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Abstract

Imagine a robot navigating a complex and unfamiliar environment - underwater, subterranean, or

even a dilapidated building. Current Visual Place Recognition (VPR) techniques often struggle with

such diverse scenarios, requiring re-training for each new environment. This limitation hinders the

development of truly autonomous robots. This work introduces AnyLoc, a novel VPR system taking

a significant step towards universality. AnyLoc leverages feature representations learned by powerful

foundation models, eliminating the need for VPR-specific training. Furthermore, by combining these

features with unsupervised aggregation techniques, AnyLoc can uncover unique visual characteristics

that define different environments. Our experiments demonstrate AnyLoc’s potential to function across

multiple environments (outdoor, indoor, aerial, underwater, subterranean, and dilapidated) without

retraining, laying the groundwork for VPR solutions that could be deployed anywhere, anytime, and

across anyview.
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Chapter 1

Introduction

1.1 Foreword

Imagine a mobile robot navigating a complex environment for the first time. Limited training

data often hinders its ability to recognize previously unseen locations. This challenge highlights the

need for robust visual place recognition (VPR) techniques in mobile robotics. The fields of deep

learning and mobile robotics are undergoing rapid advancements, with a growing focus on developing

more generalized solutions. One promising approach involves foundation models, capable of learning

transferable representations from massive datasets. These models are paving the way for tackling open-set

problems, where robots can excel even in scenarios not explicitly encountered during training. This thesis

investigates the potential of foundation models to improve the perception capabilities of mobile robots,

focusing on the development of a novel VPR technique called AnyLoc.

AnyLoc is a novel image retrieval system that leverages latent features extracted by foundation

models. It employs aggregation techniques to combine these features, resulting in robust place descriptors

crucial for accurate visual place recognition.

1.1.1 Contribution

This thesis, along with the publication supporting it (AnyLoc [16]), has the following content and

contributions

• Chapter 1: An overview of mobile robotics, Simultaneous Localization and Mapping (SLAM),

and Visual Place Recognition (VPR) systems.

• Chapter 2: An overview of foundation models: ViT architecture, training pipeline for self-

supervised learning, and the backbone models for AnyLoc.

• Chapter 3: Proposes an image retrieval method, AnyLoc, that is a new state-of-the-art on various

testing scenarios, yielding twice the performance of supervised VPR benchmarks. Interestingly, it

looses no performance even after a 95x reduction in descriptor size, which is unprecedented in

VPR.

• Chapter 4: Concludes this thesis with presenting solutions to current problems and some ideas for

future development.
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1.2 Understanding the Area of Contribution

This thesis introduces AnyLoc [16], a novel image retrieval system that leverages features extracted

from foundation models and employs conventional aggregation techniques to create robust place descrip-

tors. Image retrieval (IR) plays a crucial role in various applications, including:

• Visual Place Recognition (VPR) in Mobile Robotics [32]: VPR systems rely on IR to identify pre-

viously encountered locations, enabling tasks like navigation and loop closure within Simultaneous

Localization and Mapping (SLAM). This is also the direction in which this thesis is oriented.

• Remote Sensing and Geographic Information Systems (GIS) [59]: IR techniques are used to

analyze and classify satellite or aerial imagery, aiding tasks like land cover change detection or

identifying specific features in large datasets.

• Medical Image Retrieval [114, 172]: In healthcare, IR helps medical professionals retrieve relevant

medical images (e.g., X-rays, MRIs) based on specific criteria, assisting in diagnosis and treatment

planning.

• Content-based Image Search [13]: IR powers search engines and applications that allow users

to find similar images based on visual content, facilitating tasks like product identification or

searching for visually similar items online and organizing a large album of unorganized photos.

The reminder of this chapter describes a mobile robotics system, parts of a SLAM system (Sec-

tion 1.2.2), a VPR system in SLAM (Section 1.2.3), and associated methods and jargon. Chapter 2

introduces foundation models and related concepts needed for this thesis. Our method, AnyLoc, is

presented in Chapter 3. We conclude with possible future directions in Chapter 4.

1.2.1 Mobile Robot Systems

The software of mobile robots is composed of various modules. Most systems comprise of the

following parts (also highlighted in Fig. 1.1)

• A data processing module collects information from the environment through sensors and performs

signal processing to get meaningful information.

• A localization and mapping module creates and maintains a map of the environment (in which the

robot can navigate). It also localizes the robot in that map (usually as a temporal pose sequence).

• A cognition module transforms the map and robot poses into information that is needed for

downstream tasks. For example: identifying obstacles and a goal for the task of navigating while

avoiding obstacles.

• A path planning module contains motion planners to guide the robot through the environment.

Generally, they are comprised of local planners for immediate vicinity and global planners for

high-level goals.
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Figure 1.1 Mobile Robotics System
The perception stack makes sense of the environment and the planning and navigation stack makes the robot

navigate in the environment.

• A motion control module is tightly coupled with actuators which cause motion. It usually contains

a motion model to estimate the actuation values.

The perception stack consists of the localization and mapping and the cognition module while the

planning and navigation stack consists of the cognition module and the path planning module. Note that

the cognition module could share parts with the perception and the planning and navigation stacks.

This thesis primarily focuses on parts of the localization and mapping module. A larger overview of

mobile robot systems can be found in [96]. A more comprehensive study of various aspects of mobile

robotics can be found in [166] (for overview and background), [171] (perception), [92] (planning and

navigation), [107] (navigation and obstacle avoidance), and [176] (motion control).

1.2.2 Localization and Mapping

Simultaneous Localization and Mapping (SLAM) is a type of localization and mapping system where

the location of the robot (agent) and the map of the environment are jointly estimated. A review of

different types of visual SLAM algorithms can be found in [28, 118, 123].

This is conventionally achieved using system models and filtering methods like Kalmann Filters (KF),

Extended Kalman Filters (EKFs), particle filters, etc. Most algorithms minimize a photometric projection

error to estimate the sensor’s pose for a coarse localization in the map. Lately, visual SLAM algorithms

employ optimization techniques on various timescales and loop closures across various distances. A

system of equations, projecting objects in the map in camera frames, is solved to simultaneously obtain

the camera poses and map objects (usually like sparse point cloud). This is formulated as an optimization

problem on a graph of nodes [158].

A generic template for SLAM systems can be found in Fig. 1.2. Most SLAM systems can be divided

into two parts

3
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Figure 1.2 General SLAM Systems
The front end module performs feature extraction, feature tracking, and gets the odometry of the robot. It also does
coarse visual place recognition by image retrieval. The back end module does fine localization (gets loop closures)
and does map refinement. The map (containing the poses and the environment) is shared with both the modules.

1. A front end module deals with all the data that enters the system. Common parts of it are centered

around

• Feature extraction where keypoint features are extracted from the images

• Feature tracking where keypoints are tracked between consecutive images (to get relations)

• Odometry which relates two consecutive poses (locations)

• Image Retrieval where an agent can recognize a previously visited part of the map (stored in

its memory). This gives a coarse location of a place the agent must have revisited.

2. A back end module works on refining (optimizing) the map and other estimates (like trajectory). It

usually consists of

• Fine Localization where a more precise location of an image retrieval is estimated. This is

usually done using PnP RANSAC techniques.

• Map Refinement where the map estimates are fine tuned using optimizers. This is also called

map optimization.

This thesis primarily focuses on the Visual Place Recognition (VPR) aspect of SLAM, which is

further described in Section 1.2.3. The reminder of this subsection provides related details and a brief

overview of SLAM systems.

1.2.2.1 Systems Similar to SLAM

Structure from Motion (SfM) aims to recover 3D geometry of a scene and the camera poses from a set

of 2D images. Bundle Adjustment (BA) aims to refine the map and pose estimates through minimizing

4



a reprojection error. Indeed, SfM tools like COLMAP [131, 130] are used in SLAM systems as a

pre-processing tool. SLAM systems usually operate online (live, in real-time). Maps used by SLAM

systems are also capable of deeper environment understanding.

Visual Odometry (VO) and similar mapping techniques aim to estimate relative movement; SLAM

aims to build a global and consistent map of the environment while estimating pose. VO systems are

prone to drift, whereas SLAM systems correct drift through loop closures formed by the visual place

recognition module.

1.2.2.2 Conventional SLAM Systems

Some conventional SLAM systems are described hereon

FAB-MAP (2008) [164] (FAst Binary appearance-based Mapping) builds a map of visually similar

locations based on the environments appearance. The visual representations for place recognition are

built using a Bag-of-Words (BoW) representation over image keypoint features. It incrementally builds

and updates map in a probabilistic framework.

FAB-MAP 2.0 (2011) [153] builds on FAB-MAP with a sparse approximation to the model, thus

allowing deployment on a much larger scale.

ORB-SLAM (2015) [138] is one of the first lifelong SLAM algorithms that defined the methodology

of modern SLAM systems. It uses ORB features [155] for all tasks (tracking, mapping, relocalization

and loop closing). It has three threads: tracking, local mapping and loop closing.

The tracking thread localizes the camera and decides when to insert a new keyframe, the local

mapping thread performs local bundle adjustment (BA) and culls redundant keyframes, loop closing

thread searches for loops, aligns them, and performs a pose graph optimization for global consistency.

It uses a Bag-of-Words approach (DBoW2) for place recognition and maintains a covisibility graph

for the already traversed map (to facilitate faster relocalization). It is also the first SLAM algorithm

to have automatic map initialization; achieved using parallel model computations of homography and

fundamental matrix (and choosing the appropriate model by scoring).

ORB-SLAM2 (2017) [127] extends ORB-SLAM with stereo and RGB-D (depth) capabilities, giving a

more accurate and dense map while maintaining the real-time characteristic of the system.

ORB-SLAM3 (2020) [70] further adds visual-inertial (IMU) and multi-map support (by maintaining

an atlas for active and non-active maps). It still uses a DBoW2 based approach for place recognition, but

with modifications for verification in active map and checks for gravity direction.

1.2.2.3 Deep Learning in SLAM

Review of Deep Learning in SLAM
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CNN-SLAM (2017) [119] fuses depth maps predicted by a CNN with those obtained by direct

monocular SLAM. It also fuses semantic segmentation maps for coherent scene reconstructions.

DRIOD-SLAM (2021) [64] (Differentiable Recurrent Optimization-Inspired Design) applies iterative

updates to optical flow (inspired by RAFT [83]). It also uses a differentiable Dense Bundle Adjustment

(DBA) layer to update camera poses and dense per-pixel depth.

1.2.2.4 SLAM Beyond RGB Cameras

This incorporates data from other sensor modalities like depth. It also covers modern techniques like

implicit representation for mapping. A review and benchmarking of these algorithms can be found in [2,

152]

PointFusion (2013) [146] uses depth maps as inputs to perform mapping. It uses pyramid-based

Iterative Closest Point (ICP) alignment to estimate camera pose from points in the map and the depth

image captured by the camera. Points fused in the global map go from unstable to stable as they are more

frequently observed. It also identifies dynamic regions by constructing an ICP status map.

KinectFusion (2018) [154] uses raw depth from a Microsoft Kinect to map a scene using truncated

signed distance function (TSDF). It uses ICP of predicted and measured surface for pose estimation.

Kimera (2021) [63] is a full-fledged SLAM system that gives high-utility perception maps. Using

stereo RGB and an IMU, it builds a dynamic scene graph (DSG) that contains the environment information

(map) in a multi-layered, hierarchical, and abstracted manner. Internally, it uses semantic segmentation

and visual inertial odometry (VIO) methods. It comprises of VIO (for 3D pose estimation), mesher (to

build local 3D meshes), semantics (for global 3D meshes), and a pose graph and mesh optimization

(PGMO) library (that enforces loop closures).

NICE-SLAM (2021) [69] uses a hierarchical implicit scene representation that incorporates information

on multiple levels. It applies tri-linear interpolation on a hierarchical feature grid for mapping. It uses

photometric, depth, and geometric reconstruction (bundle adjustment) losses for jointly estimating the

network parameters (grid and color networks) and the camera extrinsics (pose in scene).

NICER-SLAM (2023) [26] builds up on NICE-SLAM, adding losses for scene warping, optical

flow, surface normals and Eikonal/SDF output (for accurate surfaces in the map). It also operates on a

continuous RGB stream (not needing depth).

GS-SLAM (2023) [22] uses Gaussian Splatting [17] as the scene representation. It proposes an

expansion strategy to add and remove 3D gaussian representations to accommodate newly captured

views. It re-renders and optimizes camera pose (for tracking) by a coarse-to-fine method. It uses bundle

adjustment to jointly optimize the camera poses and the 3D Gaussian scene representation.

6



Khronos (2024) [1] integrates a spatio-temporal approach that monitors short and long-term dynamics

into SLAM pipelines, thus yielding a Spatio-temporal Metric SLAM (SMS) system. It uses semantically

annotated RGBD sensor data with odometry to estimate object fragments through an active window

approach. It then applies a novel factorization approach to track spatio-temporal fragments (for short-term

and long-term dynamic objects in the scene).

1.2.2.5 Deployment

The nature of SLAM entails multiple processes running in parallel. Robot Operating System (ROS)

[163] is a backbone that allows implementing each sub-system separately and handles communication

between them. It also has useful tools for visualization and debugging. ROS 2 [38] is the latest version of

ROS. Several SLAM projects and tools are collected at OpenSLAM.org, most rely on LiDAR laser scans

for mapping. Some common implementations in ROS are described below

GMapping (2007) [167] (Grid Mapping) uses a particle filter for building maps using 2D lidar data. It

is a widely used conventional SLAM library for small spaces. However, it fails in large spaces due to

poor loop closures at scale.

KartoSLAM (2010) [160] uses sparse bundle adjustment and a pose-graph based method.

Cartographer (2016) [124] It combines a scan-to-submap matching method with loop closure op-

timization using the Ceres Solver [3]. However, it requires good odometry for good results, and the

package is no longer maintained.

SLAM Toolbox (2021) [58] is the new default SLAM vendor in ROS 2 (replacing GMapping). It

builds on top of Open KartoSLAM [160] with code optimizations for synchronous and asynchronous

operations, multi-session mapping, better graph optimization, distributed mapping applications, etc.

1.2.3 Visual Place Recognition

In Visual Place Recognition (VPR), an agent leverages visual data to identify a previously visited

location. While ”place” typically denotes a broader region, it can also refer to a specific position. VPR

systems typically consist of two parts (also highlighted in Fig. 1.2):

1. Image Retrieval: Given a database of geo-tagged images in the map, and a query image (recent

observation), the agent identifies the database images that are from the same location as that of the

query. This is also called coarse localization as it only gives the location of the retrieved database

image which is an approximate location of the query in the map.

2. Fine Localization: Given a query and the closest relevant database images, this step aims to find the

precise location of the query in the mapped scene. This is usually accomplished through finding

points in map that correspond with keypoints in the query image (thereby giving a 2D-3D corre-

spondence list). Usually, this involves geometric verification techniques like Epipolar Geometry,

7
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Figure 1.3 Image Retrieval Systems
An Image Processing (IP) algorithm builds global descriptors from input images. A nearest neighbor search takes
a query descriptor and a set of global database descriptors, and it returns the database descriptor that is closest to

the query descriptor (as index in set).

Homography Estimation, Perspective-n-Point solvers with RANSAC, Bundle Adjustment (BA),

etc. or some combination of these [175]. Many modern implementations create differentiable

formulations of the same thing and train a system to perform this stage.

As shown in Fig. 1.2, the image retrieval is associated with the front-end and the fine localizations is

associated with the back end. Combining these two components provides loop closure (LC) information

for pose-graph optimizers. This information is crucial for mitigating issues like drift in long-term

operations covering large areas and catastrophic forgetting in maps. Most SLAM system described in

Section 1.2.2 uses loop closures for improving the quality of maps. It also finds applications beyond

SLAM, including Augmented Reality (AR), Virtual Reality (VR), and Mixed Reality (XR). A review of

visual place recognition techniques, terminologies, and use cases can be found in [30, 60, 49, 87, 104,

126].

1.2.3.1 Image Retrieval from Image Descriptors

A typical Image Retrieval (IR) system is illustrated in Fig. 1.3. The image processing stage extracts a

single, unique descriptor that captures the overall visual characteristics of the entire input image. From a

database of representative images (and their known locations), the image processing pipeline first builds

a database of global descriptors. Given Nd images of shape C,H,W each (where H,W is the size of

the image and C is the number of channels - 3 for RGB, 1 for greyscale), we apply the following steps to

each image

1. Extract visual context: This summarizes the visual content in an image, yielding descriptors of

shape N, dp (where N is the number of descriptors and dp is the dimensionality). There are two

main techniques to creating image descriptors for extracting visual context of an image:

8



(a) Local Feature-based: Identify and describe distinctive local features within an image, like

corners, edges, or blobs. These features are known as keypoints, and each keypoint has a

corresponding descriptor capturing its specific visual characteristics.

(b) Global Context-based: Extract descriptors that directly represents the entire image. Unlike

local feature-based methods, they do not rely on identifying and describing individual

keypoints. Instead, these techniques may process the image in different ways, including

dividing it into smaller overlapping or non-overlapping patches, to capture the global visual

properties. This allows them to capture characteristics such as color distribution, texture

patterns, and spatial relationships between image elements.

2. Aggregate descriptors: The previous step yields multiple descriptors (keypoints or patches), this

step creates a single descriptor representing the entire image. This is usually accomplished through

clustering and creating histograms. We get a d-dimensional global descriptor per image.

Ideally, global descriptors of similar images (taken from nearby or same places) should exhibit

greater similarity compared to those from dissimilar images. These descriptors are stored in the memory

of the system. When presented with a query image, the system extracts its descriptor and performs

a nearest-neighbor (NN) search within the database, retrieving the most similar descriptors and their

corresponding images. In some cases, the system may return multiple top-k matching image entries. The

downstream fine localization task takes the query image, database image(s) with location(s), and the

registered map to further localize the query in the map.

Mathematical Formulation Let IDB = {IDB[1], IDB[2], . . . , IDB[Nd]} be a set of database images

(where IDB[i] ∈ RC,H,W and I ∈ RNd,C,H,W ) and DDB = {dDB[1],dDB[2], . . . ,dDB[Nd]} be the

corresponding global descriptors obtained using dDB[i] = GD(IDB[i]) (where dDB[i] ∈ Rd and

DDB ∈ RNd,d) and where GD : RC,H,W → Rd is comprised of the steps above (extract and aggregate).

A query image Iq ∈ RC,H,W is passed through the same pipeline GD(•) to obtain its global descriptor

dq = GD(Iq) (where dq ∈ Rd). The nearest neighbor search to retrieve the top-k most similar database

descriptors is done as follows

Su =

sim (dDB[1],dq) , sim (dDB[2],dq) , . . . , sim (dDB[Nd],dq)︸ ︷︷ ︸
Similarity Scores

 (1.1)

P = argsort(Su, descending) (1.2)

Vtop-k = P[1 : k] (1.3)

Where Su ∈ RNd is a set of unordered distances between the query and each database descriptor

calculated using a similarity function sim :
(
Rd,Rd

)
→ R which is a metric like cosine distance (0 for

no similarity and 1 for high similarity). The argsort(•, •) function takes a set and the order (ascending

or descending) and returns a list of indices P ∈ NNd corresponding to the order. For instance, for

descending order, Su[P[1]] is the largest value in Su, Su[P[2]] is the second largest value in Su, and
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so on until Su[P[Nd]] is the smallest value in Su. We use indices instead of similarity values as we’re

interested in finding the closest database images and not their similarity scores. We then take the first k

values to get the indices Vtop-k ∈ Nk of the top-k most similar database images.

1.2.3.2 Creating Image Descriptors

Typically, image descriptors are constructed from local features, as this approach enables focusing

on informative regions within an image. However, recent advancements in computational power have

facilitated the use of the entire image content (all image patches) for descriptor creation.

Local Feature Methods locate and describe keypoints in an image. These could be manually defined

conventional methods like SIFT [173], SURF [168], BRIEF [157], ORB [155], AKAZE [144, 148],

etc. or features that are learned like FAST [170, 165], LIFT [132], DELF [128], SuperPoint [108],

L2-Net [120], R2D2 [95], D2-Net [89], OriNet [91, 113, 112], etc. A thorough benchmarking of these

algorithms towards image matching is presented in [81]. These methods take an image I ∈ RC,H,W

and return keypoints K ∈ RNk,2 (a list of locations of interest {. . . , (hi, wi), . . . }) and descriptors

Dk ∈ RNk,dk , where Nk is the number of keypoints and dk is the dimensionality of the descriptor (for

example, dk = 128 for SIFT).

Global Context through Image Patches divides the input image into a set of patches and processes

them individually. It takes an image I ∈ RC,H,W and breaks it uniformly into patches of shape

G ∈ RNp,C,sh,sw where Np = nh × nw is the number of patches (nh along the height and nw along

the width), each patch is of shape sh, sw (sh = sw = 16 for ViT). If the patches are non-overlapping

and uniform, then H = sh × nh and W = sw × nw. G can be reshaped into Dp ∈ RNp,dp where

dp = C × sh × sw.

Bag of Visual Words (BoVW) [174] approach represents an image as a histogram of visual words.

Given a database of images denoted by IDB, it first extracts local image features using methods like

those mentioned previously. These features are then encoded into corresponding descriptors, denoted by

VDB ∈ RNtotal,d, where Ntotal represents the total number of descriptors extracted from all Nd database

images. These Ntotal descriptors are then clustered into k clusters using a technique like k-means

clustering. The centers of these clusters form the vocabulary. For each image, the BoVW approach

counts the number of features belonging to each cluster, essentially building a histogram. This histogram

representation is typically limited to the top-n most frequent vocabulary terms. This image processing

pipeline provides a histogram representation for each image in the database. When a new image is

considered, its histogram is compared against the histograms of stored database images using metrics

like chi-squared distance, histogram intersection, cosine distance, or other nearest neighbor approaches.

This is the vision equivalent of Bag-of-Words (BOW) from NLP for language and document retrieval.

Building upon the standard BoW, the spatial BoW approach incorporates spatial information. It

divides the image into smaller regions and independently applies BoW to each region. This creates a

local vocabulary for each region, capturing the presence of visual words within specific image areas. The

10



final image representation combines information from all regional BoW histograms, potentially including

the location of each region within the image.

To improve efficiency for real-time applications, some approaches convert descriptors to binary

strings using a thresholding technique on the histogram values. Alternatively, certain local feature

extraction methods inherently produce binary descriptors. This binary representation enables faster

comparisons during the matching stage.

Hierarchically structured vocabularies can also be constructed using clustering methods. [169]

propose a method where each cluster in a hierarchical structure is further partitioned, and a clustering

technique like k-means is applied recursively at each level. This approach facilitates a coarse-to-fine

vocabulary creation suitable for long-term operations. DBoW2 [150] uses this technique with binary

descriptors while also leveraging it for loop detection.

VLAD [145, 159] Vector of Locally Aggregated (VLAD) descriptor is constructed by following these

steps:

1. Feature Extraction: Local features descriptors such as SIFT (or RootSIFT [149]) are extracted

from the image.

2. Cluster Assignment: Each descriptor is assigned to its closest cluster in a pre-defined vocabulary

of size k.

3. Residual Accumulation: For each cluster, the residuals are calculated. These residuals are vector

differences between the assigned descriptors and the cluster centers. The residuals are then

accumulated (added) to obtain a 128-d vector (same dimensionality as descriptor used) per cluster.

4. VLAD Descriptor Formulation: Finally, the 128− d residuals across all k clusters are concatenated

to form a single k × 128 dimensional vector which is the VLAD vector.

We normalize the accumulated cluster residuals before concatenation (known as intra-norm) and

normalize the final concatenated result to prevent bias towards a small subset of clusters and to effectively

utilize the entire vocabulary. The vocabulary is constructed by extracting descriptors across all the

database images and clustering them using a method like k-means. Since the cluster assignment of

VLAD is non-differentiable, it cannot directly be used for training.

Mathematically, given an image I ∈ RC,H,W , we extract its keypoints K ∈ RNk,2 and descriptors

D ∈ RNk,dk . We have C ∈ RK,dk as the vocabulary (K cluster centers, each dk dimensional). We

compute a residual matrix V ∈ RK,dk as follows

V[k, j] =

Nk∑
i=1

[α (D[i], k) (D[i, j]−C[k, j])] (1.4)

Where V[k, j] ∈ R is the residual for the k-th cluster center’s j-th dimension, α : (Rdk ,N)→ {0, 1}
takes in the descriptor and cluster index; and returns 1 if the descriptor belongs to the cluster (the given

cluster is the closest to the descriptor) and 0 otherwise. The matrix V is normalized along dk (each of

K rows, which is a dk-dimensional vector, is normalized) for intra-normalization. It is then reshaped
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(flattened) to a vector v ∈ RK×dk and then normalized (same shape). This final vector v̂ = ∥v∥2 is the

VLAD vector.

The cluster centers C ∈ RK,dk are obtained by applying a clustering technique like k-means

clustering to the descriptors from database images. We start with a set of database images IDB =

{I1, I2, · · · , INd
}, where Ii ∈ RC,H,W is a database image, and extract its corresponding local feature

descriptors Dkdb = {D1,D2, · · · ,DNd
} where Di ∈ RNi,dk is the list of descriptors for image Ii (each

image might have a different number of descriptors). These descriptors are stacked along Ni dimension

to give Dall ∈ RNtotal,dk (where Ntotal =
∑

iNi). These Ntotal descriptors are clustered into K clusters

giving the cluster centers C ∈ RK,dk .

NetVLAD [133] is a differentiable version of VLAD. VLAD has two non-differentiable steps: cluster-

ing for fitting on database images (descriptors) and cluster assignment during construction of VLAD,

denoted as α(•, •) above. NetVLAD uses the following cluster assignment instead

α̃ (di, ck) =
e−λ∥di−ck∥22∑
k′ e

−λ∥di−ck′∥
2
2

(1.5)

Where di = D[i] ∈ Rdk is the i-th descriptor in the image and ck = C[k] ∈ Rdk is the k-th cluster

center. The above equation can be simplified further

∥di − ck∥22 =
∑
j

(di[j]− ck[j])
2 =

∑
j

[
di[j]

2 + ck[j]
2 − 2di[j]ck[j]

]
=
∥∥d2

i

∥∥
1
+
∥∥c2k∥∥1 − 2di · ck

e−λ∥di−ck∥22 = e2λdi·ck · e−λ∥d2
i∥1 · e−λ∥c2k∥1

e−λ∥di−ck′∥
2
2 = e2λdi·ck′ · e−λ∥d2

i∥1 · e−λ∥c2k′∥1

α̃ (di, ck) =
e−λ∥di−ck∥22∑
k′ e

−λ∥di−ck′∥
2
2

=
e2λdi·ck · e−λ∥d2

i∥1 · e−λ∥c2k∥1∑
k′ e

2λdi·ck′ · e−λ∥d2
i∥1 · e−λ∥c2

k′∥1

=
e2λdi·ck−λ∥c2k∥1∑
k′ e

2λdi·ck′−λ∥c2
k′∥1

=
ew

T
k di+bk∑

k′ e
wT

k′di+bk′

The final VLAD residual matrix becomes

V[k, j] =

Nk∑
i=1

[
ew

T
k ·di+bk∑

k′ e
wT

k′ ·di+bk′
(D[i, j]−C[k, j])

]
(1.6)

Where {wk ∈ Rdk}, {bk ∈ R}, and C ∈ RK,dk are trainable parameters. Conventionally, the

descriptors D ∈ RNk,dk are obtained as dense features from a CNN backbone.

GeM Pooling [115] uses generalized mean pooling over image descriptors D ∈ RNk,dk and yields a

vector fG ∈ Rdk where each element is given by
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fG[j] =

(
1

Nk

Nk∑
i=1

(D[i, j])pk

) 1
pk

(1.7)

An advantage of GeM pooling is that the dimension of the output descriptor is dk, whereas it is

K × dk for VLAD. This facilitates storing more of them on limited memory.

Other Pooling Methods include max-pooling ,also called MAC (Maximum Activations of Convo-

lutions) vector [143, 141] given by fM ∈ Rdk and average-pooling, also called SPoC (Sum-Pooled

Convolution) features [134] given by fA ∈ Rdk . These are defined below

fM [j] = max
i

D[i, j] fA[j] =
1

Nk

Nk∑
i=1

D[i, j] (1.8)

1.2.3.3 Other Approaches to VPR

While traditional approaches to VPR often rely on features extracted from trained CNN backbones

[103], this thesis focuses on leveraging foundation models for this task.

Other areas of exploration in VPR include the use of sequential descriptors [50, 51, 106], low-

resolution image training [33], and visual semantics [100]. Techniques like mesh-based localization [39],

direct 2D-3D matching [156], change-based VPR [78], hierarchical 3D descriptors [77], novel pooling

methods (like SuperGlobal [19]), and cross-device queries [15] are also being investigated, along with

the development of sequential SLAM pipelines [151].
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Chapter 2

Foundation Models

Foundation models (FM) are a type of artificial intelligence (AI) model designed for learning generic

representations from data. They typically employ unsupervised learning techniques and fall under the

umbrella of representation learning. This chapter includes an overview of Vision Foundation Models

(VFMs). Foundation Models, like all AI models, have the following components: model architecture,

dataset, objective (training strategy), and optimizer.

• Model architecture: This is used to store the parameters and decides how operations are preformed

on the input data. They are usually multi-layer perceptrons (MLPs), convolution [177], and/or

transformer [76, 121] layers. Recent developments include MLP mixer [65], ConvNext [37], and

some transformer variants (Swin Transformer [56, 57], CCT [53], etc).

• Dataset: This is the source of learning for the FM. Usually, these are large datasets that contain

samples from a wide distribution. Some common publicly available datasets in vision are ImageNet

[162] and Tencent ML-Images [99]. Some proprietary datasets include JFT-300M [116], JFT-3B

[67] (Google), and IG-3.5B [101] (Facebook/Meta).

• Objective, training strategy and loss function: Since the datasets are non-labelled and manual

annotation is difficult, the training strategy must include some form of self-supervision to facilitate

representation learning. These include techniques like knowledge distillation [136], masked

representation learning [54], and various contrastive learning techniques and losses that aim to

align modalities. Some implementations include MoCo [90, 74], SwAV [71], SimCLR [72, 73],

BYOL [79], etc.

• Optimizer: These are used to tune the model’s parameters. Usually, optimizers like the Adam

[142] and its recent development, AdamW [110], are well suited. However, since the number

of parameters often run into hundreds of mullions (and often billions), it makes heavy use of

parallelization techniques like data sharding and model splitting across GPUs. Common implemen-

tations of parallel optimizers include Fully Sharded Data Parallel (FSDP) [86] (part of FairScale

and PyTorch), Zero Redundancy Optimizer (ZeRO) [20, 94], DeepSpeed [35], Megatron [61], etc.

This chapter gives an overview of model architectures and training strategies involved in DINO

[47] and DINOv2 [18], which are the vision backbones used for this work. A thorough review on

self-supervised learning (SSL) and foundation models can be found in [5, 11, 80].
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Flatten Patches and Linear Projection

Positional
Embeddings

Transformer Encoder

Figure 2.1 Data processing for Vision Transformers
Input image is first broken into patches. These patches are flattened and a (shared) linear projection is applied to all
of them. A [CLS] token is added for global context. Then, position embeddings are added to each element and the
entire set in concatenated into a vector (with the [CLS] - denoted in blue squared - usually going first). The · (dot)

signifies addition of position embeddings and ⊕ signifies concatenation.
Image is best viewed in color.

2.1 Vision Transformers

2.1.1 ViT

Vision Transformers (ViTs) [76] are inspired from transformers in Natural Language Processing

(NLP) [121], which in turn are inspired by information retrieval using queries in a key-value database.

They operate in a manner described below (and shown in Figs. 2.1 and 2.2)

Step 1 - Patchification of the Input Image As shown in Fig. 2.1, an input image I ∈ RC,H,W is split

into patches of shape sh, sw each, giving nh = H/sh patches along height and nw = W/sw patches

along width. These n = nh × nw patches are then flattened into dm = C × sh × sw dimensional vectors.

Each patch is multiplied by a shared square linear matrix, keeping the output dimensionality same. We

obtain the transformed patch embeddings as
{
pi ∈ Rdm

}
i=[1,n]

. For utilizing global context, a learnable

p0 = [CLS] token (same shape as the patch vectors) is added to the set. These n+ 1 patches are then

transformed by adding position embeddings (so that each element in the sequence gets a notion of its
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Normalize

Multi-Headed Attention
(MHA) Block

+

Normalize

MLP

+

Transformer Encoder

Attention (Head 1) Attention (Head 2) Attention (Head h)

Concatenate

Input

Multi-Headed Attention (MHA) Block

Figure 2.2 Transformer Encoder and Multi-Headed Attention
Each transformer encoder block contains multi-headed attention block. The + operations denote addition of

residuals. Each head has its own query Qi, key Ki and value Vi vectors and applies self-attention.
Image is best viewed in color.

position in the sequence). Finally, they’re all concatenated into a vector. The final input to the model is

given by the vector x ∈ R(1+n)×dm (with the first dm values for the [CLS] token). This vector x is the

input to the transformer layers. For simplicity, we use l = 1 + n for sequence length hereon.

Step 2 - Transformer Encoders with Multi-headed Attention As shown in figure Fig. 2.2, the input

is given to N transformer encoder blocks, which are linked in sequence. Each block normalizes its input,

passes it through a multi-headed attention (MHA) layer in residual, it finally passes it through an MLP

block in the same normalization and residual manner. LayerNorm [122] is used instead of BatchNorm

[137] because it is easier to parallelize and can deal with varying batch sizes. Each head (say head i) of

MSA does the following

1. The input x ∈ Rl,dm (where l = 1 + n is the sequence length and dm is the feature dimension)

is passed through LayerNorm, giving x̃ = LN(x) (where x̃ ∈ Rl,dm). We then apply weights

WQi ∈ Rdm,dk for query, WKi ∈ Rdm,dk for key, and WV i ∈ Rdm,dk for value. Here, dk =

dm/h, where h is the number of heads (h is chosen such that it divides dm). We get the query

Qi ∈ Rl,dk , key Ki ∈ Rl,dk , and value Vi ∈ Rl,dk vectors using

Qi = x̃WQi Ki = x̃WKi Vi = x̃WV i (2.1)
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2. The output of the self-attention Ai ∈ Rl,dk is given by

Ai = Attention(Qi,Ki,Vi) = softmax

(
QiK

T
i√

dk

)
Vi (2.2)

The above equation is similar to information retrieval where a query is matched with key using dk

dimensional embeddings to retrieve value (information). This formulates it in a differentiable and

continuous manner. The softmax uses
√
dk for normalization and does row-wise normalization.

3. The output across all heads is concatenated (along the dk dimension of each vector) into a single

vector A ∈ Rl,dm using

A = [A1 ⊕A2 ⊕ · · · ⊕Ai ⊕ · · ·Ah] (2.3)

4. The final output y ∈ Rl,dm of the MHA block is given by applying a linear transformation through

weights WO ∈ Rdm,dm , given by

y = AWO (2.4)

The weights WO mix the outputs across all heads.

Step 3 - Normalize and Linear Transform The output of MHA block y ∈ Rl,dm is then added with

the input x ∈ Rl,dm (residual connection). The result is then passed through LayerNorm [122] (along the

dm dimension) and then a 2-layer MLP where first layer expands the dimension from dm to 4dm, and

the second layer reduces the dimension form 4dm to dm. The result is added with a residual connection,

shown in Fig. 2.2. This gives the output z ∈ Rl,dm of the current layer (which is then the input for the

next layer).

zout = MLP(LN(y + x)) + (y + x) (2.5)

Downstream Tasks The downstream tasks take the [CLS] token (first dm values) and use it for

classification (by adding an additional MLP) [76]. We explore the representations learned by latent layers

for visual place recognition.

Configurations The ViT proposed by Google has variants described in Table 2.1. The input image size

is (224, 224). With patch size (16, 16), it gives dm = 3× 16× 16 = 768 dimensional patch embeddings.

Architectures that have a different embedding dimension (like ViT-L) use a non-square linear projection

at the input stage (as shown in Fig. 2.1); these are usually used to increase dimensionality. All entries are

from google-research/vision transformer on GitHub.

2.1.2 DeIT

Data efficient Image Transformers (DeIT) [84] proposes minor modifications towards training

transformers. Instead of training on JFT-300M (like ViT), DeIT is trained only on ImageNet. It uses the

same architecture and improvements from the timm (PyTorch Image Models) library [98]. Compared to

ViT, DeIT also uses a lower batch size (1024 vs. 4096), learning rate adjusted with batch size [109], and
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Family Model Params Patch s Emb. dm Heads h Layers N MLP Block

ViT [76]
ViT-B 86M 16 768 12 12 (*-3072-*)
ViT-L 307M 16 1024 16 24 (*-4096-*)
ViT-H 632M 14 1280 16 32 (*-5120-*)

DeIT [84]
DeIT-Ti 5M 16 192 3 12 (*-768-*)
DeIT-S 22M 16 384 6 12 (*-1536-*)
DeIT-B 86M 16 768 12 12 (*-3072-*)

CCT [53]

ViT-Lite-7/8 3.74M 8 256 4 7 (*-512-*)
ViT-Lite-7/4 3.72M 4 256 4 7 (*-512-*)

CVT-7/4 3.72M 4 256 4 7 (*-256-*)
CCT-2/3x2 0.28M c(3x3)*2 128 2 2 (*-128-*)
CCT-7/3x1 3.76M c(3x3) 256 4 7 (*-512-*)

Table 2.1 Transformer Variants and Specifications
Comparisons of different transformer configurations. Params signifies the number of parameters. The patch size is
given by s = sh = sw (square patches), c(·) means convolution tokenizer. MLP block specifications are given as

(input− hidden− output), a ‘*’ here means ‘same as dm’.

RandAugment data augmentation [75]. Various DeIT models are mentioned in Table 2.1 (taken from

[84] and facebookresearch/deit GitHub).

Distillation Models DeIT also proposes a distillation strategy for vision transformers where an extra

distillation token is added (like the class token), but is trained for a distillation loss (like the KL

divergence). Instead of using a soft distillation approach (modeling the softmax of teacher), they use a

hard-label distillation strategy where they use cross-entropy (CE) loss on the teacher’s label. More on

knowledge distillation is mentioned in Section 2.2.1.

2.1.3 Other Model Architectures

Swin Transformers [57] Shifted Windows (Swin) transformers constrains the self-attention to local

windows. This way, in a particular layer, only the patches within a local window exchange information.

This avoids the quadratic complexity of applying global attention. Consecutive layers have shifted

windows so that information exchange happens through patches that enter or leave windows. It also

proposes merging patches to form hierarchical representations.

Swin Transformer V2 [56] improves the Swin Transformer further by changing the pre-normalization

to post-normalization, replacing the dot-product to a scaled cosine function in the attention formulation,

and using log-space in positional embeddings.

CCT [53] aims to train vision transformers on small datasets. It proposes ViT-Lite, Compact Vision

Transformers (CVT), and Compact Convolution Transformers (CCT). Its variants are presented in

Table 2.1.

ViT-Lite is a more suitable ViT architecture, nearly identical to the original ViT, for small-scale

learning. It achieves better results using only 7 layers and a 4, 4 patch size, while having fewer parameters.
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CVT removes the conventional [CLS] token and instead uses Sequence Pooling (SeqPool) to get the

output. It uses a linear layer with softmax to generate weights for pooling the output tokens.

CCT uses a convolutional tokenizer in CVT. It replaces the input embeddings (like in Fig. 2.1) with a

conv layer followed by MaxPool. This adds inductive biases of a convolution network in the transformer

model.

2.2 SSL Concepts

2.2.1 Knowledge Distillation

In the field of deep learning, knowledge distillation refers to the technique of transferring knowledge

acquired by a pre-trained model (teacher) to a new model (student) [136]. This process aims to empower

the student model to achieve performance comparable to the teacher, often with a smaller and more

efficient architecture. During knowledge distillation, the student learns to mimic the teacher’s behavior,

effectively leveraging the teacher’s knowledge to improve its own performance. Usually, a dataset split,

called the “transfer set”, is used for this purpose. It is also common to train the student model on the

dataset after distillation or concurrently. Most commonly, it is of three types

1. Teacher-Student with different architectures: This scenario is commonly used when the teacher

network is a large network trained on a significant amount of data, while the student network is a

simpler model designed for deployment constraints. The student network is trained to mimic the

softmax outputs (often just before the output layer) of the teacher on the transfer set.

2. Teacher-Student with same architecture: This strategy aims for the student to learn robust repre-

sentations from the training dataset. Here, the teacher, often initialized with the same architecture

as the student, is trained using an exponentially moving average (EMA) of the student gradients.

Such techniques enable a fast-learning student to benefit from a teacher that has access to a more

robust representation of the training data (through the EMA).

3. Mixture-of-Experts teacher: This approach is typically used for very large datasets with many

categories. A global generalist model is trained to identify categories within the data, and an expert

model is trained on each category. The generalist model serves two key purposes: identifying

sub-classes (gating mechanism) for a given sample and acting as a catch-all class for samples

where no expert has a strong specialization. Samples from a transfer set are used to train a student

model that must model the probability distribution of both the generalist and the relevant expert(s)

for the category of the sample.

2.2.1.1 Loss for Learning Targets

In knowledge distillation, the loss function plays a crucial role in guiding the student model to mimic

the knowledge of the teacher model. There are two primary approaches for defining the target distribution

that the student should learn: soft targets and hard targets. Soft target modeling is when the concerned

probability distribution is a softmax distribution over all output classes of the teacher. On the other hand,
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hard target is when only the single output class (per sample of the transfer set) is considered. Usually,

losses like cross entropy and Kullback-Leibler (KL) Divergence are used for this alignment. These are

derived from information theory, but fund use in aligning probability distributions (like softmax outputs

of a student to align with the output of teacher).

Entropy is a measure of useful information for a probability of an event. For example, let x be a

random variable modeling distribution P (X), that is x ∼ P (X). The entropy (information) of x = E,

basically P (X = E) = P (E) is given by

Ix∼P (E) = log

(
1

P (E)

)
= −log (P (E)) (2.6)

The expected entropy over all states/events of x is the entropy of the distribution P . It is given by

Hx∼P (X) = Ex∼P (I(X)) =
∑
x∈X

P (X = x)I(X = x) = −
∑
x∈X

p(x)log(p(x)) (2.7)

where p(x) = P (X = x) ∈ R is used to denote the probability of the event X = x.

Kullback-Leibler Divergence or KL Divergence is the excess information required to model X using

distribution Q(X), when the actual (underlying) distribution is P (X). It is used to measure the deviation

when using x ∼ Q, if the actual distribution is supposed to be x ∼ P ; it is a directed difference between

two distributions. It is modeled as

DKL(P ∥ Q) = Ex∼P (Ix∼Q(X = x)− Ix∼P (X = x)) =
∑
x∈X

P (X = x)log

(
P (X = x)

Q(X = x)

)
=
∑
x∈X

p(x)log

(
p(x)

q(x)

)
= −

∑
x∈X

p(x)log

(
q(x)

p(x)

)
(2.8)

where q(x) = Q(X = x) ∈ R is used to denote the probability of the event X = x (using distribution

Q(X)). The above is easy to differentiate with respect to q(x) and it is ideal to have q(x) for the student

and p(x) for the teacher.

Cross Entropy is defined as the difference between two distributions for a specific event. It is the

excess information needed for encoding Q, when the underlying distribution is P . It is formulated as

H(p, q) = H(p) + DKL(p ∥ q) =
∑
x∈X

p(x)log

(
1

p(x)

)
+
∑
x∈X

p(x)log

(
p(x)

q(x)

)
=
∑
x∈X

p(x)log

(
1

q(x)

)
= −

∑
x∈X

p(x)log (q(x)) (2.9)

This is more directly related to the entropy of Q and the likelihood of P (X = x) and is more

commonly used to align a student (as q(x)) to a teacher (as p(x)).
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2.3 DINO and DINOv2 Models

2.3.1 DINO

DINO [47], distillation with no labels, is a method of knowledge distillation where the student and

the teacher have the same architecture and where the cross entropy loss is used for aligning the student to

the teacher and where the teacher is the EMA of the student network. Using the multi-crop strategy [71],

a set of views V is generated from an image. Two of these views are large global crops xg1, x
g
2 and others

are smaller resolution local views. The student network is given by Ps and the teacher is given by Pt

(both have the same architecture). The training loss is minimized as follows

min
θs

∑
x∈{xg

1,x
g
2}

∑
x′∈V
x′ ̸=x

H(Pt(x), Ps(x
′)) (2.10)

Note that the teacher gets no gradient. In PyTorch, it’s implemented using a detach call to the

output. The teacher is updated using an exponentially moving average (momentum encoder) [90] of

the student weights, given by θt ← λθt + (1 − λ)θs. To avoid collapse of outputs (preventing one

dimension to dominate over the others or the output becoming a uniform distribution), the teacher’s

output is centered (with the center in-turn being updated as an EMA of teacher’s outputs) and sharpened

using temperature softmax.

The architecture is DeIT from Section 2.1.2, with patch size 8 and the transformer having a pre-norm

layer normalization. The main work of DINO uses a [CLS] token and applies a linear projection head

or employs k-NN (k nearest neighbor) for classification. However, we are more interested in features

learned by the latent (intermediate) transformer layers. Especially for the context of VPR.

DINO demonstrates that self-supervised learning using the ViT architecture could form a strong

vision foundation model that can be used for downstream tasks.

2.3.2 Further Developments

2.3.2.1 iBOT

Image BERT pre-training with Online Tokenizer (iBOT) [68] takes inspiration from Masked Language

Modeling (MLM) in BERT [88] to perform Masked Image Modeling (MIM). It formulates MIM task

as a knowledge distillation (KD) task with an online tokenizer (used to transform the patches) trained

simultaneously with the target model. The MIM task is also solved in BEiT (BERT Pre-Training of

Image Transformers) [46], albeit with an offline tokenizer learned from visual vocabulary.

During training, block-wise masking is performed on the input image and two augmented views u

and v are generated with their corresponding masked views û and v̂. The student and the teacher have a

transformer backbone and a shared projection head (which is an MLP) for patch tokens and [CLS]. The

losses contain distillation across the same view and cross-view, for the MIM objective and the [CLS]

objective. For the MIM task, the objective is to align the predicted softmax of the masked tokens (where

mi = 1). The cross-entropy (CE) objectives are given as
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Lut→ûs
MIM = −

N∑
i=1

miPt
θ′

(
upatch
t

)⊤
log
(

Ps
θ

(
ûpatch
s

))
Lut→v̂s
[CLS] = −Pt

θ′

(
u
[CLS]
t

)
log
(

Ps
θ

(
v̂[CLS]
s

))
Lvt→v̂s
MIM = −

N∑
i=1

miPt
θ′

(
vpatch
t

)⊤
log
(

Ps
θ

(
v̂patch
s

))
Lvt→ûs

[CLS] = −Pt
θ′

(
v
[CLS]
t

)
log
(

Ps
θ

(
û[CLS]
s

))
(2.11)

Where La→b denotes distillation from teacher a to student b, and LMIM and L[CLS] are MIM tokens

and CLS token losses respectively. As in DINO, the teacher is an EMA of student, updated through

momentum of student weights. iBOT is able to form robust representations suitable for many downstream

tasks such as object detection, panoptic segmentation, and transfer learning. The patch tokens learn

semantically meaningful information that contains global context (because of the shared head with [CLS]

and the online tokenizer).

2.3.2.2 DINOv2

DINOv2 [18] contains an automatic pipeline to build a rich and diverse training dataset, and a

distillation stage from a large model. It performs significantly better than CLIP [62] on benchmarks

needing local and global semantic information.

Following [40], a curated dataset is first built by starting with little curated data. Embeddings are

extracted from curated and un-curated data. Duplicates in the un-curated data (having close embeddings)

are removed. Those samples that can be retrieved from the remaining un-curated set by querying

embeddings from the curated set are added to the augmented curated set. The dataset source includes

ImageNet, Google Landmarks, and many fine-grained datasets like ADE-20K, Pascal VOC, CityScapes,

etc. The final dataset is called LVD-142M.

DINOv2 uses the same image-level objective from DINO (in Section 2.3.1) and patch-level objective

from iBOT (in Section 2.3.2.1): cross entropy losses, knowledge distillation setting, teacher being the

EMA of student. Other than this, DINOv2 has several improvements

1. Unlike the shared projection heads in iBOT, it unties (separates) the heads for patch and image-level

objective.

2. Instead of applying softmax and centering to the teacher’s output, Sinkhorn-Knopp centering is

applied for 3 iterations. During training, the activations for each mini-batch are L2-normalized

and a pair-wise similarity matrix is computed. This similarity matrix is steered to a template. The

student goes through only softmax-norm. This is inspired from SwAV [71].

3. Uses KoLeo Regularizer [102]: Given a set of vectors (activations for a minibatch) {x1, x2, · · · , xn},
it defines a loss Lkoleo = − 1

n

∑n
i=1 log(dn,i) where dn,i = minj ̸=i ∥xi − xj∥ is the minimum

distance between samples in the minibatch. This aims to spread out samples in each batch.

4. Using Swish Gated Linear Unit (SwiGLU) activations [82] for the FFN in the transformer layers.
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5. Using Stochastic Depth [125] to shrink the depth of a network during training (by randomly

dropping entire residual blocks and replacing it with a bypass) while keeping it the same during

inference. It helps the network learn sophisticated representations in earlier layers.

6. Using LayerScale [66] to train deep transformer models (with many layers). It adds a learnable

diagonal matrix (multiplication) to the output of the residual blocks. This has been shown to

increase model capacity.

7. Training a large ViT-g network (with 1.1B parameters) from scratch and then training smaller

models through knowledge distillation [136]. It trains a ViT-g/14 from scratch on LVD-142M and

uses this as the frozen teacher for the initial stages of training smaller ViT models (like ViT-L/14,

ViT-B/14, and ViT-S/14).

8. Using higher-resolution images (518, 518) during the end of pre-training. Additionally, using a

patch size of 14 seems to give better results.

Additionally, efficient implementation with xFormers [34], timm [98], and FairScale [48]

libraries bring the following changes

1. Improved computational efficiency and resource utilization using FlashAttention [31]: it breaks

the attention matrix operation into smaller chunks (called tiles) and optimizes the memory R/W

operations on the GPU (between HBM and SRAM).

2. Nested Tensors allow modeling tensors with varying sequence length more efficiently (by con-

tainerizing each element as a Tensor).

3. Using PyTorch FSDP (Fully Sharded Data Parallel) [25] to split the model and data across GPUs

and to reduce cross-GPU communication. This relates to data sharding (splitting across databases)

in large database management systems, but it splits the model’s parameters into shards (splits),

usually along feature dimensions.

The above improvements lead to better representations learned by DINOv2 and make its training

more efficient. It performs much better than DINO [47], MAE [54], and iBOT [68] on ImageNet, and

has better linear evaluation over frozen features (linear probing) on fine-grained benchmarks. It also

performs better on tasks like semantic segmentation, depth estimation, and image retrieval.

We are interested in exploiting latent features learned by intermediate transformer layers of DI-

NOv2 for the purpose of visual place recognition (VPR). We show that these learn more meaningful

representations and can be clubbed with existing feature aggregation techniques.
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Chapter 3

AnyLoc: Foundation Model features for VPR

Prior Visual Place Recognition (VPR) methods have shown great performance when tackling task-

specific challenges in isolation. A generic out-of-the-box model will need to perform adequately well

under a large set of challenges, including cases where there isn’t enough data for training or when training

on different domains is complex. This chapter introduces AnyLoc [16] which is the first step towards a

universal VPR system.

VPR task is defined in Section 1.2.3. AnyLoc aims to solve image retrieval over a wide range of

dataset settings using an off-the-shelf foundation model without any VPR-specific fine-tuning.

3.1 Prior Knowledge

3.1.1 VPR Baselines

Global image descriptors are already described in Section 1.2.3. We choose to compare with the

following prominent baselines that are widely used in the VPR community.

NetVLAD [133] is a smooth (differentiable) version of VLAD (Vector of Locally Aggregated Descrip-

tor). It is a weakly supervised contrastive learning method where the positive and negatives are mined by

proximity (geographical distance). It is trained on the Pitts-250k dataset [147]. A major drawback is the

negative mining technique that is infeasible in large scale settings and the high dimensional embeddings

that lose significant performance when dimensionality reduction techniques like PCA are applied.

CosPlace [29] proposes a city-wide visual geo-localization solution by casting the training process

as a classification problem. Itt partitions the dataset into classes based on the location (geographical

coordinates) and the heading, and groups neighboring classes into groups. It then applies the Large

Margin Cosine Loss (LCML), also known as CosFace [105], sequentially over each group; this loss

introduces a cosine margin (through dot product) in the normalized version of the Softmax loss. CosPlace

uses GeM pooling with output dimension 512 (much lesser than NetVLAD). It also proposes the San

Francisco extra large (SF-XL) dataset for benchmarking city-wide VPR.

MixVPR [4] proposes a feature aggregation technique without self-attention or regional pooling,

inspired by MLP-Mixer [65]. MLP-Mixer contains channel-mixing and token-mixing MLP layers. Given
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a tokenized input (like in the first step of the transformer) X ∈ RS,C , the mixer does channel-mixing to

get U ∈ RS,C and token-mixing to get V ∈ RS,C , given by

U[:, i] = X[:, i] +W2σ (W1LN (X[:, i])) , for i = 1 . . . C (3.1)

Y[j, :] = U[j, :] +W4σ (W3LN (U[j, :])) , for j = 1 . . . S (3.2)

This gives the network linear complexity in terms of number of patches (unlike the quadratic

complexity of the attention mechanism) and the number of pixels in the input image. MixVPR first

extract feature maps from intermediate layers of a CNN backbone, it then feeds these to a feature mixing

block (consecutive MLP blocks) to incorporate global relationship in each feature map. MLPs are used

to reduce the dimensionality (both row-wise and column-wise) and the final output is flattened and

L2-normalized, giving the global descriptor for the input image. It is trained using Multi-Similarity Loss

[97] using the GSV-Cities framework [27].

3.1.2 Foundation Models

This is discussed in detail in Chapter 2. We benchmark the capability of the following vision

foundation models.

CLIP [62] is an image captioning model that is trained to align embeddings from a text and an image

backbone. A dataset is distilled from YFCC100M [140] (filter images with English titles and descriptions)

to get around 15M images (about the size of ImageNet). The text encoder is a modified transformer with

some modifications [93, 121]. The vision encoder is either a ResNet [135] or ViT [76]. A minibatch

contains a set of (image, text) pairs, the distance between the corresponding pairs should be minimized

while the non-corresponding pairs should be maximized. This type of contrastive setting is carried

out over a very large batch size (of over 32,000). We ultimately get a trained visual encoder that can

understand the contents of an image by language supervision.

DINO [47] and DINOv2 [18] are described in Section 2.3.1 and Section 2.3.2.2 respectively. They use

knowledge distillation formulation (student-teacher with the same ViT architecture) with the cross entropy

loss to learn representations of an image. DINO uses a simple DeIT implementation of ViT and ImageNet

dataset, while DINOv2 uses a custom ViT implementation with many changes (to accommodate for the

much larger model size) and a curated dataset LVD-142M.

Prior work [45] shows that DINO features (from the intermediate layers of the transformer) can

be used to solve a range of tasks that require semantic understanding of the image, for example: co-

segmentation of foreground, part co-segmentation, and image part correspondences.
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Figure 3.1 AnyLoc: Anywhere, Anytime, and Anyview VPR
Left: Image samples from various datasets used (and the legend for symbols and colors). Center: Comparing the

PCA projections of MixVPR (a supervised baseline) and AnyLoc (foundation model features). Right: VPR
performance by the test setting. Image from [16] (original paper).

3.2 AnyLoc: Towards Universal VPR

AnyLoc aims to perform good image retrieval (VPR) in diverse places (anywhere), under envi-

ronmental changes (anytime), and under high viewpoint changes (anyview). For this, we extract the

representations learned by the intermediate, often penultimate, transformer layers of DINO and DINOv2.

We find that conventional feature aggregation techniques like VLAD and GeM, described in Section 1.2.3,

bring significant benefit over using only the output [CLS] token of these models. Our method, when

projected to 2D, also discovers unique features that distinguish and group datasets of similar domain,

which is lacking in most recent VPR methods (see center of Fig. 3.1 for comparison with MixVPR). The

process and steps for AnyLoc are described below

3.2.1 Constructing AnyLoc Pipeline

3.2.1.1 Choice of Foundation Model

From CLIP [62], MAE [54], DINO [47], and DINOv2 [18], AnyLoc employs DINO and DINOv2

ViTs for extracting features. This is because DINO and DINOv2 are trained for representation learning

(through knowledge distillation - as described in Section 2.3.1 and Section 2.3.2.2). CLIP is trained on

alignment and is used as a benchmarking method. MAE is trained to in-fill masked tokens (like the MIM

objective in iBOT and DINOv2) and without any special dataset curation. We find CLIP and DINO

methods perform better than pure masked modeling of MAE.

We use DINO and DINOv2 models for extracting intermediate features and CLIP for benchmarking.

3.2.1.2 Choosing Layer and Facet

A vision transformer, described in Section 2.1.1, patchifies an input image and passes it through

layers of transformer encoder. The transformer encoder consists of multi-headed self-attention (MHA)

modules (alongside the normalization, residual, and FFN blocks). Each MHA has a softmax self-

attention mechanism. The input to attention are the query, key, and value facets. The output of each

transformer encoder (layer) is called the value facet.
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(a) Facet (b) Layer

Figure 3.2 Facet and Layer-wise Attention Maps for DINOv2
Left: Given a query point in the database image, various facets show different levels of contrast (with the most

similar marker on the query image). Top has high scale change, middle has rotation change, and bottom has high
perspective change. Right: A similar comparison across layers shows varying contrast. Notice that layer 31 shows

the building (for the queried point in database image) with the best contrast.

Description Let the input to the model be x(0) ∈ Rn,dm and the input to the l-th transformer encoder

layer be x(l−1) ∈ Rn,dm (also the output of the previous layer). This goes through a normalization layer

as x̄(l−1) = LN(x(l−1)) ∈ Rn,dm and projected to the query, key, and value facets as follows

ql = x̄(l−1)Wql kl = x̄(l−1)Wkl vl = x̄(l−1)Wvl (3.3)

Where Wql,Wkl,Wvl ∈ Rdm,dm are the projection weights. These facets are split into h heads and

attention is applied to each head. The output of the attention’s softmax is added with x(l−1). This goes

through another layer normalization and FFN (in a residual) and the final output of layer l is given as x(l).

We say ql is query, kl is key, vl is value, and xl is token facet of the l-th layer. Each is of type Rn,dm

(n tokens, dm dimension each) and is a candidate for feature aggregation.

Process Given a dataset containing database and query images, we pick a representative sample and

pick a few corresponding points. As seen in Fig. 3.2, a point in the left database image is chosen and

all patches (across all facets) are extracted from the query image (on the right) and matched. A map

highlighting the similarity of each patch to the queried point is visualized across facets and layers. The

most similar patch is highlighted in the query image. On inspecting the similarity maps, we can arrive at

a decision on using a particular facet and layer. In the case of Fig. 3.2, we choose the value facet of the

31st layer (because the maps are most contrastive). This choice is justified by layer and facet ablations in

Section 3.4.3 (and Fig. 3.4).

3.2.1.3 Choosing Aggregation Method

The facet features correspond to the individual patches of the image (mostly local features with some

semantic image information imbibed due to training). These local features have to be aggregated to obtain

image-level features (also called global descriptors). These techniques are described in Section 1.2.3. We

explore the following methods
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VLAD Vector of Locally Aggregated Descriptor is formed by computing a vocabulary from a database

of images, like the cluster centers by clustering the local features. Given an image, the features are

assigned to the clusters and a residual is calculated (distance to the cluster centers). The residuals are

then aggregated for each cluster, normalized, concatenated into one vector, and normalized again.

Given features f ∈ Rn,dm (which could come from any facet of any layer mentioned earlier), we first

get the residual matrix V ∈ RK,dm

V[k, :] =
n∑

i=1

mi,k(f [i, :]− c[k, :]) (3.4)

where c ∈ RK,dm is the vocabulary of K cluster centers, each dm dimensional. And mi,k = 1 if

feature i is assigned to cluster k (closest to the cluster) and 0 otherwise.

Soft VLAD replaces the mi,k with a softmax on the distance between the feature i and every cluster

center k. This gives distance-proportional assignment of every descriptor to every cluster center. This is

similar to the formulation of NetVLAD.

GeM applies a mean pooling over the descriptors f ∈ Rn,dm and gives pooled descriptor fG ∈ Rn,dm

using

fG =

(
1

n

n∑
i=1

(f [i, :])p
) 1

p

(3.5)

3.2.1.4 Choosing Vocabulary

Algorithms like VLAD require a set of database images to form cluster centers (vocabulary). We

aim to characterize distinctive semantic properties in a diverse set of environments. From Fig. 3.1, it is

apparent that projecting the global descriptors of different datasets highlights distinct domains in the

latent space, allowing us to characterize and group datasets having similar properties.

The vocabulary is a superset (a collection of datasets) of images we use to build database descriptors

(for aggregation technique VLAD). We define the following types of vocabulary

• Global: Where database images from all the datasets are included when clustering.

• Structured: Where only the database images from structured environments are included for

clustering. These are outdoor and indoor datasets. These are most widely benchmarked in the VPR

community and are from mostly human maintained environments.

• Unstructured: Where database images from unstructured environments are included. These are

subterranean, degraded, aerial, and underwater datasets. These aren’t frequently benchmarked and

remain less explored, but are important in scenarios like remote monitoring.

• Map-Specific or dataset-specific: Where the database images from only the single dataset (which is

being tested on) is used. For example, if the testing is on Oxford cars (an outdoor dataset), then the

database images only from Oxford car are used to get the cluster centers for VLAD.
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Structured Unstructured
Dataset NDb Nq Loc. Type Dataset NDb Nq Loc. Type

Baidu [117] 689 2292 10 m Hawkins [24] 65 101 8 m

Gardens [52, 139] 200 200 5 fr Laurel [24] 141 112 8 m

17 Places [129] 406 406 5 fr Nardo-Air [12] 102 71 60 m

Pitts-30k [147] 10k 6816 25 m VP-Air [41] 2.7k 2.7k 3 fr

St. Lucia [161] 1549 1464 25 m Mid-Atlantic [7] 65 101 0.3 m

Oxford [111] 191 191 25 m

Table 3.1 Datasets Used for Benchmarking
Baidu stands for “Baidu Mall”, Gardens stands for “Gardens Point”, Laurel stands for “Laurel Caverns”,

Mid-Atlantic stands for “Mid-Atlantic Ridge” or “Eiffel Tower” (underwater hydrothermal vent in the atlantic).
Localization radius is in meters (m) or number of frames (fm).

• Domain-Specific: A domain is a collection of datasets with similar properties. The latent represen-

tation of AnyLoc descriptors allows us to discover these groups by clustering image descriptors

from various datasets (as shown in Fig. 3.1). For example, for the outdoor domain, we use all the

datasets captured in the outdoor setting.

After getting global descriptors (using aggregation techniques), we store the descriptors from database

images into a local cache and run similarity search for the descriptors of query images using Cosine

similarity. Note that the database cache is built offline whereas the query’s nearest neighbor lookup can

be done online.

3.3 Experimental Setup

In Visual Place Recognition (VPR), a system typically relies on a collection of images stored in

a database (usually captured beforehand). The goal is to find matching images in this database for

a given query image (usually provided at runtime). This essentially translates to solving an image

retrieval problem. VPR systems achieve this by analyzing smaller image regions (local features) and then

combining these analyses (feature aggregation) to create a comprehensive description (global descriptor)

for the entire image.

Our approach aims to create a general-purpose solution for VPR (image retrieval) by leveraging

latent features extracted from DINO and DINOv2 models (as described in Section 3.2.1). We employ

well-established feature aggregation techniques to combine information from local patch descriptors and

generate global image descriptors.

3.3.1 Datasets

All datasets used for benchmarking are mentioned in Table 3.1, along with the type (see Fig. 3.1 for

legend), number of database images NDb, number of query images Nq, and the localization radius used

for evaluation purposes. We choose a diverse set of structured and unstructured datasets. Structured
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datasets include commonly used indoor and outdoor datasets whereas unstructured datasets are less

commonly used, but are gaining traction in VPR because of their challenging nature and the requirements

of robotics in the near future (subterranean and underwater datasets, for example).

To create an aerial dataset with no rotation shift between database and query images, we create

Nardo-Air R, which is created by rotating the Nardo-Air images so that they all point in the same

direction.

3.3.2 Benchmarking

Baselines We evaluate AnyLoc against three state of the art VPR baselines: NetVLAD [133], CosPlace

[29], and MixVPR [4]. To evaluate against other foundation models, we additionally propose benchmark-

ing CLIP [62], DINO [47], and DINOv2 [18] using their [CLS] token as the global image descriptor

and performing retrieval against it. For CLIP, we use the OpenCLIP implementation trained on the

LAION-5B dataset [55, 8, 62, 42], specifically, we use the ViT-BigG/14 model. We use ViT-S/8

(DeIT implementation) for DINO and ViT-G/14 for DINOv2.

Model Specifications For AnyLoc-VLAD-DINO, we perform VLAD aggregation over DINO features

extracted from layer 9, key facet, of the ViT-S/8 (DeIT) model. For AnyLoc-VLAD-DINOv2, we

perform VLAD over DINOv2 features from layer 31, value facet, of the ViT-G/14 model. For

AnyLoc-GeM-DINOv2, we extract the same features as in the VLAD version, but perform GeM pooling

instead of VLAD aggregation.

For DINO, the descriptor dimension for ViT-S (DeIT) is dm = 384 (for each patch), and VLAD

clustering is used with K = 128 clusters, giving a total output dimension of 384× 128 = 49152. For

DINOv2, the descriptor dimension for ViT-G/14 is dm = 1536 and we use K = 32 clusters, giving the

VLAD output dimension 1536× 32 = 49152. We additionally down-sample these global descriptors

using principal component analysis (PCA). We fit the PCA (estimate the parameters) using only the

database images, which is done offline. The same (cached) projection parameters are used on the query

images (which are fed online). We project the dimensionality from 49152 to 512 in AnyLoc-VLAD-

DINO-PCA and AnyLoc-VLAD-DINOv2-PCA methods.

3.3.3 Evaluation Metric

We use the widely used Recall@N metric to evaluate image retrieval (VPR) performance on each

dataset. Recall@N (or R@N) is defined as the percentage of queries that have a correct retrieval in the

top-N closest retrieved database images. A good VPR method should have high recall at low ‘N’ value.

As ‘N’ increases, the recall of a particular method also increases (as it is more likely to get a correct

retrieval if it’s matching against more retrieved images). We use ‘R@1’ (top-1 retrieved) and ‘R@5’

(top-5 retrieved) to compare all methods.
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Methods
Baidu Mall Gardens Point 17 Places Average

R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5
NetVLAD [133] 53.1 70.5 58.5 85.0 61.6 77.8 57.73 77.76
CosPlace [29] 41.6 55.0 74.0 94.5 61.1 76.1 58.9 75.2
MixVPR [4] 64.4 80.3 91.5 96.0 63.8 78.8 73.23 85.03
CLIP-CLS [62] 56.0 71.6 42.5 74.5 59.4 77.6 52.63 74.56
DINO-CLS [47] 48.3 65.1 78.5 95.0 61.8 76.4 62.86 78.83
DINOv2-CLS [18] 49.2 64.6 71.5 96.0 61.8 78.8 60.83 79.8
AnyLoc-GeM-DINOv2 50.1 70.6 88.0 97.5 63.6 79.6 67.23 82.56
AnyLoc-VLAD-DINO 61.2 78.3 95.0 98.5 63.8 78.8 73.33 85.2
AnyLoc-VLAD-DINO-PCA 62.3 81.2 91.5 99.5 63.3 78.8 72.36 86.5
AnyLoc-VLAD-DINOv2 75.2 87.6 95.5 99.5 65.0 80.5 78.56 89.2
AnyLoc-VLAD-DINOv2-PCA 74.9 89.4 96.0 99.5 64.8 81.0 78.56 89.96

Table 3.2 AnyLoc Benchmarking on Indoor Datasets
Performance of methods on indoor datasets. Top: Common VPR baselines, middle: foundation model global

descriptors (using CLS token), bottom: our AnyLoc methods. The best is shown in bold, and the second best is
shown in underline.

3.4 Results

3.4.1 Overall

The results for indoor, outdoor, aerial, and remaining unstructured datasets are presented in Table 3.2,

Table 3.3, Table 3.4, and Table 3.5 respectively.

It is interesting to note that even with a 96× reduction descriptor dimension through PCA, AnyLoc

methods hardly loose any performance. This robustness to dimensionality reduction could be attributed

to regularization techniques during training these foundation models, promoting the learning of efficient

representations across channels. This robustness could also be a reason why AnyLoc can easily separate

and group datasets of different domains in the 2D PCA projection in Fig. 3.1 whereas MixVPR struggles

to separate the data in such a low dimension.

AnyLoc methods perform much better than the benchmark for the indoor domain. Interestingly, the

CLS baselines of foundation models are competitive with conventional VPR baselines out-of-the-box.

Simple aggregation techniques over DINO and DINOv2 give a new state-of-the-art model in this category.

Most CLS baselines fail in outdoor settings, due to not being explicitly trained on outdoor data; only

DINOv2 has Google Landmarks so it performs relatively better than DINO and CLIP. However, adding

conventional aggregation techniques to foundation model baselines bring them at-par with the VPR

baselines that are explicitly trained for outdoor VPR. AnyLoc DINOv2 methods, perform better than

VPR baselines in the presence of day-vs-night change (Oxford).

Traditional VPR methods, though being trained on ourdoor data, perform poorly on aerial data. This

could be because they fail to generalize on top-view images. Upon visual inspection of retrievals, we find

that CosPlace retrieves a particular fixed set of reference images for almost all query images (giving poor

results on Nardo-Air).

Foundation models and AnyLoc methods are significantly better than VPR baselines on aerial datasets.
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Methods
Pitts-30k St. Lucia Oxford Average

R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5
NetVLAD [133] 86.1 92.7 57.9 73.0 57.6 79.1 67.2 81.6
CosPlace [29] 90.4 95.7 99.6 99.9 95.3 99.5 95.1 98.36
MixVPR [4] 91.5 95.5 99.7 100 92.7 99.5 94.63 98.33
CLIP-CLS [62] 55.0 77.2 62.7 80.7 46.6 60.7 54.76 72.86
DINO-CLS [47] 70.1 86.4 45.2 64.0 20.4 46.6 42.23 65.66
DINOv2-CLS [18] 78.3 91.1 78.6 89.7 47.1 58.1 68 79.63
AnyLoc-GeM-DINOv2 77.0 87.3 76.9 89.3 92.2 97.9 82.03 91.5
AnyLoc-VLAD-DINO 83.4 92.0 88.5 94.9 82.2 99.0 84.7 95.3
AnyLoc-VLAD-DINO-PCA 82.8 90.8 87.6 94.3 82.7 96.3 84.36 93.8
AnyLoc-VLAD-DINOv2 87.7 94.7 96.2 98.8 99.5 100 94.46 97.83
AnyLoc-VLAD-DINOv2-PCA 86.9 93.8 96.4 99.5 96.9 100 93.4 97.76

Table 3.3 AnyLoc Benchmarking on Outdoor Datasets
Performance of methods on outdoor datasets. Top: Common VPR baselines, middle: foundation model global

descriptors (using CLS token), bottom: our AnyLoc methods. The best is shown in bold, and the second best is
shown in underline.

Methods
Nardo-Air Nardo-Air R VP-Air Average

R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5
NetVLAD [133] 19.7 39.4 60.6 85.9 6.4 17.7 28.9 47.66
CosPlace [29] 0 1.4 91.6 100 8.1 14.2 33.23 38.53
MixVPR [4] 32.4 42.2 76.1 98.6 10.3 18.3 39.6 53.03
CLIP-CLS [62] 42.2 70.4 62.0 97.2 36.6 52.8 46.93 73.46
DINO-CLS [47] 57.8 90.1 84.5 100 24.0 38.4 55.43 76.16
DINOv2-CLS [18] 73.2 88.7 71.8 91.6 45.2 59.9 63.4 80.06
AnyLoc-GeM-DINOv2 76.1 83.1 57.8 97.2 38.3 53.8 57.4 78.03
AnyLoc-VLAD-DINO 43.7 54.9 94.4 100 17.8 28.7 51.96 61.2
AnyLoc-VLAD-DINOv2 76.1 94.4 85.9 100 66.7 79.2 76.23 91.2

Table 3.4 AnyLoc Benchmarking on Aerial Datasets
Performance of methods on aerial datasets. Top: Common VPR baselines, middle: foundation model global

descriptors (using CLS token), bottom: our AnyLoc methods. The best is shown in bold, and the second best is
shown in underline. Note that aerial datasets are also included in our classification of unstructured datasets.

However, they also form a domain of their own, hence these results are in a separate table.

32



Methods
Hawkins Laurel Caverns Mid-Atlantic Ridge

R@1 R@5 R@1 R@5 R@1 R@5
NetVLAD [133] 34.8 71.2 39.3 71.4 25.7 53.5
CosPlace [29] 31.4 59.3 24.1 47.3 20.8 40.6
MixVPR [4] 25.4 60.2 29.5 67.0 25.7 60.4
CLIP-CLS [62] 33.0 67.0 36.6 66.1 25.7 51.5
DINO-CLS [47] 46.6 84.8 41.1 57.1 27.7 49.5
DINOv2-CLS [18] 28.0 62.7 40.2 65.2 24.8 48.5
AnyLoc-GeM-DINOv2 53.4 83.9 58.9 86.6 14.8 49.5
AnyLoc-VLAD-DINO 48.3 84.8 57.1 79.5 41.6 66.3
AnyLoc-VLAD-DINOv2 65.2 94.1 61.6 90.2 34.6 61.4

Table 3.5 AnyLoc Benchmarking on Unstructured Datasets
Performance of methods on unstructured datasets (outside aerial domain). Top: Common VPR baselines, middle:
foundation model global descriptors (using CLS token), bottom: our AnyLoc methods. The best is shown in bold,

and the second best is shown in underline.

Vocabulary Type Indoor Outdoor Aerial

Global 77.0 93.9 57.1
Structured 77.0 93.3 56.4
Unstructured 74.8 89.0 75.8
Map-Specific 78.0 92.3 62.9
Domain-Specific 78.6 94.4 76.2

Table 3.6 Vocabulary Analysis using AnyLoc-VLAD-DINOv2
Different vocabularies (first column) are tried against different dataset domains (heading of next three columns).

The ‘R@1’ is calculated and averaged across the domains. The best results are in bold

They set a new state-of-the-art, with the worst performer (CLIP-CLS) beating the best traditional VPR

method (MixVPR) by more than 7%. AnyLoc-VLAD methods, especially with DINOv2, yield robust

results that are unseen on previous benchmarks.

The performance of AnyLoc-VLAD-DINOv2 on Laurel Caverns and Mid-Atlantic Ridge is signifi-

cantly better than VPR baselines (and even foundation models), showcasing the utility of the methods

even under conditions where distinct keypoints are few and when there is a high viewpoint change

involved.

3.4.2 Vocabulary Domain Ablation

We study the effect of using different vocabularies (collection of datasets) for different deployment

scenarios. The overall results are shown in Table 3.6. It is evident that using the domain-specific

vocabulary for each domain gives the best result; that is, using database images across various indoor

datasets is the best option to test on an indoor dataset (even better than using database images only from

the single dataset being tested). This shows good knowledge transfer abilities of AnyLoc. Interestingly,

using unstructured vocabulary for structured domains (indoor and outdoor) degrades performance by
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Vocabulary Dataset Evaluation Dataset Map-Specific R@1 Vocab-Specific R@1

Baidu Mall (0.7k)
17 Places (0.4k) 64.5 63.8
Gardens Point (0.2k) 98.0 94.5

VP-Air (2.7k)
Nardo-Air (0.1k) 57.8 64.8
Nardo-Air R (0.1k) 70.4 88.7

Pitts-30k (10k) Oxford (0.2k) 94.8 99.0

Table 3.7 Vocabulary Transfer for AnyLoc-VLAD-DINOv2
Using a large vocabulary dataset, we test how well the cluster centers trained on the testing dataset (map-specific)
perform w.r.t. those transferred form the given dataset (vocab-specific). The first column is the large dataset (for
vocab testing), second column is the dataset for evaluation, third column is results using the evaluation dataset

alone (no transfer), fourth column is results using transfer of vocab. Top row is for indoor domain, middle is for
aerial, and bottom is for outdoor.

only 4%, but gives significant boost to evaluations on unstructured datasets (aerial).

3.4.2.1 Vocabulary Transfer Behavior

We additionally diagnose the vocabulary transfer abilities of our model by using one large dataset for

building vocabulary, and testing on other datasets of the same domain. The results for this are shown in

Table 3.7. It is clear that, in case of using vocabulary transfer from another dataset, the vocabulary dataset

should be large. Using cluster centers obtained from Pitts-30k to evaluate Oxford gives a significant

boost of more than 4% (over using cluster centers from only Oxford).

This shows that we can save the vocabulary (cluster centers) in long-term storage and use them based

on the deployment environment. One way to estimate the deployment environment could be to project

sample images on a template projection map containing images from different domains, like the PCA

projections by AnyLoc-GeM-DINOv2 in Fig. 3.1.

3.4.2.2 Visual Analysis of Vocabulary

We visualize the cluster assignments in Fig. 3.3. This is done by color coding the cluster numbers and

projecting the assigned numbers (closest cluster center) to each patch (since descriptors are patch-wise).

We notice that most clusters learn (latch onto) semantically meaningful information needed for good

VPR. For example, the buildings in aerial images (green), furniture in indoor images (purple), and road,

buildings, and horizon in outdoor images (orange, pink, and blue respectively). For the purpose of this

experiment, we use K = 8 clusters.

3.4.3 Design Ablation

To better justify our choice of model parameters like layer, facet, and pooling techniques, we run

thorough ablations in Fig. 3.4 (tested on Baidu Mall and Oxford datasets).

We see that using ViT-G (with 1.1B parameters) gives the best results on the test datasets. ViT-L (with

300M parameters) gives the closest best result, followed by ViT-B (with 86M parameters) and ViT-S

(with 21M parameters). The low change when downgrading from ViT-G to ViT-L shows that DINOv2

retains performance even after a large reduction in parameters. This could be a result of the distillation
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VP-AirNardo-Air

St LuciaPitts-30k

Baidu Mall 17 Places

Reference ReferenceQuery Query

Figure 3.3 VLAD Cluster Visualizations
Visualizing the clusters different patches of the image belong to. We use domain vocabulary (clusters) for this

purpose. In each row, patches belonging to the same cluster have the same color. Noisy clusters are not visualized
for clarity.
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Figure 3.4 AnyLoc Design Ablations
(a) Performance varying by model size. (b) On average, key and value perform best for DINO and DINOv2

respectively. (c) Performance peaks at penultimate layers of DINO and DINOv2.
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Method Indoor Urban Aerial SubT & D Underwater

ViT-B CosPlace 62.9 80.7 26.3 26.5 18.8
ViT-B CosPlace VLAD 68.5 82.9 38.4 37.5 23.8
ViT-S AnyLoc-VLAD-DINO 72.9 79.6 47.8 52.7 41.6
ViT-B AnyLoc-VLAD-DINOv2 77.0 82.6 53.6 60.2 35.6
ViT-G AnyLoc-VLAD-DINOv2 78.0 92.3 62.9 63.4 34.6

Table 3.8 VPR Trained ViTs Vs. Self Supervised ViTs
Analysis of ViTs trained for VPR (top rows) versus self-supervised ViTs (bottom rows). Best results are in bold.
All numbers are Recall@1 percentages. Note that AnyLoc methods are better than CosPlace methods on various

domains, even when using ViT-S backbone (DINO).

Aggregation Methods DINO DINOv2
Baidu ↑ Oxford ↑ Dim ↓ Baidu ↑ Oxford ↑ Dim ↓

Global Average Pooling (GAP) 29.6 28.8 384 41.6 78.5 1536
Global Max Pooling (GMP) 34.9 38.2 384 64.4 74.9 1536
Generalized Mean Pooling (GeM) 34.7 47.6 384 50.1 92.2 1536
Soft Assignment VLAD 33.8 28.3 49152 40.3 82.2 49152
Hard Assignment VLAD 60.9 64.9 49152 71.5 94.8 49152

Table 3.9 AnyLoc Aggregation Methods
Testing various feature aggregation methods for AnyLoc using DINO and DINOv2 features (same facet and layer
as AnyLoc). Note that for DINOv2, through VLAD has high dimension, the PCA projected version has only 512
dimension. It is not included here for fairness. The numbers in Dim column are integers (lower is better) and the

numbers in other columns are Recall@1 percentages (higher is better).

strategy of DINOv2 (smaller models are distilled from larger models) discussed in Section 2.3.2.2.

On average, using the key facet for DINO and value facet for DINOv2 gives the best results

across dataset domains. The layer ablations show that performance is low at the initial layers, peaks

at the penultimate layers, and then gradually stagnates or goes down. We believe this is because of

unique representations learned per layer. It is possible that later layers learn more meaningful global

representations at the cost of local information. As a good middle ground, we choose layer 9 for

DINO ViT-S/8 and layer 31 for DINOv2 ViTT-G/14.

3.4.3.1 Architecture

We additionally investigate the affect of the architecture on recalls in Table 3.8. We use the author’s

implementation of GeM pooling on ViT-B’s output [29]. We also test this against VLAD aggregation

(K = 128 clusters) over the 6th layer’s values for CosPlace ViT-B (we found this performs best).

We find that AnyLoc gives better results than CosPlace ViT, despite using a smaller ViT (ViT-S). On

the urban setting, since CosPlace is trained on it, it performs slightly better. However, we achieve the

best performance using ViT-G AnyLoc-VLAD-DINOv2.

3.4.3.2 Pooling Methods

We try different pooling methods in Table 3.9. We find that VLAD pooling with hard cluster

assignments gives the best results, followed by GeM pooling. Surprisingly, these methods do not perform
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well when using soft cluster assignments in VLAD (like in NetVLAD). This could be because these

models aren’t trained for VLAD.

3.5 Conclusion

This work introduces AnyLoc, a novel general-purpose visual place recognition (image retrieval)

system achieving state-of-the-art performance across diverse domains (indoor, aerial, unstructured)

under varying conditions (day/night, viewpoints). By leveraging features from foundation models

and unsupervised aggregation techniques, AnyLoc outperforms existing VPR systems by up to 5%,

35%, and 30% in these domains, respectively. Notably, it demonstrates competitive results even on

outdoor environments without specific supervision or training data, highlighting its generalizability.

Developments like AnyLoc are crucial for enabling robust robot navigation and perception in real-world

scenarios with limited or unavailable domain-specific data.
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Chapter 4

Conclusions

Our introduction (Chapter 1) established the field of mobile robotics as the primary domain of this

work (Section 1.2.1). It also provided an overview of simultaneous localization and mapping (SLAM)

systems (Section 1.2.2), visual place recognition (VPR) systems (Section 1.2.3), and image retrieval (IR)

techniques using global image descriptors.

Chapter 2 delves into Vision Foundation Models (VFMs). It discusses their core architecture,

the Vision Transformer, focusing on both ViT (Section 2.1.1) and DeIT (Section 2.1.2). The chapter

also explores self-supervised learning concepts crucial for this thesis, such as knowledge distillation

(Section 2.2.1).

Furthermore, Chapter 2 introduces the specific foundation models employed in this work: DINO

(Section 2.3.1) and DINOv2 (Section 2.3.2.2). It’s important to note that DINOv2 relies on iBOT

(Section 2.3.2.1) as an underlying dependency.

Leveraging the power of vision foundation models and insights from traditional VPR systems,

Chapter 3 introduced AnyLoc, our novel image retrieval system for VPR. AnyLoc demonstrates the

significant promise that foundation models hold for tackling complex visual place recognition tasks,

particularly in scenarios with limited data availability.

This chapter concludes this thesis with the limitations of our system and some possible solutions to

them. Following on latest developments, it also includes notes for improvements in the future.

4.1 Limitations and Suggestions

Descriptor Dimensionality While AnyLoc achieves state-of-the-art performance across diverse do-

mains (see Tables 3.2 to 3.5), its high-dimensional descriptors (49,152 elements) pose challenges for

deployment in memory-constrained environments. To address this, we employ Principal Component

Analysis (PCA) for efficient dimensionality reduction to 512 elements, with minimal to no performance

impact. Exploring alternative feature aggregation and dimensionality reduction techniques holds promise

for further improvements in this area.

Size and Latency The backbone of our most efficient model is ViT-G, which has 1.1B parameters and

requires 6 GB VRAM under low-power hardware settings. This large model size presents challenges for

deployment in real-world environments with limited memory resources.
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ViT-G also exhibits significant latency during loading and forward passes (AnyLoc takes about 0.2

seconds for some images). This latency can hinder real-time applications that require fast turnaround

times.

Some potential solutions to the above problems could include

• Efficient Transformer Architectures: Investigating foundation models trained using more efficient

transformer architectures, such as CCT, could lead to smaller models that maintain a good balance

between memory footprint, accuracy, and speed.

• Knowledge Distillation and VPR-Specific Supervision: Exploring a combination of knowledge

distillation and VPR-specific supervision techniques holds significant potential for creating more

efficient VFMs specifically tailored for visual place recognition tasks.

• Implementation Optimizations: Utilizing lower-level code optimizations like those offered by

NVIDIA TensorRT [44] or specialized hardware like FPGAs [43] could further unlock the potential

of the ViT architecture in terms of speed and throughput.

Other Foundation Models The recent emergence of large language models (LLMs) equipped with

vision capabilities, such as GPT-4V [23] and Google Gemini [10], opens exciting possibilities for visual

place recognition (VPR). While our experiments with MAE [54] and CLIP [55] under our specific

settings did not yield significant results, these models remain largely unexplored in the context of VPR

tasks.

Other Concurrent Work Includes using foundation models for autonomous driving [21] and generative

models to create worlds (for training robust models) [6] (MUVO), [14] (GAIA). These models could also

possibly be learning world representations necessary for robust VPR.

4.2 Future Scope

Recent advancements in the Vision Transformer (ViT) field, such as register tokens [9], hold promise

for further improvements in AnyLoc. These tokens can potentially help ViTs learn more effective latent

maps, which could translate to enhanced performance in visual place recognition tasks. Similarly, token

reorganization techniques like those explored in [36] (using specific tokens instead of all) and architectural

changes like variations in normalization position [85] could further optimize AnyLoc’s efficiency and

accuracy. By integrating these advancements and potentially exploring their synergistic effects, future

iterations of AnyLoc could achieve even greater performance and pave the way for seamless integration

into a full SLAM system, aiding mobile robots in tasks like real-time localization and environment

understanding.
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