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Abstract

Ancient paper documents and palm leaf manuscripts from the Indian subcontinent have made a
significant contribution to the world literary and culture. These documents often have complex, uneven,
and irregular layouts. The process of digitization and deciphering the content from these documents
without human intervention pose difficulties in a broad range of areas, including language, script, layout,
elements, position, and number of manuscripts per image.

Large-scale annotated Indic manuscript image datasets are needed for this kind of research. In order
to meet this objective, we present Indiscapes, the first dataset containing multi-regional layout annota-
tions for ancient Indian manuscripts. We also adapt a fully convolutional deep neural network archi-
tecture for fully automatic, instance-level spatial layout parsing of manuscript images in order to deal
with the challenges such as presence of dense, irregular layout elements, pictures, multiple documents
per image and the wide variety of scripts. Eventually, We demonstrate the effectiveness of proposed
architecture on images from the Indiscapes dataset.

Despite advancements, the segmentation of semantic layout using typical deep network methods is
not resistant to the complex deformations that are observed across semantic regions. This problem is
particularly evident in the domain of Indian palm-leaf manuscripts, which has limited resources. There-
fore, we present Indiscapes2, a new expansive dataset of various Indic manuscripts with semantic layout
annotations, to help address the issue. Indiscapes2 is 150% larger than Indiscapes and contains materials
from four different historical collections. In addition, we propose a novel deep network called Palmira
for reliable, deformation-aware region segmentation in handwritten manuscripts. As a performance
metric, we additionally report a boundary-centric measure called Hausdorff distance and its variations.
Our tests show that Palmira offers reliable layouts and outperforms both strong baseline methods and
ablative versions. We also highlight our results on Arabic, South-East Asian and Hebrew historical
manuscripts to showcase the generalization capability of PALMIRA.

Even though we have reliable deep-network based approaches for comprehending manuscript layout,
these models implicitly assume one or two manuscripts per image during the process, whereas in a
real-world scenario there are often cases where multiple manuscripts are typically scanned together
into a scanned image to maximise scanner surface area and reduce manual labour. Now, making sure
that each individual manuscript within a scanned image can be isolated (segmented) on a per-instance
basis became the first essential step in understanding the content of a manuscript. Hence, there is a
need for a precursor system which extracts individual manuscripts before downstream processing. The
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highly curved and deformed boundaries of manuscripts, which frequently cause them to overlap with
each other, introduce another complexity when confronting issue. We introduce another new document
image dataset named IMMI (Indic Multi Manuscript Images) to address these issues. We also present
a method that generates synthetic images to augment sourced non-synthetic images in order to boost
the efficiency of the dataset and facilitate deep network training. Adapted versions of current document
instance segmentation frameworks are used in our experiments. The results demonstrate the efficacy
of the new frameworks for the task. Overall, our contributions enable robust extraction of individual
historical manuscript pages. This in turn, could potentially enable better performance on downstream
tasks such as region-level instance segmentation, optical character recognition and word-spotting in
historical Indic manuscripts at scale.
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Chapter 1

Introduction

Ancient palm leaf manuscripts are historical artefacts that hold a plethora of data. They are an
effective means of preserving cultural heritage as they represent a multitude of traditions, history, and
information. This is especially true for manuscripts from the Indian subcontinent and South-East Asian
countries [43]. These are referred to as “Indic Manuscripts” throughout this thesis. While previous
conservation efforts have focused on digitising these fragile texts, the work presented in this thesis takes
it a few steps ahead by creating large-scale datasets of such manuscript images and developing deep
learning models that can automatically identify and label different regions of the document, such as
character line segments, library markers, pictures, and textual and non-textual elements. We also made
an effort to determine the page boundaries from a single scanned image containing multiple manuscripts
and were successful to a greater extent.

1.1 Indic Manuscripts and Importance

The Indic manuscript collection is considered one of the largest manuscript collections globally,
estimated at around ten million manuscripts. Although Ayurveda and Yoga have become the most
influential and popular Indian exports to the West and other parts of the globe, there are many more
buried and preserved shastras, or texts, on a wide range of subjects, spanning from astrology, literature,
science and technology, to wellness and ecology. Unfortunately, the early means of writing down such
a large amount of information was done on materials such as stone, parchment, birch bark, and palm
leaves, all of which are now fragile and fractured due to weather and time.

In comparison to modern or recent era documents, such manuscripts are significantly more fragile,
susceptible to degradation from natural elements, and have a relatively short shelf life [47, 67, 74]. In
particular to Indic documents, the manuscripts exist in multiple languages and scripts based on various
factors such as geography and timelines. The number of domain experts who can comprehend such
literature is shrinking rapidly. Hence, it is very vital to achieve access to the information contained in
these manuscripts before it is permanently lost.
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Figure 1.1: Sample images of ancient handwritten documents and palm leaf manuscripts

1.2 Importance of Developing Systems for Studying Indic Manuscripts

Given the multitude of languages, scripts, and non-textual regional elements found in Indian manuscripts,
spatial layout parsing is crucial for enabling downstream applications such as optical character recog-
nition (OCR), word-spotting, style-and-content based retrieval, and clustering. For this reason, we first
tackle the problem of creating a diverse, annotated spatial layout dataset. Creating such a dataset enables
progress and bypasses the hurdle of language and script familiarity for annotators.

In general, manuscripts from Indian subcontinent pose many unique challenges. To begin with,
the documents exhibit a large multiplicity of languages. This is further magnified by variations in
intra-language script systems. Along with text, manuscripts may contain pictures, tables, non-pictorial
decorative elements in non-standard layouts (refer to figure 1.1). A unique aspect of Indic and South-
East Asian manuscripts is the frequent presence of holes punched in the document for the purpose of
binding [47,74,89]. These holes cause unnatural gaps within text lines. The physical dimensions of the
manuscripts are typically smaller compared to other historical documents, resulting in a dense content
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layout. Sometimes, multiple manuscript pages are present in a single image. Moreover, imaging-related
factors such as varying scan quality play a role as well. Given all of these challenges, it is important
to develop robust and scalable approaches for the problem of layout parsing. In addition, given the
typical non-technical nature of domain experts who study manuscripts, it was also important to develop
easy-to-use graphical interfaces for annotation, post-annotation visualization and analytics.

1.3 Works on Semantic and Instance Segmentation

A number of research groups have invested significant efforts in the creation and maintenance of
annotated, publicly available historical manuscript image datasets [39, 62, 68, 71, 75, 82, 83]. Other
collections contain character-level and word-level spatial annotations for South-East Asian palm-leaf
manuscripts [40, 86, 89]. In these latter set of works, annotations for lines are obtained by considering
the polygonal region formed by union of character bounding boxes as a line. While studies on Indic
palm-leaf and paper-based manuscripts exist, these are typically conducted on small and often, private
collections of documents [5,19,61,76,77,80,85]. No publicly available large-scale, annotated dataset of
historical Indic manuscripts exists to the best of our knowledge. In contrast to existing collections, our
proposed dataset contains a much larger diversity in terms of document type (palm-leaf and early paper),
scripts and annotated layout elements (see Tables 3.3,3.4 and 3.5). An additional level of complexity
arises from the presence of multiple manuscript pages within a single image.

A number of contributions can also be found for the task of historical document layout parsing [16,
17, 94, 95]. Wei et al. [94] explore the effect of using a hybrid feature selection method while us-
ing autoencoders for semantic segmentation in 5 historical English and Medieval European manscript
datasets. Chen et al. [17] explore the use of Fully Convolutional Networks (FCN) for the same datasets.
Barakat et al. [12] propose a FCN for segmenting closely spaced, arbitrarily oriented text lines from an
Arabic manuscript dataset. The mentioned approaches, coupled with efforts to conduct competitions
on various aspects of historical document layout analysis have aided progress in this area [3, 4, 42]. A
variety of layout parsing approaches, including those employing the modern paradigm of deep learning,
have been proposed for Indic [73, 76, 80, 85] and South-East Asian [16, 43, 63, 86, 91] palm-leaf and
paper manuscript images. However, existing approaches typically employ brittle hand-crafted features
or demonstrate performance on datasets which are limited in terms of layout diversity. Similar to many
recent works, we employ Fully Convolutional Networks in our approach. However, a crucial distinction
lies in our formulation of layout parsing as an instance segmentation problem, rather than just a seman-
tic segmentation problem. This avoids the problem of closely spaced layout regions (e.g. lines) being
perceived as contiguous blobs.

The ready availability of annotation and analysis tools has facilitated progress in creation and anal-
ysis of historical document manuscripts [24, 28, 32]. The tool we propose here contains many of the
features found in existing annotation systems. However, some of these systems are primarily oriented
towards single-user, offline annotation and do not enable a unified management of annotation process
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and monitoring of annotator performance. In contrast, our web-based system addresses these aspects
and provides additional capabilities. Many of the additional features in our system are tailored for an-
notation and examining annotation analytics for documents with dense and irregular layout elements,
especially those found in Indic manuscripts. In this respect, our annotation system is closer to the recent
trend of collaborative, cloud/web-based annotation systems and services [2, 33, 96].

1.4 Missing Resources

Despite the great significance of Indic manuscripts, there was no large scale dataset existing in the
community to work with, when it came to obtaining access to the content. Due to the unique challenges
that these manuscripts pose, there was no existing system that could overcome them, and parse the
scanned manuscript document to retrieve the content from it. Hence there was a need for establishment
of large scale datasets of Indic manuscript images and deep learning models to parse these images.

1.5 Thesis Contributions

In this work, we established standardised datasets following set of guidelines with Indic manuscript
images and explored semantic instance segmentation based works for layout parsing of the same im-
ages.The contribution of the thesis are outlined as below.

• Development of guidelines for annotating the dataset with an emphasis on ensuring consistent
annotations throughout.

• Datasets (Indiscapes, Indiscapes2 and IMMI) involving all the major possible real time challenges
for layout parsing of the Indic Historical Manuscripts.

• Deep learning based Instance segmentation models for Layout parsing of the Historical Docu-
ments.

1.6 Thesis Organisation

The thesis is organised as follows. The requirements and considerations for developing a spatial
layout annotation system are briefly summarised in chapter 2. It also includes a description of HInDoLA,
a web-based system that constitutes a large-scale annotation tool, dashboard analytics, and machine
learning engines. The proposed databases of Indic Manuscript images, Indiscapes and Indiscapes2, are
discussed in chapter 3. The motivation for collecting the IMMI dataset and the analysis of the dataset
are summarised in chapter 4. Deep networks for manuscript region instance segmentation, such as Mask
R-CNN and Palmira, are presented in chapter 5, while deep networks for multi-manuscript document
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image segmentation are presented in chapter 6. Finally, the contributions, findings, experiments and
analysis are summarised in chapter 7.
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Chapter 2

Spatial Layout Annotation

Considering spatial layout annotation of manuscripts do not require any specific skill for identifying a
language or script, unlike text annotation, setting up a diverse annotated spatial layout dataset overcomes
the barrier of language and script familiarity for annotators. Although annotators do not need to be script
or language experts, they should be able to recognise and categorise the most prominent and content-rich
components such as character line segments, character components, pictures, and others precisely. To
assist with this annotation, a web-based online annotation tool called HInDoLA, introduced by Trivedi
et al. [88] was utilised. A set of guidelines were established while annotating to ensure that they stayed
meaningful and consistent throughout the process. In the following sections, a quick overview of the tool
and the established guidelines will be discussed. All annotation choices, such as manuscript sources,
region types, and number of manuscripts, will also be provided in detail in the upcoming sections.

2.1 Background Work

2.1.1 HInDoLA

The availability and accessibility of annotation and analytic tools have greatly aided in the creation
and study of historical manuscript annotations [24, 28, 32]. HInDoLA (Historical Intelligent Document
Layout Analytics), the adopted annotation tool and analytics system, by Trivedi et al [88] incorporates
many features available in existing annotation systems. However, most systems are built for single-user
online annotation and do not offer centralized annotation management or annotator performance mon-
itoring. HInDoLA, on the other hand, expands the tool’s capabilities by resolving the concerns raised
above and focusing on a more efficient annotation process and statistical analysis for texts with dense
and irregular layout features, such as those found in Indian manuscripts. HInDoLA is more in line with
the current trend of collaborative, cloud-based annotation systems and services [2, 33, 96] because it is
entirely open source and comes with clear, step-by-step instructions for streamlined installation and us-
age. The Annotation Tool, ML Engine and Dashboard Analytics are crucial components of HInDoLA’s
overall architecture.
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2.1.1.1 ML Engines

HInDoLA is set up to interact with machine-learning models that use deep networks. One of the
models used here is fully automated and uses Mask R-CNN, a state-of-the-art object-instance segmen-
tation framework. This model outputs a layout estimate at the instance level for a given document.
A semi-automatic model is one in which the annotator supplies partial information in the form of the
region’s bounding box, and the model predicts a tight region boundary estimate. This bounding box
supervision model learns the edge features and generates the boundary around the region. To access
these intelligent models in the tool, a toggle button must be enabled. Both fully automatic and semi-
automatic models become active once this toggle button is enabled after receiving the image from the
tool. A sub-system provides control points on the boundaries of regions after the fully automatic model
predicts masks for distinct regions in the input image. These control points are superimposed on the
input image, allowing the annotator to tweak the prediction for a tighter region boundary. The control
points can be adjusted by annotators to create a tight bounding box around the region. In the semi-
automatic model, annotators draw a bounding box around a region in a freshly requested image, which
is then automatically forwarded to the back-end edge model. A convolution neural network predicts
the region’s edge features and edge-logits (pixel values ranging from 0-1) and generates a concave-hull
boundary from the most prominent features. Similar to the instance segmentation model boundary pre-
diction, the boundary is then combined with control points, allowing the region boundary annotation
to be served on the annotation tool. This feature saves users and experts time that would otherwise be
spent annotating an entire document image from scratch.

Figure 2.1: Screenshots of our web-based annotator (left) and analytics dashboard (right).

2.1.1.2 Annotation Tool

The Annotation tool can be used as a standalone application or as a web service. The standalone
version can be used offline for sand boxing and enhancing the tool’s capabilities. It is also used when
the server-based components of HInDoLA cannot be installed owing to access constraints. The web
service, on the other hand, supports distributed parallel sessions by registered annotators, as well as live
session monitoring via the dashboard and shows various annotation-related statistics.
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The web-based tool service allows users to engage in the interactive annotation of manuscripts.
Users need to complete a one-time registration to track their annotation performance at multiple levels.
Along with the standard polygon and rectangle drawing features, the free-hand drawing option is also
introduced for quick annotations on irregular, small, and extremely big regions in manuscripts, giving
the maximum annotation versatility possible. A single annotation is created by starting with a single
mouse click and running the cursor smoothly along the component boundary, with a few more clicks in
between the movement to create vertices of the boundary.

The regions in Indic manuscripts are often densely populated, making the annotators’ jobs challeng-
ing. Therefore, features such as ultra zoom and spanning features were introduced to overcome this
challenge and aid in pixel-level accuracy of annotations. Once a boundary is drawn around the region, it
can be altered later by adding or removing the vertices with a single mouse click and the control button
on the vertex. After drawing the boundary, a pop-up annotation window opens to label the region. Ten
different class regions were identified and considered for annotation as character line segment, character
component, hole, page boundary, library marker, decorator, picture, physical degradation, and bound-
ary line considering the whole Indic manuscript dataset. The annotations for different class regions are
shown in different vibrant colours for better visualisation and understanding(refer fig 2.3). The JSON
format is used to extract all the annotations from the tool. Along with the region coordinates and labels,
the JSON file also stores a time-stamp for each region annotated, which serves as a metric to support
the training of intelligent models for automatic annotation.

The annotation manager was developed to manage and update the database in the backend while
handling distributed concurrent sessions of registered annotators. It has a request queue that can handle
several user sessions on the system simultaneously, and it can load unannotated images in normal mode
and annotated images in correction mode. Expert annotators can use the “Correction” mode toggle to
improve the quality of their annotations by correcting them. If the image is excessively corrupted or the
annotator is unsure about the proper layout parsing of newly introduced components, the “skip button””
allows them to skip the served image. The annotation JSON file is saved in the backend folder when the
“done” button is clicked.

2.1.2 Dashboard Analytics

The dashboard-style analytics includes many annotation management services, such as displaying
graphs for the annotation stats, the annotators’ progress reports, and the database viewer. It allows
users to keep track of live annotation sessions and interactively explore document annotation statistics.
The manuscripts are organized and displayed by annotated time, languages, and number of regions.
There are various types of histograms and pie charts on the dashboard that represent the number of
experiments added and completed document annotations. The viewer section of the dashboard enables
the annotators to check the quality of completed annotations. Visit http://ihdia.iiit.ac.in/
for more information.
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Figure 2.2: Architecture of HInDoLA

2.2 Considerations for Spatial Layout Annotations

Spatial layout parsing is critical for downstream applications such as OCR, word-spotting, and style-
and content-based retrieval clustering, as the Indic manuscripts include a wide range of language, script,
and non-textual regional features. Hence, we approach the problem of establishing a diversified, an-
notated spatial layout dataset because it has the advantage of immediately overcoming the barrier of
language and script familiarity for annotators. Spatial annotations do not demand any expertise from
annotators, unlike text annotations.

Surprisingly, there are currently no large-scale annotated Indic manuscript image datasets available
to researchers in the community, which would be incredibly helpful for analyzing the layout of these
manuscripts.As a result, we took a substantial step in addressing these gaps by creating a diverse, anno-
tated spatial layout dataset.

In order to create such a dataset, multiple factors need to be considered in data sourcing, identifying
and prioritising the significant regions, categorising the classes, and determining the region types. After
assessing this, a comprehensive set of annotation guidelines must be established to avoid ambiguity
among annotators and preserve consistency throughout the data set. The following sections dwell into
the details of the annotation challenges and guidelines.
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2.3 Annotation Challenges

In the context of annotating Indic manuscript layouts, there are many unique challenges that they
pose when compared to regular documents. The constraints stem from three primary sources.
Content: The manuscripts are written in a series of diverse Indian languages. Some languages even have
script variations within themselves. To ensure efficient annotation of lines and character components, a
large pool of annotators versed with the languages and scripts contained in the corpus is required.
Layout: Indic manuscripts, unlike other datasets, include non-textual components such as color draw-
ings, tables, and document decorations in non-standard layouts, frequently interspersed with text. Many
manuscripts have one or more physical holes designed to allow a thread-like material to pass through
and bind the leaves together to form a book. The spatial location, number, and diameter of such holes
vary. At times, a “virtual” hole-like gap also occurs, possibly for punching a hole at a later time. When
holes appear in the centre of a document, they cause a break in the line continuity. In many cases, the
spacing between lines in manuscripts is often exceedingly small, making them dense. Because of the
handwritten character of these texts and the uneven surface material, very precise and slow annotation
is required, making the annotator’s job challenging and time-consuming. If multiple manuscript im-
ages are present, the stacking order could be horizontal or vertical. Overall, the sheer variety in layout
elements poses a significant challenge, not only for annotation, but also for automated layout parsing.
Degradations: Historical Indic manuscripts are fragile and prone to deterioration from a variety of
sources, including wood-and-leaf-boring insects, humidity seepage, inappropriate storage and handling,
and so on. While certain degradations cause the document’s edges to fray, others result in oddly shaped
perforations in the document’s core. Before undertaking lexically-focused tasks such as OCR or word-
spotting, it may be necessary to identify such degradations.

2.4 Annotation Guidelines

As the annotations are done by multiple annotators, there is a considerable risk of making mistakes
and being inconsistent if there are no regulations. Therefore, a well-thought-out and published set of
guidelines has been established to ensure uniformity and correctness throughout the dataset. Initially,
depending on the data to be handled and the content to be accessed, a list of class types is defined, and
images are chosen accordingly. Only images with the predefined class type are chosen randomly and
annotated. Considering the whole dataset, we have identified 10 class types that constitute the majority
of the documents, and they are as follows.

1. Holes(physical)

2. Holes(Virtual)

3. Boundary Line

4. Page Boundary
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5. Picture

6. Decorator

7. Character Line segment

8. Character Component

9. Library marker

10. Physical Degradation

The HInDoLA Annotation tool is used to annotate all of these region types. As mentioned in previ-
ous sections, the documents have holes in them for a thread to run through, and these are labelled as
Holes (physical). The space is left for them to be punched in a few exceptional cases, but they remain
unpunched eternally. These are known as Holes (virtual). However, they are in relatively limited quan-
tities. Character line segments are textual lines that run from one end of the page to the other, whereas
Character components are short words that can occur anywhere on the page. The two region types
that make up the document’s main textual content are character line segments and character components.
There are also some beautiful illustrations depicting the event or context, referred to as Pictures. A few
documents contain floral art added by the authors, generally at the beginning or conclusion of the book,
to make the collection look prettier. These are labelled as Decorators. Boundary lines are the ones
that are drawn on the left and right sides of the page to maintain alignment. These can also be found
at the top and bottom of the page. A Page boundary is a region where boundary around the document
is drawn to ensure the clear separation between several pages in a single image or some foreign textual
components. Refer to figure 2.3 for more details.

Figure 2.3: Sample class regions annotated on the manuscripts using HInDoLA
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Chapter 3

Overview of the Datasets

3.1 Indiscapes: The Indic Manuscript Dataset

Indiscapes is the first-ever historical Indic manuscript dataset with detailed spatial layout annota-
tions. It is composed of manuscript images acquired from two primary sources. The first source is the
University of Pennsylvania’s Rare Book and Manuscript Library’s publicly accessible Indic manuscript
collection, popularly known as Penn-in-Hand [1]. We picked 193 manuscript images for annotation
from the 2,880 Indic manuscript book sets1. Our curated selection aims to maximise the dataset’s diver-
sity in terms of various parameters such as the extent of document degradation, script language, presence
of non-textual elements (e.g. pictures, tables) and the number of lines. Some images contain multiple
manuscript pages stacked vertically or horizontally (see the bottom-left image in Figure 3.1).

Bhoomi, a scattered collection of 315 images gathered from several Oriental Research Institutes and
libraries across India, is our dataset’s second source for manuscript images. We chose a subset from
the whole dataset to optimise the dataset’s overall diversity, just as we did with the previous collection.
However, the latter collection of images is distinguished by a lower document quality, the inclusion
of numerous languages, and the presence of long, densely and irregularly spaced text lines, binding
holes, and degradations (Figure 3.1). We do not attempt to split the image into multiple pages, even if
it contains multiple documents. While this makes automatic image processing and annotation difficult,
keeping such images in the dataset avoids the need for manual or semi-automatic intervention.

In aggregate, we have 508 annotated Indic manuscripts in our collection. The table 3.1 depicts some
critical aspects of the dataset, while the figure 3.1 depicts a pictorial representation of the layout re-
gions. Unlike existing historical document datasets, which typically contain disjoint region annotations,
multiple regions might overlap in our case.

1A book-set is a sequence of manuscript images.
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Character Line Segment Character Component Hole Page Boundary Library Marker Decorator Picture Physical Degradation Boundary Line

(CLS) (CC) (H) (PB) (LM) (D) (P) (PD) (BL)

PIH 2401 494 − 256 32 59 94 34 395

BHOOMI 2440 210 565 316 133 − − 2078 −

Combined 4841 704 565 572 165 59 94 2112 395

Table 3.1: Counts for various annotated region types in INDISCAPES dataset. The abbreviations used

for region types are given below each region type.

Train Validation Test Total

PIH 116 28 49 193

BHOOMI 236 59 20 315

Total 352 87 69 508

Table 3.2: Dataset splits used for learning and inference.

Script Source Document Count

Devanagari PIH 193

Nandinagari BHOOMI 2

Telugu BHOOMI 75

Grantha BHOOMI 238

Table 3.3: Scripts in the INDISCAPES dataset.

3.2 Motivation for Indiscapes2

Among the varieties of historical manuscripts, many from the Indian subcontinent and South-east
Asia are written on palm leaves. These manuscripts pose significant and unique challenges to the prob-
lem of layout prediction. The digital versions often reflect multiple degradations of the original. Also,
a large variation exists in terms of the script language, aspect ratios and density of text and non-text
region categories. The Indiscapes, Indic manuscript dataset and the deep-learning-based layout parsing
model by Prusty et al. [65] represent a significant first step towards addressing the concerns mentioned
above in a scalable manner. Although Indiscapes is the largest available annotated dataset of its kind,
it contains a relatively small set of documents sourced from two collections. The deficiency is also
reflected in the layout prediction quality of the associated deep learning model.
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Figure 3.1: The five images on the left, enclosed by pink dotted line, are from the BHOOMI palm leaf

manuscript collection while the remaining images (enclosed by blue dotted line) are from the ‘Penn-in-

Hand’ collection (refer to Section 3.2.1). Note the inter-collection differences, closely spaced and un-

evenly written text lines, presence of various non-textual layout regions (pictures, holes, library stamps),

physical degradation and presence of multiple manuscripts per image. All of these factors pose great

challenges for annotation and machine-based parsing.

To address these shortcomings, we introduce the Indiscapes2 dataset as an expanded version of In-
discapes (Sec. 3.1). Indiscapes2 is 150% larger compared to its predecessor and contains two additional
annotated collections which greatly increased qualitative diversity (see Fig. 3.2, Table 3.4).

3.2.1 Indiscapes2

Despite Indiscapes being the first large-scale Indic manuscript dataset, it is relatively small by dataset
standards. Indiscapes2 was developed on Indiscapes to alleviate this issue and enable advanced layout
segmentation of deep networks. We used HInDoLA [88], a multi-feature annotation and analytics tool
for historical manuscript layout processing for annotation. The fully automatic layout segmentation
approach from Prusty et al. [65] is available as an annotation feature in HInDoLA. The annotators use
the same to get an initial estimate and alter the output, reducing the time and effort required compared to
pure manual annotation. HInDoLA also has a visualisation interface for evaluating annotation accuracy
and labelling documents for correction.

In the new dataset, we introduce additional annotated documents from the Penn-in-Hand and Bhoomi
book collections mentioned previously. Above this, we also add annotated manuscripts from two
new collections - ASR and Jain. The ASR documents are from a private collection and contain 61

manuscripts written in Telugu language. They contain 18 − 20 densely spaced text lines per document
(see Fig. 3.2). The Jain collection contains 189 images. These documents contain 16−17 lines per page
and include early paper-based documents in addition to palm-leaf manuscripts.
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Train Validation Test Total Indiscapes (old)

PIH 285 70 94 449 193

BHOOMI 408 72 96 576 315

ASR 36 11 14 61 −−

JAIN 95 40 54 189 −−

Total 824 193 258 1275 508

Table 3.4: Collection level stats.

Character Character Hole Hole Page Library Decorator/ Physical Boundary

Line Segment Component (Virtual) (Physical) Boundary Marker Picture Degradation Line

(CLS) (CC) (Hv) (Hp) (PB) (LM) (D/P) (PD) (BL)

PIH 5105 1079 − 9 610 52 153 90 724

BHOOMI 5359 524 8 737 547 254 8 2535 80

ASR 673 59 − − 52 41 − 81 83

JAIN 1857 313 93 38 166 7 − 166 292

Combined 12994 1975 101 784 1375 354 161 2872 1179

Table 3.5: Region count statistics.

Indiscapes2 has 1275 documents, representing a 150 per cent increase over the previous Indiscapes
dataset. Additional statistics about the datasets can be found in Tables 3.4,3.5, and representative images
can be seen in 3.2. Overall, Indiscapes2 provides more qualitative and quantitative coverage throughout
the spectrum of historical documents.
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Figure 3.2: Representative manuscript images from Indiscapes2 - from newly added ASR collection (top

left, pink dotted line), Penn-in-Hand (bottom left, blue dotted line), Bhoomi (green dotted line), newly

added Jain (brown dotted line). Note the diversity across collections in terms of document quality,

region density, aspect ratio and non-textual elements (pictures).
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Chapter 4

IMMI Dataset

4.1 Motivation for Collection of IMMI Dataset

Handwritten historical manuscripts are a valuable source of tradition, history, and knowledge for
preserving cultural heritage. This is especially true for manuscripts from the Indian subcontinent and
South-East Asian countries [43]. Sourcing, preserving, restoring and digitizing the manuscripts are
few significant steps in gaining access to content from the documents. In particular, accessing semantic
content from digitized (scanned) manuscript images itself involves multiple steps and unique challenges.
These aspects have been explored by several researchers in the community. The steps and challenges
mentioned are usually in the form of structural layout parsing (semantic instance segmentation) [65,78]
and optical character recognition (OCR) [21, 57, 84, 93].

The first step towards accessing semantic content from historical palm-leaf manuscripts is scanning,
i.e. obtaining a photo-like record of the physical manuscript item. A large diversity exists within this
process due to the variety in capture mechanisms (flatbed scanners, handheld cameras). Often, in order
to maximally utilize the area of scanning and minimize the manual labor involved, multiple manuscripts
are scanned together. Therefore, the first crucial task is to ensure that each of the individual manuscripts
within a scanned image can be isolated (segmented) on a per-instance basis.

This process of segmentation needs to tackle the diversity in appearance, capture quality, physical
dimensions of the manuscripts. One particularly challenging aspect is overlap. Due to the physical
attributes of the manuscripts (elongated and curved) or due to oversight by the person conducting the
scanning, individual manuscripts can overlap with each other. This poses a challenge for image seg-
mentation approaches which assume non-overlapping instances.

To address this gap, we first introduce a new document image dataset called IMMI (Indic Multi
Manuscript Images). Each image in IMMI contains pixel level annotation of individual manuscript
boundaries (Fig 4.3). Images from our dataset can be used to train deep networks for multi-page docu-
ment image segmentation. The IMMI dataset covers a practical range in terms of number of manuscripts
per image. However, the frequency distribution is imbalanced since there are fewer documents with a
large number of manuscripts per image.
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Figure 4.1: Examples of non-synthetic (real) document images. The challenging aspects such as vari-

ation in background, aspect ratio, layout, size of the image, number of manuscripts per document is

evident.

Figure 4.2: Examples of synthetic document images generated by our procedure (Section 4.2.2). Please

compare with real (non-synthetic) document images in Figure 4.1.

Synthetic data generation is a popular option to compensate for lack of sufficient data when training
deep learning approaches. Garai et al. [31] introduce a framework for creating synthetically warped
images from flatbed scanned document images. Kieu et al. [44] employ a 3D approach to replicate the
geometric distortions found in real documents as part of the new document synthesis process. Karpinski
and Belaid [38] introduce a fully automatic method to generate synthetic historical document images
by extracting and mixing Text-only images with Background-only images. We utilize a copy-paste
augmentation strategy involving random mixing of document regions (manuscript pages) from existing
data. Incidentally, variants of copy-paste strategy have been shown to be an effective augmentation
strategy for instance segmentation [34].

The formulation and implementation of the synthetic data generation procedure using copy-paste
augmentation strategy is discussed in section (Section 4.2.2). The resulting synthetic data serves to
supplement our dataset and provide a larger quantity of data for training data-hungry deep networks.
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4.2 IMMI Dataset

4.2.1 Composition of the Dataset

Non-Synthetic Images: To source images, we scraped those available on the Internet. We also sourced
images from private collections available to us. Another major source of images was the recently intro-
duced Indiscapes2 dataset [78]. We selected images to maximize the diversity in terms of manuscript
count per document. Sample non-synthetic document images can be viewed in Figure 4.1. As the first
step, we use HInDoLA [88], a web-based multi-feature annotation framework, for annotating the page
boundaries of manuscripts in document images.
Synthetic Images: The statistics of manuscript counts in non-synthetic images can be viewed in Ta-
ble 4.1. Clearly, the frequency distribution of images in terms of manuscript count per document is
highly imbalanced. To address this imbalance, we also create synthetic images (described in the next
section). Sample images can be viewed in Figure 4.2.

From Table 4.1, note that the data is split into training, validation and test in the ratio of 65 : 15 : 20

respectively. The data is split such that training and validation are done on both synthetic and non-
synthetic data. However, the overall performance is reported on non-synthetic data. The dataset is also
balanced throughout the splits (train, validation, test) by ensuring all of them have images spanning the
manuscript count range.

4.2.2 Synthetic Image Creation

Rotate  Stack Resize

Figure 4.3: Step-by-step sequence for generation of synthetic images - refer to Sec. 4.2.2 for details.

1. The first step is to determine the number of manuscripts to be stacked. To ensure consistent
background for synthetic images, non-synthetic manuscripts with same background colour are
selected for stacking. The background colour is customized exclusively for manuscripts with no
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Non-synthetic Synthetic

# manuscripts per image Train Validation Test Total Total Train Validation

1 45 14 11 70 0 0 0

2 29 6 12 47 14 11 3

3 22 8 12 42 20 19 1

4 20 4 20 44 47 38 9

5 17 0 13 30 29 20 9

6 4 1 12 17 46 38 8

7 2 0 13 15 45 37 8

8 0 0 3 3 64 54 10

9 0 0 9 9 52 43 9

10 0 0 1 1 67 58 9

18 0 0 3 3 0 0 0

Total 139 33 109 281 384 318 66

Table 4.1: Distribution statistics of real (non-synthetic) and synthetic data in IMMI dataset.

background but for images with pre-existing background colours (e.g. white), the same colour
is used. The width and height of the synthetic image canvas are also controlled by the chosen
non-synthetic manuscripts. In case of vertical stacking, the height of the canvas is decided by
the sum of total image heights in the subset whereas the widest manuscript sub-image determines
the width. In horizontal stacking, height of the canvas is decided by the sub-image with the
maximum height, and the width of the canvas is equal to the sum of the widths of all the images
being stacked. An extra 100 pixels are added to all sides of the canvas for padding. On account of
each manuscript, 55 pixels are added to the canvas’s height (vertical stack) or width (horizontal
stack) to accommodate for the space between the scripts.

2. Once the canvas is ready, the selected manuscripts are positioned vertically, horizontally or a
combination of both. The non-synthetic images with the largest widths are stacked only vertically
to ensure a practical range for synthetic image width. The ground truth for these manuscripts is
also stacked in parallel, with the appropriate offset values to match the location.

3. To mimic unstructured layouts, non-synthetic images are randomly rotated between −2 and 2

degrees and stored separately. The extra area created during rotation operation is filled with
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same colour as the background. The rotated ground truth label map is generated by multiply-
ing the original image’s ground truth coordinates with the rotation matrix corresponding to the
randomly chosen angle. Manuscripts are subsequently chosen from these rotated versions for
stacking within the synthetic image canvas.

4. The synthetic images produced are unusually large in terms of width and height since the images
are stacked in their original resolution. Hence they are scaled using a set scale factor s defined
as s = min(Ww , Hh ) where W,H are the maximum height and width seen for non-synthetic im-
ages and h,w are corresponding dimensions for a given synthetic image. To determine the new
dimensions, the scale factor is multiplied to the original dimensions of the synthetic image while
retaining the aspect ratio. The original ground truth label map coordinates are also scaled to match
the resized synthetic image.

Our synthetic data generation procedure ensures that the resulting images resemble non-synthetic coun-
terparts. Apart from diversity in appearance, we also ensure a more balanced manuscript count per
image across the collection. This can also be seen from the statistics in Table 4.1. Refer to Figures 4.1
and 4.2 for illustrative examples of synthetic and non-synthetic images and their annotations.
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Chapter 5

Deep Networks for Manuscript Region Instance Segmentation

A number of research groups have invested significant efforts in the creation and maintenance of
annotated, publicly available historical manuscript image datasets [39, 62, 68, 71, 75, 82, 83]. Other
collections contain character-level and word-level spatial annotations for South-East Asian palm-leaf
manuscripts [40, 86, 89]. In these latter set of works, annotations for lines are obtained by considering
the polygonal region formed by union of character bounding boxes as a line. While studies on Indic
palm-leaf and paper-based manuscripts exist, these are typically conducted on small and often, private
collections of documents [5, 19, 61, 76, 77, 80, 85]. No publicly available large-scale, annotated dataset
of historical Indic manuscripts exists to the best of our knowledge. In contrast with existing collections,
our proposed dataset contains a much larger diversity in terms of document type (palm-leaf and early
paper), scripts and annotated layout elements (see Tables 3.1,3.3). An additional level of complexity
arises from the presence of multiple manuscript pages within a single image (see Fig. 3.1). A number
of contributions can also be found for the task of historical document layout parsing [16,17,94,95]. Wei
et al. [94] explore the effect of using a hybrid feature selection method while using autoencoders for
semantic segmentation in five historical English and Medieval European manuscript datasets. Chen et
al. [17] explore the use of Fully Convolutional Networks (FCN) for the same datasets. Barakat et al. [12]
propose a FCN for segmenting closely spaced, arbitrarily oriented text lines from an Arabic manuscript
dataset. The mentioned approaches, coupled with efforts to conduct competitions on various aspects of
historical document layout analysis have aided progress in this area [3,4,42]. A variety of layout parsing
approaches, including those employing the modern paradigm of deep learning, have been proposed for
Indic [73, 76, 80, 85] and South-East Asian [16, 43, 63, 86, 91] palm-leaf and paper manuscript images.
However, existing approaches typically employ brittle hand-crafted features or demonstrate performance
on datasets which are limited in terms of layout diversity. Similar to many recent works, we employ
Fully Convolutional Networks in our approach. However, a crucial distinction lies in our formulation of
layout parsing as an instance segmentation problem, rather than just a semantic segmentation problem.
This avoids the problem of closely spaced layout regions (e.g. lines) being perceived as contiguous
blobs.
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Layout analysis is an actively studied problem in the document image analysis community [14, 23,
48]. For an overview of approaches employed for historical and modern document layout analysis, refer
to the work of Prusty et al. [65] and Liang et al. [50]. In recent times, large-scale datasets such as
PubLayNet [98] and DocBank [49] have been introduced for document image layout analysis. These
datasets focus on layout segmentation of modern language printed magazines and scientific documents.

Among recent approaches for historical documents, Ma et al. [54] introduce a unified deep learning
approach for layout parsing and recognition of Chinese characters in a historical document collection.
Alaasam et al. [8] use a Siamese Network to segment challenging historical Arabic manuscripts into
main text, side text and background. Alberti et al. [11] use a multi-stage hybrid approach for segmenting
text lines in medieval manuscripts. Monnier et al. [58] introduce docExtractor, an off-the-shelf pipeline
for historical document element extraction from 9 different kinds of documents utilizing a modified U-
Net [72]. dhSegment [60] is a similar work utilizing a modified U-Net for document segmentation of
medieval era documents. Unlike our instance segmentation formulation (i.e. a pixel can simultaneously
have two distinct region labels), existing works (except dhSegment) adopt the classical segmentation
formulation (i.e. each pixel has a single region label). Also, our end-to-end approach produces page and
region boundaries in a single stage end-to-end manner without any post-processing.

Approaches for palm-leaf manuscript analysis have been mostly confined to South-East Asian scripts [64,
92] and tend to focus on the problem of segmented character recognition [41, 56, 66]. The first large-
scale dataset for palm leaf manuscripts was introduced by Prusty et al. [65], which we build upon to
create an even larger and more diverse dataset.

Among deep-learning based works in document understanding, using deformable convolutions [26]
to enable better processing of distorted layouts is a popular choice. However, existing works have
focused only on tabular regions [6, 81]. We adopt deformable convolutions, but for the more general
problem of multi-category region segmentation.

5.1 Mask R-CNN

5.1.1 Network Architecture

The Mask R-CNN architecture contains three stages as described below (see Figure 5.1).

Backbone: The first stage, referred to as the backbone, is used to extract features from the input image.
It consists of a convolutional network combined with a feature-pyramid network [51], thereby enabling
multi-scale features to be extracted. We use the first four blocks of ResNet-50 [37] as the convolutional
network.

Region Proposal Network (RPN): This is a convolutional network which scans the pyramid feature
map generated by the backbone network and generates rectangular regions commonly called ‘object
proposals’ which are likely to contain objects of interest. For each level of the feature pyramid and for
each spatial location at a given level, a set of level-specific bounding boxes called anchors are generated.
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The anchors typically span a range of aspect ratios (e.g. 1 : 2, 1 : 1, 2 : 1) for flexibility in detection. For
each anchor, the RPN network predicts (i) the probability of an object being present (‘objectness score’)
(ii) offset coordinates of a bounding box relative to location of the anchor. The generated bounding
boxes are first filtered according to the ‘objectness score’. From boxes which survive the filtering,
those that overlap with the underlying object above a certain threshold are chosen. After applying non-
maximal suppression (NMS) to remove overlapping boxes with relatively smaller objectness scores, the
final set of boxes which remain are termed ‘object proposals’ or Regions-of-Interest (RoI).

Multi-Task Branch Networks: The RoIs obtained from RPN are warped into fixed dimensions and
overlaid on feature maps extracted from the backbone to obtain RoI-specific features. These features
are fed to three parallel task sub-networks. The first sub-network maps these features to region labels
(e.g. Hole,Character-Line-Segment) while the second sub-network maps the RoI features to bounding
boxes. The third sub-network is fully convolutional and maps the features to the pixel mask of the
underlying region. Note that the ability of the architecture to predict masks independently for each RoI
plays a crucial role in obtaining instance segmentations. Another advantage is that it naturally addresses
situations where annotations or predictions overlap.
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Figure 5.1: The architecture adopted for Indic Manuscript Layout Parsing. Refer to Section 5.1.1 for

details.

5.1.2 Implementation Details

The dataset splits used for training, validation and test phases can be seen in Table 3.2. All manuscript
images are adaptively resized to ensure the width does not exceed 1024 pixels. The images are padded
with zeros such that the input to the deep network has spatial dimensions of 1024 × 1024. The ground
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truth region masks are initially subjected to a similar resizing procedure. Subsequently, they are down-
sized to 28× 28 in order to match output dimensions of the mask sub-network.

5.1.2.1 Training

The network is initialized with weights obtained from a Mask R-CNN trained on the MS-COCO [52]
dataset with a ResNet-50 backbone. We found that this results in faster convergence and stabler training
compared to using weights from a Mask R-CNN trained on ImageNet [27] or training from scratch.
Within the RPN network, we use custom-designed anchors of 5 different scales and with 3 different
aspect ratios. Specifically, we use the following aspect ratios – 1:1,1:3,1:10 – keeping in mind the typical
spatial extents of the various region classes. We also limit the number of RoIs (‘object proposals’) to 512.
We use categorical cross entropy loss LRPN for RPN classification network. Within the task branches,
we use categorical cross entropy loss Lr for region classification branch, smooth L1 loss [69] (Lbb) for
final bounding box prediction and per-pixel binary cross entropy loss Lmask for mask prediction. The
total loss is a convex combination of these losses, i.e. L = λRPNLRPN+λrLr+λbbLbb+λmaskLmask.
The weighting factors (λs) are set to 1. However, to ensure priority for our task of interest namely mask
prediction, we set λmask = 2. For optimization, we use Stochastic Gradient Descent (SGD) optimizer
with a gradient norm clipping value of 0.5. The batch size, momentum and weight decay are set to
1, 0.9 and 10−3 respectively. Given the relatively smaller size of our manuscript dataset compared to
the photo dataset (MS-COCO) used to originally train the base Mask R-CNN, we adopt a multi-stage
training strategy. For the first stage (30 epochs), we train only the task branch sub-networks using a
learning rate of 10−3 while freezing weights in the rest of the overall network. This ensures that the task
branches are fine-tuned for the types of regions contained in manuscript images. For the second stage
(20 epochs), we additionally train stage-4 and up of the backbone ResNet-50. This enables extraction
of appropriate semantic features from manuscript images. The omission of the initial 3 stages in the
backbone for training is due to the fact that they provide generic, re-usable low-level features. To ensure
priority coverage of hard-to-localize regions, we use focal loss [53] for mask generation. For the final
stage (15 epochs), we train the entire network using a learning rate of 10−4.

5.1.2.2 Inference

During inference, the images are rescaled and processed using the procedure described at the begin-
ning of the subsection5.1.2. The number of RoIs retained after non-maximal suppression (NMS) from
the RPN is set to 1000. From these, we choose the top 100 region detections based on their classification
branch score and feed only the corresponding RoIs to the mask branch sub-network for mask genera-
tion. It is important to note that this strategy is different from the parallel generation of outputs and use
of the task sub-networks during training. The generated masks are then binarized using an empirically
chosen threshold of 0.4 and rescaled to their original size using bilinear interpolation.
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5.1.3 Evaluation

For quantitative evaluation, we compute Average Precision (AP) for a particular Intersection-over-
Union (IoU) threshold, a measure widely reported in instance segmentation literature [25, 52]. We
specifically report AP50 and AP75, corresponding to AP at IoU thresholds 50 and 75 respectively [36].
In addition, we report an overall score by averaging AP at different IoU thresholds ranging from 0.5 to
0.95 in steps of 0.05.

The AP measure characterizes performance at document level. To characterize performance for each
region type, we report two additional measures [17] – average class-wise IoU (cwIoU) and average
class-wise per-pixel accuracy (cwAcc). Consider a fixed test document k. Let nij be the number of
pixels of class i predicted as class j. Let ti =

∑
j nij be the total number of pixels whose ground-truth

label is i. The class-wise IoU for class i and document k is computed as dIOUk
i = nii

ti+
∑

j nji−nii
.

Let Ni be the total number of instances of class i in our test set. We define the average IoU for class
i as cwIOUi = 1

Ni

∑
k dIOUk

i . We define class-wise pixel accuracy for class i and document k as
dAccki = nii

ti
and average class-wise per pixel accuracy as cwAcci = 1

Ni

∑
k dAcc

k
i . For an input image,

the mask branch of the network outputs many instance masks. Note that in order to compute cwIOU
and cwAcc for a class i, only the instance mask predictions from the same class (i) are considered.

5.2 Our Layout Parsing Network (PALMIRA)

In their work, Prusty et al. [65] utilize a modified Mask R-CNN [36] framework for the problem
of localizing document region instances. Although the introduced framework is reasonably effective,
the fundamental convolution operation throughout the Mask R-CNN deep network pipeline operates
on a fixed, rigid spatial grid. This rigidity of receptive fields tends to act as a bottleneck in obtaining
precise boundary estimates of manuscript images containing highly deformed regions. To address this
shortcoming, we modify two crucial stages of the Mask R-CNN pipeline in a novel fashion to obtain our
proposed architecture (see Fig. 5.2). To begin with, we briefly summarize the Mask R-CNN approach
adopted by Prusty et al. We shall refer to this model as the Vanilla Mask R-CNN model. Subsequently,
we shall describe our novel modifications to the pipeline.

5.2.1 Vanilla Mask R-CNN

Mask R-CNN [36] is a three stage deep network for object instance segmentation. The three stages
are often referred to as Backbone, Region Proposal Network (RPN) and Multi-task Branch Networks.
One of the Branch Networks, referred to as the Mask Head, outputs individual object instances. The
pipeline components of Mask R-CNN are modified to better suit the manuscript image domain by Prusty
et al [65]. Specifically, the ResNet-50 used in Backbone is initialized from a Mask R-CNN trained on
the MS-COCO dataset. Within the RPN module, the anchor aspect ratios of 1:1,1:3,1:10 were chosen
keeping the peculiar aspect ratios of manuscript images in mind and the number of proposals from RPN

26



RPN

FC
Layer

CLS CLS P/D

REGION CLASSIFIER

FC
Layer

Detected
Bounding

Boxes

BOUNDING BOX REGRESSOR

Predicted
region
Types

DEFGRID MASK HEAD

Grid 
Classi�er

Grid Deformer

DOCUMENT IMAGE

BACKBONE WITH DEFORMABLE
CONVOLUTIONS

C2

C4
C5

C3

P3

P4
P5

P2

ROI 
ALIGN

Figure 5.2: A diagram illustrating PALMIRA’s architecture (Sec. 5.2). The orange blocks in the back-

bone are deformable convolutions (Sec. 5.2.2). Refer to Fig. 6.2b, Sec. 5.2.3 for additional details on

Deformable Grid Mask Head which outputs region instance masks.

were reduced to 512. The various thresholds involved in other stages (objectness and NMS) were also
modified suitably. Some unique modifications were included as well – the weightage for loss associated
with the Mask head was set to twice of that for the other losses and focal-loss [53] was used for robust
labelling.

We use the modified pipeline described above as the starting point and incorporate two novel modi-
fications to Mask R-CNN. We describe these modifications in the sections that follow.

5.2.2 Modification-1: Deformable Convolutions in Backbone

Before examining the more general setting, let us temporarily consider 2D input feature maps x.
Denote the 2D filter operating on this feature map as w and the convolution grid operating on the
feature map as R. As an example, for a 3× 3 filter, we have:

R =


(−1,−1) (−1, 0) (−1, 1)

(0,−1) (0, 0) (0, 1)

(1,−1) (1, 0) (1, 1)

 (5.1)

Let the output feature map resulting from the convolution be y. For each pixel location p0, we have:

y(p0) =
∑
pn∈R

w(pn) · x(p0 + pn) (5.2)

where n indexes the spatial grid locations associated with R. The default convolution operation in Mask
R-CNN operates via a fixed 2D spatial integer grid as described above. However, this setup does not
enable the grid to deform based on the input feature map, reducing the ability to better model the high
inter/intra-region deformations and the features they induce.

As an alternative, Deformable Convolutions [26] provide a way to determine suitable local 2D offsets
for the default spatial sampling locations (see Fig. 6.2a). Importantly, these offsets {∆pn;n = 1, 2 . . .}
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are adaptively computed as a function of the input features for each reference location p0. Equation 5.2
becomes:

y(p0) =
∑
pn∈R

w(pn) · x(p0 + pn +∆pn) (5.3)

Since the offsets ∆pn may be fractional, the sampled values for these locations are generated using
bilinear interpolation. This also preserves the differentiability of the filters because the offset gradients
are learnt via backpropagation through the bilinear transform. Due to the adaptive sampling of spatial
locations, broader and generalized receptive fields are induced in the network. Note that the overall
optimization involves jointly learning both the regular filter weights and weights for a small additional
set of filters which operate on input to generate the offsets for input feature locations (Fig. 6.2a).

5.2.3 Modification-2: Deforming the Spatial Grid in Mask Head

The ‘Mask Head’ in Vanilla Mask R-CNN takes aligned feature maps for each plausible region
instance as input and outputs a binary mask corresponding to the predicted document region. In this
process, the output is obtained relative to a 28×28 regular spatial grid representing the entire document
image. The output is upsampled to the original document image dimensions to obtain the final region
mask. As with the convolution operation discussed in the previous section, performing upsampling
relative to a uniform (integer) grid leads to poorly estimated spatial boundaries for document regions,
especially for our challenging manuscript scenario.

5.2.4 Implementation Details

Architecture: The Backbone in PALMIRA consists of a ResNet-50 initialized from a Mask R-CNN
network trained on the MS-COCO dataset. Deformable convolutions (Sec. 5.2.2) are introduced as a
drop-in replacement for the deeper layers C3-C5 of the Feature Pyramid Network present in the Back-
bone (see Fig. 6.2a). Empirically, we found this choice to provide better results compared to using
deformable layers throughout the Backbone. We use 0.5, 1, 2 as aspect ratios with anchor sizes of
32, 64, 128, 256, 512 within the Region Proposal Network. While the Region Classifier and Bounding
Box heads are the same as one in Vanilla Mask R-CNN (Sec. 5.2), the conventional Mask Head is
replaced with the Deformable Grid Mask Head as described in Sec. 5.2.3.

Optimization: All input images are resized such that the smallest side is 800 pixels. The mini-batch
size is 4. During training, a horizontal flip augmentation is randomly performed for images in the mini-
batch. To address the imbalance in the distribution of region categories (Table 3.4), we use repeat factor
sampling [35] and oversample images containing tail categories. We perform data-parallel optimization
distributed across 4 GeForce RTX 2080 Ti GPUs for a total of 15000 iterations. A multi-step learning
scheduler with warmup phase is used to reach an initial learning rate of 0.02 after a linear warm-up
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over 1000 iterations. The learning rate is decayed by a factor of 10 at 8000 and 12000 iterations. The
optimizer used is stochastic gradient descent with gamma 0.1 and momentum 0.9.

Except for the Deformable Grid Mask Head, other output heads (Classifier, Bounding Box) are opti-
mized based on choices made for Vanilla Mask R-CNN [65]. The optimization within the Deformable
Grid Mask Head involves multiple loss functions. Briefly, these loss functions are formulated to (i) min-
imize the variance of features per grid cell (ii) minimize distortion of input features during differentiable
reconstruction (iii) avoid self-intersections by encouraging grid cells to have similar area (iv) encourage
neighbor vertices in region localized by a reference central vertex to move in same spatial direction as
the central vertex. Please refer to Gao et al. [29] for details.

5.3 Experimental Setup

5.3.1 Baselines

Towards fair evaluation, we consider three strong baseline approaches.

Boundary Preserving Mask R-CNN [18], proposed as an improvement over Mask R-CNN, focuses
on improving the mask boundary along with the task of pixel wise segmentation. To this end, it contains
a boundary mask head wherein the mask and boundary are mutually learned by employing feature fusion
blocks.

CondInst [87] is a simple and effective instance segmentation framework which eliminates the need
for resizing and RoI-based feature alignment operation present in Mask R-CNN. Also, the filters in
CondInst Mask Head are dynamically produced and conditioned on the region instances which enables
efficient inference.

In recent years, a number of instance segmentation methods have been proposed as an alternative
to Mask R-CNN’s proposal-based approach. As a representative example, we use PointRend [45] -
a proposal-free approach. PointRend considers image segmentation as a rendering problem. Instead
of predicting labels for each image pixel, PointRend identifies a subset of salient points and extracts
features corresponding to these points. It maps these salient point features to the final segmentation
label map.

5.3.2 Evaluation Setup

We partition Indiscapes2 dataset into training, validation and test sets (see Table 3.4) for training and
evaluation of all models, including PALMIRA. Following standard protocols, we utilize the validation set
to determine the best model hyperparameters. For the final evaluation, we merge training and validation
set and re-train following the validation-based hyperparameters. A one-time evaluation of the model is
performed on the test set.
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Table 5.1: Document-level scores summarized at collection level for various performance measures.

Collection name # of test images HD ↓ HD95 ↓ Avg. HD ↓ IoU ↑ AP ↑ AP50 ↑ AP75 ↑

PIH 94 66.23 46.51 11.16 76.78 37.57 59.68 37.63

BHOOMI 96 220.38 175.52 46.75 69.83 30.40 50.53 29.03

ASR 14 629.30 562.19 169.03 67.80 51.02 73.09 64.27

JAIN 54 215.14 159.88 38.91 76.59 48.25 70.15 50.34

OVERALL 258 184.50 145.27 38.24 73.67 42.44 69.57 42.93

5.3.3 Evaluation Measures

Intersection-over-Union (IoU) and Average Precision (AP) are two commonly used evaluation mea-
sures for instance segmentation. IoU and AP are area-centric measures which depend on intersec-
tion area between ground-truth and predicted masks. To complement these metrics, we also compute
boundary-centric measures. Specifically, we use Hausdorff distance (HD) [46] as a measure of bound-
ary precision. For a given region, let us denote the ground-truth annotation polygon by a 2D point set
X . Let the prediction counterpart be Y . The Hausdorff Distance between these point sets is given by:

HD = dH(X ,Y) = max

{
max
x∈X

min
y∈Y

d(x, y),max
y∈Y

min
x∈X

d(x, y)

}
(5.4)

where d(x, y) denotes the Euclidean distance between points x ∈ X , y ∈ Y . The Hausdorff Distance
is sensitive to outliers. To mitigate this effect, the Average Hausdorff Distance is used which measures
deviation in terms of a symmetric average across point-pair distances:

Avg. HD = dAH(X ,Y) =

 1

|X |
∑
x∈X

min
y∈Y

d(x, y) +
1

|Y|
∑
y∈Y

min
x∈X

d(x, y)

 /2 (5.5)

Note that the two sets may contain unequal number of points (|X |, |Y|). Additionally, we also compute
the 95th percentile of Hausdorff Distance (HD95) to suppress the effect of outlier distances.

For each region in the test set documents, we compute HD, HD95, IoU, AP at IoU thresholds of 50
(AP50) and 75 (AP75). We also compute overall AP by averaging the AP values at various threshold
values ranging from 0.5 to 0.95 in steps of 0.05. We evaluate performance at two levels - document-
level and region-level. For a reference measure (e.g. HD), we average its values across all regions of a
document. The resulting numbers are averaged across all the test documents to obtain document-level
score. To obtain region-level scores, the measure values are averaged across all instances which share
the same region label. We use document-level scores to compare the overall performance of models. To
examine the performance of our model for various region categories, we use region-level scores.
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Table 5.2: PALMIRA’s overall and region-wise scores for various performance measures. The HD-based

measures (smaller the better) are separated from the usual measures (IoU, AP etc.) by a separator line.

Character Character Hole Hole Page Library Decorator/ Physical Boundary

Metric Overall Line Segment Component (Virtual) (Physical) Boundary Marker Picture Degradation Line

(CLS) (CC) (Hv) (Hp) (PB) (LM) (D/P) (PD) (BL)

HD95 171.44 34.03 347.94 70.79 88.33 52.01 289.81 593.99 851.02 111.97

AVG HD 45.88 8.43 103.98 18.80 16.82 13.19 73.23 135.46 255.86 17.95

IOU (%) 72.21 78.01 54.95 74.85 77.21 92.97 67.24 50.57 27.68 61.54

AP 42.44 58.64 28.76 45.57 56.13 90.08 27.75 32.20 03.09 39.72

AP50 69.57 92.73 64.55 81.20 90.53 93.99 55.18 54.23 12.47 81.24

AP75 42.93 92.74 64.55 81.20 90.52 93.99 55.18 54.24 12.47 81.24

Table 5.3: Document-level scores for various performance measures. The baseline models are above

the upper separator line while ablative variants are below the line. PALMIRA’s results are at the table

bottom.

Model Add-On HD ↓ HD95 ↓ Avg. HD ↓ IoU ↑ AP ↑ AP50 ↑ AP75 ↑

PointRend [45] - 252.16 211.10 56.51 69.63 41.51 66.49 43.49

CondInst [87] - 267.73 215.33 54.92 69.49 42.39 62.18 43.03

Boundary Preserving MaskRCNN [18] - 261.54 218.42 54.77 69.99 42.65 68.23 44.92

Vanilla MaskRCNN [65] - 270.52 228.19 56.11 68.97 41.46 68.63 34.75

Vanilla MaskRCNN Deformable Convolutions 229.50 202.37 51.04 65.61 41.65 65.97 44.90

Vanilla MaskRCNN Deformable Grid Mask Head 179.84 153.77 45.09 71.65 42.35 69.49 43.16

PALMIRA : Vanilla MaskRCNN Deformable Conv., Deformable Grid Mask Head 184.50 145.27 38.24 73.67 42.44 69.57 42.93

To understand the results at collection level, we summarize the document-level scores of PALMIRA

in Table 5.1. While the results across collections are mostly consistent with overall average, the scores
for ASR are suboptimal. This is due to the unsually closely spaced lines and the level of degradation
encountered for these documents. It is easy to see that reporting scores in this manner is useful for
identifying collections to focus on,for improvement in future.

5.4 Results

The performance scores for our approach (PALMIRA) and baseline models can be viewed in Ta-
ble 5.3. Our approach clearly outperforms the baselines across the reported measures. Note that the
improvement is especially apparent for the boundary-centric measures (HD, HD95, Avg. HD). As an
ablation study, we also evaluated variants of PALMIRA wherein the introduced modifications were re-
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Figure 5.3: A comparative illustration of region-level performance. PALMIRA’s predictions are in red.

Predictions from the best model among baselines (Boundary-Preserving Mask-RCNN) are in green.

Ground-truth boundary is depicted in white.

moved separately. The corresponding results in Table 5.3 demonstrate the collective importance of our
novel modifications over the Vanilla Mask-RCNN model.

We also report the performance measures for PALMIRA, but now at a per-region level, in Table 5.2.
In terms of the boundary-centric measures (HD95, Avg. HD), the best performance is seen for the most
important and dominant region category - Character Line Segment. The seemingly large scores for
some categories (‘Picture/Decorator’, ‘Physical Degradation’) are due to the drastically small number
of region instances for these categories. Note that the scores for other categories are reasonably good in
terms of boundary-centric measures as well as the regular ones (IoU, AP).

A qualitative perspective on the results can be obtained from Figure 5.4. Despite the challenges in
the dataset, the results show that PALMIRA outputs good quality region predictions across a variety of
document types. A comparative illustration of region-level performance can be viewed in Figure 5.3.
In general, it can be seen that PALMIRA’s predictions are closer to ground-truth. Figure 5.5 shows
PALMIRA’s output for sample South-East Asian, Arabic and Hebrew historical manuscripts. It is im-
portant to note that the languages and aspect ratio (portrait) of these documents is starkly different from
the typical landscape-like aspect ratio of manuscripts used for training our model. Clearly, the results
demonstrate that PALMIRA readily generalizes to out of dataset manuscripts without requiring additional
training.
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Figure 5.5: Layout predictions by PALMIRA on out-of-dataset handwritten manuscripts.
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Chapter 6

Deep Networks for Multi-Manuscript Document Image Segmentation

As we realize the fact that digitizing via scanning the physical artifact often forms the first pri-
mary step in preserving historical handwritten manuscripts, multiple manuscripts are usually scanned
together into a single image to maximally utilize scanner surface area and minimize manual labor.
Hence, ensuring that each individual manuscript within a scanned image can be isolated (segmented) on
a per-instance basis is the first crucial step towards understanding the content of a manuscript.

Existing deep network based approaches for manuscript layout understanding implicitly assume a
single or two manuscripts per image. Since this assumption may be routinely violated, there is a need
for a precursor system which extracts individual manuscripts before downstream processing. Therefore,
We conduct experiments using modified versions of existing document instance segmentation frame-
works. Our new networks can segment a document image containing multiple possibly overlapping
manuscripts into individual instances. Our experiments and results (Section 6.3) demonstrate the bene-
fit of employing our approach as the first step in processing digitized handwritten manuscript collections
for the task.

The problem of document image layout analysis is a popular area [13, 20–22, 55, 78]. In particular,
the problem of understanding the structural and semantic content of historical manuscripts is being pur-
sued with works on topics such as layout parsing and text recognition [43, 65, 79, 82, 90, 97]. Semantic
segmentation of documents into constituent regions is an active research area. Some works focus on lay-
out parsing of entire image [13, 20–22, 55, 78]. Specifically for historical documents, layout analysis of
challenging complex Arabic Handwritten Manuscripts utilising characteristics derived from connected
components and Siamese network was done by Bukhari et al. [15] and Alaasam et al. [9]. Monnier et
al. [59] also present an off the shelf historical document extractor for extracting visual elements.

Other works focus on segmenting a single category such as tables or images. Michele et al. [10]
utilize deep-learning based pre-classification and segmentation algorithms to extract text lines from
medieval manuscripts. Madhav et al. [7] introduce an end-to-end trainable network using deformable
convolutions in their dual backbone to identify tables in documents. Renton et al. [70] propose a learning
based method using fully convolutional network to detect handwritten text lines.
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In existing approaches, the problem is cast as semantic segmentation. We cast our manuscript page
segmentation as a semantic instance segmentation problem. This enables us to effectively tackle poten-
tial overlap between manuscript pages and isolate individual page instances.

In recent times, state of the art approaches have been proposed for segmenting manuscripts [65, 78].
However, these approaches focus on segmenting individual regions within manuscripts such as lines,
pictures, binding holes. Although the approaches provide page boundary segmentation, they implicitly
assume that the input image contain at most two well separated manuscripts. Therefore, in practice,
such approaches do not perform well on the task of segmenting individual manuscripts.

Now, we first briefly summarize existing architectures for document region instance segmentation.
As we shall demonstrate experimentally later, these approaches are too specialized for within document
region instance segmentation and perform poorly for our task, i.e. page instance segmentation. There-
fore, we propose modifications to the existing architectures in terms of task setup and architectural
components which lead to good performance.

6.1 Vanilla Mask R-CNN

The work of Prusty et al. [65] was the first approach employing a custom modified Mask R-CNN [36]
architecture to segment individual region instances (e.g. line segments, pictures) in a handwritten
manuscript. Mask R-CNN [36] is a three-stage deep network developed to tackle the problem of image
instance segmentation for photographic scenes. The three stages include Backbone, Region Proposal
Network (RPN), and Multi-branch Networks, which in turn comprise of a Region of Interest (ROI) clas-
sifier, Bounding Box regressor and Mask predictor. Prusty et al. [65] modified these stages for better
adaptation to regions within manuscript images.

6.2 Palmira

Prusty et al.’s [65] approach uses rigid axis-oriented receptive fields which are not suited to tackle
deformations and alignment issues in manuscripts. More recently, Sharan et al. presented an improved
version of the earlier approach via an architecture called Palmira [78] which handles region deforma-
tions better. For better understanding, we next describe two key architectural components introduced in
Palmira.

6.2.1 Modification #1: Deformable Convolutions in the Backbone

Deformable convolutions [26] are a better replacement to traditional convolutions because of the
latter’s limitations in modeling geometric tranformations. This is due to fixed and rigid geometric struc-
tures in traditional convolution. The main idea behind using deformable convolutions is to introduce
additional offsets to the regular grid spatial sampling locations in the standard convolution and learn
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Figure 6.1: Architectural diagram of modified Palmira network for multi-page instance segmentation.

Refer to Section 5.2.

these offsets from the target tasks without any extra supervision. Additional convolutional layers are
used to learn the offsets from the previous feature maps (see Figure 6.2a). Suppose a 2D input fea-
ture map is denoted as x and a weight filter operating on the feature map be w. Let the convolution
grid on the feature map be denoted R. Assuming the traditional convolution operates on the regular
grid R with N locations, the deformable convolution operates on the same grid with additional offsets
{∆pn|n = 1..N}. This encourages capture of deformations in the images. For a sample grid R with 3

x 3 kernel, we have:

R =


(−1,−1) (−1, 0) (−1, 1)

(0,−1) (0, 0) (0, 1)

(1,−1) (1, 0) (1, 1)

 (6.1)

The output of the regular convolution is given as:

y(p0) =
∑
pn∈R

w(pn) · x(p0 + pn) (6.2)

where y at p0 corresponds to convolutional output at each point. The corresponding deformable
convolution variant is given by:

y(p0) =
∑
pn∈R

w(pn) · x(p0 + pn +∆pn) (6.3)

Typically, the offsets ∆pn are fractional. Therefore, bilinear interpolation is employed to get feature
values at the desired locations.

6.2.2 Modification #2: Deforming the Spatial Grid in Mask Branch

Since it is crucial to capture the boundary deformation, i.e. at the output mask end, the deformable
grid setup is used in the Mask prediction. In the baseline setup, the mask branch processes the input
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(a) Deformable convolution showing learnt offsets

and comparison with regular convolution.
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(b) Deformable Spatial Grid Mask Branch

Figure 6.2: Modifications included as part of Palmira framework.

feature map corresponding to each instance obtained from the ROI-Align module and produces cor-
responding predictions in the form of a binary map. This resulting 28 × 28 region mask output is
upsampled to the actual image size. Up sampling with respect to a uniform (integer) grid leads to poor
predictions using regular convolution operations. Therefore, we adopt deformable grid processing for
increased accuracy in predicting region boundaries.

The first step in deformable grid processing is to create a grid of 2D triangles whose vertices are
present at regular spatial grid’s 2D locations. A neural network module [30] then learns to predict
location offsets of the triangle vertices such that the edges and vertices of the deformed grid align with
image boundaries. Please view Figure 6.2b and refer to the work of Dai et al. [30] for details.

6.2.3 Our Architectural and Optimization Modifications

In our setting, we consider the task as segmenting individual manuscript instances. For this purpose,
we propose three architectural configurations.

Model AP↑ HD↓ HD95↓ Avg HD↓ IOU↑ Accuracy↑

FT-Palmira-AS 83.30 163.73 87.84 18.38 91.24 95.29

FT-Palmira 80.73 187.03 103.58 21.60 90.77 94.30

FT-Vanilla Mask R-CNN 82.20 210.40 111.56 21.00 87.34 93.48

Vanilla Mask R-CNN 30.59 620.17 546.77 208.61 75.28 77.31

Palmira 8.63 629.39 552.70 211.76 73.02 76.80

Table 6.1: Quantitative results of our newly proposed and other baseline models on IMMI (Section 5.3).

↑ indicates larger is better, ↓ indicates smaller is better.
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6.2.4 FT-Vanilla-MRCNN

In this configuration, the starting point is the architecture of Vanilla Mask R-CNN of Prusty et
al. [65]. We initialize this architecture with pre-trained MS-COCO weights [52] within the backbone
component. We modify the region classifier branch to predict a single class. Although predicting a sin-
gle class seems redundant, this design choice ensures that we can use the thresholded prediction score
as an effective strategy for eliminating low-quality predictions in practice.

6.2.5 FT-Palmira

For this configuration, we follow a procedure similar to that followed for FT-Vanilla-MRCNN (i.e.
initialization with pre-trained MS-COCO weights, single class region classifier branch), but apply these
modifications to the more recent Palmira architecture – see Figure 6.1.

6.2.6 FT-Palmira-AS

This configuration is the same as FT-Palmira mentioned above. However, the aspect ratios and
sizes of the anchor boxes in the Region Proposal Network (RPN) stage are customised keeping in mind
the typical aspect ratios of manuscripts within document images of IMMI dataset. Specifically, we use
aspect ratios of 1, 3, 10 and sizes [64, 128, 256, 512, 1024] to generate anchors that can accommodate the
range of manuscript dimensions. Given the relatively smaller instance count of manuscripts (compared
to region instances for which Palmira was originally trained), the number of proposals generated by
RPN is reduced to 512. In addition, modifications included changing the network hyperparameters such
as increasing the weight of the mask prediction loss in the final loss formulation and introducing focal
loss [53].

6.3 Results

Table 6.1 contains performance of various models on our IMMI dataset in terms of IOU, Accuracy,
AP, HD and its variants. The baselines (models optimized for manuscript region instance segmenta-
tion) – Palmira [78] and Vanilla Mask R-CNN [65] – were trained on images with not more than two
manuscripts per image. Clearly, they perform very poorly at segmenting manuscript boundaries in
IMMI where the number of manuscripts per image can be much greater. This is also evident from the
qualitative results in Figure 6.4. The benefits of fine-tuning the baseline models on IMMI dataset is
also evident from Table 6.1. The substantial improvement is very obvious in all the metrics reported.
The slight but useful improvement in performance when the baseline hyperparameters and architectural
components are customized for manuscript aspect ratios (FT-Palmira-AS) is also visible. The qualitative
results from Figure 6.3 also highlight the effectiveness of proposed networks for challenging settings
such as contiguous or overlapping images and deformations.
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Figure 6.3: Test set images superimposed with ground truth and our prediction output represented by

dotted and solid lines respectively. Please zoom in for better detail.

Figure 6.4: Qualitative results of pretrained models. Note that these are models trained for manuscript

region instance segmentation. The inability of these models to handle multiple manuscripts is evident.
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In addition to the above, Average HD and Average IOU are evaluated based on the number of
manuscripts per image. The metrics corresponding to the images containing same number of manuscripts
are averaged and reported in Figures 6.5 6.6 for all the fine-tuned models. FT-Palmira-AS dominates the
other two models in terms of Average IoU for all the cases. Although relative performance of the models
can be seen in the Average IOU plot (Figure 6.6), the differences are not very evident. In contrast, the
Average HD plot (Figure 6.5) clearly depicts the relative differences, especially the large difference in
performance for the most extreme case (18 manuscripts per document). More broadly, the results high-
light the necessity of analyzing relative performance using multiple metrics. From the graphs shown in
Figures 6.5,6.6, FT-Palmira-AS can be seen to obtain best results on average. Although the models were
exposed to images containing not more than 10 manuscripts,they generalize so well that they predict
instances even on the images containing 18 manuscripts.Qualitative results regarding the same can be
seen in 6.3. The importance of specialized subcomponents designed to handle image deformations (de-
formable convolutions and deformable grid processing in mask branch) can also be seen by comparing
the performance of Palmira variants (which contain these subcomponents) and Vanilla Mask R-CNN
(see Table 6.1).
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Chapter 7

Conclusions and Future Directions

This thesis primarily focuses on identifying the limitations and attempting to propose solutions in
automatically deciphering the content from historical document images. Firstly, we started out by intro-
ducing Indiscapes,the first ever dataset with layout annotations for historical Indic manuscripts with the
intent of expanding it later in terms of diversity such as layout, script and language. Alongside,we also
adapted a deep-network based instance segmentation framework (Mask R-CNN) custom modified for
fully automatic layout parsing. We achieved decent results using this model but it failed to generalise in
few of the cases as it was limited to documents from only 2 sources and few challenges.

However, in a later stage, we expanded the dataset as intended before to Indiscapes2 (Sec. 3.2.1) by
enhancing the size, diversity and robustness. Furthermore, we developed a novel deep learning based
framework for fully automatic region-level instance segmentation of handwritten documents contain-
ing dense and uneven layouts, called Palm leaf Manuscript Region Annotator or PALMIRA in short
(Sec. 5.2). Our experiments were able to demonstrate that Palmira performs qualitatively and quanti-
tatively better than the earlier methods, strong baselines, and their ablative versions (Sec. 6.3). As part
of our evaluation strategy for characterising the performance of document region boundary prediction,
we also proposed boundary-aware measures such as Hausdorff distance and its variants in addition to
the traditional area-centric measures such as Intersection-over-Union (IoU) and mean Average Precision
(AP). We also demonstrated PALMIRA’s out-of-dataset generalization ability via predictions on South-
East Asian, Arabic and Hebrew manuscripts. Consequently, we discovered another challenge where
multiple manuscripts are scanned together into a single scanned image for variety of reasons during
the digitization process. However, our current models can handle one or two manuscripts per image.
We thereby introduced IMMI (Indic Multi Manuscript Images), an annotated dataset with variability in
per-image manuscript count, to compensate for the shortage of datasets in this field.We also proposed a
synthetic data generation procedure and used the resultant data to make up for the imbalance and data
deficit caused by the real-world distribution of multi-page document images. Finally,we also incorpo-
rated deep networks to handle semantic region deformations for instance segmentation of document
images. Despite overlap and variation in the number of manuscripts per image, our experimental results
showed the efficacy of the proposed deep networks for the task of manuscript instance segmentation.
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Figure 7.1: Images containing more challenges such as vertical text,more dense text lines and ta-

bles/Grids

Overall, our contributions made it possible to reliably recover individual historical manuscript pages
for subsequent processing and tasks such as region-level instance segmentation and optical character
recognition.

Moving forward, there are numerous significant challenges in this area. Future research could go
into any of three directions.

1. Historical Indic manuscripts pose an ample assortment of challenges. There are still a great deal
of layout elements such as tables or grid such as elements, oriented text, mixed graphic,(refer
fig 7.1) that haven’t been addressed or touched in terms of data till now. The datasets can be
made even more robust and generic by adding more diversity in terms of size, layout, script and
language

2. As we continue to believe that our contributions so far are good enough to aid in advancing robust
layout estimates for handwritten documents, it can be planned to add downstream processing
modules such as OCR for an end-to-end optimization.

3. Although we have good layout segmentation results, there is always room to improve the perfor-
mance using new methodologies and challenges.
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