
Hardware Accelerator for Transformer based End-to-End Automatic
Speech Recognition System

Thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science in
in

Electronics and Communication Engineering by Research

by

D Shaarada Yamini
2020702003

yamini.d@research.iiit.ac.in

International Institute of Information Technology
Hyderabad - 500 032, INDIA

September 2023

Copyright © D Shaarada Yamini, 2023

All Rights Reserved

International Institute of Information Technology
Hyderabad, India

CERTIFICATE

It is certified that the work contained in this thesis, titled “Hardware Accelerator for Transformer based
End-to-End Automatic Speech Recognition System” by D Shaarada Yamini, has been carried out under
my supervision and is not submitted elsewhere for a degree.

Date Adviser: Prof. Suresh Purini

To my family and friends for always believing in me.

Acknowledgments

I am grateful to my advisor, Dr. Suresh Purini, for his guidance and unwavering support throughout
the project. Along with being an invaluable mentor and a resource for technical and research expertise,
he was also extremely kind and understanding throughout my research journey, for which I will remain
indebted. I thank my co-advisor, Dr. Anil Kumar Vuppala, for his supportive role in the speech lab and
for his insights and guidance along the way. A heartfelt thanks to my Ph.D. mentor, Ganesh Mirishkar,
for his significant contributions to the speech side of the project and the software implementations of
the model throughout the entire duration. I am grateful for your patience and willingness to address my
inquiries whenever needed.

I would like to express my deepest gratitude to my parents, my beloved sister Sivani, and my support-
ive husband Girish for their unwavering support, patience, and love throughout my academic journey.
Their belief in me has been invaluable in completing this thesis.

I would also like to extend my heartfelt appreciation to my dearest friends, Dheepika and Teja,
to name a few, who were a source of encouragement and motivation, and for making this journey
memorable.

v

Abstract

Hardware accelerators are being designed to offload compute-intensive tasks such as deep neu-
ral networks from the CPU to improve the overall performance of an application, specifically on the
performance-per-watt metric. With the evolution of speech recognition based applications, many deep
learning models for Automatic Speech Recognition have been proposed. Encoder-decoder-based sequence-
to-sequence models such as the Transformer model have demonstrated state-of-the-art results in end-to-
end automatic speech recognition systems (ASRs). However, the Transformer model being intensive on
memory and computation poses a challenge for an FPGA implementation.

This thesis proposes an end-to-end architecture to accelerate a Transformer for an ASR system. The
host CPU orchestrates the computations from different encoder and decoder stages of the Transformer
architecture on the designed hardware accelerator with no necessity for intervening FPGA reconfigu-
ration. The intermediate stages, like data pre-processing and feature extraction, are performed on the
host while the complex recognizer, i.e., the Transformer model, is offloaded onto an FPGA. The com-
munication latency is hidden by prefetching the weights of the next encoder/decoder block while the
current block is being processed. The larger computations in the model are split across both the Super
Logic Regions (SLRs) of the FPGA, mitigating the inter-SLR communication. The proposed design
presents an optimal latency, exploiting the available resources. The accelerator design is realized using
Vitis high-level synthesis tool, using OpenCL, a language for heterogeneous computing, and evaluated
on an Alveo U-50 FPGA card. The end-to-end ASR system has a latency of ∼120ms, which is suitable
for real-time applications. The design demonstrates an average speed-up of 32× compared to an Intel
Xeon E5-2640 CPU and 8.8× compared to NVIDIA GeForce RTX 3080 Ti Graphics card for a 32-bit
floating point single precision model.

vi

Contents

Chapter Page

1 Introduction . 1
1.1 Motivation . 1
1.2 Summary of Contributions . 2
1.3 Thesis Organization . 3

2 Automatic Speech Recognition on FPGAs . 4
2.1 Automatic speech recognition . 4

2.1.1 Introduction to Automatic Speech Recognition 4
2.1.2 Evolution of Automatic Speech Recognition systems 5
2.1.3 Transfomer-based approach for ASR . 5
2.1.4 Standard ASR models used commercially . 6

2.2 Hardware Accelerators and FPGAs . 7
2.2.1 Hardware accelerators . 7
2.2.2 Types of Hardware Accelerators . 8
2.2.3 Field Programmable Gate Arrays . 8
2.2.4 Alveo U-50 Data Accelerator Card . 9
2.2.5 Vitis HLS . 12
2.2.6 Pragmas in Vitis HLS . 12
2.2.7 Host-side Process Flow . 13

3 Automatic Speech Recognition Model Architecture and Analysis 15
3.1 End-to-end Automatic Speech Recognition Model . 15
3.2 ESPnet tool kit . 15
3.3 Libri Seech Dataset . 16
3.4 Transormer Model Description . 16

4 Proposed Hardware Implementation of the Algorithm . 20
4.1 Experimental setup . 20
4.2 Operational intensity . 20
4.3 Paralleism scheme . 21
4.4 Orchestrating Matrix Computations . 22
4.5 Computation and Communication Overlap . 26
4.6 End-to-End control flow . 28

vii

viii

5 Experiments and Results . 30
5.1 Experimental Results . 30

5.1.1 Output of the ASR system . 30
5.1.2 Load-compute analysis . 31
5.1.3 Architecture analysis and comparison . 31
5.1.4 Discussion . 32
5.1.5 Performance Comparison with CPU and GPU 33
5.1.6 Other results . 34
5.1.7 Performance Comparison with other works 35

6 Relevant Work and Conclusion . 36
6.1 Related Work . 36
6.2 Conclusion and future work . 37

Bibliography . 39

List of Figures

Figure Page

2.1 Structure of a typical ASR system . 4
2.2 Alveo U-50 FPGA [1]. 10
2.3 Floor plan of Alveo U-50 FPGA [1] . 11

3.1 Transformer architecture . 17
3.2 Block-level implementation of the MHA . 19
3.3 Block-level implementation of the FFN . 19

4.1 Overview of the accelerator setup . 21
4.2 Systolic array for multiplication of two matrices of dimensions 3× 3 and 3× 4. 22
4.3 MM1 block with Input1, Input2 and Output . 24
4.4 MM2 (top) and MM3 (bottom) blocks with Input1, Input2, and Output 25
4.5 MM4 block with Input1, Input2, and Output . 25
4.6 MM5 block with Input1, Input2 and Output . 26
4.7 MM6 block with Input1, Input2 and Output . 26
4.8 Architecture A1 for Encoder stack . 26
4.9 Architecture A2 for Encoder stack. 27
4.10 Architecture A3 for Encoder stack. 27
4.11 Architecture A3 for Decoder stack. 27
4.12 Top level controller design. 28
4.13 Block-wise scheduling of operations within an encoder 28

5.1 Textual output from raw audio . 30
5.2 Comparison of load time and compute time of one MHA + FFN block 31
5.3 Platform diagram of Alveo U-50 . 34

ix

List of Tables

Table Page

4.1 Weight matrices read for an encoder-decoder stack . 21
4.2 Dimensions of the Matrix Multiplication operations where s is the sequence length. 22

5.1 Architecture-wise latency comparison for sequence lengths: 4, 8, 16, and 32 32
5.2 Resource Utilization for sequence length 32 . 32
5.3 Design space exploration . 32
5.4 Latencies for different sequence length inputs compared to a CPU 33
5.5 Latencies for different sequence length inputs compared to a GPU 33
5.6 Performance comparison with reference works . 35

x

List of Abbreviations

ASIC Application Specific Integrated Circuits

ASR Automatic Speech Recognition

AXI Advanced eXtensible Interface

BRAM Block Random Access Memory

CLB Configurable Logic Block

CNN Convolutional Neural Network

CPU Central Processing Unit

DNN Deep Neural Network

DSP Digital Signal Processor

FFN Feed Forward Network

FPGA Field Programmable Gate Array

GFLOPs Giga Floating Point Operations

GPU Graphics Processing Unit

HBM High Bandwidth Memory

HMM Hidden Markov Model

IoT Internet of Things

LUT Look Up Tables

MAC Multiply and Accumulate

MHA Multi Headed Attention

PAL Programmable Array Logic

PCIe Peripheral Component Interconnect Express

RNN Recurrent Neural Network

Chapter 1

Introduction

1.1 Motivation

The recent trends in personal digital assistants and smart home technologies have led to extensive
use of speech recognition technology. Automatic speech recognition (ASR) involves transcribing a
speech signal into text which is perhaps consumed by downstream modules. Numerous speech recogni-
tion APIs based on neural networks are available to enable rapid speech-to-text conversion in real-time
applications and otherwise. With the evolution of deep learning algorithms, several advances in ASR
have been made in the last decade. Initially, ASR systems were built using Hybrid Hidden Markov
Models. End-to-end (E2E) ASR systems using sequence-to-sequence models have recently provided
state-of-the-art results [19]. The most commonly used E2E ASR approaches are based on Connectionist
Temporal Classification (CTC), Recurrent Neural Network Transducer (RNN-T), and attention-based
encoder-decoder Transformer architectures.

However, in RNN-based approaches, the input sequences are read sequentially, causing trouble cap-
turing long-range dependencies. The sequential processing of input inherently prevents the paralleliza-
tion of computation. Self-attention-based Transformer architectures circumvent these shortcomings by
processing a sequence as a whole, accounting for long-range dependencies. Applications like neural
machine translation, language representation models, and other natural language processing tasks based
on the Transformer architecture have produced promising results [32]. Similar successes have been
observed in the domain of E2E ASR systems [8, 3, 26].

Inspired by the above, we propose a hardware accelerator for inference in a transformer-based end-to-
end ASR system in this work. Although the transformer models have significantly improved accuracy,
the required computations during an inference task are prohibitively high, which can be a significant
bottleneck for ASR applications. For example, the particular transformer architecture (refer to Sec-
tion 3.1) we have deployed requires 4 Giga floating-point operations to process a single input sequence,
exerting the available compute resources. Fortunately, the transformer architecture is amenable to paral-
lelization, allowing multiple computations can be performed simultaneously, allowing for more efficient
processing. We exploit this to build an FPGA-based hardware accelerator for an E2E ASR system while

1

reducing the computational load and enabling the deployment of transformer-based ASR models in
real-world scenarios.

A typical Transformer uses positional encoding, where each position of the input sequence is mapped
to a vector that carries the positional information of the sequence. The recent developments led to
various architectures where the positional encoding was replaced by Convolutional Neural Networks
(CNNs) at the encoder and 1-D causal convolutions at the decoder layers. The convolutions at the
decoder were eliminated in later developments [4]. We have used a similar E2E-trained model without
positional encoding, which also eliminates the use of language and acoustic models individually.

The proposed hardware accelerator uses a systolic array-based structure for matrix multiplication as a
building block. Eight systolic array structures, evenly distributed between the two Super Logic Regions
(SLRs) of the FPGA, form the core compute fabric on which all encoder/decoder computations are
routed. The host-side controller orchestrates all the encoder and decoder computations on the hardware
accelerator without requiring reconfiguration between stages. The proposed architectural approach is
flexible in two dimensions, as given below:

• It is possible to retarget the hardware accelerator to process different transformer networks with
varying configurations, such as the number of encoders, decoders, and attention heads.

• Based on the availability of FPGA resources, we can appropriately determine the number and
the dimensions of the systolic arrays for matrix multiplication, thus providing scalability on the
parallelism front.

The accelerator design is realized using Vitis high-level synthesis (HLS) tool, parallelized using
HLS-defined pragmas, and evaluated on an Alveo U50 FPGA card. The design demonstrates an average
speed-up of 32× and 8.8× for a 32-bit single-precision floating-point model compared to an Intel Xeon
processor and NVIDIA GeForce RTX GPU, respectively, for short to medium-length sequences. To the
best of our knowledge, this is the first work that deploys an E2E ASR system on hardware.

1.2 Summary of Contributions

The main contributions of this thesis are explained in Chapter 4 and are mentioned briefly below :

• This work is the first implementation of an end-to-end Automatic Speech Recognition system on
FPGAs.

• In this work, we identify the computational bottleneck in the Transfomer-based ASR model and
describe a systolic-array-based Matrix Multiplication approach while ensuring maximum reuse
of resources within various blocks of the model.

• We further compare various end-to-end architectures while overlapping the load and compute
phases of the system, thus reducing the overall latency and increasing the throughput.

2

• We design the accelerator to exploit the inherent parallelism within the Transformer, with kernels
running on both the Super Logic Regions of the device, while mitigating the inter-SLR commu-
nication. We compare our works with a CPU, GPU implementation, along with other related
works.

1.3 Thesis Organization

The thesis is further divided into the following chapters :

• Chapter 2 gives an introduction to NLP tasks like Automatic Speech Recognition (ASR) and
its applications in various real-life scenarios. It talks about FPGAs as hardware devices, their
advantages, and the use cases where they are highly effective. It also details the FPGA we have
used and the fundamental process flow and optimizations in our context.

• Chapter 3 explains the Transformer architecture. It presents the architecture’s complexity and
delineates why it is a challenge to implement on an FPGA.

• Chapter 4 proposes a hardware architecture for a Transformer based model. It analyses each
block in detail and finally discusses an end-to-end implementation for an ASR application.

• Chapter 5 explains the experimental setup and discusses the results with a thorough analysis of
our experiments.

• Chapter 6 concludes the thesis and discusses the relevant work in this domain along with major
takeaways from the project. It ends by discussing the future scope of this problem.

• Bibliography contains all the referenced papers used in this thesis.

3

Chapter 2

Automatic Speech Recognition on FPGAs

2.1 Automatic speech recognition

2.1.1 Introduction to Automatic Speech Recognition

Automatic Speech Recognition (ASR) is a key component in many technological advances, from
virtual assistants to transcription and translation services. ASRs are computer programs designed to
convert speech into text, allowing easier access to information and more efficient communication.

Speech is the most natural form of communication for humans, and ASRs allow us to interact with
technology in a more natural way. With the increasing prevalence of smart speakers, smartphones, and
other voice-activated devices, ASRs have become more important than ever. They enable us to control
our devices, search for information, and communicate with others, all with the power of our voice.

ASRs have also revolutionized the field of accessibility for people with disabilities, particularly those
who are deaf or have poor hearing. ASRs can transcribe spoken language into text, allowing for real-
time communication in situations where it would otherwise be impossible. In addition to these practical
applications, ASRs have also been the subject of extensive research in the field of machine learning
and artificial intelligence. The development of ASRs has been a challenging task due to the complexity
of speech as a signal. The ability to accurately transcribe speech requires overcoming issues such as
background noise, varying speaking styles, and the lack of clear boundaries between individual words.

Raw Audio Data
Preprocessing Feature Extraction Recognizer Character

Sequence

... brown fox ...

Figure 2.1 Structure of a typical ASR system

4

2.1.2 Evolution of Automatic Speech Recognition systems

The first ASR systems were based on pattern recognition techniques, which used templates to match
incoming speech to stored reference patterns. These systems were limited in their accuracy and perfor-
mance, as they required large amounts of memory and computational power to store and match reference
patterns.

In the 1960s and 1970s, Hidden Markov Models (HMMs) were introduced as a new approach to
ASR. HMMs allowed for more efficient modeling of speech by using statistical models to represent the
temporal and spectral characteristics of speech. This allowed for better modeling of speech patterns,
which improved ASR accuracy. Later, statistical ASR systems were developed, which used probabilis-
tic models to estimate the likelihood of a given word or phrase given the input speech. These models
included Gaussian Mixture Models (GMMs) and neural networks, which allowed for better modeling
of speech patterns and improved ASR accuracy. However, the GMM-HMM-based ASR systems suffer
from several limitations. [7] One of the main limitations is their inability to capture long-range depen-
dencies in speech signals, which are critical for the accurate transcription of speech. Another limitation
is their difficulty in handling the variability of speech signals, such as accent, speaking rate, and envi-
ronmental noise.

In the 1990s, large-scale ASR systems were developed, which incorporated language modeling tech-
niques to improve ASR accuracy which used statistical methods to estimate the probability of a given
sequence of words based on their frequency and context. This allowed for more accurate recognition of
spoken language, particularly in the presence of noise and other sources of interference.

2.1.3 Transfomer-based approach for ASR

Transformers are a type of neural network introduced in the natural language processing field by
Vaswani et al. [32]. Transformers are designed to model long-range dependencies in sequential data
and have achieved state-of-the-art performance in various natural language processing tasks such as
machine translation, text classification, and language modeling. The core component of a Transformer
is the self-attention mechanism, which allows the model to attend to different parts of the input sequence
and weigh them according to their relevance to the current output. The self-attention mechanism enables
Transformers to model long-range dependencies without the need for recurrent connections, which are
computationally expensive and difficult to parallelize.

Transformers for ASR: In recent years, there has been a growing interest in using Transformers
for ASR. Dong et al. [9], who introduced the Speech Transformer model, proposed the first use of
Transformers for ASR. The Speech Transformer model uses a standard Transformer architecture with a
modified input layer that converts the input speech signal into a sequence of feature vectors. The model
is trained using Connectionist Temporal Classification (CTC) loss, which allows the model to learn the
alignment between the input speech signal and the corresponding transcription. The Speech Transformer

5

model achieved state-of-the-art performance on the LibriSpeech dataset, which is a commonly used
benchmark for ASR.

Subsequently, several variants of the Speech Transformer model have been proposed. For example,
Liu et al. [30] proposed the RoFormer model, which uses a modified Transformer architecture with a rel-
ative position encoding scheme. The relative position encoding scheme allows the model to capture the
relative position of different parts of the input sequence, which is important for accurately transcribing
speech signals. The RoFormer model achieved state-of-the-art performance on several ASR datasets,
including LibriSpeech and AISHELL-1.

Another variant of the Speech Transformer model is the Conformer model, which was proposed by
Gulati et al. [13]. The Conformer model uses a modified Transformer architecture with a multi-head
self-attention mechanism and a convolutional layer. The convolutional layer allows the model to capture
local dependencies in the input speech signal, while the multi-head self-attention mechanism allows the
model to capture global dependencies. The Conformer model achieved state-of-the-art performance on
several ASR datasets, including the LibriSpeech dataset and the Switchboard dataset.

In addition to these models, several other variants of Transformers for ASR have been proposed, in-
cluding the VGG-Transformer [37], which uses a combination of convolutional and Transformer layers.

The success of Transformers for ASR can be attributed to their ability to capture long-range depen-
dencies in the input speech signal, as well as their parallelizable nature. A significant amount of research
is being done to explore Transformer-based ASR models for handling noise and low-resource data, as
they have shown state-of-the-art performance.

2.1.4 Standard ASR models used commercially

With the advent of speech technology-based applications, several popular commercial Automatic
Speech Recognition systems are available in the market today. Here are some of the most notable ones:

Google Cloud Speech-to-Text: Google’s ASR service uses advanced deep-learning techniques to
recognize speech accurately in over 120 languages and dialects. It offers real-time transcription and
can handle audio from multiple sources, such as microphones, audio files, and phone calls. It is a
cloud-based service and can be easily integrated with other Google services and third-party applications.
According to Google’s documentation, the WER for the system ranges from 5-15% for general English
speech. However, this can vary depending on the specific domain and language being spoken.

Amazon Transcribe: Amazon’s ASR service is designed to transcribe audio files and live audio
streams in real-time. It supports multiple languages, including English, Spanish, French, and Japanese,
among others. It can also recognize specialized vocabularies, such as legal and medical terminology.
Amazon claims that its ASR system has a WER of between 4-6% for conversational speech in English.

Microsoft Azure Speech to Text: Microsoft’s ASR service offers real-time transcription of audio
files and live audio streams. It supports multiple languages, including English, Spanish, Italian, and
Chinese, etc. It also offers customizable models that can recognize specialized vocabularies and dialects.
Azure Speech to Text can be easily integrated with other Microsoft services and third-party applications.

6

Microsoft claims that its ASR system has a WER of around 5% for the Switchboard benchmark, which
is a standard benchmark for evaluating ASR performance in conversational speech.

IBM Watson Speech to Text: IBM’s ASR service uses deep learning techniques to recognize speech
accurately in multiple languages, including English, Spanish, French, German, Italian, and Japanese,
among others. It can handle audio from various sources, such as microphones, audio files, and phone
calls. It also offers customization options to train the model for specialized vocabularies and dialects.
IBM Watson Speech to Text can be integrated with other IBM services and third-party applications.
IBM’s ASR system has reported a WER of between 6-12% for conversational speech in English.

These ASR systems are widely used in various industries, such as healthcare[25], finance, legal,
and education[15], to automate speech recognition and transcription tasks. They offer high accuracy
rates and can save time and effort in manual transcription and translation tasks. However, these models
use high-end CPUs or hardware accelerators based on GPUs or FPGAs with hybrid models of HMM,
CNN, and Transformers, as per their volume of data and requirements. For example, Google Cloud
Speech-to-Text uses custom TPUs (Tensor Processing Units) for some aspects of its ASR pipeline.

2.2 Hardware Accelerators and FPGAs

2.2.1 Hardware accelerators

Hardware accelerators have become increasingly important in modern computing systems due to
their ability to improve the performance and efficiency of various applications. Hardware accelerators
provide a way to offload specific computations from the general-purpose processor, resulting in faster
and more efficient processing. The evolution of hardware accelerators has been driven by the need to
accelerate specific tasks that cannot be efficiently executed on traditional general-purpose processors.
Initially, they were implemented as specialized processors for specific tasks, such as graphics processing
or digital signal processing. However, the advent of Field-Programmable Gate Arrays (FPGAs) and
Graphics Processing Units (GPUs) has led to the development of programmable hardware accelerators.
FPGAs are programmable logic devices that can be configured to implement specific hardware designs,
making them ideal for implementing hardware accelerators. Conversely, GPUs are designed for parallel
processing and are well-suited for accelerating certain types of computations, such as those involved in
graphics rendering and machine learning.

The evolution of hardware accelerators has also been driven by the increasing demand for high-
performance computing in various industries, such as finance[21], healthcare[31], and scientific re-
search. Hardware accelerators have become essential to many computing systems, providing the neces-
sary computational power to support these industries. Traditional general-purpose processors are unable
to efficiently execute certain types of computations involved in machine learning to accelerate neural
network training and inference, in scientific simulations, to accelerate the computation of complex math-
ematical models, and big data analytics[40].

7

They can also be optimized for specific applications, resulting in higher performance and efficiency
than general-purpose processors. CPUs have a fetch-decode-execute cycle, a process by which in-
structions are fetched from memory, decoded into operations, and executed by the CPU. This process
takes time and can limit the performance of the system. In contrast, FPGAs are designed to be highly
parallelized and can execute multiple instructions simultaneously. This allows them to avoid the fetch-
decode-execute cycle altogether and operate at much higher speeds than traditional CPUs.

Also, there has been a saturation in the performance improvements that can be achieved with general-
purpose processors. To continue improving performance, there is a need for hardware specialization or
the use of specialized hardware accelerators for specific tasks. The trend towards hardware specializa-
tion is evident in mobile processors, desktops, and data centers[17]. The needs for hardware accelerators
also vary depending on the application.

2.2.2 Types of Hardware Accelerators

There are several types of hardware accelerators, each designed for specific tasks. Some of the most
commonly used hardware accelerators are:

Field-Programmable Gate Arrays (FPGAs): FPGAs are programmable logic devices that can be
configured to implement specific hardware designs. They are well-suited for implementing hardware
accelerators due to their high configurability and low power consumption.

Graphics Processing Units (GPUs): GPUs are designed for parallel processing and are well-suited
for accelerating certain types of computations, such as those involved in graphics rendering and machine
learning[24].

Digital Signal Processors (DSPs): DSPs are specialized processors designed for processing digital
signals, such as those involved in audio and video processing[33].

Application-Specific Integrated Circuits (ASICs): ASICs are custom-designed integrated circuits
that are optimized for specific tasks. They are well-suited for implementing hardware accelerators for
applications that require high performance and efficiency[23].

The wide range of uses for FPGA-based accelerators in commercial and military aircraft, automo-
tive computers, cryptography devices [2], GPS, image processing, Internet of Things (IoT) devices [14],
medical imaging, satellites [12], security systems, smartphones, spacecraft, supercomputers [11], un-
manned vehicles, voice recognition systems, wireless devices, etc.

2.2.3 Field Programmable Gate Arrays

An FPGA is a semiconductor device containing programmable logic elements and programmable
interconnect but no instruction fetch, i.e., they do not have a Program Counter. FPGAs are repro-
grammable hardware devices that are used to run a variety of computing applications. They are used to
accelerate any computing task that runs slow on CPUs or consumes large amounts of power when run
on GPUs.

8

With their reconfigurability, they fill the gap between software and hardware, achieving potentially
much higher performance than software while maintaining a higher level of flexibility than hardware [6].
It can be used by implementing all the application functionalities in hardware and covers all data paths
from input to output. The advantage of doing this lies in the fact that the functionality of the hardware
can be changed just by loading a different configuration file from the host instead of configuring the
hardware with a new physical circuit.

An FPGA consists of various components that work together to perform specific functions. The main
components of an FPGA include the following:

• Logic Elements: These are the basic building blocks of an FPGA and are used to implement
combinational and sequential logic circuits. Each Logic Element consists of a lookup table (LUT),
a flip-flop (FF), and a multiplexer.

• Configurable Interconnect: This component is responsible for routing signals between different
logic elements in the FPGA. The interconnect is configurable that allows designers to create
custom routing paths optimized for their specific application.

• Input/Output Blocks (IOBs): These blocks are used to interface the FPGA with the external world.
IOBs are responsible for receiving input signals, transmitting output signals, and implementing
various input/output standards such as LVDS, LVPECL, and SSTL.

• Block RAM (BRAM): This component is used to implement random-access memory (RAM)
in an FPGA. Block RAM is configurable and can be used to implement any size and depth of
memory as required by the design.

• Digital Signal Processing (DSP) Blocks: DSPs are specialized components that are used to per-
form digital signal processing operations such as multiplication, addition, and filtering. DSP
blocks typically consist of multipliers, adders, and registers.

• Clock Management: This component is responsible for managing the clock signals used in the
FPGA design. The clock management circuitry includes phase-locked loops (PLLs) and delay-
locked loops (DLLs) that are used to generate and distribute clock signals across the FPGA.

2.2.4 Alveo U-50 Data Accelerator Card

We use an Alveo U50 Data Accelerator for our implementation. It features a Xilinx UltraScale+
FPGA, which provides high-speed connectivity, high bandwidth memory, and a low-latency network
interface.

The U50 accelerator card consists of 8GB of HBM2 memory, which provides high bandwidth and
low latency access to the FPGA fabric. It also supports up to 100 Gb/s networking with built-in Ethernet
connectivity. The card also includes a PCIe interface, which enables it to be easily integrated into
existing server infrastructures.

9

Figure 2.2 Alveo U-50 FPGA [1].

The Xilinx UltraScale+ FPGA on the U50 accelerator card provides up to 1743K registers, 5,952
DSP slices, and 2,688 BRAM blocks. These resources allow the U50 to accelerate a wide range of
applications, including machine learning, data analytics, and image or speech processing.

Super Logic Regions: The device consists of two Super Logic Regions (SLRs) and has the primary
resources like BRAM, DSP, FF, and LUT distributed approximately equally between the two SLRs.
SLRs were introduced in FPGA’s to group together the related logic resources that are commonly used
in a particular application. This grouping allows the resources to be placed close to each other and
connected by high-speed interconnects that are optimized for that specific application. SLRs can also
be used for partitioning the design to facilitate easier design and debugging. Any complex design can
be partitioned into smaller regions, each with its own SLR, to simplify the design process and reduce
the debugging time. We try to optimize the logic distribution and scheduling of operations to ensure
minimal inter-SLR communication. Fig. 2.3 shows the floor-plan of an XCU-50 device with two Super
Logic Regions.

The Alveo U-50 is also characterized by High Bandwidth Memory (HBM). HBM is designed to
solve the bandwidth bottleneck that exists in traditional memory architectures, where the memory band-
width is limited by the number of pins available to connect the memory to the processor. With HBM,
the memory is stacked on top of the device, providing a high-speed communication path between the
memory and the processor.

High Bandwidth Memory: HBM provides several advantages over traditional memory architec-
tures, including:

10

Figure 2.3 Floor plan of Alveo U-50 FPGA [1]

.

• Higher bandwidth: HBM provides much higher memory bandwidth than traditional memory ar-
chitectures, which can help improve the performance of memory-intensive applications.

• Lower power consumption: HBM consumes less power than traditional memory architectures,
making it an ideal choice for energy-efficient systems.

• Smaller form factor: HBM has a smaller form factor than traditional memory architectures, which
can help reduce the size of the overall system.

• Higher memory density: HBM has a higher memory density than traditional memory architec-
tures, allowing for more memory to be packed into a smaller space.

HBM Communication with both SLRs: Fig. 2.3 shows that the HBM on the Alveo U50 accelerator
card is connected to only one Super Logic Region on the FPGA. However, data can still be communi-
cated between the HBM and other SLRs on the FPGA by using the Inter-SLR Communication (ISC)
interface.

It allows SLRs on the FPGA to communicate with each other by providing a high-bandwidth and
low-latency interconnect between the SLRs. The ISC interface uses a shared memory architecture, with
each SLR having access to a portion of the shared memory. This allows data to be easily shared between
SLRs.

To communicate with the HBM from another SLR on the FPGA, the kernel running on the Alveo
U50 card can use the ISC interface to access the shared memory region containing the HBM data. The
kernel can then perform computations on the data as required. The ISC interface on the Alveo U50 card
is implemented using the AXI Stream interface, which allows data to be transferred between SLRs in

11

a streaming fashion. Thus the kernel running on the Alveo U50 card performs computations on data
located in multiple SLRs, which can be important for many data-intensive workloads.

Peripheral Component Interconnect Express: PCIe is a high-speed serial interface that is used
to connect the Alveo U50 accelerator card to the host system’s CPU and memory. It provides a high-
bandwidth, low-latency connection between the host and the Alveo U50 card, enabling the card to access
the host’s memory.

The Alveo U50 card appears to the host system as a standard PCIe device, and the host system
communicates with the card using standard PCIe protocols. The host system can initiate DMA transfers
to and from the Alveo U50 card, allowing data to be transferred between the host’s memory and the
HBM on the Alveo U50 card.

2.2.5 Vitis HLS

Vitis HLS (High-Level Synthesis) is a tool that allows software developers to design hardware accel-
erators for FPGA-based systems. Vitis HLS uses high-level programming languages, such as C/C++,
and converts them into RTL (register-transfer level) code. This RTL code can then be synthesized into
a bitstream that can be loaded onto an FPGA to implement the hardware accelerator.

Vitis HLS allows for an iterative design process, where the designer can quickly modify the high-
level code, run simulations to verify functionality, and then generate RTL code for synthesis.

One of the key features of Vitis HLS is its support for pipelining and parallelism. Pipelining allows
for the processing of multiple instructions at the same time, which can increase throughput and reduce
latency. Parallelism allows multiple operations to be performed simultaneously, further increasing per-
formance. Vitis HLS includes tools to automatically detect pipeline and parallelism opportunities in the
code and generate the necessary hardware structures to implement them.

Another key feature of Vitis HLS is its support for interface synthesis. Interfaces allow for com-
munication between the hardware accelerator and the rest of the system. Vitis HLS supports several
different interface types, including AXI (Advanced eXtensible Interface) and FIFO (First-In, First-Out).
Vitis HLS can automatically generate the necessary interface logic based on the specified interface type.
Vitis HLS includes a range of optimization options to further improve performance and reduce resource
utilization. These optimization options include loop unrolling, resource sharing, and loop pipelining.

2.2.6 Pragmas in Vitis HLS

Vitis Pragmas are compiler directives that allow the user to control the hardware implementation of a
software function when using the Xilinx Vitis HLS tool. Vitis Pragmas provide a way to specify various
optimization options and hardware configurations that affect the performance and resource utilization
of the generated hardware design.

There are many Vitis Pragmas available, each with its own specific purpose. Here are some com-
monly used Vitis Pragmas and their functions:

12

• PIPELINE - This pragma is used to pipeline a loop or function. It allows the loop or function to
execute in parallel with other operations, improving performance.

• UNROLL - This pragma is used to unroll a loop. Unrolling a loop means that the loop body is
replicated multiple times, allowing multiple iterations to be executed in parallel. This can improve
performance by reducing the loop overhead.

• ARRAY PARTITION - This pragma is used to partition an array into smaller pieces. Partitioning
an array can help reduce the number of memory accesses required, improving performance.

• INTERFACE - This pragma is used to specify the interface between the hardware function and
the rest of the system. This pragma allows the user to specify the data types, data widths, and
other interface parameters.

• DATA PACK - This pragma is used to pack multiple data elements into a single memory location.
Data packing can help reduce the number of memory accesses required, improving performance.

• DATAFLOW - This pragma is used to specify that a function is dataflow-oriented. Dataflow-
oriented functions are executed as soon as all of their input data is available, allowing them to
execute in parallel with other operations.

We have several pragmas in various regions of the code for the implementation of an end-to-end
transformer-based ASR system. Some of them are discussed below.

We use the pragma ’Loop unroll’ in the matrix multiplications to implement multiple sections of a
loop in parallel. We have the flexibility to define the number of parallel sections by defining the unroll
factor.

We use the Pragma ’DATA FLOW’ to schedule the Value matrix computation (multiplication with
a weight matrix), along with scaling and softmax of the attention-scores. Thus we reduce the overall
latency of each attention head in the Multi headed attention block.

The pragma ’ARRAY PARTITION’ helps in partitioning large arrays like weight matrices or Query/Key/Value
scores. The ’PIPELINE’ pragma allows overlapping of read and compute phases as required in the end-
to-end architecture.

2.2.7 Host-side Process Flow

The process flow on the host side is executed using OpenCL in the following stages:

• The host code initializes the OpenCL platform and creates a context for the accelerator card. The
context specifies the devices that will be used for computation. Then the host code compiles the
OpenCL program that will run on the accelerator card. It contains the kernels to be executed on
the FPGA. It also specifies which SLR each kernel will execute on. The program is compiled to
generate a binary file that will be loaded onto the device.

13

• The host code allocates memory on the device for input and output data. This is typically done
using OpenCL memory allocation APIs, and the host code transfers input data from the host to
the device using OpenCL memory transfer APIs. The data is then made available for the kernels
to access during execution.

• The host code launches the kernels on the accelerator card using OpenCL command queue APIs,
The host code specifies the SLR on which each kernel should execute using OpenCL device
fission APIs. The kernels execute in parallel on the FPGA fabric, processing the input data.

• Once the kernels have completed execution, the host code retrieves the output data from the device
using OpenCL memory transfer APIs and makes the output data available for the host to process.

The intermediate processing of this data on the kernels from the host is executed on the FPGA-based
accelerator to provide the final output data to the host. This accelerator architecture will be discussed in
Chapter 4.

14

Chapter 3

Automatic Speech Recognition Model Architecture and Analysis

3.1 End-to-end Automatic Speech Recognition Model

The end-to-end ASR model is trained and implemented using the End-to-End Speech Processing
toolkit (ESPnet), an open-source platform for speech recognition [36]. The character-level-based E2E
speech processing includes data preparation, feature extraction, and attention-based encoder-decoder
architecture. The feature extraction process uses a simple Mel filter-bank technique. Here, the sig-
nal is passed through a pre-emphasis filter, which emphasizes (i.e., increases the amplitude of) the
high-frequency components of the signal and de-emphasizes (i.e., decreases the amplitude of) the low-
frequency components. The purpose of pre-emphasis is to improve the signal-to-noise ratio and to
compensate for the high-frequency energy that is lost during recording or transmission. The resultant
signal is split into short frames of 25ms and passed through a window function. We perform a Short-
Time Fourier Transform (STFT) by breaking down a signal into short-time segments, called frames, and
then performing a Fourier Transform on each frame. This results in a matrix of complex numbers, where
each row corresponds to a frequency band and each column corresponds to a time frame. The magnitude
of each complex number represents the amplitude of the corresponding frequency band at that particular
time. We then apply triangular filters of 80 dimensions to obtain the filter banks. Triangular filters are
commonly used to construct filter banks, as they provide a good approximation of the human auditory
system’s frequency response. The features generated are passed through a 2D convolutional layer, fol-
lowed by a max-pool layer. This is followed by the encoder-decoder-based Transformer architecture,
which is detailed below.

3.2 ESPnet tool kit

ESPnet is an open-source toolkit for end-to-end speech processing. It was developed by the Speech
Processing Laboratory at Nagoya University and is maintained by a community of researchers and
engineers.

15

ESPnet provides a range of features for speech processing, including automatic speech recognition
(ASR), text-to-speech (TTS), and speaker recognition. It is designed to be modular and customizable,
allowing researchers and developers to easily modify and extend the toolkit to suit their specific needs.
One of the key features of ESPnet is its use of neural network models for speech processing. These
models are trained using large amounts of speech and text data, allowing them to accurately transcribe
speech into text or synthesize speech from text.

ESPnet also includes a range of pre-trained models for ASR and TTS that can be used out of the box
or fine-tuned for specific tasks. The toolkit supports a range of languages, including English, Mandarin,
and Japanese. ESPnet is a powerful and flexible toolkit for end-to-end speech processing that is widely
used in research and industry. Its modular design and support for neural network models enable the
building of custom speech-processing applications.

3.3 Libri Seech Dataset

The model has been trained on the LibriSpeech dataset [27], a large-scale corpus of read English
speech data created using a subset of the publicly available LibriVox project containing free audiobooks
that are read by volunteers. The LibriSpeech dataset consists of over 1,000 hours of speech data from a
diverse range of speakers, including both male and female speakers of different ages and accents.

The dataset is provided in the form of raw waveform files in 16-bit PCM format with a 16 kHz
sampling rate. The speech data is split into segments based on sentence boundaries, with each segment
stored as a separate file. The dataset also includes accompanying text transcripts in plain text format.
The LibriSpeech dataset is widely used in research on automatic speech recognition (ASR), speech-to-
text translation, and other speech-related tasks and it is effective for training deep neural networks and
has been used as a benchmark dataset for evaluating ASR systems.

3.4 Transormer Model Description

The Transformer model is a deep learning architecture used primarily in natural language process-
ing (NLP). It has become a popular alternative to recurrent neural networks (RNNs) for NLP tasks,
particularly in the context of Automatic Speech Recognition [13], [10], due to its parallel processing
capabilities, compared to the sequential processing of RNN-based models.

At its core, the Transformer model relies on a self-attention mechanism, which allows it to process
input sequences in parallel rather than sequentially. This is achieved through the use of multiple layers
of attention-based encoders and decoders, which operate on the input sequence and generate an output
sequence. The self-attention mechanism in the Transformer model allows it to capture long-range de-
pendencies between elements in the input sequence, which is particularly useful in NLP tasks, such as
ASR where the meaning of a word or phrase may depend on other words or phrases in the sentence.

16

The Transformer architecture consists of a sequence of encoders followed by decoders. The encoder
is primarily responsible for mapping the input, a feature vector here, into a sequence representation, fur-
ther fed to the decoder. The posterior probability of the label is predicted by applying a fully-connected
layer and a softmax distribution over the decoder stack output. The Transformer model we deployed
consists of an encoder stack consisting of 12 identical encoders and a decoder stack consisting of 6
identical decoders. It is as shown in Fig. 3.1.

Feed
Forward

Add-Norm

Masked
Multi-Head
Attention

Add-Norm

Multi-Head
Attention

Add-Norm

Feed
Forward

Add-Norm

Linear

Softmax

x12

x6

En
co

de
r

X

D
ec

od
er

Output

Xm

Multi-Head
Attention

Add-Norm

Figure 3.1 Transformer architecture

Each encoder contains a Multi-Head Attention block (MHA) and a Feed-Forward Network block
(FFN), each followed by an Add-Norm layer. Each decoder in the decoder stack contains a Masked
Multi-Head Attention (M-MHA), Multi-Head Attention (MHA), and Feed-Forward Network (FFN),
each followed by an Add-Norm layer. The MHA block comprises eight attention heads (h). The input
embedding (X) is passed through linear sub-layers denoted by weights (WQ/K/V) and biases (BQ/K/V),
obtained during training. It results in three projections of the input sequence, namely, Query (Q), Key
(K), and Value (V). The product of the matrices Q and KT is a correlation matrix of words, with their
attention scores provided to the scaling (Sc) and softmax (Sm) function. The result is multiplied by the
Value matrix, resulting in the attention score. The attention scores are used to compute a weighted sum
of the input sequence, based on how relevant each position in the input sequence is to each position

17

in the output sequence. We add a look-ahead mask at the M-MHA layer of the decoder. The look-
ahead mask is a binary mask that ensures that the decoder only attends to tokens that have already been
generated and produces high-quality output sequences that are conditioned on the input sequence and
the previously generated tokens.

Attention(Q,K, V) = Softmax(
QKT

√
dK

)V (3.1)

The embedding size (dmodel) used in the model is 512. The embedding size determines the number of
features that are extracted from each frame of the input audio signal. These features are then transformed
into a lower-dimensional representation to be processed by the transformer encoder. A larger embedding
size typically allows for the model to learn more complex patterns in the input signal but also requires
more computational resources. The scaling parameter is obtained as the embedding size divided by
the number of attention heads, i.e., dk = dmodel/h = 64. The result from each attention head is
concatenated and passed through another linear layer (WA, BA), followed by an Add-Norm block as
shown in Fig. 3.2.

MHA(X) = (Concat(head1, .., head8)WA) +BA (3.2)

The FFN consists of two linear transformations with a ReLU activation function between the layers,
as shown in Fig. 3.3.

FFN(Xm) = ReLU(W1F (Xm) +B1F)W2F +B2F (3.3)

Here, Xm is the output of the MHA-Add-Norm block. In a traditional transformer architecture, the
decoder input at each time step consists of the output from the previous time step and the multi-head
attention (MHA) output. This means that the decoder input at each time step depends on the previous
time step output, which can limit the model’s ability to generalize to new input sequences. In contrast,
E2E transformer-based ASR models eliminate the previous time step output of the decoder as input. The
model receives input solely from the MHA output at each time step. This approach helps to increase the
model’s generalization capabilities by reducing the dependency on the previous time step output.

W1F , B1F , W2F , and B1F correspond to the weight and bias matrices. After the MHA and FFN
layers process the input, the output is added to the input of the layer and then normalized. This helps
to prevent the gradients from exploding or vanishing during the training process, as well as improve the
stability of the model. The Add function is responsible for passing the input forward in the network,
while layer normalization ensures that the output has a mean of zero and a standard deviation of one.

The Add-Norm layer (N) can be calculated as N = w ·H + b, where w and b are weight and bias
parameters.

H =
X − µ

σ
, µ =

1

D

∑d

i=1
xi, σ

2 =
1

D

∑D

i=1
(xi − µ)2 (3.4)

where X = x1, x2, ..xD is the sum of MHA/FFN output and Add-Norm input.

18

ADD

Concat

. . .

MM1

Sm

MM2

MM3

Sc

TransposeSc
al

ed
 D

ot
-P

ro
du

ct
 A

tt
en

tio
n

1

Mask

ADD

ADD ADD ADD

X

BA

MM4

Sc
al

ed
 D

ot
-P

ro
du

ct
A

tt
en

tio
n

8
MM1 MM1 MM1

WA Xm

MM1

ADD

MM1

ADD

BQ

WQ

BK

WK

BV

WV

Figure 3.2 Block-level implementation of the MHA

Xm XfADD ADD
Activation

 (ReLU) MM6MM5 Xf

B2FW2FB1FW1F

Figure 3.3 Block-level implementation of the FFN

The following chapter details the MHA and FFN implementation on the hardware and the controller
orchestrating the encoder and decoder stages on these hardware structures while optimizing the accel-
erator architecture for resources and latency.

19

Chapter 4

Proposed Hardware Implementation of the Algorithm

In Chapter 3, we explored the transformer architecture in detail. In this chapter, we discuss in detail
the proposed hardware architecture of our accelerator. Section 4.4 addresses the primary constraints
of the model, which involve optimizing resource utilization and resource reuse while considering the
model’s size. In the later sections, we present our end-to-end architecture and the resource scheduling
structure of the accelerator.

4.1 Experimental setup

Recall that the E2E ASR Transformer architecture deployed consists of twelve encoders followed by
six decoders. Each encoder/decoder is scheduled for computation sequentially on the hardware accel-
erator by the host. Thus the proposed approach works for any sequence-to-sequence translation Trans-
former architecture consisting of an arbitrary number of encoder/decoder layers. The ASR application
being run on the host offloads a computationally expensive task, the Transformer architecture here, onto
the hardware kernel. The host program writes the data required by a kernel into its global memory
through the PCIe (Gen 3×16) interface, which has a performance rate of 8 GigaTransfers/second. It
sets up the kernel with its input parameters and triggers the execution. The kernel loads data from
global memory to the on-chip BRAM and performs the computations. It writes back the data to global
memory, which is read to the host. We use the M-AXI interface for data transfer to the kernel. This is
demonstrated in Fig. 5.3

4.2 Operational intensity

Operational intensity is a metric used to quantify the amount of computation performed relative to
the amount of memory accessed during the execution of an algorithm or program. It is calculated as the
ratio of the number of floating-point operations to the amount of data transferred from memory. The op-
erational intensity of this architecture is calculated as the number of Floating Point Operations (FLOPS)
by total floating point data transferred in bytes (B). The operational intensity of the Transformer ar-

20

PCIe

CPU

Host
Memory

Host

HBM
FPGAAX1-MM

AXILITE

BRAM

KERNEL

XD
M
A

Figure 4.1 Overview of the accelerator setup

chitecture for a given sequence length is approximately 0.25 FLOPS/B. The Matrix Multiplication is an
integral block demonstrating the architecture’s highest utilization, latency, and operational intensity, em-
phasizing the requirement to optimize the matrix multiplication block. TABLE 4.1 tabulates the weight
matrices read at various stages of computation in the Transformer. W and B correspond to weights and
biases. LN denotes Layer-normalization.

Table 4.1 Weight matrices read for an encoder-decoder stack

Number of matrices Weight matrix Matrix dimensions
576 WQ/K/V 512× 64

576 BQ/K/V 1× 64

24 WA 512× 512

24 BA 1× 512

84 LN 1× 512

18 W1F 512× 2048

18 B1F 1× 2048

18 W2F 2048× 512

18 B2F 1× 512

4.3 Paralleism scheme

We now discuss the solutions to the parallelism structure of the Transformer based model imple-
mented on hardware.

An encoder consists of one MHA block followed by an FFN block. A decoder consists of two
MHA (masked) blocks in series followed by an FFN block. Each MHA block has eight attention heads
computed in parallel with four attention heads on each of the available two SLR regions on the FPGA.
Each attention head has five matrix multiplication operations: three MM1 operations corresponding
to Q, K, V linear projection matrices; one MM2 operation for QKT ; and one MM3 operation for
Softmax(QKT

√
dK

)V . MM4 is the last matrix multiplication operation outside the attention blocks within
MHA. Here, the MM1 operations within each attention head are executed sequentially due to a lack of

21

hardware resources. The FFN block has two matrix multiplication operations, MM5, followed by
MM6. Thus each encoder and decoder computation consists of 8 and 14 matrix multiplications. Ta-
ble 4.2 provides the dimensions of all these matrix multiplications.

Table 4.2 Dimensions of the Matrix Multiplication operations where s is the sequence length.

MatMul Input 1 Input 2 Output Figure
MM1 s × 512 512 × 64 s × 64 Fig. 4.3

MM2 s × 64 64 × s s × s Fig. 4.4

MM3 s × s s × 64 s × 64 Fig. 4.4

MM4 s × 512 512 × 512 s × 512 Fig. 4.5

MM5 s × 512 512 × 2048 s × 2048 Fig. 4.6

MM6 s × 2048 2048 × 512 s × 512 Fig. 4.7

4.4 Orchestrating Matrix Computations

Figure 4.2 Systolic array for multiplication of two matrices of dimensions 3× 3 and 3× 4.

The block diagram of the encoder and decoder layers from Fig. 3.2 and Fig. 3.3 suggest that the
general Matrix Multiplications (MM) take up the largest portion of the computation. As discussed in
Section 4.2, we emphasize optimizing the matrix multiplication operation. To reduce the time com-
plexity of this operation, we use a Systolic Array-based (SA) design, which is widely used in FPGA
implementations.

A systolic array is a system that computes and passes data through a grid of processing elements.
The inputs from the matrices flow through this structure rhythmically. The sequential implementation

22

of a general Matrix Multiplication operation has a time complexity of O(n3), for n x n matrices, while
the SA-based design reduces it to O(n).

However, the parallel calculation of every element is limited by resources, primarily DSPs and LUTs.
Given the resource availability, we use partially unrolled systolic arrays (PSAs). We loop-unroll the
systolic array structure, thereby increasing the latency by at least ∼ 16× while significantly reducing
the DSP and LUT utilization.

Algorithm 1 Partially unrolled systolic array where N1 : s , N2 : 64 , N3 : 64

Input 1: Matrix (N1 ×N3), Input 2: Matrix (N3 ×N2)
Output: Matrix (N1 ×N2)

for k = 0 to N3

for i = 0 to N1, i+=2
for j = 0 to N2, j+=N2

a(i, j, k) = a (i, j-1, k);
b(i, j, k) = b(i-1, j, k);
c(i, j, k) = c(i, j, k-1) + a(i, j, k) * b(i, j, k);

a(i+1, j, k) = a (i+1, j-1, k);
b(i+1, j, k) = b(i, j, k);
c(i+1, j, k) = c(i+1, j, k-1) + a(i+1, j, k) * b(i+1, j, k);
.
.

a(i, j+N2-1, k) = a (i, j+N2-2, k);
b(i, j+N2-1, k) = b(i-1, j+N2-1, k);
c(i, j+N2-1, k) = c(i, j+N2-1, k-1) + a(i, j+N2-1, k) * b(i, j+N2-1, k);

a(i+1, j+N2-1, k) = a (i+1, j+N2-2, k);
b(i+1, j+N2-1, k) = b(i, j+N2-1, k);
c(i+1, j+N2-1, k) = c(i+1, j+N2-1, k-1) + a(i+1, j+N2-1 , k) * b(i+1, j+N2-1, k);

end
end

end

All the matrix multiplications from MM1 to MM6 are routed on these PSAs. Fig. 4.2 shows the
standard systolic array structure for matrix multiplication. The dimensions of the input matrices used in
the example illustration are 3 × 3 and 3 × 4. In general, the product of two matrices Al×m and Bm×n

can be performed in Θ(m) time using a full l × n dimensional systolic array requiring ln Multiply-
And-Accumulate (MAC) structures. We can trade off parallelism with area by computing the product
matrix b rows or columns simultaneously. Note that the ith row of the product matrix C is a linear
combination of the m rows of matrix B with m coefficients coming from the ith row of matrix A. This

23

observation allows us to compute b product rows in parallel, thus reducing the dimensionality of the
systolic array to b× n. For example, in Fig. 4.2, we have the first two rows of the systolic array to save
on area and render the output product matrix two rows at a time. Similarly, we can compute b product
columns in parallel with a l × b systolic array. However, with large dimensions of l and n, we may
not be able to afford hardware resources, even with the reduced dimensionality of systolic arrays. We
encounter this scenario while performing certain matrix multiplications in our Transformer architecture.
We handle this by block-stripping the matrix multiplication operation, which is explained subsequently
in this section. Altogether, we use eight PSAs with four PSAs per SLR region. The number of PSAs
and their dimensionality determines the overall parallelism in computations and the hardware resources
utilized, such as LUTs, DSPs, etc. We arrived at the 2 × 64 dimension by experimentally evaluating
different PSA configurations for latency and area.
MM1 Computation: From Table 4.2, we can see the dimensions of the input matrices are s × 512

and 512 × 64, and the output matrix dimensions are s × 64. MM1 is implemented using a PSA block
iteratively eight times, as demonstrated in Fig. 4.3. Input1 and Input2 are partitioned into eight stripes
column-wise and row-wise, respectively. The dimensions of the column and row striped block matrices
are s× 64 and 64× 64. Each pairwise product generates a partial product matrix of dimensions s× 64.
Eight partial product matrices are added using an adder pipelined with the PSA to form the final output
matrix. Pipelining the adder reduces the latency from 8tPSA + 7tADD to 8tPSA + tADD. Fig. 4.3 also
shows how the pipelined computations are scheduled. The three MM1 operations within an attention
head are scheduled for computation sequentially on a single PSA structure. The MM1 operations from
the eight attention heads are processed in parallel by the eight PSA structures.

Input 1

S S

64

S

64

8+
+

+

64 64

. . .

64

512

. . .

64

OutputInput 2

512 = =

64

64

64

PSA(1)

A(1) A(2) A(7)

PSA(2) . . .PSA(3) PSA(4) PSA(8)

Figure 4.3 MM1 block with Input1, Input2 and Output

MM2 and MM3 Computations: Since the dimensions of the input matrices for MM2 and MM3

are small (refer Table 4.2), we route the computations on a PSA block using appropriately padded
input. Fig. 4.4 shows how the input matrices are padded. Although it contributes to a higher latency
for shorter sequences, reusing a PSA block reduces the hardware footprint. It is also possible to halt
the computation and read the output from the PSA structure by adding appropriate control signals to the
PSA structure. However, we did not do this optimization in our implementation.
MM4 Computation: Table 4.2 suggests that the dimensions of the input matrices in MM4, MM5 and
MM6 are much higher when compared to MM1, MM2 and MM3. However, a single instance of these

24

S

64

MM2 OutputInput 1

S

64 64

Input 2

64 =

s s

PA
D

D
IN

G

S

64

MM3 OutputInput 1

S

64 64

Input 2

64 =

PADDING

S

s

Figure 4.4 MM2 (top) and MM3 (bottom) blocks with Input1, Input2, and Output

operations is active for scheduling at a time. We exploit this observation to route these large matrix
multiplication operations across the two SLRs on all eight PSA blocks.

The concatenated output from the eight attention heads and along with weight matrix WA, are the
inputs to MM4. This computation is performed by partitioning the first input matrix into eight-column
stripes of dimension s × 64 and the weight matrix into eight-row stripes of dimension 64 × 512. This
generates eight partial products whose accumulation gives the final product matrix of dimension s ×
512. The first four column stripes come from the four attention blocks in the SLR0 region of the
FPGA. Similarly, the second four column stripes come from the rest of the four attention heads in the
SLR1 region. Thus the whole MM4 computation is distributed on the eight PSAs from the two SLR
regions. Figure 4.5 shows matrix decomposition, concatenation, multiplication, and accumulation (with
a pipelined adder) steps within MM4.

Input 1

S S

512
+

+
+

64 64 64 64

256 512 x2

S

512
x2

OutputInput 2

256 = =

64
64 64

. . .

64

64

64

64

Figure 4.5 MM4 block with Input1, Input2, and Output

MM5 Computation: The inputs to the MM5 block are s× 512 and 512× 2048. However, each SLR
receives a partitioned 512 × 1024 weight matrix. The first input matrix is divided into two s × 256

dimensional matrices. The second input matrix is divided into four 256× 512 matrices. Within an SLR
region, the two partitioned s× 512 matrices of the bigger s× 1024 matrix are computed independently
using a scheme similar to MM4. Fig. 4.6 summarizes the overall scheme of computation. The resultant
product matrix s× 2048 is distributed across the 2 SLR regions with columns split equally.

25

Input 1

S S

1024

+

256 256

512 1024

S

1024

OutputInput 2

512 = =

256 512

256 512

Figure 4.6 MM5 block with Input1, Input2 and Output

512

= =

Input 1

S

1024

Input 2 Output

256 256 256 256

256(1) (2) (8). . .
64 64 64

256(1) (2) (8). . .
64 64 64

256(1) (2) (8). . .
64 64 64

256(1) (2) (8). . .
64 64 64

S

512

S

512

+
+

+

x2

Figure 4.7 MM6 block with Input1, Input2 and Output

MM6 Computation: Similarly, MM6 computations can be scheduled based on MM4. The inputs to
the MM6 block are s × 2048 and 2048 × 512. However, each SLR receives a partitioned 1024 × 512

weight matrix. The first input matrix is divided into four s×256 dimensional matrices. The second input
matrix is divided into four 256 × 512 matrices. Within an SLR region, the four matrix multiplications
of the partitioned inputs are performed using a scheme of operation similar to MM4. The final output
matrix of dimension s× 512 is the output of the FFN block. Fig. 4.7 summarizes the overall scheme of
computations.

4.5 Computation and Communication Overlap

Architecture-1 (A1): The weight matrices are read onto the kernel memory from the global memory
(HBM) in burst mode. For a given input sequence, the accelerator reads a set of weights twelve times
for an encoder stack and six times for a decoder stack from the global memory. The last decoder writes
back a s × 512 matrix to the global memory. Thus, the architecture primarily involves load (LWi) and
compute (Ci) phases. Every LWi involves loading weight matrices of one Encoder/Decoder, and Ci

corresponds to one encoder/decoder execution across both the SLRs. Architecture A1 follows a naive
sequential execution of load and compute phases of every encoder/decoder, i.e., a load of the first en-
coder (LW1), followed by Compute of the first encoder (C1) and so on until the twelfth compute (C12).
The decoder follows a similar architecture.

LW1 C1 LW2 C2 . . . LW11 C11 LW12 C12

Figure 4.8 Architecture A1 for Encoder stack

26

Architecture-2 (A2): The time taken to load the weights onto the BRAM is higher than the compu-
tation time for short input sequence lengths. We cannot achieve task-level parallelism in the compute
phase due to the dependency for every compute block with the previous block. Hence, to reduce the
effect of the load time on the latency, we use a well-established technique for task-pipelining, where the
load and compute operations happen simultaneously. Ci is executed after LWi, in parallel to LWi+ 1

which acts as a buffer. This is elucidated for an encoder stack in Fig. 4.9.

LW2 LW3
. . .

C1C-

LW1

C2

LW12

C11

LW+

C12C10

LW11

Figure 4.9 Architecture A2 for Encoder stack.

Architecture-3 (A3): The architecture A2 still suffers from stalls in the compute phase. We propose
an architecture for optimal latency without further expending any resources by performing overlapping
load operations from different channels of the HBM memory. The LWi+2 is initiated immediately after
Ci is computed. The blocks are tiled, ensuring the stall at compute phase is reduced from LWi − Ci to
(LWi − Ci)/2 when compared to architecture A2 as demonstrated in Fig. 4.11.

LW1

LW4 . . .

C1 C2

LW3

LW2

LW9

LW12

C8

LW11

LW10

C3 C8 C8C9 C8C10 C8C11 C8C12

LW+

Figure 4.10 Architecture A3 for Encoder stack.

The decoder follows a similar architecture with a minor variation in the load phase. Each decoder
consists of an M-MHA block, an MHA block, and an FFN block. The load and compute latency of the
two MHA blocks are approximately equal to the FFN block. Hence we load the combined weights of
the two MHA blocks, overlapping with the load of the FFN block. The compute phases are executed
sequentially.

LW1m

LW2f
. . .

C1m C1f

LW2m

LW1f

LW5m

LW6f

C8

LW6m

LW5f

C2m C8f C8C5m C8C5f C8C6m C8C6f

LW+

Figure 4.11 Architecture A3 for Decoder stack.

LWim and Cim correspond to the load and compute time of the combined M-MHA and MHA
blocks, respectively. LWif and Cif correspond to the load and compute time of the FFN block, respec-
tively.

Note that when Ci is greater than LWi, the stalls in the compute phase are eliminated. This occurs
when the input sequence length, s is greater than 18, after which architectures A2 and A3 perform

27

similarly, ensuring no stalling in the compute phase. The Load time remains nearly constant with an
increase in sequence length, as the data size of the weight matrices remains constant. However, the MMi

and other computations require higher latency and resources with increased input sequence length.

4.6 End-to-End control flow

DEMUX

M
U

X

MHA FFN

ReLU
PSA (8)
ADD (8)
NORM

Sc (8)
Sm (8)

Figure 4.12 Top level controller design.

The main controller sequentially orchestrates the flow through multiplexed MHA and FFN blocks,
realizing an end-to-end Transformer architecture (refer to Fig. 4.12).

MM4
WA(1)

BA(1)

MM1(K)

MM1(Q)

MM2

MM1(V)

MM3B(K) B(V)

B(Q)

Trans Sc Sm

MM1(K)

MM1(Q)

MM2

MM1(V)

MM3B(K) B(V)

B(Q)

Trans Sc Sm

CO
N

CA
T

CO
N

CA
T

H
ea

d
1

.
 .

 .
.

 .
 .

SLR0

SLR1

H
ea

d
8

SL
R

N
O

RM

MM5
W1F(1)

MM4
WA(0)

BA(0)

B1F(1)

B1F(0)

B2F(1)

B2F(0)MM5
W1F(0)

MM6
W2F(1)

MM6
W2F(0)

SL
R

N
O

RM

A
D

D
A

D
D

A
D

D
A

D
D

Re
LU

Re
LU

Head 5

Head 6

Head 7

Head 2

Head 3

Head 4

Figure 4.13 Block-wise scheduling of operations within an encoder

Fig. 4.13 illustrates the block-wise scheduling of operations in an encoder while mitigating inter-
SLR communication. The MM1 block is sequentially utilized within each attention head, while the
eight attention heads are executed concurrently, computing 4 attention heads within each SLR. The
computational flow begins with calculating the Key matrix (K). The s × 64 adder performs the Bias
operation, B(K), in parallel with the query matrix multiplication, MM1(Q). The MM2 and MM1(V)
operations are performed sequentially, with both of them utilizing the same PSA block. The scaling
(Sc) and softmax (Sm) operations are launched in parallel to MM1(V), as the combined latency of the
operations (tSc + tSm) is less than that of MM1(V) operation. Hence by scheduling the operations

28

in parallel, the latency of each attention head is reduced without expending additional resources. We
perform bias B(V) followed by MM3 using the same PSA structure.

The resultant matrices from the four attention-heads in each SLR are concatenated. The concate-
nated matrices, along with a partitioned weight matrix WA(0/1) are the inputs of MM4. Similarly, we
perform BA(0/1) using the s× 64 adders followed by Add-Norm. Addition at Bias in the linear layers
outside the attention-heads is done across the two SLRs utilizing the eight parallel adders. The residual
operations in the FFN namely, MM5, B1F , ReLU , MM6, and B2F are performed in a similar fashion.

The Add-Norm block is executed as independent Add and Norm operations. The Add block splits
the matrix addition of two s × 512 matrices over both the SLRs. The resultant matrix followed by
concatenation and normalization (Norm) is communicated to the global memory for further processing
by the host. The control flow ensures the PSA blocks, which perform the major portion of computation
run for the entire time frame except for minute stalls during additions, concatenations, and normaliza-
tion. The eight s × 64 adders primarily operate within the MMi blocks along with ADD (Bias) and
Add-Norm operation (refer Fig. 3.2 and Fig. 3.3).

29

Chapter 5

Experiments and Results

5.1 Experimental Results

The design is implemented on an Alveo U50 FPGA card with the latencies obtained at an operational
frequency of 300MHz.

5.1.1 Output of the ASR system

In ESPnet, two versions of the Transformer model are provided - ”transformer base” and ”trans-
former large”. We use the ”transformer base” model, which is a smaller version of the Transformer
architecture. It is designed for faster training and lower computational cost without significantly com-
promising the accuracy of the speech recognition task. As discussed in Chapter 3.1, the E2E flow
consists of data preparation of the audio file, followed by feature extraction, where the feature vectors
are generated, followed by decoding using the Transformer architecture to generate a textual output as
shown in Fig. 5.1.

Figure 5.1 Textual output from raw audio

30

The predicted transcriptions are evaluated against the ground truth transcriptions using metrics such
as Word Error Rate (WER). We measure a WER of ∼ 9.5% for our model.

5.1.2 Load-compute analysis

Here, we study the influence of input size on the load and compute cycle.

Figure 5.2 Comparison of load time and compute time of one MHA + FFN block

From Fig. 5.2, we observe that the compute time exceeds the Load time for a sequence length
s > 18. Upon analyzing the influence of sequence length on the load and compute time, we observe
that the load time remains nearly constant with an increase in sequence length, as the data of the weight
matrices remains the same. However, the latency of the compute phase significantly varies with the
input size.

5.1.3 Architecture analysis and comparison

Table 5.1 compares the performance of the three architectures on the latency metric on input se-
quences of varying lengths. The architecture A3 gives a 1.46x to 1.94x speedup compared to A1 due to
the overlap between computation and communication. The performance improvement is more signifi-
cant for lower sequence length inputs. A3 performs better than A2 when the latency of the Load phase
is greater than the Compute phase, which occurs when the input audio is greater than ∼8 seconds.

Table 5.2 depicts the maximum resource utilization when the design is synthesized for input sequence
length 32. The available resources on the device are approximately equally distributed between the two
SLR regions. It can be observed that the DSP utilization is relatively low. We cannot improve this as
this exerts the available FFs and LUTs, making the design unsynthesizable.

31

Table 5.1 Architecture-wise latency comparison for sequence lengths: 4, 8, 16, and 32

Sequence length Architecture Latency (ms) Improvement

4

A1 65.87 1×
A2 53.45 1.23×
A3 33.92 1.94×

8

A1 75.57 1×
A2 54.5 1.38×
A3 39.9 1.89×

16

A1 98.14 1×
A2 56.27 1.74×
A3 52.59 1.86×

32

A1 122.8 1×
A2 84.15 1.46×
A3 84.15 1.46×

Table 5.2 Resource Utilization for sequence length 32

Resources BRAM 18K DSP FF LUT
Resources utilized 1202 1348 1191892 765828

Available Resources 2688 5952 1743360 871680

5.1.4 Discussion

Fig. 4.13 suggests the conservative block-level parallelism within the attention blocks. With the
available DSPs, a ∼2.5× improvement can be achieved with the parallel usage of eight MM1 blocks
per SLR, enabling the concurrent calculation of Query and Key projections. However, the architecture is
limited by the LUTs since the processing elements within the systolic array structure are LUT-intensive.
Within the resource constraints, we have experimented on architectures with four, two, and one attention
head in parallel, with two, four, and eight concurrent MM1 blocks in each head, respectively, as shown
in Table 5.3.

Table 5.3 Design space exploration

Number of
parallel heads

Concurrent PSA
blocks per head

Latency (ms)

8 1 84.15
4 2 85.72
2 4 87.43
1 8 92.03

We have also experimented with various dimensions of the PSA block with different unroll factors.
Finally, we allocate maximum resources to matrix multiplication, the slowest block, while achieving

32

parallelism within the attention heads. Thus, the proposed design presents an optimal latency by ex-
ploiting the available resources. We observe that the FFN block containing larger matrix multiplication
operations consumes approximately double the latency compared to the MHA block for a given se-
quence length.

5.1.5 Performance Comparison with CPU and GPU

Table 5.5 evaluates the latencies and performance improvement of the proposed accelerator com-
pared to the latency of a server-based Intel Xeon E5-2640 CPU @ 2.5GHz with 24 cores and 64GB
RAM. The software implementation is based on wav2vec, which is built on PyTorch. Table 5.5 also
compares the latencies and performance improvement with an NVIDIA GeForce RTX 3080 Ti GPU @
1.37GHz with 12GB RAM built on Pytorch and CUDA 10.1.

Table 5.4 Latencies for different sequence length inputs compared to a CPU

Input
sequence
length: i

CPU latency
in seconds

Latency im-
provement

(CPU)
4 0.4 4.75×
8 1.1 13.1×
16 3.1 36.8×
20 3.4 40.5×
24 3.8 45.2×
32 4.5 53.5×

Table 5.5 Latencies for different sequence length inputs compared to a GPU

Input
sequence
length: i

GPU latency
in seconds

Latency im-
provement

(GPU)
4 0.34 4.01×
8 0.46 5.4×
16 0.55 6.3×
20 0.79 9.39×
24 1.03 12.1×
32 1.32 15.5×

For six test inputs of sequence lengths 4, 8, 16, 20, 24, and 32, the average performance improvement
noted compared to the CPU is 32×.

Similarly, for six test inputs of various sequence lengths, the average performance improvement
noted compared to the GPU is 8.8×, while the accuracy remains the same.

33

The audio files of the LibriSpeech dataset range from 1 to 15 seconds. We have experimented the
same with audio files up to 13 seconds. The hardware design, once implemented, handles inputs of
fixed sequence length s. For a given input sequence of length i, where i < s, the input is padded up
to s. Hence, with test input samples of varying sequence lengths, and a maximum sequence length of
32, we achieve performance improvement in the range of 4.75× to 53.5× compared to the CPU. The
performance improvement is between 4.01× to 15.5× compared to the GPU.

5.1.6 Other results

Fig. 5.3 shows the platform diagram of the Alveo U-50 accelerator loading a set of weights for one
encoder/decoder from the host onto the device through the PCIe interface. The kernel on each SLR loads
data from an HBM channel. Each kernel loads weights from 2 HBM channels in parallel for smaller
sequence lengths to hide the communication latency. When a kernel reads data from multiple HBM
channels, it issues separate memory access requests for each channel to the memory interface. The
memory interface will then manage the memory access to each HBM channel separately and transfer
the data to the kernel as requested.

Figure 5.3 Platform diagram of Alveo U-50

34

The E2E ASR system demonstrates an overall latency of 120.45ms for a given input sequence of
length 32. The combined latency of pre-processing and data preparation of the audio samples on the
host is 36.3 ms. The overall achievable throughput of the E2E system is 11.88 sequences/second. The
energy efficiency of the FPGA is 1.38 GFLOPs/J which is considerably high compared to the GPU’s
performance per joule, which is ∼0.055 GFLOPs/J.

5.1.7 Performance Comparison with other works

We cannot provide an objective comparison with different models of varying dimensions, hyper-
parameters, and input sequence lengths.

Hence, we measure the performance in terms of GFLOPs/s (Giga floating-point operations per sec-
ond) as a metric for a fair perspective. We compare with other reference works, comparing a CPU [34],
GPU [29], and FPGA [29] implementation, respectively, as given in Table 5.6.

Table 5.6 Performance comparison with reference works

Parameters [34]
CPU

[29]
GPU

[29]
FPGA

Our
work

FPGA
GFLOPs 1.1 1.1 0.114 4.0

Latency (s) 2.1 0.147 0.00785 0.08415
GFLOPs/Latency 0.52 7.48 14.47 47.23

Improvement 1× 14.38× 27.82× 90.8×

The model deployed in [29] consists of 2 encoders and one decoder layer; the hidden size is 400; the
feed-forward size is 200, with four attention heads. The latencies are reported on an 8×NVIDIA Quadro
RTX 6000 GPU and an Alevo U200 FPGA. From Table 5.6, we can observe a performance improve-
ment (GFLOPs/s) of 90.8× compared to an ARM CPU. We measure a 6.31× and 3.26× improvement
compared to a GPU and FPGA [29] implementation, respectively.

35

Chapter 6

Relevant Work and Conclusion

6.1 Related Work

Due to widespread applications of deep neural networks in solving many vision problems both on
the edge and cloud, there is a vast body of literature on accelerating CNNs using GPUs; and hardware
accelerators based on ASICs [5, 16] and FPGAs [38, 39]. Despite the Transformers widely replacing the
RNN and CNN-based models in NLP and Vision applications, very few works on accelerating Trans-
formers have been proposed. Transformers for NLP applications, where the inputs are discrete tokens,
have been widely explored compared to ASRs, where the inputs are continuous frame-level operations.
Wang et al. [35] proposed an ASIC accelerator for vision transformers involving only encoders. Li et
al. [18] proposed an energy-efficient accelerator for an NLP Transformer using an enhanced block cir-
culant matrix approach for the compression of weights. They evaluated the accelerator on two small
models, one involving an encoder-decoder pair and another consisting of 12 encoders with no decoders.
A Transformer based accelerator for Neural Machine Translation tasks was recently proposed by Lu et
al. [22]. The thesis explains the independent block-wise implementation of the quantized Multi-Head
Attention and Feed Forward Network blocks with an efficient design for non-linear operations like soft-
max and layer-norm. The design achieves significant latency improvement for a given sequence length.
Li et al. [20] propose a Vision Transformer accelerator with a mixture of fixed-point and power-of-two
quantization. The DSP and LUT cost is estimated to find the best ratio of fixed-point to PoT quantized
weights while maximizing the throughput. Peng et al. [28] propose a pruning algorithm by compar-
ing various sparse matrix formats, individually designing FPGA accelerators for encoder and decoder
layers. Qi et al. [29] propose an NLP transformer accelerator by model pruning and corresponding
hardware optimizations for sparse matrix storage and processing. As discussed in Subsection 5.1.7, the
transformers used in different works differ in terms of the number of attention heads, the number of en-
coders/decoders, quantization, input sequence length, embedding size, etc., which makes it challenging
to provide an objective comparison with our accelerator processing an E2E ASR transformer with 12
encoders and 6 decoders. However, as mentioned earlier, our work achieves a comparable latency with
Li et al. [18], who conducted experiments on relatively smaller models.

36

6.2 Conclusion and future work

In this thesis, we propose an accelerator for a 32-bit floating point single precision Transformer
model. We have explored FPGA-based hardware accelerators for end-to-end automatic speech recogni-
tion, and it is the first work in this space to the best of our knowledge.

All the matrix multiplications are routed on the systolic-array engines while enabling maximum re-
use of resources between various matrix multiplications and also between the MHA and FFN blocks.
The architecture is flexible as it can accommodate Transformer architectures of various dimensions. We
can also perform device-specific customization by varying the PSA dimensions according to the avail-
able resources. We optimize the accelerator architecture with a carefully designed inter-SLR resource
scheduling flow to minimize the stalling. We have compared three end-to-end architectures with short
to medium-length sequences for an E2E ASR system.

The accelerator significantly outperforms a CPU-based server and a GPU with an average of 32× and
8.8× improvement in latency, with the MHA and FFN blocks independently sustaining ∼50 GFLOPs/s
each. The accelerator shows a performance improvement in terms of latency when compared to other
relevant works. The implementation has an accuracy or word error rate (WER) of ∼9.5, which is
comparable to standard speech recognition systems. The architecture achieves an optimal trade-off
between resource utilization and latency, suitable for real-time scenarios. In terms of future work, we
will explore fixed precision end-to-end ASR models with no loss of accuracy. Fixed precision models
offer lower resource utilization, addressing our primary constraint of LUT resources. This will enable
the development of accelerators with lower latency, which is also suitable for edge deployment.

37

Related Publications

• D Shaarada Yamini, Mirishkar Ganesh S, Vuppala Anil Kumar, and Purini Suresh. ”Hardware
Accelerator for Transformer based End-to-End Automatic Speech Recognition System.” In 2023
30th Reconfigurable Architectures Workshop (RAW).

38

Bibliography

[1] https://www.xilinx.com/products/boards-and-kits/alveo/u50.html.

[2] U. Banerjee, C. Juvekar, A. Wright, A. P. Chandrakasan, et al. An energy-efficient reconfigurable dtls

cryptographic engine for end-to-end security in iot applications. In 2018 IEEE International Solid-State

Circuits Conference-(ISSCC), pages 42–44. IEEE, 2018.

[3] A. Bie, B. Venkitesh, J. Monteiro, M. A. Haidar, and M. Rezagholizadeh. Fully quantizing a simplified

transformer for end-to-end speech recognition. 11 2019.

[4] A. J. R. D. Bie, B. Venkitesh, J. Monteiro, M. A. Haidar, and M. Rezagholizadeh. A simplified fully

quantized transformer for end-to-end speech recognition. arXiv: Computation and Language, 2019.

[5] Y.-H. Chen, J. Emer, and V. Sze. Eyeriss: A spatial architecture for energy-efficient dataflow for convolu-

tional neural networks. SIGARCH Comput. Archit. News, 44(3):367–379, jun 2016.

[6] K. Compton and S. Hauck. Reconfigurable computing: a survey of systems and software. ACM Computing

Surveys (csuR), 34(2):171–210, 2002.

[7] L. Deng and D. Yu. Deep learning: Methods and applications. Foundations and Trends® in Signal Process-

ing, 7(3–4):197–387, 2014.

[8] L. Dong, S. Xu, and B. Xu. Speech-transformer: A no-recurrence sequence-to-sequence model for speech

recognition. In 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),

pages 5884–5888, 2018.

[9] L. Dong, S. Xu, and B. Xu. Speech-transformer: A no-recurrence sequence-to-sequence model for speech

recognition. In 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),

pages 5884–5888, 2018.

[10] L. Dong, S. Xu, and B. Xu. Speech-transformer: A no-recurrence sequence-to-sequence model for speech

recognition. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),

pages 5884–5888, 2018.

[11] L. Gan, M. Yuan, J. Yang, W. Zhao, W. Luk, and G. Yang. High performance reconfigurable computing for

numerical simulation and deep learning. CCF Transactions on High Performance Computing, pages 1–13,

2020.

[12] A. D. George and C. M. Wilson. Onboard processing with hybrid and reconfigurable computing on small

satellites. Proceedings of the IEEE, 106(3):458–470, 2018.

39

[13] A. Gulati, J. Qin, C.-C. Chiu, N. Parmar, Y. Zhang, J. Yu, W. Han, S. Wang, Z. Zhang, Y. Wu, and R. Pang.

Conformer: Convolution-augmented transformer for speech recognition. pages 5036–5040, 10 2020.

[14] R.-H. Hsu, J. Lee, T. Q. Quek, and J.-C. Chen. Reconfigurable security: Edge-computing-based framework

for iot. IEEE Network, 32(5):92–99, 2018.

[15] M. Jiang, M. Jong, W. Lau, C. Chai, and N. Wu. Using automatic speech recognition technology to en-

hance efl learners’ oral language complexity in a flipped classroom. Australasian Journal of Educational

Technology, 37:110–131, 05 2021.

[16] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, N. Boden,

A. Borchers, R. Boyle, P.-l. Cantin, C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb,

T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho, D. Hogberg, J. Hu, R. Hundt,

D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy,

J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin, G. MacKean, A. Maggiore, M. Ma-

hony, K. Miller, R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda,

A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Stein-

berg, A. Swing, M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W. Wang,

E. Wilcox, and D. H. Yoon. In-datacenter performance analysis of a tensor processing unit. SIGARCH

Comput. Archit. News, 45(2):1–12, jun 2017.

[17] M. Kim and Y. S. Shao. Hardware acceleration. IEEE Micro, 38(6):6–7, 2018.

[18] B. Li, S. Pandey, H. Fang, Y. Lyv, J. Li, J. Chen, M. Xie, L. Wan, H. Liu, and C. Ding. Ftrans: Energy-

efficient acceleration of transformers using fpga. In Proceedings of the ACM/IEEE International Symposium

on Low Power Electronics and Design, ISLPED ’20, page 175–180, New York, NY, USA, 2020. Association

for Computing Machinery.

[19] J. Li. Recent advances in end-to-end automatic speech recognition. APSIPA Transactions on Signal and

Information Processing, April 2022.

[20] Z. Li, M. Sun, A. Lu, H. Ma, G. Yuan, Y. Xie, H. Tang, Y. Li, M. Leeser, Z. Wang, X. Lin, and Z. Fang.

Auto-vit-acc: An fpga-aware automatic acceleration framework for vision transformer with mixed-scheme

quantization, 2022.

[21] J. W. Lockwood, A. Gupte, N. Mehta, M. Blott, T. English, and K. Vissers. A low-latency library in fpga

hardware for high-frequency trading (hft). In 2012 IEEE 20th Annual Symposium on High-Performance

Interconnects, pages 9–16, 2012.

[22] S. Lu, M. Wang, S. Liang, J. Lin, and Z. Wang. Hardware accelerator for multi-head attention and position-

wise feed-forward in the transformer. In 2020 IEEE 33rd International System-on-Chip Conference (SOCC),

pages 84–89, 2020.

[23] R. Machupalli, M. Hossain, and M. Mandal. Review of asic accelerators for deep neural network. Micro-

processors and Microsystems, 89:104441, 2022.

40

[24] S. A. Manavski. Cuda compatible gpu as an efficient hardware accelerator for aes cryptography. In 2007

IEEE International Conference on Signal Processing and Communications, pages 65–68, 2007.

[25] I. Martı́nez-Nicolás, T. E. Llorente, F. Martı́nez-Sánchez, and J. J. G. Meilán. Ten years of research on

automatic voice and speech analysis of people with alzheimer’s disease and mild cognitive impairment: A

systematic review article. Frontiers in Psychology, 12, 2021.

[26] N. Moritz, T. Hori, and J. Le. Streaming automatic speech recognition with the transformer model. In

ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),

pages 6074–6078, 2020.

[27] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur. Librispeech: An asr corpus based on public domain

audio books. In 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),

pages 5206–5210, 2015.

[28] H. Peng, S. Huang, T. Geng, A. Li, W. Jiang, H. Liu, S. Wang, and C. Ding. Accelerating transformer-

based deep learning models on fpgas using column balanced block pruning. In 2021 22nd International

Symposium on Quality Electronic Design (ISQED), pages 142–148, 2021.

[29] P. Qi, Y. Song, H. Peng, S. Huang, Q. Zhuge, and E. H.-M. Sha. Accommodating transformer onto fpga:

Coupling the balanced model compression and fpga-implementation optimization. In Proceedings of the

2021 on Great Lakes Symposium on VLSI, GLSVLSI ’21, page 163–168, New York, NY, USA, 2021.

Association for Computing Machinery.

[30] J. Su, Y. Lu, S. Pan, A. Murtadha, B. Wen, and Y. Liu. Roformer: Enhanced transformer with rotary position

embedding, 2022.

[31] M. Vardhana, N. Arunkumar, S. Lasrado, E. Abdulhay, and G. Ramirez-Gonzalez. Convolutional neural

network for bio-medical image segmentation with hardware acceleration. Cognitive Systems Research,

50:10–14, 2018.

[32] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin.

Attention is all you need. In Proceedings of the 31st International Conference on Neural Information

Processing Systems, NIPS’17, page 6000–6010, Red Hook, NY, USA, 2017. Curran Associates Inc.

[33] D. Wang, K. Xu, J. Guo, and S. Ghiasi. Dsp-efficient hardware acceleration of convolutional neural network

inference on fpgas. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

39(12):4867–4880, 2020.

[34] H. Wang, Z. Wu, Z. Liu, H. Cai, L. Zhu, C. Gan, and S. Han. Hat: Hardware-aware transformers for efficient

natural language processing. 05 2020.

[35] H.-Y. Wang and T.-S. Chang. Row-wise accelerator for vision transformer. In 2022 IEEE 4th International

Conference on Artificial Intelligence Circuits and Systems (AICAS), pages 399–402, 2022.

[36] S. Watanabe, T. Hori, S. Karita, T. Hayashi, J. Nishitoba, Y. Unno, N. Yalta, J. Heymann, M. Wies-

ner, N. Chen, A. Renduchintala, and T. Ochiai. Espnet: End-to-end speech processing toolkit. ArXiv,

abs/1804.00015, 2018.

41

[37] C.-F. Yeh, J. Mahadeokar, K. Kalgaonkar, Y. Wang, D. Le, M. Jain, K. Schubert, C. Fuegen, and M. Seltzer.

Transformer-transducer: End-to-end speech recognition with self-attention, 10 2019.

[38] Y. Yu, C. Wu, T. Zhao, K. Wang, and L. He. Opu: An fpga-based overlay processor for convolutional neural

networks. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 28(1):35–47, 2020.

[39] Y. Yu, T. Zhao, K. Wang, and L. He. Light-opu: An fpga-based overlay processor for lightweight convolu-

tional neural networks. FPGA ’20, page 122–132, New York, NY, USA, 2020. Association for Computing

Machinery.

[40] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong. Optimizing fpga-based accelerator design for

deep convolutional neural networks. In Proceedings of the 2015 ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays, FPGA ’15, page 161–170, New York, NY, USA, 2015. Association for

Computing Machinery.

42

	Introduction
	Motivation
	Summary of Contributions
	Thesis Organization

	Automatic Speech Recognition on FPGAs
	Automatic speech recognition
	Introduction to Automatic Speech Recognition
	Evolution of Automatic Speech Recognition systems
	Transfomer-based approach for ASR
	Standard ASR models used commercially

	Hardware Accelerators and FPGAs
	Hardware accelerators
	Types of Hardware Accelerators
	Field Programmable Gate Arrays
	Alveo U-50 Data Accelerator Card
	Vitis HLS
	Pragmas in Vitis HLS
	Host-side Process Flow

	Automatic Speech Recognition Model Architecture and Analysis
	End-to-end Automatic Speech Recognition Model
	ESPnet tool kit
	Libri Seech Dataset
	Transormer Model Description

	Proposed Hardware Implementation of the Algorithm
	Experimental setup
	Operational intensity
	Paralleism scheme
	Orchestrating Matrix Computations
	Computation and Communication Overlap
	End-to-End control flow

	Experiments and Results
	Experimental Results
	Output of the ASR system
	Load-compute analysis
	Architecture analysis and comparison
	Discussion
	Performance Comparison with CPU and GPU
	Other results
	Performance Comparison with other works

	Relevant Work and Conclusion
	Related Work
	Conclusion and future work

	Bibliography

