurations summed for 1000 Data Points. The table presents the inference time for

various machine learning models executed on Raspberry Pi 3 and Apple M1 Pro hardware platforms.

Model Avg. Time (s) Min. Time (s) Max. Time (s) Std. Dev.

Logistic Regression 0.000725 0.000647 0.065198 0.000673

Support Vector Machine 0.001316 0.001211 0.024925 0.000342

Random Forest 0.046134 0.043446 0.210100 0.003772

MLP Classifier 0.004784 0.002045 0.885560 0.016501

LSTM Classifier 0.005917 0.001837 0.296446 0.006982

Ours 0.006512 0.003810 0.329204 0.004469

Table 3.10: Comparison of Model Performance in Terms of Execution Time over 1000 Data Points.

3.3.3 Statistical Analysis on Inference Time

The table 3.10 provides a detailed statistical analysis of various machine learning models in terms
of their execution time metrics, including average time, minimum time, maximum time, and stan-
dard deviation. Logistic Regression, Support Vector Machine (SVM), Random Forest, MLP Classi-
fier, LSTM Classifier, and an unspecified ”Ours” model are evaluated based on their computational
efficiency. Among these models, Logistic Regression exhibits the lowest average execution time of
0.000725 seconds, while the MLP Classifier shows the highest average time of 0.004784 seconds. In-
terestingly, despite the MLP Classifier’s higher average time, it demonstrates the lowest minimum time
of 0.002045 seconds, suggesting efficient processing in some instances. On the other hand, the Random
Forest model exhibits the highest maximum execution time of 0.210100 seconds, indicating potential
variability in its computational complexity. The LSTM Classifier and ”Ours” model present interme-

47

diate performance, with average times of 0.005917 and 0.006512 seconds, respectively. Both models
show moderate standard deviations, implying relatively stable performance across different predictions.

The image 3.6 depicts a heatmap that shows prediction time. The heatmap is comprised of a grid
of squares, each containing a numerical value. The color intensity of each square corresponds to the
value it contains, with warmer colors indicating higher values and cooler colors indicating lower values.
The purpose of a prediction time heatmap is to visually represent the amount of time it takes to make a
prediction across different predicted labels and actual labels. The x-axis represents the predicted label,
and the y-axis represents the actual label. Each square in the heatmap corresponds to a combination of
predicted and actual labels, and the color of the square encodes the average prediction time.

Figure 3.6: This heatmap visualizes the prediction time of our model.

In conclusion, the analysis presented offers valuable insights into the temporal extent required by
our fault detection model, delineating its performance across different scenarios. The table comparing
median detection steps for simulated and real data highlights the model’s efficiency in promptly detect-
ing faults characterized by abrupt changes in values, while also acknowledging the challenges posed
by gradual changes in real-world data. Furthermore, the comprehensive statistical analysis of model
execution times provides a nuanced understanding of each model’s computational efficiency, aiding in
informed decision-making regarding model selection for real-world applications.

The subsequent section delves into the performance of our fault detection algorithm on the Raspberry
Pi microcontroller, emphasizing its real-time capabilities and efficiency in detecting faults within a
constrained computing environment. The comparative analysis between the Raspberry Pi 3 and Apple
M1 Pro platforms underscores the adaptability and optimization of our model across diverse hardware
configurations.

48

In summary, our fault detection algorithm demonstrates promising performance across various con-
ditions, showcasing its potential for real-world deployment in scenarios requiring rapid and accurate
fault detection. The insights gained from these analyses pave the way for further optimization and
refinement, ultimately enhancing the model’s effectiveness in practical applications.

49

Chapter 4

Conclusions

In conclusion, our study introduces an innovative approach to fault detection and localization in hex-
acopter UAVs, utilizing a synergistic combination of Long Short-Term Memory (LSTM) networks and
Random Forest classifiers. This method demonstrates superior performance compared to both classical
statistical approaches and other deep learning techniques, through extensive evaluation. Our findings
highlight the approach’s robustness against varying noise levels, showcasing its applicability in dynamic
and unpredictable environments, which is crucial for UAV technology.

Looking ahead, the future of fault detection and localization within hexacopter UAVs is ripe with
potential for significant advancements. A key area for further development is enhancing the model’s
adaptability to dynamic environmental conditions, which are prevalent in real-world applications. Ad-
ditionally, extending the model to effectively manage multi-motor failures presents a substantial chal-
lenge. Given that multiple motors can fail simultaneously under real conditions, developing a more
sophisticated fault detection system capable of accurately diagnosing and localizing such complex is-
sues becomes imperative.

Moreover, we are exploring avenues to integrate the fault detection system directly with the UAV’s
onboard control mechanism to facilitate real-time reconfiguration in the event of detected faults. This
integration promises to enable rapid and effective responses to faults, potentially revolutionizing UAV
reliability and safety. The goal is to navigate the complexities of different fault modes and conceive
advanced fault-tolerant control strategies that surpass the conventional methods of addressing motor
failures.

Further research could also delve into anomaly detection, equipping the model to identify unforeseen
deviations in UAV behavior. This proactive fault management strategy aims to provide a comprehensive
solution capable of swiftly addressing novel challenges, including those outside the scope of pre-defined
fault categories. Through these advancements, we envision a future where UAVs operate with unprece-
dented reliability and safety, significantly expanding their application potential across various domains.

50

Related Publications

1 Shivaan Sehgal, Aakash Maniar, Deepak Gangadharan and Harikumar Kandath, “ Leveraging
Latent Temporal Features for Robust Fault Detection and Isolation in Hexacopter UAVs” in IEEE
10th International Conference on Automation, Robotics and Application (ICARA 2024).IEEE,
2024 [Accepted]

51

Bibliography

[1] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural net-
works, 2014.

[2] L Breiman. Random forests. Machine Learning, 45:5–32, 10 2001.

[3] PX4 Autopilot Development Team. CUAV V5 Nano - PX4 User Guide. https://docs.px4.
io/main/en/flight_controller/cuav_v5_nano.html, Accessed: ¡access date¿.

[4] Rodrigo Kuntz Rangel and Alex Coschitz Terra. Development of a surveillance tool using uav’s.
In 2018 IEEE Aerospace Conference, pages 1–11, 2018.

[5] Jeongeun Kim, Seungwon Kim, Chanyoung Ju, and Hyoung Son. Unmanned aerial vehicles in
agriculture: A review of perspective of platform, control, and applications. IEEE Access, PP:1–1,
07 2019.

[6] Abd. Manan Samad, Nazrin Kamarulzaman, Muhammad Asyraf Hamdani, Thuaibatul Aslamiah
Mastor, and Khairil Afendy Hashim. The potential of unmanned aerial vehicle (uav) for civilian
and mapping application. In 2013 IEEE 3rd International Conference on System Engineering and
Technology, pages 313–318, 2013.

[7] Ivan H. Beloev. A review on current and emerging application possibilities for unmanned aerial
vehicles. Acta Technologica Agriculturae, 19(3):70–76, 2016.

[8] Ayhan Altinors, Ferhat Yol, and Orhan Yaman. A sound based method for fault detection with
statistical feature extraction in uav motors. Applied Acoustics, 183:108325, 2021.

[9] V. Artale, Angela Ricciardello, and C. Milazzo. Mathematical modeling of hexacopter. Applied
Mathematical Sciences, 7:4805–4811, 07 2013.

[10] L. Breiman. Classification and Regression Trees. Routledge, 1st edition, 1984.

[11] Tin Kam Ho. The random subspace method for constructing decision forests. IEEE Trans. Pattern
Anal. Mach. Intell., 20(8):832–844, aug 1998.

52

https://docs.px4.io/main/en/flight_controller/cuav_v5_nano.html
https://docs.px4.io/main/en/flight_controller/cuav_v5_nano.html

[12] Jehad Ali, Rehanullah Khan, Nasir Ahmad, and Imran Maqsood. Random forests and decision
trees. International Journal of Computer Science Issues(IJCSI), 9, 09 2012.

[13] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 10 2001.

[14] Sepp Hochreiter. Untersuchungen zu dynamischen neuronalen netzen. 04 1991.

[15] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient descent is
difficult. IEEE Transactions on Neural Networks, 5(2):157–166, 1994.

[16] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation,
9(8):1735–1780, 1997.

[17] Inseok Hwang, Sungwan Kim, Youdan Kim, and Chze Eng Seah. A survey of fault detection, isola-
tion, and reconfiguration methods. IEEE Transactions on Control Systems Technology, 18(3):636–
653, 2010.

[18] Radoslaw Puchalski and Wojciech Giernacki. Uav fault detection methods, state-of-the-art.
Drones, 2022.

[19] Alessandro Freddi, Sauro Longhi, Andrea Monteriù, and Mario Prist. Actuator fault detection
and isolation system for an hexacopter. In 2014 IEEE/ASME 10th International Conference on
Mechatronic and Embedded Systems and Applications (MESA), pages 1–6, 2014.

[20] Ngoc Phi Nguyen, Nguyen Xuan Mung, and Sung Kyung Hong. Actuator fault detection and
fault-tolerant control for hexacopter. Sensors, 19(21), 2019.

[21] Claudio D. Pose, Alessandro Giusti, and Juan I. Giribet. Actuator fault detection in a hexacopter
using machine learning. In 2018 Argentine Conference on Automatic Control (AADECA), pages
1–6, 2018.

[22] Aditya Mulgundkar, Mayank Singh, Munjaal Bhatt, Prudhvi Raj Turlapati, Deepak Gangadharan,
and Harikumar Kandath. Fault detection and isolation on a hexacopter uav using a two-stage
classification method. In 2023 IEEE 19th International Conference on Automation Science and
Engineering (CASE), pages 1–6, 2023.

[23] J. J. Tong, W. Zhang, Fangli Liao, C. F. Li, and Y. F. Zhang. Machine learning for uav propeller
fault detection based on a hybrid data generation model. ArXiv, abs/2302.01556, 2023.

[24] Wansong Liu, Zhu Chen, and Minghui Zheng. An audio-based fault diagnosis method for quadro-
tors using convolutional neural network and transfer learning. In 2020 American Control Confer-
ence (ACC), pages 1367–1372, 2020.

[25] Pu Yang, Huilin Geng, Chenwan Wen, and Peng Liu. An intelligent quadrotor fault diagnosis
method based on novel deep residual shrinkage network. Drones, 5:133, 11 2021.

53

[26] Xiaojun Yang, Chuan Wan, Tongshuai Zhang, and Zhihua Xiong. Feature extraction of sequence
data based on lstm and its application to fault diagnosis of industrial process. In 2022 IEEE 11th
Data Driven Control and Learning Systems Conference (DDCLS), pages 693–698, 2022.

[27] Jeevesh Vanga, Durga Prabhu Ranimekhala, Swathi Jonnala, Jhansi Jamalapuram, Balaji Gutta,
Srinivasa Rao Gampa, and Amarendra Alluri. Fault classification of three phase induction motors
using Bi-LSTM networks. Journal of Electrical Systems and Information Technology, 10(1):28,
December 2023.

[28] Burak Gülmez. Stock price prediction with optimized deep lstm network with artificial rabbits
optimization algorithm. Expert Systems with Applications, 227:120346, 2023.

[29] Khaled A. Althelaya, El-Sayed M. El-Alfy, and Salahadin Mohammed. Evaluation of bidirectional
lstm for short-and long-term stock market prediction. In 2018 9th International Conference on
Information and Communication Systems (ICICS), pages 151–156, 2018.

[30] Amber C. Kiser, Karen Eilbeck, and Brian T. Bucher. Developing an lstm model to identify
surgical site infections using electronic healthcare records. AMIA Joint Summits on Translational
Science proceedings. AMIA Joint Summits on Translational Science, 2023:330–339, 2023.

[31] G. Maragatham and Shobana Devi. Retraction note: Lstm model for prediction of heart failure in
big data. Journal of Medical Systems, 46(6):42, 2022.

[32] Yisak Debele, Ha-Young Shi, Assefinew Wondosen, Tae-Wan Ku, and Beom-Soo Kang. Deep
learning-based robust actuator fault detection and isolation scheme for highly redundant multirotor
uavs. Drones, 7(7), 2023.

[33] Vidyasagar Sadhu, Khizar Anjum, and Dario Pompili. On-board deep-learning-based unmanned
aerial vehicle fault cause detection and classification via fpgas. IEEE Transactions on Robotics,
39(4):3319–3331, 2023.

[34] Greg Van Houdt, Carlos Mosquera, and Gonzalo Nápoles. A review on the long short-term mem-
ory model. Artificial Intelligence Review, 53, 12 2020.

[35] Joanne Peng, Kuk Lee, and Gary Ingersoll. An introduction to logistic regression analysis and
reporting. Journal of Educational Research - J EDUC RES, 96:3–14, 09 2002.

[36] Theodoros Evgeniou and Massimiliano Pontil. Support vector machines: Theory and applications.
volume 2049, pages 249–257, 09 2001.

[37] Ludmila Kuncheva and Juan Rodrı́guez. An experimental study on rotation forest ensembles.
volume 4472, pages 459–468, 05 2007.

[38] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. CoRR, abs/1502.03167, 2015.

54

[39] Abien Fred Agarap. Deep learning using rectified linear units (relu), 2019.

[40] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

[41] N. Koenig and A. Howard. Design and use paradigms for gazebo, an open-source multi-robot
simulator. In 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
(IEEE Cat. No.04CH37566), volume 3, pages 2149–2154 vol.3, 2004.

[42] Ameen Abd Al-salam Selami and Ahmed Fadhil. A study of the effects of gaussian noise on image
features. Kirkuk University Journal / Scientific Studies (1992-0849), 11:152 – 169, 04 2016.

[43] RC Hyderabad. Zd850 hexacopter frame, Accessed: 2024.

[44] Andrea Alaimo, Valeria Artale, Cristina Lucia Rosa Milazzo, and Angela Ricciardello. Pid con-
troller applied to hexacopter flight. Journal of Intelligent & Robotic Systems, 73(1):261–270,
2014.

[45] Raspberry Pi 3 Model B. https://www.raspberrypi.com/products/

raspberry-pi-3-model-b/. Accessed: March 9, 2024.

55

https://www.raspberrypi.com/products/raspberry-pi-3-model-b/
https://www.raspberrypi.com/products/raspberry-pi-3-model-b/

	Introduction
	Thesis Outline
	Thesis Contributions
	Preliminaries
	Dynamics of Hexacopter UAV
	Fault Conditions in Hexacopter
	Overview of Classical Machine Learning Classifiers
	Decision Trees
	Random Forest

	Introduction to Long Short-Term Memory (LSTM)

	Related Work
	Fault Detection and Isolation
	Classical Approaches
	Deep Learning based FDI
	LSTM-based Approaches

	Fault Detection and Isolation in Hexacopter UAVs using Ensemble Classifier-Enhanced LSTM
	Problem Formulation
	Methodology
	State-Forecasting LSTM
	Random-Forest Ensemble Classifier
	Addressing Class-imbalance

	Implementation and Experimental Setup
	Metrics Used
	Correctness
	Latency

	Baseline Models
	Implementation Details
	Dataset

	Results and Analysis
	Results on Simulated Dataset
	Overall Performance
	Motor-Wise Performance
	Noise Tolerance Analysis
	Detection Time

	Results on Real-World Dataset
	Outdoor Dataset Collection
	Experiment Setup
	Model Performance Comparison
	Motor-wise Results
	Detection Time

	Performance on Raspberry Pi
	Experiment Setup
	Overall Performance on Raspberry Pi
	Statistical Analysis on Inference Time

	Conclusions
	Bibliography

