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Abstract

Autonomous driving requires accurate reasoning of the location of objects from raw sensor data.
Recent end-to-end learning methods go from raw sensor data to a trajectory output via Bird’s Eye View
(BEV) segmentation as an interpretable intermediate representation. Motion planning over cost maps
generated via Birds Eye View (BEV) segmentation has emerged as a prominent approach in autonomous
driving.

However, current approaches have two critical gaps. First, the optimization process is simplistic and
involves just evaluating a fixed set of trajectories over the cost map, which are not adapted based on
their associated cost values. Second, the existing cost maps do not account for the uncertainty arising
from noise in RGB images, BEV annotations. As a result, these approaches can struggle in challenging
scenarios where there is abrupt cut-in, stopping, overtaking, and merging from neighboring vehicles.

In this thesis, we propose UAP-BEV, a novel approach that models the noise in Spatio-Temporal
BEV predictions to create uncertainty-aware occupancy grid maps. Using queries of the distance to the
closest occupied cell, we obtain a sample estimate of the collision probability of the ego-vehicle. Subse-
quently, our approach uses gradient-free sampling-based optimization to compute low-cost trajectories
over the cost map. Notably, the sampling distribution is adapted based on the optimal cost values of
the sampled trajectories. By explicitly modeling probabilistic collision avoidance in the BEV space,
our approach can outperform the cost-map-based baselines in collision avoidance, route completion,
time to completion, and smoothness. To further validate our method, we also show results on the real-
world dataset NuScenes, where we report collision avoidance and smoothness improvements. It also
outperforms other uncertainty-based methods in conservatism.
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Chapter 1

Introduction

Autonomous Driving (AD) is becoming increasingly popular, and Artificial Intelligence (AI)-powered
perception systems are playing a key role in making it possible. These systems use Deep Learning (DL)
methods to identify objects and their properties in the environment around the vehicle, such as other
vehicles, pedestrians, cyclists, and traffic signs. This information is then used to make decisions about
how to safely navigate the vehicle. AI-powered perception systems are able to identify objects that are
difficult to identify with traditional computer vision techniques, and they can learn from large amounts
of data, which allows them to improve their performance over time.

In this chapter, we define a traditional engineering stack in the context of AD and compare with
End-to-End (E2E) learning approaches. Subsequently, we expand on Bird’s Eye View (BEV) represen-
tations which are popular in these E2E approaches. We then define how path planning is formulated
in the BEV-based methods and the challenges associated with them. We also give an overview of Un-
certainty estimation methods in DL techniques, and detail the sources uncertainty existent within BEV
representations. Towards the end, we list our contributions.

1.1 Autonomous Driving Approaches

A traditional engineering stack consists of: Perception, Prediction, and Planning. These approaches
picked up from the DARPA challenge, 2004. The pipeline works in a sequential fashion, with each
module providing input to the next. The first module, which receives sensory information, selects
relevant and physically interpretable information to pass on to the next module. This process continues
until the final module, which makes a decision based on the information it has received. Each of these
sub-tasks is solved sequentially. The subtasks are detailed -

• Perception handles detecting and tracking objects in the scene. The various objects include dy-
namic (vehicle, pedestrian) and static (lane, road) objects. Existing frameworks use perception
modalities like LiDAR [21], Images [9, 32, 16], RADAR [19] along with high-level information
such as HD-Maps, Target point. Detection involves getting an anchor head with offsets or an
instance segmentation and prediction map.

1



Maps

Sensors
Perception Prediction Planning Control

Detects (2D/3D) and 
Tracks objects in scene

Predicts Long Term 
Trajectories of all agents

Safe Trajectory to arrive 
at destination

Executes Steering, 
Acceleration commands

Figure 1.1 Traditional Autonomous Driving Stack: The sensors layer includes cameras, lidars, radars,
and other sensors that collect data about the environment around the vehicle. The perception layer uses
the data from the sensors to create a model of the environment around the vehicle. This model includes
information about the location, speed, and direction of other vehicles, pedestrians, and objects. The
planner layer uses the model of the environment to generate a plan for the vehicle to follow. This plan
includes information about the vehicle’s speed, acceleration, and steering. The control layer uses the
plan from the planning layer to control the vehicle’s actuators, such as the steering wheel, throttle, and
brakes.

• Prediction involves tracking the objects/agents over time and forecasting their locations in the
future. Most SOTA networks use recurrent temporal models to forecast the positions of other
agents into the future.

• Path Planning involves designing a set of constraints/costs and sampling a set of locations feasi-
ble to output a trajectory that best satisfies those constraints. The planning section is responsible
for collision avoidance. The final trajectory is fed into a PID controller, which outputs the control
inputs - steering angle, brake, and throttle. Here there is a big difference in how any approach
evaluates its results -

– Open-Loop or Offline Planning: The controller network predicts the trajectory but does not
move the car concerning the prediction. Instead, the Frames are recorded beforehand, and
the Ground Truth is available to us, which is the human driver’s trajectory.

– Closed-Loop or Online Planning: The agent moves with respect to the trajectory the model
provides, thus having the feedback provided back to the agent. It is a more robust test
of the approach, as it involves real-time computation, performance, and adaptation to new
scenarios.

Training for most SOTA methods (apart from reinforcement learning-based approaches. [31, 7] )
always happens in Open-loop. At test time, they are evaluated in a Closed Loop fashion by using
either a simulator [10] or testing on their own real-world setup.

The modular design of this system makes it easy to understand and interpret. Each module has a specific
purpose, and the output of each module is meaningful. This makes it easy for engineers to understand
how the system works and to troubleshoot problems. The modular design also makes it easy to incorpo-
rate prior knowledge into the system. For example, the rules of the road, human understanding of road
geometry, and agent dynamics can all be incorporated into the system. This makes the system more
robust and capable of handling a wider range of situations.
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1.2 End-to-End (E2E) Methods

Maps

Sensors
Perception Prediction Planning Control

Detects (2D/3D) and 
Tracks objects in scene

Predicts Long Term 
Trajectories of all agents

Safe Trajectory to arrive 
at destination

Executes Steering, 
Acceleration commands

End-to-End Trainable

Intermediate Representations that are Human-readable

Figure 1.2 End-to-End (E2E) Learning Based Stack: The tasks perception, prediction, and planning
are jointly learnt in an end-to-end fashion. This is generally accomplished using a Deep Neural Network
(DNN) with a suitable intermediate representation. All tasks have access to raw sensor data: which
lowers the cascading of errors. All tasks are aware of the end goal and have a shared computation. The
intermediate representations are human interpretable which makes them easier for crucial validation.
[36, 5]

The traditional approach relies on each module being able to handle a wide range of situations.
However, it is difficult to design modules that can handle all possible situations, especially rare or
unusual situations. This can lead to errors in one module cascading to other modules, which can cause
the system to fail. The traditional approach can also lead to decreased developer productivity, as each
new module or submodule requires the entire stack to be refined. This is because each module must be
integrated with the other modules, and this can be a time-consuming process.

To tackle this, there have been many data-driven efforts that have stemmed since 2018 to solve
for autonomously driving vehicles. The approach clubs various modules of the traditional autonomous
driving pipeline to generate a joint probabilistic inference module which is end to end trainable, with
intermediate interpretable latent representations. The end-to-end approaches learn intermediate latent
representations which are trained simultaneously with the backbone encoder. This helps with verifica-
tion, validation, sanity checks and testing.

In the next section, we describe the use of Bird’s Eye View (BEV) representations, along with the
challenges faced in using them.

1.3 Birds Eye View (BEV) Maps as Intermediate Representations

Birds Eye View (BEV) representations such as Occupancy Maps or Grids have become popular in
the context of Autonomous Driving [23, 15, 36, 16]. A BEV layout is a multi-channel occupancy-grid of
dimensions H ×W ×C, with H being the height, W being the width and C is the number of channels
(semantic classes) of the BEV. These layouts are ego-centric ie. ego-vehicles are located at position
(H/2,W/2) facing upwards.
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The task of BEV prediction lies in taking as input a sequence of past frames for P timesteps, and
predicting F steps into the future. There are many existing approaches, [15, 16] which predict BEVs into
the future for F timesteps. The popularity of BEV stems from its appearance-agnostic characteristics,
unlike direct monocular perceptual inputs. Moreover, BEV representations can effectively tap into the
vast legacy of planning frameworks tailored to leverage such representations. [27]

BEV layouts based on dense 3D LIDAR inputs are typically accurate and amenable to trajectory
forecasting or layout evolution - a vital cog for motion planning in dynamic on-road scenes [6, 36].
The same, however, cannot be said for BEV estimation and evolution based on monocular perceptual
inputs. Literature concerning the layout evolution of dynamic actors in a scene has been typically sparse
[16, 15]. Such layouts of dynamic agents in a scene tend to be noisy and unreliable, all the more so
when layout estimation and trajectory execution are interleaved in a closed-loop setting. Data-driven
BEV evolution estimation typically does not consider vehicle maneuvers such as overtaking or abrupt
lane changes during dataset collection. Consequently, when such maneuvers are executed, the layout
estimates become unreliable and noisy and are rendered ineffective for motion planners relying on such
estimates.

In the next section, we discuss the planning approach taken in these networks and describe the
planning costs used along with these BEV representations.

1.4 Planning in BEV representations

1.4.1 Obtaining Cost Maps/Volumes

End-to-end networks output a Cost Maps or Cost Volume, cBEV ∈ RH×W or RH×W×F . An addi-
tional prediction head is added to the network’s final layer and thereupon, a set of template trajectories
τ is used which are indexed into the cost map/volume.

Cost-map indexing:

cτi =
∑

xj ,yj∈τi

cBEV (xj , yj) (1.1)

Cost-Volume Indexing: Here xj , yj ∈ τi,

cτi =
∑
t∈F

cBEV (xj,t, yj,t, t) (1.2)

Note that there are no annotations present for the cost map/volume. Thus the network cannot be directly
trained to obtain the optimal trajectory. Here, there are 2 approaches -

• Using a Hard Max-Margin Loss: Adopted by Neural Motion Planner [36], this method involves
predicting a cost volume cBEV ∈ RH×W×F . Given the ground-truth trajectory τ̄ = {(x̄t, ȳt)}
for the next F timesteps, the objective is to minimize the costs obtained by indexing the ground
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truth trajectory in the cost volume while keeping the worst-performing trajectory in the template
set at higher costs.

L =
∑

(x̄t,ȳt)

(
max
τi∈τ

F∑
t=1

[
cBEV (τi)− cBEV (τ̄) + d(τi, τ̄)

]
+

)
(1.3)

Note that []+ is a Rectified Linear Unit (ReLU) function. The term d(τi, τ̄) calculates the distance
between the ground truth trajectory so that trajectories with higher distances have higher costs.

• Using a Soft Cross-Entropy Loss: Used by Lift-Splat-Shoot [23], this approach predicts a dis-
tribution over the set of template trajectories τ , instead of using the hard loss.

p(τ |Ot) =

exp

(
−
∑

xk,yk∈τi cBEV (xk, yk)

)
∑

τi∈τ exp

(
−
∑

xk,yk∈τi cBEV (xk, yk)

) (1.4)

From here on, a cross-entropy loss is used to train the network.

Figure 1.3 Lift-Splat-Shoot [23] Template Trajectories: These trajectories are used to ”shoot”
through the cost map obtained by the Neural Network. The optimal trajectory is fed into the controller.

1.4.2 Custom Costs

Instead of learning the Cost Map, many approaches design custom cost functions, to obtain a BEV
cost cBEV . They add the component of vehicle, road and lane geometry, along with lane rules into the
cost function, and are used in conjunction with the learned costs to rank the trajectory set.

1. Collision: Checks if the trajectories have any spatio-temporal overlap with predicted occupancies
of other agents.Is zero only if there is a safe margin around the obstacles.

5



Figure 1.4 Costs in BEV-based Planning: The different types of costs associated pertaining to BEV-
based planning in autonomous driving, adopted from [26]. These different costs are added together with
different weights to obtain the final cost.

2. Headway: Checks if there is sufficient headway so that when the ego-vehicle applies the brakes,
it is able to avoid collision and come to a stop. This is computed using the longitudinal distance
between the agent and the leading vehicle.

3. Path: Checks if the ego-vehicle adheres to the path (centerline). This cost is computed as the
lateral distance to the centerline of the lane.

4. Lane: Checks if the ego-vehicle does not violate lane boundaries. This is computed as the number
of times the ego-vehicle overrides the lane boundary prediction

5. Traffic Lights: Checks if the ego-vehicle follows the traffic light procedures. It also checks if the
ego-vehicle is within the speed limit and if any stop sign is violated.

6. Comfort: Checks if there is a jerk or rapid change in acceleration. Trajectories that are aggressive
or perform abrupt steering are discarded with the inclusion of this cost.

7. Route: Checks the number of lane changes required to reach the destination. The number of lane
changes that are above the optimal desired limit are penalized.

8. Progress: Checks if the trajectory is not moving too far from the desired route.

In the next chapter, we list some of the challenges of the existing BEV-based costs. We follow it up
with a discussion on uncertainty quantification techniques, and provide a complete picture with respect
to the existing approaches.
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1.4.3 Core Challenges with BEV-based planning

The core challenges associated with the existing BEV-based local trajectory planning can be sum-
marized as follows:

• The learnt cBEV obtained using large neural networks with complicated architectures [16, 23, 36],
makes it challenging to apply gradient-based optimization on the planning costs. Existing works
like [36] follow a gradient-free approach where trajectories are sampled from a distribution, and
then the cost (5.1a) is evaluated on them. The lowest cost trajectory is chosen as the optimal one.
This process represents a single iteration of a full-blown sampling-based optimizer like CEM [2]
or Model Predictive Path Integral [34]. Thus, existing works do not leverage the improvements
achieved by adapting the sampling distribution online.

• Existing work like [16, 23, 36] rely purely on cBEV to compute optimal driving behavior. How-
ever, the existing cBEV is oblivious to the underlying uncertainty stemming from noisy sensors.
We show in later chapters that such inadequacy reduces their performance in a closed-loop setting.

In the next section, we discuss on uncertainty – quantification techniques in deep networks. We
provide an overview on the possible sources of uncertainty in E2E approaches in Autonomous Driving
and the type that we are resolving.

1.5 Uncertainty: An Overview

Uncertainty quantification is essential in computer vision applications, especially in safety-critical
applications like autonomous driving, aerial mobility, and indoor navigation. As more and more ap-
proaches adopt deep learning, it becomes necessary to quantify the uncertainty present in these models
and tackle them. For many of these approaches, calibration becomes a crucial component alongside
their performance in their field.

This section details the different uncertainty quantification techniques applied to semantic segmen-
tation and object detection. It then reasons the sources of uncertainty that can occur in monocular BEV
representations as well as causes. Then, we detail some existing approaches to deal with uncertainty in
BEV representations.

1.5.1 Introduction

Uncertainty estimation in Deep Learning approaches is broadly divided into 2 types - Regression
(Depth/Object Detection) and Classification (Semantic Segmentation). Most modern approaches [15,
17] use Bayesian Neural Networks [17] to estimate the uncertainty. These networks are fitted to predict
the posterior over the output instead of a single estimate. Within this paradigm, there exist 2 main types
of uncertainty -

7



• Aleatoric Uncertainty: This is also called data/statistical uncertainty - and refers to the true noise
present already in the data samples. This is generally caused by noisy inputs - the noise can be
from sensors, or tracking noise. This type of uncertainty comes with the data, and cannot be
thrown away with more data.

• Epistemic Uncertainty Also called model/systematic uncertainty, this accounts for uncertainty in
model parameters. This can be reduced by incorporating more training data into the process. This
can also occur if the model weights are not optimized correctly.

The above 2 terms combined are termed as predictive uncertainty. Earlier works [17] have tried to reason
about the aleatoric uncertainty by corrupting their logits with Monte-Carlo Sampling and attenuating
their loss (which is cross entropy for classification tasks). Given a set of model weights W and the
neural network predicts a set of unaries fi per pixel i, which is corrupted with the per-pixel variance
predicted by the network σi.

x̂i,t = fWi + σwi εt, εt ∼ N (0, I) (1.5)

The corrupted vector is then squished with Monte Carlo sampling. Assume T samples, the loss function
becomes -

Lx =
∑
i

log
1

T

∑
t

exp

(
x̂i,t,c − log

∑
c′

exp x̂i,t,c′

)
(1.6)

They combine the above with epistemic uncertainty estimation by placing a distribution over the neural
network weights W . The Neural Network then becomes a Bayesian Neural Network.

1.5.2 Confidence Calibration

Confidence calibration is defined as the ability of some model to provide an accurate probability
of correctness for any of its predictions. Any deep learning model is set to be well-calibrated if the
confidence associated with its prediction matches the probability of the event happening. In other words,
if a neural network predicts that tomorrow there is a chance of rain with a confidence of 0.2, this
prediction should have a 20% chance of being correct if the neural network is appropriately calibrated.
Most modern neural networks are uncalibrated [12]. Calculating the Expected Calibration Error (ECE)
is a suitable method of measuring calibration. For a set of bins Bn, it can be calculated as

ECE =

N∑
n=1

1

n

∣∣∣∣∣ ∑
i∈Bn

(
I(ŷi == yi)− p̂i

)∣∣∣∣∣ (1.7)

Here I is the indicator function denoting accuracy.
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Figure 1.5 Sources of Uncertainty: A visualization of the uncertainty present due to Noisy BEV
Annotations and RGB Sensor inputs. The error in BEV annotations at displayed at 2 resolutions - 0.2m
and 0.5m.

1.5.3 Sources of Uncertainty in Monocular Representations

Monocular images are susceptible to noise and small changes in intensity, especially in a closed-loop
setting. Figure 1.5 denotes common sources of uncertainty present. Any voxel-based compression is
noisy due to the inherent loss of data. This is effectively demonstrated in the figure, where we notice
more white areas of uncertainty at higher resolution (0.5m). Significant noise is present in the RGB
images, which causes the performance to degrade. Due to the above causes of uncertainty, we are
motivated to assume that the underlying uncertainty distribution is non-parametric.

Figure 1.6 Mapping to RKHS: The similarity between any 2 distributions w1 and w2 can be expressed
by transporting them into another space (RKHS), and computing the distance there: ||µPf

(u) − µdesPf
||.

The non-parametric assumption allows us to perform this transformation.

1.5.4 Non-parametric Assumption

We sample from the error distribution, which is non-parametric in nature and transform the samples
into another space (the Reproducing Kernel Hilbert Spaces) and compute the error. Thereupon, we
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compute the Maximum Mean Deviation, which represents the distance between observed and desired
distributions.

1.6 Contributions

We propose UAP-BEV, a novel Uncertainty Aware Planning in the BEV space that can handle non-
parametric noise inherent to data-driven BEV estimation of dynamic actors in a scene. Our algorithm in
itself consists of two parts. In the first part, we sample the BEV representations derived from monocular
cameras and obtain an uncertainty-aware estimate of the distance to the closest obstacle. The closest-
distance estimate is then subsequently mapped to the probability of collision between the ego and the
neighboring vehicles using the concept of distribution embedding in Reproducing Kernel Hilbert Space
(RKHS). In the second part, we use a custom sampling-based optimization to compute trajectories
that minimize collision avoidance probability while producing smooth trajectories. Our optimizer’s
novelty stems from using a projection operation that pushes the sampled trajectories toward constraint
satisfaction before evaluating their costs. The constraints stem from the velocity, acceleration bounds,
and barrier functions [35] accounting for lane adherence and distance-keeping with the leading vehicles
based on the BEV predictions of the neighboring vehicles.

The main contributions of this thesis are as follows -

1. We propose for the first time in literature to the best of our knowledge, an Uncertainty Aug-
mentation pipeline for noisy BEV layouts obtained through data-driven methods with monocular
perceptual inputs.

2. Our approach includes a novel sampling-based optimizer that can efficiently minimize the BEV-
derived costs. We show significant performance enhancements in a diverse set of metrics over
SOTA prior methods [23],[16] that do not consider BEV noise in simulation experiments con-
ducted on a number of CARLA towns over a diverse set of trajectory metrics. We also show
through ablations the role of barrier functions, that when utilized along with the collision proba-
bility estimates reduce collision rates to zero despite noisy BEV estimates.

Uncertainty Augmentation Sampling based Optimizer TrajectoryInput

Figure 1.7 Flow Chart: The chart gives an overview of our approach. Uncertainty augmentation is
detailed at chapter 4, whereas our Sampling-based Optimizer is detailed at chapter 5. Experiments and
Results are discussed at Chapter 6.
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1.7 Thesis Organization

The remaining parts of this thesis are organized as follows. Chapter 2 briefly describes related work
for our problem setting. Chapter 3 sets up the background for using BEV representations. Chapter 4
details the process of augmenting uncertainty in BEV representations. Chapter 5 will follow with the
description of the Sampling-based optimizer. Chapter 6 will contain the experiments performed and
subsequent results obtained. Chapter 7 will contain the conclusive remarks and associated publications
regarding this thesis.
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Chapter 2

Related Work

2.1 End-to-End (E2E) Learning Based Approaches

From a modular architecture comprising of a cascade of task-specific blocks (sensor fusion, percep-
tion, planning, and control), the autonomous driving stack has evolved to an E2E system [9, 23, 16, 5,
26, 36] that learns to generate driving behaviors from sensor inputs like LiDARs and cameras.

Works like [5, 26, 36] take in voxelized LiDAR point cloud as input and use 3D object detection [36]
or semantic BEV generation [26, 5] as auxiliary tasks. Learning pipelines proposed in [9, 23, 16] take in
surrounding monocular images as input to reason about the semantic BEV representation. Approaches
like [5, 26, 36, 23, 16] model driving behavior by using classification loss or max-margin loss on a set of
template trajectories (usually from recorded driving behaviors), where learned imitation behavior closest
to the ground truth trajectory is encouraged. [9] predicts an offset vector towards a target waypoint
which is converted to motion commands by the lower-level controllers. In [8], the authors train an
expert agent on the environment’s state, which is then used in imitation learning to train for driving
given vision sensor inputs. However, such E2E methods do not account explicitly for uncertainty in
their BEV outputs that can result in suboptimal performance of their planner under the duress of such
noise, as shown in Chapter 7.

2.2 Uncertainty In Bird’s Eye View Representations

There can be multiple sources of aleatoric uncertainty in BEV tasks, such as the noise in BEV
annotations, intrinsic, extrinsic, and input RGB. Existing methods like FIERY[15] use a Bayesian Neural
Network, similar to [17], to estimate the uncertainty associated. However, these approaches suffer from
calibration errors. Also, it is unclear if the uncertainties present in sensor inputs (RGB Cameras, GPS)
are translated well into BEV space. This approach also suffers from the problem of noisy annotations in
BEV space. Approaches like [17, 16, 15, 18] have aimed at quantifying uncertainties in perspective tasks
like depth regression[18, 17], per-pixel semantic segmentation[18, 17]. In BEV space, few ([16, 15])
have addressed the issue of noise. The authors of [16, 15] quantify uncertainty by weighing each task’s
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loss by its homoscedastic uncertainty, taking inspiration from multi-task setting in [18]. However, it
is unclear if the aleatoric uncertainty present in the RGB space can translate well into the BEV space.
Further, it is unclear if [18] can manage the noisy annotations in the BEV space. The authors of [20] fit
a 2D Gaussian to every object cluster. However, this approach leads to conservatism in driving behavior.

While parameterizing the future distribution of agents in BEV, in [15], the authors of Calibrated
Perception Uncertainty [20] fit Gaussian Mixture Models to the entropy of the prediction, visualized in
2.1. In [16], the authors model the future distribution as either a Bernoulli or Gaussian distribution.

Figure 2.1 ST-P3 Gaussian: Calibrated Perception Uncertainty [20] fits a 2D Gaussian Mixture Model
(GMM) to the entropy of the associated prediction. The concentric lines denote the 2D Gaussian ellipses
fitted onto the entropy of the model.

Based on the detected objects, they formulate presence, location, shape, trajectory, and undetected-
object-ahead uncertainty. They also calibrate their uncertainty and report the confidence calibration
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curve. However, they have not associated planning with the above uncertainties, and it is unclear how
an end-to-end system may utilize their approach for uncertainty-aware planning.

2.3 Non-parametric Uncertainty Estimation Methods

The above methods must perform more accurate uncertainty reasoning in the BEV and couple it
to a planner. Modeling the error in observations as a non-parametric distribution is a popular way
to deal with the uncertainty in the inputs and annotations and plan with it. Along this line, authors
of [14] have proposed Maximum Mean Discrepancy (MMD) in Reproducing Kernel Hilbert Spaces
(RKHS) to estimate collision probability conditioned on the sensor noise. Their gradient-free Cross
Entropy Minimization (CEM) and reduced set allowed them to achieve collision avoidance, smoothness,
and real-time performance improvements. [13] adopts the same approach on plane segmentation tasks
needed for quadrotor navigation in urban settings. Our work extends [14], [13] to dynamic and uncertain
autonomous driving settings where monocular RGB images are the primary sensing modality.

[14]/ [13] model uncertainty over Euclidean Signed Distance Field (ESDF)/Cuboid representations
derived from RGBD cameras in static voxel grids. In contrast, our approach models uncertainty over
BEV predictions using monocular RGB image inputs in challenging driving scenarios. It thus adapts
to dynamic actors and eliminates the need for depth cameras. Compared to [13], we rely on a single
distance-based estimate instead of complex four plane parameters to estimate the uncertainty. Moreover,
compared to [14, 13], we parallelize the cost evaluation, particularly the collision probability estimates,
over GPUs.

Both these approaches use a voxelized representation of the world, similar to our BEV setting, and
assume noisy perception. However, they do not place dynamic actors in their scenes and model un-
certainty only over static voxel grids. With our dynamic occupancy grid prediction module, we model
uncertainty into the future for our use case and show results in challenging scenarios.

In the next chapter, we give a background of Frenet frame planning and trajectory sampling and the
benefits of dense sampling with the existing sampling method.
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Chapter 3

Background

3.1 Problem Formulation

Assume the availability of monocular images Xn
k ∈ RH×W×3 from surround N camera setup of

the current timestep k0 for the previous P steps k ∈ {k0 − P, . . . k0} and a route R in the form of a
reference lane centerline, the task is to predict BEV representations Ok ∈ RH×W , F frames into the
future, k ∈ {k0, k1, . . . kF }, to translate them into a cost map cBEV and perform trajectory planning to
guide the ego-vehicle without collision along the centerline.

In this chapter, we describe our Frenet-frame planning formalization as well as existing trajectory
sampling techniques. We then compare them against our sampling techniques and draw conclusions.

3.2 Frenet Frame Trajectory Parametrization

Y

X

yub

YG

XG

ylb

(Global Frame)

Figure 3.1 Frenet-Frame Visualization: A representation of the Frenet frame (blue axes) with respect
to the road and global axes with the route (dotted blue), lane boundary (red), agent (blue), and other
agents (yellow) indications.
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As is typical of autonomous driving, trajectory planning happens in the road-aligned frame known
as the Frenet frame. This frame allows one to treat curved roads as one with straight-line geometry.
Additionally, the longitudinal and lateral motions of the vehicle will always be aligned with the X
and Y axes of the Frenet frame, respectively, simplifying the optimization framework. The x and y
trajectories of the ego-vehicle in the Frenet frame can be parametrized in the following form, where kn
represents the end step of the planning horizon. Note that the planning horizon need not be the same as
the prediction horizon of the BEV.

[
x[k0] . . . x[kn]

]T
= Wcx,

[
y[k0] . . . y[kn]

]T
= Wcy, (3.1)

Figure 3.2 Sampled Trajectories in the Frenet Frame: The trajectories are sampled first in the Carte-
sian frame, after which a Cartesian-to-Frenet transformation is applied to obtain the trajectory set in the
Frenet frame.

[a] [b]

Figure 3.3 Frenet Projected Samples in NuScenes and CARLA: Examples of projected frenet sam-
ples (orange) vs Clothoid samples (green) in (a) NuScenes and (b) CARLA
. Frenet samples are road-aligned and follow the lane geometry much better than the Clothoid samples.

3.3 Sampling Techniques

In this section, we describe the two main methods of sampling in current literature - Clothoid-based.
We then detail a comparison between the methods, and reason the usage of Frenet-frame sampling over
Clothoid-based Sampling.
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3.3.1 Clothoid-based Sampling

Clothoid curves [28] are popular family of curves used for planning. Used in Autonomous Driving
by [36, 6], the curve can be adjusted to the driving speed limit, curvature, and acceleration limits. The
curvature κ of a point on this curve is proportional to its distance c, along the curve.

3.3.2 Comparison with Frenet-based Sampling

In this section, we justify the usage of frenet frame sampling along with the removal of Gated Recur-
rent Unit (GRU) present in ST-P3. We shall use the term “Original” to represent the Clothoid samples
and “Dense” for denoting the frenet frame samples. The cost analysis of dense vs clothoidal trajectory
sets has been written in 3.1 visualized in 3.5.

Figure 3.4 L2 Norm Visualized: Visualized is the L2 norm between the sampled trajectories and the
observed ground truth at 1, 2, and 3 seconds along with the application of GRU is also tested.

No Sampling GRU Resolution (m) [for Dense] Safety Headway Lane Divider Rule Cost Volume Comfort

1 Clothoids 1.53 0.91 0 0.38 0 0.06
2 Dense 1 1.85 0.23 0.84 8.08 8.21 2.64
3 Dense 0.5 3.49 0.71 0.07 5.77 4.33 0.99
4 Clothoids X - 6.82 5.95 0 1.92 9.49 53.62
5 Dense X 1 9.74 5.12 0.45 11.15 7.69 55.63
6 Dense X 0.5 10.54 4.10 1.11 4.62 7.48 65.98
7 GT - - 11.32 1.55 0.52 13.85 0 9.79

Table 3.1 Cost Analysis for Clothoids and Dense Trajectories: Given is a cost breakdown for different
settings of dense trajectories, along with removal and addition of GRU. The addition of GRU can be
seen to improve the cost from the cost volume but degrades the comfort and safety costs, which are
critical for autonomous driving.

L2 norm has also been written in Fig. 3.2 and visualized in Table. 3.4.
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Figure 3.5 Cost Analysis Visualized for Clothoids and Dense Trajectories: Visualized is the cost
breakdown for different Clothoid and Dense trajectories settings before and after applying the GRU.
The addition of GRU is seen to improve the cost volume cost but degrades the comfort and safety cost,
which are critical for autonomous driving.

Inferences Drawn:

• Application of GRU for refinement improves the L2 score. This is evident in 3.2. However, it
creates a high jump in Safety, Headway, and especially Comfort Cost.

• This is attributed because these costs are computed for the optimal trajectory before GRU refine-
ment.

• One can see the dense samples achieve better scores in Comfort and Safety, They also achieve
very good L2 results at hyper-fine sampling.

No Sampling GRU Resolution (m)
[for Dense] @3s @2s @1s

1 Clothoids - 3.53 2.93 2.56
2 Dense 1 2.60 2.45 2.16
3 Dense 0.5 2.28 1.98 1.57
4 Clothoids X - 3.15 2.27 1.61
5 Dense X 1 2.32 1.87 1.24
6 Dense X 0.5 1.77 1.50 1.08

Table 3.2 L2 Norm Quantized: A detailed quantification is done for the L2 norm between the sampled
trajectories and the observed ground truth at 1, 2, and 3 seconds. The application of GRU is also tested.
Dense sampling is associated to be the best-performing trajectory, with the lowest L2 norm.
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In the next chapter, we will detail how to create uncertainty-aware occupancy grid maps and nominal
estimates of neighbouring vehicles’ trajectories from BEV. Subsequently, in the following chapter, we
present our cost functions and our core algorithmic results: our sampling-based optimization for local
trajectory planning. Note that we convert our trajectory ξ from the frenet to the ego-centric frame before
applying the cBEV as the BEVs are in the ego-centric frame.
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Chapter 4

Uncertainty-Aware BEV Representations

In this chapter, we first detail the process of generating BEV representations from a set of monocular-
view images. Thereupon, we elaborate on creating such uncertainty-aware BEV representations using
the closest-distance query. Finally, we detail our novel optimizer which uses a sampling algorithm to
return optimal trajectories with probabilistic collision avoidance.

4.1 Generating BEV Representations from Surround Monocular Images

4.1.1 Network Architecture

We adopt the backbone of ST-P3 [30] to extract BEV features from a sequence ofN surround camera
monocular images. Using the voxel pooling operation [23], we transform them into the Bird’s Eye View
space bi ∈ RC×H×W using intrinsic and extrinsic parameters. To generate a consistent representation
of the scene, we use ego-motion warping as proposed by [15] on past Bird’s Eye View features using
the inverse of ego-translation from xT to xT−k for k > 0 a timestep in the past.

The warped features are then passed into the Spatio-temporal module [15, 16] to enhance the tempo-
ral features Si ∈ RC×H×W . To obtain intermediate future representations, the Spatio-temporal features
are processed using a Convolutional Dual-GRU [16] in a seq-to-seq fashion, followed by a decoder.

4.1.2 Ensuring Temporal Consistency

During closed-loop evaluation, spatial and temporal consistency must be consistent across inferences
to achieve correct scene understanding, especially when adversaries move into locations or orientations
not abundant in the training data. We extrapolate position using a constant velocity model to resolve
the disappearance of predicted bounding boxes to ensure temporal consistency. To achieve this, we
first obtain instance centers Ci,t, and bounding box Bi,t of our blobs in the occupancy maps across
each inference at time step t. We track the instance centers across inferences, and in the event of any
center suddenly disappearing from the prediction, we use the past instance centers Ci−k, k ∈ {1, . . . 3}
information to obtain the current center Ci,t by linearly extrapolating the previous instance centers.
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Similarly, we take the average dimension of the bounding box from the previous timesteps and fill the
processed center with the dimensions of the calculated box.

4.2 Uncertainty Aware BEV Representations

Images X, Intrinsics I, 
Extrinsics E

Spatio-Temporal BEV Network

M
M

D
-R

K
H

S

BEV Output

Constrained Set

Uncertainty Augmented BEV Collision Estimation

Collision Violation 

Function PDF

Error Samples

 Closest Distance 
Queries to BEV

Frenet-to-Egocentric

Figure 4.1 Uncertainty-Augmentation Pipeline: Our approach uses a Spatio-Temporal Network [16]
to obtain a set of future BEV predictions, which we convert into an occupancy map prediction. We
used the ground-truth information to learn the uncertainty in the BEV prediction. During inference
time, we query the closest occupied cell to the ego-vehicle and then perturb it with samples drawn
from the learned uncertainty. We then use the noisy samples of distance queries and use Reproducing
Kernel Hilbert Spaces (RKHS) of Probability Density Functions (PDF) of Collision Violation Function
to optimize our uncertainty-aware trajectory with the Maximum Mean discrepancy (MMD) measure
as the surrogate cost for collision avoidance. We adopt a sampling-based approach and augment a
projection operator into the optimization pipeline detailed in Chapter 4 for constraint satisfaction.

Given a sequence of images for N surround cameras, for the P past frames, Xn
k , we generate BEV

representations for a future horizon of F frames using ST-P3’s architecture [16, 23], centered around
the current ego-vehicle location. We can obtain distance queries to the closest obstacle in the BEV
predictions/occupancy map O. More precisely, let DO : R2 → R be a computationally fast function
such that d[k] = D0((x[k], y[k]),O) represents the distance to the closest occupied cell at any time
step k for any query point (x[k], y[k]). The distance queries over all time steps can be converted into
collision costs in the form

f =

k=kn∏
k=k0

max(rsafe − d[k], 0) (4.1)

where rsafe is the required minimum clearance between the ego-vehicle and its closest neighbour at

time-step k.

We next present a core component of our pipeline; estimating uncertainty in d[k] and formulating a

probabilistic variant of (4.1) that can model probabilistic safety.
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Figure 4.2 Mean and Standard Deviation of Error with Time: The mean and variance of the Error
Distribution ∆k with time for CARLA and NuScenes. The mean and standard deviation increase with
time, indicating that predictions further into the future are less reliable.

4.2.1 Accumulating Error in Closest-Distance Queries on BEV Predictions

During offline training, We have access to the actual ground truth BEVs, and thus the ground truth

vehicles’ positions in CARLA[10] and NuScenes[4]. We use this information to compare the predicted

BEV with that generated BEV from the ground truth by quantifying the error in the distance queries.

Fig.4.2 shows the mean and standard deviation of the error in distance to the closest occupied cell d[k]

observed in CARLA and NuSenes. As can be seen, due to the nature of BEV segmentation provided

by ST-P3’s architecture, the uncertainty in distance queries increases with time. We fit an average time-

dependent distribution ∆k over several scenes in CARLA and NuScenes.

4.2.2 Probabilistic Safety Through Distance Samples

Let εk,i be the ith sample drawn from ∆k such that di[k] = d[k]+εk,i represent the noisy samples of the

distance to the closest occupied cell. We draw m such samples. We can now use these distance samples

to compute the sample estimate of collision-cost (4.1) in the following manner :

f i =

k=kn∏
k=k0

max(rsafe − di[k], 0) (4.2)

Expression (4.2) represents the various possibilities of collision cost due to the uncertain distance infor-

mation. We intend to use all the samples of f i to infer the probability of collision avoidance. A simple
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Figure 4.3 Closest-Distance Augmentation: (a), (c): The scene before augmenting uncertainty in
CARLA and NuScenes respectively. (b), (d): The same scene after augmenting uncertainty estimates
into trajectory points. The grey area is just for visualization and represents the bubble around the cluster
if the uncertainty-augmented collision violation was sampled at that point.

choice is to compute the mean of all the samples. However, such an approach would not capture the true

notion of risk. In our approach, we use the concept of distribution embedding in RKHS.

Let κ : R2 → R be a positive-definite kernel function (e.g. Gaussian kernel) associated with RKHS.

Then, the RKHS embedding of f i is given by [14].

µf =

m∑
i=0

1

m
κ(f̄i, ·), µδ =

m∑
i=0

1

m
κ(0, ·) (4.3)

The first half of (4.3) uses all the samples of fi to represent the underlying distribution as a point µf in

RKHS. As shown in [14], [13], the l2 distance between µf and the RKHS embedding of Dirac-Delta

distribution centered at zero, µδ can be used as a measure of the probability of collision avoidance.

Thus, we define our uncertainty-aware cBEV as

cBEV =

MMD︷ ︸︸ ︷
‖µf − µδ‖

2
2 (4.4)

Few important points about cBEV are in order

• First, the r.h.s of (4.4) can be efficiently computed using the so-called kernel trick. Also, (4.4)

explicitly depends on the ego-vehicle trajectory.

• Given a set of ego-vehicle trajectories, the one for which the cBEV of (4.4) is close to zero, will

have the highest probability of collision avoidance.
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4.2.3 Advantage of BEVs in Error Quantification

In monocular vision setup, one can find the below representations and possible methods to accumulate

the error and model the uncertainty in their predictions -

• Predicting obstacle centers into the future: [15] predicts instance centers, which we use to track

the vehicle into the future. However, this requires precise predictions of the center of the ob-

stacle and is extremely sensitive to errors in obstacle location at test time, especially on out-of-

distribution data.

• 3D monocular object detection predicting bounding boxes into the future: [25] and [24] predict

2D bounding boxes in monocular vision setup. The non-parametric uncertainty can be modeled

over the box parameters - height, width, location, and rotation. We can use the Minkowski differ-

ence to compute the shape difference between the predicted boxes. However, this approach has

been found to lead to conservative behaviours, as slight errors in rotation or location can lead to a

very large difference region.

Compared to the above approaches, our method models a single observation parameter - distance to the

closest obstacle to model the uncertainty. We eliminate direct supervision of the other parameters during

training and are better able to capture the shape (or error in the shape) of the vehicle.

In the next chapter, we present our sampling-based optimizer to compute trajectories optimal concerning

our uncertainty-aware cBEV .
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Chapter 5

Sampling based Optimizer

In this chapter, we first formulate a cost function, which includes the analytical and BEV-based costs.

We then derive a compact matrix representation of the same. We detail the proposed optimizer along

with a detailed algorithm of the same. We follow it by highlighting the batch projection operator in our

approach and justifying it’s needs.

5.1 Formulating Cost Function

The matrix W is formed by a piece-wise combination of cubic polynomial trajectories, each of which

operates for a time interval δt. cx and cy are coefficients that are obtained through the optimization

process. The higher derivatives of the position trajectory have the general form W(q)cx (along the x-

axis), where W(q) represents the qth derivative of the basis matrix. The y component of the ego-vehicle

trajectory and its derivatives are obtained similarly with the same basis matrices.

We can formalize the local planner in the following form, wherein (.)(q) represents the qth derivative

of the variable and (x[k], y[k]) represents the position of the ego-vehicle at time-step k.

∑
k

ca(x(q)[k], y(q)[k]) + cBEV (x[k], y[k]), (5.1a)

(x(q)[k0], y(q)[k0], x(q)[kf ], y(q)[kf ]) = b, (5.1b)

g(x(q)[k], y(q)[k]) ≤ 0 (5.1c)

The first term in the cost function ca captures costs that can be analytically modeled: smoothness, a

departure from cruise speed, tracking, etc. The second term cBEV is the cost map generated from

the BEV representation. Typically, cBEV captures drivable area, agent interactions, etc. The equality
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constraints (5.1b) ensure boundary conditions on the position derivatives. Our formulation considers

q = (0, 1, 2). The inequality constraints (5.1c) can capture bounds on velocities, accelerations, drivable

area, etc. We present a list of inequalities contained in g(.) in Table 5.1.

Constraint Type Expression Parameters

Discrete-time barrier
for longitudinal separation

g1

g2[k] : h2[k + 1]− h2[k] ≥ −γlongh2[k]
h2[k] = xo[k]− x[k] ≥ smin

smin: minimum longitudinal separation
xo[k]:x-coordinate of leading vehicle

at time index k
γlong: Longitudinal barrier constant [35]

Velocity bounds
g2 = (g2,lb, g2,ub)

g2,ub[k] :
√
ẋ[k]2 + ẏ[k]2 ≤ vmax

g2,lb[k] :
√
ẋ[k]2 + ẏ[k]2 ≥ vmin

vmin, vmax: min/max velocity
of the ego-vehicle

Acceleration bounds
g3

g3[k] :
√
ẍ[k]2 + ÿ[k]2 ≤ amax

amax: max acceleration
of the ego-vehicle

Discrete-time barrier
for Lane boundary
g4 = (g4,lb, g4,ub)

g4,ub[k] : h4,ub[k + 1]− h4,ub[k] ≥ −γlaneh4,ub[k],
g4,lb[k] : h4,lb[k + 1]− h4,lb[k] ≥ −γlaneh4,ub[k]

h4,ub[k] = −y[k] + yub
h4,lb[k] = y[k]− ylb

ylb, yub: Lane limits as a function
of the ego-vehicle’s position.

γlane: Lane barrier constant [35]

Table 5.1 List of Inequality Constraints: The constraints used in the table are used in the projection
optimization at step k. Each constraint is detailed with an expression along with associated parameters.
Barrier constraints are also included.

5.2 Compact Matrix Representation

Using the trajectory parameterization(3.1), we can represent (5.1a)-(5.1c) in the following compact

form. This representation will simplify the exposition in later sections.

ca(ξ) + cBEV (ξ) (5.2)

Aξ = b, g(ξ) ≤ 0 (5.3)

The developments in the last section provide us cBEV as an MMD map computed through a neu-

ral network-based BEV representation augmented with uncertainty estimates. This section develops a

sampling-based approach for optimizing over cBEV . The key novelty of our optimizer is that it incor-

porates a projection operator to push the sampled trajectories toward feasible regions before evaluating

cost over them. We approximate predictions of neighbouring vehicle centres that can be obtained by

averaging the predicted vehicle representation in the BEV frame. This is used to formulate discrete-time

barrier constraints [35] for longitudinal separation g1.
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Figure 5.1 Optimizer Pipeline: The optimizer samples ns samples from a behavioural distribution,
which is used to perform the batched Frenet projection. The top constrained set ξ is ranked using
custom costs, and top ne samples are used to update the parameters of the behavioural distribution. Top
sample ξ̄j is given to the PID controller to be executed.

5.3 Proposed Optimizer

The overall algorithm is presented in Alg.5.2, wherein the left superscript l is used to track the values of

the respective variable across iterations. The algorithm proceeds by sampling behavioural inputs pj such

as lateral offsets and desired velocity set-points. These are then fed to a Frenet space planner inspired by

[33]. The trajectory coefficients that the Frenet planner returns are then fed to our projection optimizer

in lines 7-8. The resulting output ξj is then evaluated for constraint residuals in line 9. We rank the

top ns samples with the lowest constraint residual in the ConstraintEliteSet in line 10. In line 11,

we compute an augmented cost (residuals+primary cost) over the samples from ConstraintEliteSet.

We then rank these samples based on the augmented cost value, extract the lowest ne samples, and

place them in EliteSet (line 13). We update the sampling distribution based on the samples from the

EliteSet. Specifically, we use the formula (5.4a)-(5.4b) from [1] to update the mean and covariance for

sampling in the next iteration. The constant β is the so-called temperature parameter.

l+1µp = (1− η)lµp + η

∑j=ne

j=1 sjpj∑j=ne

j=1 sj
, (5.4a)

l+1Σp = (1− η)lΣp + η

∑j=ne

j=1 sj(dj − l+1µp)(pj − l+1µp)T∑j=ne

j=1 sj
(5.4b)

sj = exp
−1

β
(ca(ξj) + cBEV (ξj) + rj(ξj) (5.4c)
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Figure 5.2 Sampling-Based Optimization Algorithm: The steps are listed to sample and compute
uncertainty augmented Learned BEV-based Costs. ElliteSet is chosen using the CostList computed, and
top ne samples are used to update the distribution for the next set of samples (p1, p2, . . . pns)
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5.4 Batch Projection

The optimization in lines 7-8 can be done in parallel. We extended the GPU accelerated projection

optimizer from [22], [29] to include the discrete-time barrier constraints for longitudinal separation

and lane-boundary constraints (recall Table 5.1, rows 1 and 4). Moreover, unlike [29], our projection

operator does not have collision constraints as these have been rolled into the cBEV costs. We present

the detailed derivation in the appendix. But the core idea essentially boils downs to reducing projection

in lines 7-8 to a sequence of optimizations that can all be trivially batched over GPUs.

In the next chapter, we show the results of the experiments performed, and compare with existing

baselines. We report improvement in the stated metrics, and try to analyze the results.
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Chapter 6

Experiments and Results

6.1 Experiment Setting

We conduct our closed-loop experiments on the self-driving simulator CARLA [11] v0.9.13, owing

to its high-precision physics engine and sensors capable enough for our use case. We implemented our

sampling-based optimizer in Google’s JAX - a GPU accelerated internal library[3]. Our perception mod-

els were trained on Nvidia 3090, and the CARLA simulation and open-loop experiments on NuScenes

were conducted on Nvidia TITAN X. We used γ = 0.1 for the RBF Kernel. We used γlane = 0.9 and

γlong = 0.9. The temperature parameter β was taken as 0.9. and the learning-rate η at 0.6. We chose

vmax, vmin at (10, 0).

We adopted the BEV configuration setting of ST-P3, with a resolution of (H,W ) = (200, 200) grid

at 0.20m × 0.20m resolution in CARLA, and 0.50m× 0.50m in NuScenes. We use P = 3 time frames

of past context and predict F = 4 frames into the future for CARLA and F = 6 frames for NuScenes.

6.2 Generating Scenarios in CARLA

We divide our experiments on CARLA into 2 categories based on the lane boundary -

• Inlane Driving (In): Within Inlane, we create the scenarios - Abrupt Stopping/Slowing, and Cutin

of adjacent vehicle.

• Overtaking Allowed (Ov): We simulate static and dynamic vehicles while overtaking. We change

ylb = 3.5 to allow overtaking.
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We adopt the 14 standard routes introduced in [9] and modify it to test on 2.8 km of route length across

multiple towns. A visualization of the routes along with their detailed lengths is given below.

Route Town/Route Original Length (m) [9] Part chosen length (m)

1 Town01 Route01 1303 206
2 Town01 Route02 322 286
3 Town02 Route01 110 110
4 Town02 Route01 638 325
5 Town03 Route01 306 58
6 Town03 Route02 462 76
7 Town04 Route01 2811 128
8 Town04 Route02 204 38
9 Town06 Route01 686 254
10 Town06 Route02 706 187
11 Town05 Route01 337 192
12 Town05 Route01 1642 638
13 Town03 961 145
14 Town04 Route03 225 158

Total 10713 2801

Table 6.1 Information of Routes: A description of the 14 routes used by [9], along with their original
and chosen length. These routes will be combined with different weather settings to generate multiple
scenarios.

Due to the controlled nature of the neighbouring vehicles, we can re-create the same scenario for the

baselines discussed in the next section. For the two types of ego behaviors. Further, the other dynamic

agents in the scene can be participants in any of the challenging scenarios listed above.

6.3 Baselines and Metrics

6.3.1 Baselines

We use camera-based methods in our approach which leverage BEV representations as intermedi-

ates for planning. We do not consider CCO-VOXEL [14] and UrbanFly [13] as they parameterize the

trajectories over 3D coefficients with 6 Degrees of Freedom and violate the non-holonomic assumption,

making it unsuitable for Autonomous Driving applications.

0. ST-P3 Gaussian: (not considered in quantitative results) We adapt the approach of Calibrated

Perception Uncertainty[20], and fit a 2D Gaussian Mixture Model to the log-likelihood of proba-

bilities. We use the fitted ellipses as obstacle representations and couple it with the cost-volume
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Figure 6.1 Town-wise Distribution of Routes: A visualisation of different routes in CARLA Town-
wise, adapted from [9]. The start point is represented in red, the endpoint in blue, and the trajectory is
visualized in green.
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based planning. Note that we do not consider this approach in our quantitative estimation as we

found it to be too conservative and unable to complete the route.

1. Lift-Splat-Shoot (Static) (LSS) [23]: Lift-Splat Shoot used to generate BEV representations of

the current timestep, with a cost grid cLSS ∈ RH×W = (200, 200). At test time, we sample poly-

nomial trajectories from a fixed set and the lowest cost trajectory is passed to the PID controller

to obtain the control inputs.

2. ST-P3 Imitation Learning (IL) (ST-P3-IL) [16]: BEV representations of the current and fu-

ture timesteps are generated. It predicts a Cost-Volume over time, cST−P3 ∈ RF×H×W =

(4, 200, 200). At test time, we use the same approach as stated above.

3. ST-P3 with Sampling-based optimization (ST-P3-SO): Here, we use our sampling-based opti-

misation algorithm over the cost volume to obtain the optimal trajectory. The cBEV cost is the

cost-volume generated by the ST-P3. Thus, this baseline has been constructed to showcase the

importance of our proposed uncertainty-aware cBEV based on MMD.

4. UAP-BEV: Our approach, with uncertainty-augmentation and sampling-based optimiser.

6.3.2 Metrics

The metrics in closed-loop CARLA simulation are -

1. Collisions: The average number of vehicle collisions per km (/km).

2. Route Completion (RC): The percentage of routes completed, i.e.: the ego-vehicle navigates to

the target, without getting stuck or stopping for a fixed time.

3. Duration: Total time (in s) for successfully completed routes.

4. Smoothness: Rate of Change of Acceleration (m/s3).

For NuScenes, we perform open-loop experiments and only report Collision Rate (%) and Smooth-

ness. We use the Intersection-over-Union (IoU) to denote the improvements in the quality of BEV

representations in the later part of this chapter.
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6.4 Closed-Loop Experiments on CARLA

6.4.1 Qualitative Results

4

(c)(a)

(b) ST-P3 - Gaussian

(c) ST-P3 - IL

Seg GT  

Seg Predicted 

Ego-vehicle

(d) UAP-BEV

Figure 6.2 Qualitative Results in Overtaking Scenario: Given is scene simulated in CARLA where
the ego vehicle (blue) is driving and has to overtake the static vehicle in front to reach destination using
a BEV perception model ST-P3. Visualized are the BEV representations used for planning. Note that
the grey area is only for visualization purpose, and the closest-distance augmentation results in the
uncertainty estimate. Note that the RGB perspective shots are frontal view with the camera just behind
the ego-vehicle, and the BEV corresponds to a the region of 20mx20m around the ego-vehicle.

We observe in 6.2 that using a Gaussian approximation of underlying uncertainty (ST-P3 Gaussian)

proves to be conservative and ego-vehicle fails to move ahead. Traditional Imitation-Learning (IL) based

approaches also cannot account for the error (ST-P3 IL) and result in a collision. Our uncertainty-aware

planner (UAP-BEV) is able to overtake the leading vehicle while countering the error in perception,

maintaining a safe distance compared to others.

Fig.6.3 shows a scenario, where the ego vehicle experiences a cutin from a vehicle in an adjacent lane.

Due to a mismatch between the ground-truth dGT and predicted dpred distance to the closest obstacle, the

ST-P3 trajectory collides with the leading vehicle. In contrast, our uncertainty-aware approach (UAP-

BEV) that models cBEV through MMD and uses an algorithm for optimization, is able to successfully

navigate through the cutin.
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Figure 6.3 Qualitative Results in a Cutin scenario: Ego-vehicle faces a cutin from adjacent vehicle,
and has to perform Inlane (In) driving. On the left side, we plot the error dpred − dGT with time, as the
cutin happens. We also plot below, the evolution of dGT (which is collision distance) with time for all
the baselines.

6.4.2 Quantitative Results

Below, we report the closed loop results for the 14 routes overall on CARLA -

Method
Collisions ↓ RC ↑ Duration ↓ Smoothness ↓

(/km) (%) (s) (jerk,m/s3)

In Ov In Ov In Ov In Ov

LSS 0.013 0.014 26.57 20 39.84 31.84 4.74 4.85
ST-P3 0.011 0.013 48.44 46 28.56 26.34 4.53 4.55
ST-P3-SO 0.004 0.005 85.94 90 22.19 22.7 2.98 2.95
UAP-BEV 0.00003 0.00005 100 100 18.9 19.1 1.88 2.93

Table 6.2 Benchmark Comparison on CARLA On Inlane (In) and Overtaking Scenarios (Ov), the
comparison is shown against the existing baselines LSS, ST-P3, ST-P3 (SO) and UAP-BEV (Ours). We
report 100% route completion and improvements in all other metrics.

Table 6.2 presents the quantitative results on the CARLA simulator. It can be seen that the ST-P3-

SO baseline, which couples ST-P3 perception with our sampling-based optimizer from the algorithm,

already substantially improves the collision rate. Moreover, our primary method UAP-BEV which uses

the optimizer algorithm with our MMD based cBEV drives the collision rate to zero. Our UAP-BEV

achieves an improvement of 39.8% in smoothness metric over all the baselines. In both in-lane driving
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and overtaking scenarios, our approaches achieve a route competition rate of almost double the other

baselines. The ST-P3-SO and UAP-BEV demonstrate an improvement of 1.774x and 2.06x respectively

over ST-P3-IL in route competition metric.

6.5 Open-Loop Results on NuScenes

To validate our proof-of-concept, we evaluated our method on the NuScenes dataset. We found

that our method outperformed existing baselines. The qualitative and quantitative results are discussed

below -

6.5.1 Qualitative Results

Figure 6.4 Qualitative Results in NuScenes: We demonstrate Collision Avoidance in one of the scenes
in NuScenes. Upon addition of the uncertainty (yellow), to the existing prediction (dark green), the
trajectory (red) becomes collision-free (light green) and is able to avoid the collision by a margin.

In figure 6.4, we compare our method against one of the baselines - ST-P3. This is the ST-P3 IL

variant. In the figure, we can see that our method is able to avoid collisions more often than ST-P3. This

is because our method takes into account the uncertainty in the BEV predictions.

6.5.2 Quantitative Results

Table 6.3 presents results on the NuScenes dataset. Here again, our UAP-BEV shows almost two to

three times reduction in a collision over LSS and ST-P3-IL. Similar improvements can be found in the

smoothness metric as well. We recall that the NuScenes dataset only allows us to perform open-loop

simulation (executed trajectory of the ego-vehicle is pre-decided and fixed). Thus the improvement here
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Method Collision Rate(%) ↓ Smoothness (m/s3) ↓
LSS 9.31 5.31

ST-P3 6.01 5.11
ST-P3-SO 4.31 2.82
UAV-BEP 3.34 2.80

Table 6.3 Benchmark Comparison on NuScenes: The table compares the existing baselines on an
Open-Loop dataset. Here, only collision rate and smoothness are reported, as they are the only relevant
metrics for an open-loop setting.

is less drastic compared to CARLA. We also do not report the route-competition metric as it is irrelevant

here.

6.6 Ablation Studies

6.6.1 Longitudinal Barrier Constraint

(a)

(b)

Figure 6.5 Longitudinal Barrier Ablation Given scene in CARLA with the ego-vehicle (blue) and
leading vehicle (red), shown (a) Without Barrier, (b) With Barrier. The leading vehicle slows down,
causing the ego-vehicle to crash, when the barrier is not applied. This is prevented in the latter case in
the presence of a minimum barrier of dSEP .

A qualitative result is shown in 6.5, where the leading vehicle abruptly slows down. Here, we see that

in the absence of the barrier, the ego-vehicle is unable to slow down and crashes into the leading vehicle.

This is primarily due to the error in future prediction. However, in the case of the longitudinal barrier,
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we notice that ego-vehicle maintains a separation distance dsep = 10m, from the leading vehicle, thus

slowing down and avoiding a collision.

Table 6.4 demonstrates the effectiveness of the longitudinal barrier constraints. This constraint ensures

a minimum separation distance from the leading vehicle in the scene. Note that we only utilize this

constraint during the Inlane driving scenarios (In). The trajectory of the leading vehicle was obtained

by computing the approximate centres of the BEV predictions.

ID UAP Barrier Collisions /km Route Completion Duration (s)

1 0.004 85.84 22.43
2 X 0.0005 91.23 25.43
3 X 0.0003 96.37 19.17
4 X X 0.00004 100 21.18

Table 6.4 Barrier Ablations: The table denotes the effectiveness of our approach with and without a
Longitudinal Barrier. The barrier enforces a minimum separation distance of dSEP , thereby making it
safer to navigate.

The longitudinal barrier constraint encourages conservative driving, by rewarding trajectories that

maintain a minimum distance from the leading vehicle. It leads to safer trajectories observed through

reduced collisions and increased RC. However, this comes at the expense of higher execution times.

6.6.2 Noise Modelling Methods

As discussed in the methodology section, errors are asymmetric along the X and Y axes, as well

as into the future. We benchmark the new formulations UAP-2D and UAP-Future respectively. We

report in Table 6.5 that modeling noise distributions separately improves the result over the standard

implementation.

ID Error Distribution Collisions /km Route Completion

1 Vanilla - UAP 0.0006 90.87
2 2D - UAP 0.0003 91.15
3 Future - UAP 0.0001 95.34
4 Combined - UAP 0.00004 100

Table 6.5 Asymmetric Error: The table further reports the metrics for different modifications to the
existing computation techniques. The asymmetric error is encountered at different channels - along
spatial (2D-UAP) and temporal (Future-UAP).
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6.7 CEM Convergence Analysis

6.7.1 Convergence with Trace/Variance plots

Similar to [14] and [13], we perform Convergence Analysis on our CEM method. The cost profile

of the mean trajectory is plotted and can be seen in . This signifies that the gradient update to the

behavioural inputs distribution is such that the trajectories coming from it correspond to the lower-cost

regions.

Figure 6.6 Trace vs Covariance plot: Given is a plot for normalized cost versus iterations and trace
versus iterations. As the number of iterations increases, both the cost and trace decrease, indicating
convergence in our approach.

6.7.2 Points within a trajectory

The histogram plot 6.7 shows that the bulk of trajectories converge towards low-cost region (around

0). This shows that our sampling algorithm gradually converges towards low-cost regions, and within

11 iterations, the trajectories sampled from new mean and variance have a value of 0 collision violation

estimate along all points within them.

6.7.3 Compile Time Optimization

We use PyTorch 2.0, with JIT (Just-In-Time) compilation functionality. We also batch our MMD

computations, unlike [13] and [14], which perform unbatched computation in C++/python-numpy, we

are able to obtain significant speed improvements for the planning part.
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Figure 6.7 Histogram Plot for Points across trajectory 6.7 Plots the distribution of points within
a trajectory with the same color. With the x-axis representing collision violation cost and the y-axis
denoting the number of such points. Gradual convergence can be shown as all points across a trajectory
converge to near zero.

6.8 Improvements in Quality of BEV Representations

We report the improvement with the heuristic technique of ensuring temporal consistency, in Table

6.6.

Method IoU

Lift-Splat-Shoot 21.34
ST-P3 13.24
ST-P3 + TC* 34.78

Method Future mIoU

NEAT 7.34
ST-P3 2.13
ST-P3 + TC* 18.23

Table 6.6 IoU Scores for Baselines and us: The table reports our Perception Improvements with Tem-
poral Consistency. It shows both for the current timestep (left) and averaged over the future timesteps
(right), quantized by Future mIoU.
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Chapter 7

Conclusion

This thesis shows the characterization of uncertainty in the popular BEV layout prediction methods

with monocular RGB images as inputs and how nonparametric uncertainty can be used by a trajec-

tory planning framework to execute collision-free trajectories. A sampling-based optimal rollout in the

popular CEM formulation is used as the planning framework with two novel components.

The first novelty involves the non-convex projection of the CEM samples to the nearest sample that

satisfies various constraints based on curvature, smoothness, and kinematics, and the second novelty

introduces an MMD cost term based on matching distributions in the Kernel Hilbert Space. The efficacy

of the proposed framework is shown by significant performance gain over prior arts [23, 16] that sample

the best trajectory over a cost volume learned over a BEV estimate. We show such gains both in closed-

loop simulation in a number of CARLA towns and open-loop trajectories on public datasets such as

NuScenes.

UAP-BEV, to the best of our knowledge, is the first method to characterize non-parametric uncer-

tainty in the BEV frame and leverage it to compute collision-free trajectories. The proposed planner

utilizes a sampling-based optimization with a novel uncertainty-aware collision cost constructed from

BEV predictions. Our proposed optimizer also includes a projection operator to push the sampled tra-

jectories towards feasible regions before computing the cost over them.

Our current work involved generating custom scenarios and evaluating them with the representations

obtained from monocular images with off-the-shelf networks. Future work would involve improving

the quality of BEV representations with a non-heuristic approach (network architectural modification)

and submitting our method to CARLA leaderboard v2 for more robust testing.
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