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Abstract

With the advent of Industry 4.0, the demands on industrial robots have expanded beyond
simple pick-and-place tasks. Future smart factories require robots capable of a wide range of
manipulation skills, including the ability to throw objects. This thesis investigates the design
and optimization of a novel robotic end-effector that manipulates objects by enabling precise
grasping and target throwing.

Current robotic grippers primarily focus on grasping, while throwing is typically achieved
through energy-intensive whole-arm movements. This approach is not only inefficient but also
raises safety concerns. To address these limitations, this research proposes a versatile grip-
per that seamlessly integrates pick-and-place and pick-and-throw functionalities using stored
elastic energy. The controlled release of this energy propels objects with accuracy, potentially
exceeding the robot arm’s reachable workspace.

Key contributions of this research include:

• Novel End-Effector Design: The design of a new end-effector capable of performing
pick, place, and throw actions without relying on whole-arm motion. This innovative
design leverages stored elastic energy for throwing, thus enhancing efficiency and safety.

• Physics-Based Model: A physics-based model that accurately correlates the stretch of
an elastic band to the landing position of the thrown object. This model integrates the
principles of rigid body dynamics to account for the object’s behaviour during projec-
tile motion, making it essential for predicting and controlling the trajectory of thrown
objects.

• Parameter Identification: Implementation of a two-stage process to identify the param-
eters of the physics-based model. This process ensures that the model accurately reflects
the behaviour of the end-effector.

• Optimal Control Algorithms: Development of sophisticated control algorithms that
enable the robot to throw objects to specific target locations with high precision. These
algorithms calculate the optimal release point and force required for each throw.
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• Data-Driven Residual Model: Development of a data-driven residual model to capture
unmodeled dynamics and further improve throwing accuracy. This model uses machine
learning techniques to refine predictions based on experimental data.

• Experimental Validation: Conducting experiments to validate the effectiveness of the
end-effector design and its control algorithms. These experiments demonstrate the prac-
tical viability and robustness of the proposed system.

The thesis further explores the vast practical implications of throw manipulation. In ware-
house logistics, this technology can significantly optimize sorting, packing, and distribution
processes by enabling faster and more precise handling of items. In agriculture, it holds the
potential to be used for harvesting, seeding, and the targeted application of resources, leading
to increased efficiency and reduced labour costs.

By combining optimization and learning-based approaches, this research provides a com-
prehensive framework for designing and optimizing robotic end-effectors for throwing manip-
ulation. This interdisciplinary methodology enhances the versatility, adaptability, and perfor-
mance of robots, ultimately improving efficiency, safety, and productivity in various industrial
and operational settings.

Keywords: Throwing manipulation, Gripper design, Trajectory optimization, Rigid body
dynamics, Learning-based approaches.
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Chapter 1

Introduction

1.1 Background

As Industry 4.0 advances, manufacturing industries strive to enhance performance by op-
timizing production operations. Consequently, robots have evolved beyond simple pick-and-
place tasks and limited workspaces, particularly in industrial and warehouse settings. While
mobile bases, such as mobile manipulators (MM), provide the advantage of horizontal mobility,
they often face limitations in vertical reach, making it challenging to access elevated shelves
in multi-rack storage systems. Similarly, drones are increasingly utilized in warehouses for
transporting objects; however, they encounter difficulties due to ground effects when the target
location is partially enclosed or confined, which is frequently the case in multi-rack storage
setups.
In such scenarios, there is a need for robots with targeted throwing capabilities to place objects
beyond their limited reachable workspace. Research on object-throwing robots in industrial
settings has attracted significant interest recently due to their ability to transport materials faster
than conventional methods. For instance, rather than utilizing mobile manipulators or conveyor
belts for inter-station object transport, integrating a specialized end-effector with either a mov-
ing or fixed base yields notable reductions in object transport time, mechanical exertion, and
effort, resulting in enhanced efficiency and cost savings.
The task of sorting or segregating diverse objects on a moving conveyor belt often necessitates
the involvement of multiple manipulators, leading to inherent limitations and operational chal-
lenges. In contrast, the implementation of throwing manipulation presents the opportunity to
minimize the reliance on multiple robots. This method allows for a more streamlined opera-
tion where a single robotic system can handle multiple tasks, reducing the need for complex
coordination and increasing overall efficiency.
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Despite the demonstration of numerous simple robotic hands, a simple and standalone shape-
conformable gripper capable of throwing is hard to find in the literature. In predominant works
related to throwing tasks, manipulators are commonly employed to place the object outside the
workspace. In many such situations, trajectory optimization techniques are used to actuate the
joints in a coordinated way at high speed to gain increased momentum for throwing an ob-
ject away from its limited workspace. Implementing such techniques requires computationally
expensive planning and control algorithms at the cost of immense joint motor efforts. Fur-
thermore, the mechanical components would easily be worn out because of rapid movements,
reducing the overall system’s performance.

Figure 1.1: (a) illustrates the throwing end-effector using mobile and aerial manipulators in

an industrial setting. (b) compares the conventional method with a gripper to the proposed

method with the throwing end-effector, highlighting increased workspace and reduced energy

consumption. (c) displays the reachable workspace of the manipulators with both methods.
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1.2 Motivation

The motivation behind this research stems from the pressing need to enhance the operational
efficiency and capabilities of robotic systems in various industrial applications. Traditional
methods of object transport and manipulation, such as conveyor belts and mobile manipulators,
often encounter limitations in speed, efficiency, and spatial reach. These constraints become
particularly pronounced in environments with complex storage systems or confined spaces,
such as multi-rack storage systems in warehouses or enclosed target locations for drones.

Inspired by biological agents that use elastic-based catapult or slingshot mechanisms for
remarkable ballistic/projectile movements, this research aims to develop a novel gripper that
mimics these natural mechanisms. Biological agents possess extraordinary multifunctional
morphology that is superior, versatile, and quickly adapt to various situations. Many such
agents use elastic-based mechanisms to store elastic strain in muscles, ligaments, tendons, or
fibrous structures and use them for remarkable ballistic/projectile movements.

Examples include the jumping of frogs and click-beetles [1], ballistic tongue projection in
chameleons and salamanders for prey capture [2], predation and propulsion in trap-jaw ants
[3], and the dispersion of seeds among plants [4]. These mechanisms allow biological agents
to achieve significant acceleration and precision in their movements, which are essential for
survival and efficiency in their natural habitats. Throwing is also typical among humans [5]
for handling and placing objects with incredible speed for quick rearrangement, sorting tasks,
and traversing over large obstacles. This method is preferred for the increased economy of
movement, particularly when the object needs to be placed outside the reachable workspace of
an agent.

By leveraging these biological principles, the research seeks to develop a gripper that can
store and release energy efficiently, similar to a catapult mechanism found in nature. The
proposed gripper integrates advanced design principles, trajectory optimization techniques, and
learning-based approaches to enhance its throwing capabilities. This allows the gripper to
achieve high-speed, precise, and adaptable throwing actions, making it suitable for various
industrial applications.

The primary motivation is to create a robotic system that can perform tasks beyond the
limitations of current technologies, providing increased productivity, reduced operational costs,
and improved outcomes. By addressing the challenges of object manipulation and transport in
confined and complex environments, this research aims to advance robotic systems, paving the
way for future innovations in the field.

A combination of contracting muscles equivalent to springs and a latching mechanism, i.e.,
a catapult mechanism, is common among many biological agents. They primarily use these
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mechanisms to amplify the limited mechanical power output to a greater extent. The elastic
mechanism’s quick unlatching enables them to instantly release the energy to achieve sig-
nificant acceleration for capturing prey or using it as a defensive mechanism. The latching
mechanism found in biological agents is discussed in [6, 7]; however, utilizing it for throwing
is hard to find in the literature.

Many biological agents have inspired researchers to develop multipurpose mechanisms, par-
ticularly robotic hands, to perform dexterous tasks. Generally, shape conformation for versatile
grasping, primitive manipulation for changing the object state, and contact force adjustment for
robustness are the significant functionalities expected from robotic hands [8, 9]. However, de-
manding multiple functionalities inevitably increases actuators and sensors and, consecutively,
the design’s complexity. As pointed out in [10,11], the tradeoff between versatility and simplic-
ity is evident in many existing gripper designs. Despite the demonstration of numerous simple
hands earlier, a simple and standalone shape conformable gripper capable of throwing is hard
to find in the literature. In predominant works related to throwing tasks [8, 9], manipulators
are commonly employed to place the object outside the workspace. In many such situations,
trajectory optimization techniques are used to actuate the joints in a coordinated way at high
speed to gain increased momentum for throwing an object away from its limited workspace.
Implementing such techniques requires computationally expensive planning and control algo-
rithms at the cost of immense joint motor efforts. Furthermore, the mechanical components
would easily be worn out because rapid movements reduce the overall system’s performance.

The design integrates elastic and rigid elements with a central latching mechanism that con-
trols the storage and release of elastic potential energy. The latching mechanism mechanically
actuates two rigid fingers by elongating and releasing the coupled elastic gripping surface, akin
to soft tissues in biological agents, as illustrated in Fig. 2.4. During grasping, the rope attached
to the elastic strip is pulled inward by the latching mechanism, increasing tension and storing
elastic potential energy. Figures 2.4 (a)-2.4 (c) depict the mechanical actuation and grasping se-
quence, while Figure 2.4 (d) shows the elastic surface conforming to objects of various shapes,
sizes, and weights.

For placing tasks, the mechanism must gradually release the stored energy to avoid im-
parting kinetic energy to the object, preventing bounce or topple. Conversely, for throwing
tasks, the mechanism must instantly release the energy to propel the object, enabling it to
reach beyond the robot’s immediate workspace. The amount of elastic energy released can be
predetermined for precise control.
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1.3 Research Objectives

The research objectives of this thesis entail a comprehensive approach to developing an end
effector and integrating it with manipulators and drones to enhance their functionality in in-
dustrial settings. The objective involves designing and fabricating an innovative end effector
capable of performing dynamic manipulation tasks. This entails conceptualizing a versatile
gripping mechanism that can adapt to various object shapes and sizes, ensuring robust and ef-
ficient handling capabilities. Integration with manipulators and drones will enable seamless
interaction with the surrounding environment, facilitating tasks such as pick-and-place opera-
tions, object transport, and assembly tasks.

Secondly, the research aims to define the rigid body dynamics governing objects in projec-
tile motion. This involves a detailed analysis of factors such as mass distribution, inertia, and
aerodynamics to accurately model the behaviour of objects during throwing manipulation. Sys-
tem identification techniques will extract relevant parameters from experimental data, ensuring
the model’s fidelity in representing real-world scenarios.

Furthermore, the thesis seeks to develop a data-driven model integrated with an optimal
control algorithm to optimize the trajectory of thrown objects. By leveraging machine learning
and optimization techniques, the aim is to achieve precise control over the motion of objects.
This involves formulating and solving optimal control problems tailored to the specific dynam-
ics of the system, considering constraints such as actuator limitations, physical limitations of
the prototype and environmental factors.

The study explores practical applications, showcasing throwing manipulation’s versatility in
warehouse logistics, agricultural operations, and search and rescue scenarios. In warehouses, it
facilitates efficient sorting, packing, and distribution, optimizing space utilization and stream-
lining processes. In agriculture, it aids fruit harvesting, crop seeding, and targeted application
of pesticides or fertilizers, enhancing productivity while minimizing waste. In search and res-
cue, it enables rapid deployment of equipment and resources to remote or hazardous locations,
augmenting rescue team capabilities.

Finally, the research involves performing experiments with hardware implementation to val-
idate the effectiveness and efficiency of the developed end effector and control algorithms in
real-world scenarios. The research aims to demonstrate the proposed approach’s feasibility and
efficacy in enhancing robotic systems’ capabilities for industrial automation and logistics tasks
through systematic experimentation and validation.
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1.4 Related Works

The field of throwing manipulation has garnered significant attention in recent years due to
its potential to enhance the efficiency and capabilities of robotic systems in various industrial
and operational contexts. This section reviews the existing literature on throwing manipulation,
nonprehensile manipulation, and gripper design, highlighting the advancements and challenges
in these areas.

Several studies discuss throwing as a form of non-prehensile manipulation, utilizing either
single-joint or multi-joint robot arms. Typically, these manipulators impart the initial velocity
and acceleration to the object while maintaining contact and subsequently release the object
to take flight towards the desired location [12–14]. This process is generally formulated as a
motion planning problem, wherein the manipulator’s trajectory is optimized to deliver the ob-
ject accurately [15,16]. Some researchers have applied learning approaches or optimal control
techniques to improve the throwing capabilities of manipulators. However, the complexity of
the planning and control algorithms, increased effort, and scalability issues remain significant
challenges.

Most existing works employ manipulators with standard grippers to grasp and throw objects
by actuating all joint motors and releasing the object at an optimal release point [17]. This
method often requires computationally expensive algorithms and higher energy consumption.
For example, TossingBot utilizes a manipulator to grasp objects from an unstructured bin and
throws them into a target box, but this requires high-speed actuation of all joints, leading to
concerns about wear and tear, safety, and power consumption [17]. Reinforcement learning
approaches have also been explored for learning whole-arm throwing motions [5].

Nonprehensile grasping methods have been investigated to enhance the efficiency of throw-
ing tasks. For instance, a casting manipulator with a flexible string attached to a gripper ex-
tends the manipulator’s workspace [18]. Additionally, nonprehensile methods such as stone-
throwing mobile robots for curling [19] and conveyor belt-fed single-joint arms [20] have been
explored. However, these methods often lack prehensile capabilities, limiting their versatility
and application scope.

Numerous studies have focused on replicating the capabilities of anthropomorphic hands
to achieve different types of grasp and within-hand manipulation [21, 22]. Due to the design
complexities and challenges associated with complex hands, minimalistic robotic hand designs
have gained attention. These designs aim to provide mechanical intelligence, improve dexter-
ity, and simplify mechanical complexity. Many adaptive grippers, such as soft grippers [23,24],
origami grippers [25], underactuated grippers [26–28], and compliant grippers [29,30], exhibit
exceptional power grasp ability essential for stable and robust grasping. Some grippers in-
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corporate variable friction finger pads [31] to enhance dexterity, albeit at the cost of additional
motors and increased complexity. A notable example is a vacuum-based universal robotic grip-
per [32], capable of picking, placing, and limited-distance throwing of objects. Nonetheless,
many grippers still struggle with grasping and throwing objects independently.

Similarly, [33] and [34] demonstrate the whole-arm motion for throwing learned with rein-
forcement learning. A soft gripper based on vacuum technology is showcased in [32], capa-
ble of picking and placing objects and limited-distance throwing. This approach has inherent
drawbacks, including limited repeatability, reduced precision, and lower grasping force. Deep
reinforcement learning approaches for learning whole-arm throwing motion are shown in [35]
and [36] while avoiding obstacles and for a soft-bodied robot, respectively.

To address the limitations of existing grippers, hybrid designs combining soft and rigid
elements have been proposed. The proposed design aims to retain the shape-conforming ca-
pabilities of soft hands while enhancing mechanical robustness and simplifying the overall
structure. The hybrid design integrates the advantages of both soft and rigid elements [37],
actuated mechanically using a latch mechanism without a pneumatic source. This approach
ensures compactness, simplicity, and energy efficiency while maintaining the functionality of
soft hands. As a part of this research, two end-effector designs were proposed, i.e., Design 1.0
and Design 2.0. Design 2.0 has improved controllability, effectiveness, and independent actu-
ation for regulating the energy stored for throwing objects. This enhanced 2 DoF end-effector
is an advancement upon the prior design 1.0 [37], which suffered from limitations in adjusting
stored elastic energy after grasping an object. Unlike the previous design, where stored en-
ergy could only be monotonically increased, the current design allows for regulation, enabling
both increased and decreased stored energy as required. Additionally, the mechanical design is
significantly simplified, with fewer moving parts.

1.5 Overview of the Thesis structure

The thesis is organized into six chapters, each offering a detailed exploration of different
aspects of throwing manipulation in robotics. Below is a summary of each chapter:

• Chapter 1: Literature Review This chapter comprehensively explores relevant liter-
ature on throwing manipulation, end-effector design, mathematical modelling, system
identification, throw optimization, and learning-based approaches. It synthesizes prior
research findings, offering valuable insights while identifying gaps and addressing cur-
rent challenges. This review lays the groundwork for developing novel solutions and
methodologies in subsequent chapters.
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• Chapter 2: Design of Throwing Mechanism This chapter focuses on the novel end-
effector designs 1.0 and 2.0. for throwing manipulation. It covers the functional require-
ments, material selection, and mechanical design principles for developing the gripper
and its components. Detailed discussions include the actuation system, force transmis-
sion components, control systems, and their integration with the robot’s overall architec-
ture.

• Chapter 3: Mathematical Modeling This chapter delves into the mathematical mod-
elling of the gripper and the dynamics of an object in projectile motion, building on the
foundations laid in Chapter 2. It provides a comprehensive theoretical framework for the
optimization and control strategies discussed in Chapter 4.

• Chapter 4: Optimization and Parameter Identification This chapter focuses on op-
timization and parameter identification to achieve optimal throwing performance. It de-
rives equations of motion and identifies physical properties through sensor data analysis
and experiments to calibrate the mathematical models using a two-stage optimization
algorithm. The chapter also discusses the Throw optimization algorithm to generate op-
timal throwing trajectories, considering environmental factors and object properties.

• Chapter 5: Integration of Machine Learning Algorithms This chapter explores the
integration of machine learning algorithms to enhance the adaptability and performance
of throwing manipulation tasks. It presents the theoretical foundations, implementation
details, and experimental results demonstrating the effectiveness of learning-based ap-
proaches in improving system performance with unseen objects.

• Chapter 6: Discussion and Conclusion The final chapter presents research findings,
offering insights and interpretations, acknowledging limitations, and outlining avenues
for future research. It highlights the study’s significance and implications for throwing
manipulation and robotics. By integrating theoretical analyses, experimental results, and
practical considerations, this chapter provides a cohesive conclusion to the thesis and
paves the way for future innovations in the domain.

These chapters offer in-depth analyses of theoretical foundations, implementation details,
experimental results, and discussions of findings.
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Chapter 2

End-Effector Design and Working Principle

The end-effector mechanism draws inspiration from the efficiency and simplicity of a sling-
shot. Like the traditional handheld tool, this mechanism utilizes elastic energy stored in a
tensioned element to propel objects with precision and speed. By harnessing this principle,
the end-effector achieves dynamic manipulation capabilities crucial for industrial tasks such as
pick-and-place operations and targeted throws.

At its core, the mechanism consists of a tensioning system, akin to pulling back the elas-
tic band of a slingshot, and a release mechanism to propel the object towards its intended
target. This design ensures efficient energy transfer and precise control over object trajecto-
ries. Furthermore, the mechanism’s simplicity facilitates ease of maintenance and operational
reliability, essential for seamless integration into industrial environments.

In this section, we delve into the intricacies of the slingshot-inspired mechanism, detail-
ing its components, functionality, and advantages in achieving versatile and efficient robotic
manipulation. We’ll also compare the two versions of the end-effector, highlighting the im-
provements made in the current streamlined design.

2.1 Design Version 1.0

2.1.1 Gripper Mechanism

The embodiment of the proposed end-effector design 1.0 [37] is shown in Fig. 2.1(a). The
gripper consists of two rigid fingers (F1 and F2) pivoted at the base plate and preloaded with
torsional springs (TS1 and TS2) to enable passive actuation. The fingers have angle limiters
fitted to the base plate, controlling the maximum opening and closing angles. The rigid finger
geometry is designed to maximize the within-hand workspace, accommodating objects when
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the fingers are fully closed, similar to the methodology discussed in [38]. An elastic strip routes
from the rear side of one finger (F1) to the central hoop and ends at the backside of the other
finger (F2). The central hoop connects to the latching mechanism (LM) via ropes. Passive
rollers (P1 and P2) are provided at each finger’s end to reduce traction between the elastic strip
and rigid elements with parallel axes. The elastic element’s advantage is that the motor power
density does not limit the object’s take-off velocity, resulting in an initial velocity much larger
than achievable by the driving motor’s speed.

Figure 2.1: Design of the multi purpose gripper.(a)Rendered computer-aided design(CAD)

model of the gripper mechanism.(b)Exploded view of the LM.

2.1.2 Latching Mechanism Design

Figure 2.1(b) shows the latching mechanism, acting as the driving unit and playing a cru-
cial role in switching between throwing and placing tasks. A switching mechanism without
additional actuators is critical, as energy must be instantly released for throwing an object
and slowly released for impact-free placing. The latching assembly consists of a drive motor
(XM540 DynamixelTM ), two cam-based spring-loaded lever subassemblies, and a spool drum.
The first lever assembly comprises a sun gear (G1), planetary gear (G2), a spring-loaded arm
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with a cam profile (L1), and a one-way clutch bearing (CB1). The gear G2 revolves around
G1, and they are held together by the movable arm L1. The gear G1 is rigidly attached to the
motor horns, and the spool drum is attached with a third gear (G3) for winding the rope. The
bearing CB1’s inner and outer races are rigidly connected to G1 and the spring-loaded arm L1,
respectively. Since CB1 transfers torque in the clockwise direction (CW) and moves freely in
the counterclockwise direction (CCW), the arm L1 must be spring-loaded (S1) to ensure con-
tact between G2 and L1. Doing so transfers the motor’s CCW motion from G1 to G2 via L1.
The drum attached to G3 can rotate about its axis and provided with flanges on both ends to
prevent the rope from derailing during latching or unlatching.

The second lever assembly serves as a torque reducer. It comprises G4, a torsion spring
(TS3) loaded arm with a cam profile (L2), and a gear G5 whose axis coincides with a one-way
clutch bearing (CB2) and torsion spring (TS4). In this arrangement, the torsion spring (TS4)
is attached between the inner race of CB2 and the arm L2. The outer race of CB2 is rigidly
connected to G5. The torsion spring (TS3) at the pivot of L2 keeps L2 and G4 in contact. This
subassembly is called a torque reducer. The torque reducer is designed to produce reaction
torque at L2 in CCW to restrict the CW motion of G4. The functionality of CB2 is crucial to
hold the rope tension while holding an object and permit L2 to rotate while winding up the
rope.

2.1.3 Working Principle

In the previous section, the design details of the gripper were presented. This section
discusses the working principle of a single actuator-based latching mechanism for grasping,
impact-free placing and throwing of an object. Figures 2.2(a) to 2.2(d) illustrate the schematic
and operating sequence of the proposed latching mechanism. Figure 2.3 depicts energy transfer
at different stages of latching and unlatching.

2.1.3.1 Grasping

Due to the one-way clutch bearing (CB1) and the mechanical arrangement of the lever as-
sembly (the spring-loaded L1 keepsG2 in contact withG3), rotating the motor in the clockwise
(CW ) direction removes the contact between G2 and G3. At rest, G2 maintains contact with
G3 due to the counterclockwise (CCW ) moment generated by the spring-loaded arm (L1), as
shown in Fig. 2.2(a). By rotating the motor in the CCW direction, the motion is transferred
to G3, which in turn rotates the spool drum in the CCW direction and winds the rope, as de-
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Figure 2.2: Stages of operation of latching mechanism: (a) At rest (b) Grasping (c) Placing (d)

Throwing.

picted in Fig. 2.2(b). The gears transfer the applied motor torque to G3 through tooth contacts.
Considering ω1 as the motor speed, the speed of the spool attached to G3 is:

ω3 =
N2

N3

N1

N2

ω1 (2.1)

Where ωi and Ni are the angular velocity and number of teeth of the gear Gi, respectively.
Assuming a no-slip condition, neglecting all frictional losses, and taking the gear reduction
ratios as one, the transmitted power remains unchanged during the grasping phase.

τG1ω1 = τG2ω2 = τG3ω3 (2.2)

Figure 2.3: Energy diagram showing the levels of energy stored and discharged at various

stages of operation.

This phase is called the grasping phase since the motion of G3 rotates the spool drum,
which in turn winds the rope attached to the elastic element through a hoop, as observed in
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Fig. 2.4(a)-(c). Consecutively, the potential energy of the elastic surface (Velastic) increases
gradually along with the closure of the spring-loaded rigid fingers about its pivot axis until the
limited maximum closure angle (refer to the grasping phase in Fig. 2.3). When the object is
held only due to soft contact (Fig. 2.4(d)) or no contact (Fig. 2.4(a)), then the total stored
energy Vtotal is:

Vtotal = Velastic + Vspring (2.3)

Where Vspring = 1
2
Ksθ

2
s is the potential energy of the torsion spring, Ks and θs are the

stiffness and angular displacement of the spring (TS1 and TS2), respectively. The potential
energy stored in the elastic strip Velastic has been experimentally determined, as discussed in
Section V. Although G3 is in contact with G4, due to CB2, the CW moment τG4 is zero. As a
result, G4 rotates freely in the CW direction at the speed of:

ω4 =
N3

N4
ω3 (2.4)

Figure 2.4: Schematic of the proposed gripper and its various phases of operation: (a) Pregrasp

state (b) Initial contact (c) Fingertip grasping (d) Shape conformation (e) Throwing.

As the rigid fingers start to move inward (refer to Figures 2.4(a) and 2.4(b)), the elastic
element establishes initial contact on an object. The gripping forces at the object increase as
the elastic strain increases (refer to Fig. 2.4(c) and Fig. 2.3, grasping phase) by rotating the
drum in the CCW direction or reducing the stroke length Ls (relative distance between the
base plate and rigid hoop, as shown in Fig. 2.1 further. Using (2.2), the torque experienced by
the motor due to the rope tension T is calculated from the following equation:
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τG1 = −rdrumT (2.5)

Where rdrum is the spool drum radius.

2.1.3.2 Impact-free Placing – Gradual Release of Energy

After grasping the object, the stored elastic energy is retained as long as G2 remains in
contact with G3. The contact must be removed by moving the arm L1 to release the object, as
illustrated in Fig. 2.2(c). At this stage, the subsequent free-rolling of G3 must be restricted to
ensure the impact-free placing of an object. Otherwise, the stored elastic potential discharges
instantaneously, and the object gains acceleration and collides with the environment.

As the lever L1 is rotated in the CW direction, and if no other external forces are acting on
G3, then the rope tension T due to the restoring elastic potential rolls the drum G3 in the CW
direction. However, due to the torsion spring TS4 with a stiffness K4 of G4 being in contact
with G3, the torque of G3 deflects the spring (TS4) on G4, which in turn resists the rotation of
G3. This is because one end of the spring TS4 is connected to G4, and the other is mounted to
the one-way clutch bearing, which locks the motion of G4 in the CCW direction. The gear G3

acts as a torque source, and G4 has a respective restoring torque to counter the G3 motion and
the torque at the G3 axis. This torque reduction is required to place the object without creating
any collision or impact.

If the stiffness of TS4 at G4 is stronger, then the contact cannot be broken, and the gripper
still maintains the grasp. Therefore, the TS4 spring parameters are chosen to create a relatively
less imbalanced torque between G3 and G4, sufficient to break the grasping contact (between
the object and the gripper) instead of maintaining the torque equilibrium, as discussed be-
low. Due to the unbalanced torques, G4 experiences an angular acceleration. Consequently,
G4 deflects, and its spring potential increases and eventually (G3 and G4) reaches the torque
equilibrium over time. The object loses contact with the gripper without gaining acceleration
during the process, which is essential for placing the object without transferring the impact.

Dynamic Interaction between G3 and G4: Assume no friction at G3 (i.e., damping coeffi-
cient, B3 = 0), then the torque experienced by G3 due to T is τdrum = rdrumT . Then, the gear
contact force fc = τdrum

r3
between G3 and G4 must be equal and opposite (where ri is the pitch

circle radius of gear Gi). The following equations govern the dynamic interaction between G3

and G4:

fcr3 − I3ω3 = 0 (2.6)

fcr4 − I4ω4 −B4ω4 −K4θ4 = 0 (2.7)
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Where θi, Ii, Bi, and ωi are the angular position, moment of inertia, damping coefficient, and
angular acceleration of the gear Gi, respectively. Using the arc length relation and defining
θ4 in the opposite direction of θ3, we get r3θ3 = −r4θ4. Substituting it in (6) and (7) and
simplifying them yields the equation of motion describing the natural dynamics of G4:(

I3

(
r4

r3

)2

+ I4

)
ω4 +B4ω4 +K4θ4 = 0 (2.8)

The system parameters are intentionally chosen to achieve the characteristics of an over-

damped system (damping ratio, ζ > 1) by selecting B4 >>
√
K4

(
I3

r4
r3

)2
+ I4, so that

G3 and G4 move slowly toward the torque equilibrium. Considering the roots of the equa-
tion with a smaller real part magnitude that dominates the time response, the time constant
td =

1

ζ−
√

(ζ2−1)ωn

was found. The damping ratio and natural frequency are ζ = B4

2
√

K4(I3 r4
r3)

2
+I4)

and ωn =
√

K4

(I3 r4
r3)

2
+I4)

, respectively. If td > 0, the system response will eventually decay ex-

ponentially from the initial conditions towards zero, and the system remains stable, as can
be inferred from Fig. 2.3 (refer to the gradual release phase during unlatching). Therefore,
even a short discharge time td would be sufficient to break the grasping contact and nullify the
acceleration gained by the grasped object due to stored elastic potential.

2.1.3.3 Throwing – Instant Release of Energy

The gripper must instantly discharge the stored elastic potential to propel the object outside
the robot’s reachable range. By stretching the elastic strip with a strain ϵ, the strip elongates
to a length (ϵ + 1)L0, where L0 is the free length of the elastic strip. In the proposed design,
actively decreasing the stroke length Ls increases the elongation of the elastic strip, which is
in contact with the grasped object. As the strain increases, the normal forces fg at the contact
area (between the elastic strip and the grasped object) and the elongated final length (L) also
progressively increase since the strip is clamped at the object-gripper contact location, and
the hoop end is moving. More elongation stores more elastic potential energy along the axial
direction. Simultaneous release of the stored elastic energy and breaking of the grasp contact
points facilitate the object to gain rapid acceleration and reach a far distance.

As the motor rotates in the CW direction (refer to Fig. 2.2(d)), due to the one-way clutch
bearing and the other mechanical arrangements, L1 overcomes the torque due to spring S1 and
rotates CW . As soon as the two eccentric cam profiles make contact (refer to Fig. 2.2(d)), the
CW motion of L1 pushes L2 in the CCW direction; consequently, G4 disengages from G3.
The immediate disengagement is crucial, achieved by rotating L1 at a rated angular velocity.
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Thereby, G4 abruptly loses contact with G3 connected to the spool drum that is passively
pivoted about its axis. As a result, the parameters of G4 vanish immediately, and the response
of G3 is solely based on equation (2.6):

ω3 =
fcr3
I3

(2.9)

The instantaneous angular acceleration of G3 is ω3, which aids the elastic element to gain
linear acceleration and move towards the clamped end. Thereby, the object breaks contact with
the gripper and immediately gains the initial rapid energy from the stored elastic potential. As
the object enters the flight phase and accelerates in free space, the energy would be gradually
dissipated due to aerial drag and collision with the environment. The strip is relaxed after re-
leasing the stored potential energy, and the aversion of the elastic strip is avoided by the hoop
tied with a rope. The reason for not using springs in place of elastic strips is that using springs
may potentially yield and fail under high strain, reducing the object’s kinetic energy.

2.2 Design Version 2.0

The upgraded design version 2.0 of the gripper incorporates several modifications to en-
hance its functionality and versatility. Building upon the previous version, this design aims
to provide greater control, flexibility, and precision in regulating the stored elastic energy, en-
abling seamless transitions between pick-and-place and pick-and-throw operations.

2.2.1 Latching Mechanism Enhancements

2.2.1.1 Addition of a Second Motor (M2)

A significant improvement in version 2.0 is the introduction of a second servo motor (M2) to
the latching mechanism. This addition allows independent control over winding and unwinding
the thread or elastic element, providing better regulation and fine-tuning of the stored elastic
energy.

2.2.1.2 Redesigned Latching Mechanism

The latching mechanism has been redesigned to incorporate the second motor (M2). Motor
M1 is responsible for engaging and disengaging the contact between gears G1 (attached to M2)
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Figure 2.5: The CAD model of the EE with the proposed LM Design 2.0

andG2 (connected to the spool drum). This redesign enables switching between pick-and-place
and pick-and-throw modes efficiently.

2.2.1.3 Stroke Length Adjustment

Adding M2 allows for precise stroke length adjustment (Ls), which is the effective length of
the wound thread or elastic element. By winding or unwinding the thread using M2, the stroke
length can be set accurately, providing flexibility in controlling the amount of stored elastic
potential energy.

2.2.1.4 Sensor Integration

An encoder is integrated with the spool drum to measure and estimate the stroke length (Ls).
This sensor feedback enables accurate monitoring and control of the stored elastic potential
energy, which is crucial for precise object manipulation.

2.2.1.5 Unwinding Capability

The previous version of the latching mechanism could only wind the thread in one direction.
The new design, incorporating the second motor (M2), allows for both winding and unwinding
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the thread. This capability is beneficial for adjusting the stroke length and preventing over-
winding, thereby providing greater flexibility in energy management.

2.2.1.6 Gradual Object Release for Placing

The introduction ofM2 facilitates the gradual unwinding of the thread, enabling a controlled
release of the stored elastic potential energy. This feature allows for the impact-free placing
of objects by preventing the conversion of potential energy into kinetic energy, ensuring the
object does not gain unwanted acceleration or initiate flight during placement.

2.2.1.7 Integration and Control

The end-effector version 2.0 is integrated with a Raspberry Pi 4 and a low-level controller
for seamless operation. The controller manages the two servo motors (M1 and M2), enabling
precise control over the latching mechanism and energy storage regulation. Additionally, it
facilitates the measurement of the stroke length from the rotary encoder, providing essential
feedback for accurate object manipulation.

With these enhancements, the gripper version 2.0 offers improved versatility, precision, and
control in performing both pick-and-place and pick-and-throw tasks. The redesigned latching
mechanism, coupled with the additional motor and sensor integration, enables fine-tuning of
the stored elastic energy, ensuring smooth transitions between operational modes and optimal
object manipulation.

2.2.2 Working Principle

This subsection details the working principle of the end-effector (EE) leveraging two motors
for grasping, placing, and targeted throwing of objects.

2.2.2.1 Grasping:

Rotating M1 in the clockwise (CW) direction rotates the lever attached to M2 in the same
direction, establishing contact between gears G1 and G2. With a gear ratio of one, powering
M2 in the counterclockwise (CCW) direction rotates G1, which in turn induces a CW rotation
inG2. This motion extends to the spool connected toG2, causing the thread to wind, as visually
depicted in Fig. 2.6(i)-(ii). Consequently, the elastic element starts to move as it is tied up with
the thread, and the elastic potential gradually increases. Concurrently, the pivoted fingers move
inwards and successfully grasp the object.
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Figure 2.6: Illustrates the operational principles of the two DoF throwing EE. The action se-

quences for pick-and-place and pick-and-throw operations are shown in (i)-(iii) and (iv)-(vi),

respectively, where Mi CW/CCW denotes the ClockWise/CounterClockWise rotation of the

ith motor, Gi represents a gear, and arrows indicate the corresponding direction of rotation.

2.2.2.2 Placing:

The grasp remains secure as long as G1 and G2 are in contact. A CW rotation of M2 gradu-
ally releases the stored elastic potential to facilitate impact-free placing. As a result, G2 rotates
in the CCW direction, unwinds the thread, and subsequently releases the object, as depicted in
Fig. 2.6(iii). The gradual release ensures the placing of the object without gaining accelera-
tion. This deliberate modulation prevents the conversion of stored potential energy into kinetic
energy, effectively preventing the object from initiating flight motion.

2.2.2.3 Targeted Throwing:

When the task demands the throwing of an object to a distant location outside the robot’s
reachable range, the EE must rapidly discharge the stored elastic potential. This is achieved
through a CCW rotation ofM1. Consequently, the instantaneous disengagement between gears
G1 and G2 results in the immediate release of the thread, as illustrated in Fig. 2.6(v)-(vi).
Simultaneously, the object gains kinetic energy, loses contact with the EE, and takes a flight
motion to reach the desired distant location. The magnitude of the stored elastic potential is
determined by measuring the stroke length (Ls).

The current chapter details an end-effector mechanism designed for industrial pick-and-
place operations and targeted throws, inspired by a slingshot. The initial design (Version 1.0)
features a gripper mechanism with torsional springs and an elastic strip for energy storage,
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Figure 2.7: Illustrations of the working principle for grasping, placing, and targeted throwing:

(a) Grasping, (b) Placing, (c) Targeted Throwing.

and a latching mechanism using a motor and cam-based levers for precise control of object
placement and throwing. The improved Version 2.0 introduces a second motor for indepen-
dent winding and unwinding, adjustable stroke length, sensor integration for accuracy, and
enhanced control over energy release. This version offers more precision and versatility, en-
suring efficient and gentle object handling. The next chapter will discuss the mathematical
modelling and prototyping of the end effector, providing a deeper understanding of its design
and functionality.
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Chapter 3

System Modelling and Prototyping

This chapter details the modeling and prototyping of a versatile end-effector for industrial
applications, inspired by biological mechanisms. The gripper combines elastic and rigid el-
ements, utilizing a latching mechanism to store and release elastic potential energy for tasks
such as shape-conformable grasping, impact-free placing, and controlled throwing.

We start by exploring the force-displacement relationship of the elastic strip through exper-
imental setups, revealing its linear behaviour within a specific range. The mathematical rela-
tions are then developed to compute changes in the elastic strip’s length during object grasping,
enabling both power and fingertip grasps.

The chapter also covers the dynamics of the throwing system, including the parametric
modeling of force impulse and object trajectory. Gripping force manipulation is validated
experimentally and modelled to ensure reliable performance.

The prototyping section highlights the design and fabrication of the end-effector, emphasiz-
ing material selection and control mechanisms. Natural latex rubber strips were identified as
the most effective for the gripper’s needs. A laboratory prototype was developed and tested,
demonstrating robust and versatile grasping capabilities.

3.1 Gripper Model

3.1.1 Elastic Strip’s Force and Displacement Relationship

An experimental setup, as shown in Fig.3.1(a), is developed to determine the relationship
between the axial force and elongation of the elastic strip. The force gauge is placed on an
axially movable platform to measure the elastic force (fet) exerted by the elastic strip under
elongation. Preliminary experiments were conducted using the TheraBand Silver (Thickness
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Figure 3.1: (a) Shows the experimental setup to determine the relationship between elastic strip

axial force and elongation (b) Depicts the force-elongation relationship measured using (a) for

the TheraBand Silver elastic strip (Thickness: 0.5mm). The discrete markers are obtained

experimentally, and the dotted line segment shows the linear fit for the experimental data.

0.5mm) and SimpleShot Premium Latex Sheet Elastic Band (Thickness 0.7mm and 1mm), and
the force-elongation relationship was determined empirically.

The force-elongation curve shown in Fig.3.1(b) reveals that in the range of displacement
between 0 to 100%, the behaviour of the elastic strip remains linear, i.e., fet = Ke(l − l0) +
C, where fet is the elastic force, Ke is the elastic constant, l0 and l are the length at rest
and the length of the stretched elastic strip used in the experiment, respectively, and C is the
vertical intercept. Therefore, the Hookean behaviour is utilized in the modelling assuming
the maximum deflection range within 100% as the operating regime. From the experimental
characteristics, the TheraBand Silver (0.5mm thickness) elastic strip was found suitable; hence,
it was chosen for further experimentation. The value of Ke = 114.6N/m is obtained from the
slope of the curve.

3.1.2 Gripping Force Estimation

The design allows the gripping surface to extend after the contacts have been immobilized
and ensures equal tension along the elastic strip’s axial direction. A kinematic relationship for
the gripper is developed to compute the change in length of the elastic strip while gripping an
object using rigid contacts or a fingertip grasp. When the strip is elongated, we parameterize
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Figure 3.2: Kinematic representation to compute the change in the length of the elastic strip

the length of one-half of the strip as L (refer to Fig. 3.2):

L = (l1 + rrϕ+
d

2
+ l2) (3.1)

where l1 is the length from clamping till the common tangent between the roller and elastic
strip, rr is the radius of the roller, ϕ is the central angle of the arc, l2 is the length from the
hoop to the common tangent at the roller, d is the width of the hoop, and a is the width of the
grasped object. From the design geometry shown in Fig. 3.2(b), the l2 segment length can be
obtained from:

l2 =

√(
a− d
2

)2

+ (Lt − Ls)2 (3.2)

The lengths Lt and Ls are shown in Fig. 3.2. During grasping, the object makes contact with
the flat surface of the elastic substrate by exerting normal contact forces (fg) at the interaction
surface. Since the elastic substrate is assumed to be linearly elastic and isotropic, the elastic
force acting on the strip (fe) is determined by the difference betweenL0 and the final elongation
L:

fe = Ke(L− L0) + C (3.3)

Where L0 is the initial half-length of the elastic strip, which is known, and L is obtained
from (11). The relationship between the rope tension T and fe can be expressed as T = fe.
The total elastic energy of the strip is assumed to be:

Ve =

∫ L

L0

fe dL (3.4)
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The components of fe can be resolved into the normal component (fg) and vertical compo-
nents (fL and fR), where fL and fR are the tangential forces at the contacts of the left and right
fingers, respectively:

fL = fR = fe cos(α) (3.5)

fg = fe sin(α) (3.6)

where α = arctan
(

(a−d)
2(Lt−Ls)

)
. The assumption is also validated by the experimental results,

which are presented next.

3.1.3 Versatile Grasping – Power and Fingertip Grasp

Figure 3.3: Illustrates the capabilities of grasping test objects (o1 and o3 – cuboids with sides

35 mm and 50 mm, o2 and o4 – cylinder with radius 35 mm and 50 mm, o5 – tetra pack, o6

– bottle, and o7 – egg): 1st row shows soft contact or shape conformation and 2nd row shows

rigid contact or fingertip grasp.

A single actuator drives the elastically coupled rigid fingers, making the design simpler
and conforming to the object’s geometry. The performance was evaluated by grasping objects
with different shapes and sizes to demonstrate the gripper’s versatility. Figure 3.3 illustrates
that the gripper can grasp different 3D printed objects (cuboid with sides 35mm and 50mm,
cylinder with radius 35mm and 50mm) by establishing a power grasp (shape conformation)
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and fingertip grasp. Large deformation of the gripping surface during the power grasp aids the
gripper in maintaining a reliable grip even when external disturbances are applied. Compared
to traditional two-finger grippers, the proposed gripper can grasp fragile objects through shape
conformation and provide safe grasping by adjusting the grasp contact forces. Due to the large
contact area and hybrid structure, the frictional force is significantly greater than many rigid
grippers. More importantly, the contact force can be modulated by adjusting the stroke length
without affecting the contact area between the object and the gripping surface. Due to the
hybrid design, the fingertips do not bend if the finger length increases, which is a common
issue in many soft grippers.

3.2 Throwing System Modeling

In this section, we present a parametric model of the force impulse applied to the object by
the end-effector while throwing and the object dynamics during its projectile motion. In the
following description, all poses are expressed with respect to the world coordinate system. The
6-DoF object poses at time t is denoted by wTo(t), with t = 0 corresponding to the start of the
force application. The model is parameterized by object and end-effector parameters ηo and
ηee, respectively. The object state is defined as q(t) = [wTo(t)

wṪo(t)]
T , where the poses are

expressed as a vector of size 7: 3D position and rotation unit quaternion.

3.2.1 Gripping force manipulation

To verify the gripping force fg determined from the model (16), a setup shown in Fig. 3.4
is developed. The gripping force fg is modulated by appropriately setting the stroke length Ls

while the gripper firmly holds an object, and the corresponding fg are estimated experimen-
tally. Suppose the coefficient of friction (µs) is known, thereby utilizing the Coulomb friction
model, the normal contact forces fg can be estimated from the applied tangential force (f ′

a).
To measure the coefficient of friction, an object made of PLA material is placed on top of the
sample elastic strip with the known vertical load (fn) and subsequently pulled horizontally us-
ing a force gauge with a linear guide using the setup shown in Fig. 3.4(a). Thereby, the friction
coefficient is found using

µs =
fa
fn
. (3.7)

Estimating the torsional coefficient needs the contact geometry as the contact changes;
therefore, we assumed that the interaction surface is a planar patch and ignored the torsional
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Figure 3.4: Experimental setup to estimate friction coefficient and contact forces: (a) setup to

measure the coefficient of friction of between the elastic strip and 3D printed object. (b) setup

for estimating the object gripping force.

influence. To estimate fg during rigid contacts, the gripper is placed along the axis of the linear
guide rail, as shown in Fig. 3.4(b). Using static equilibrium conditions, the gripping force
required for a stable, rigid grasp is determined using

fg =
f ′
a

2µs

(3.8)

where f ′
a is the applied force and µs is determined experimentally. For each grasp, the object

position would reach the centre of the gripper along the y-axis, where the contact forces become
equilibrium. It enables the gripper to grasp various objects even with uncertain positions and
reduces the likelihood of damaging the object. To demonstrate this, a cylindrical object was
considered with two different sizes (35mm, and 50mm). Figure 3.5(a) shows the comparison of
fg estimated using (3.7) from the experiments and the model parameters (3.6) for the fingertip
grasp. The closeness of the results also validates the assumption we have considered. Using
the same model (3.7), the contact forces during the soft contact are also found experimentally,
as shown in Fig. 3.5(b). The plot (refer to Fig. 3.5) shows that the gripping force fg increases
as stroke length decreases. This is expected because reducing the stroke length increases the
elastic force, thereby, the gripping force increases. From Fig. 3.5, we can deduce that a greater
gripping force is acting on the object of the same diameter and stroke length during soft contact
than in rigid contact. This effect is due to more contact area because of shape conformation
and the hyperelastic nature of the soft gripping, where the coefficient of friction would be high.
From the foregoing, the gripping force estimated from (3.6) is utilized while solving the object
dynamics, as detailed next.
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Figure 3.5: Gripping forces (a) compares the experimental data and the estimated using the

model for rigid contact (fingertip contact) with the object.(b) experimental data for soft contact

with the object.

3.2.2 Elastic Membrane Force

As shown in Fig. 3.6, the elastic band undergoes stretching when setting the stroke length
Ls during object grasping. The elongated length, L(Ls; rr, l1, ϕ), is a function of Ls and the
end-effector geometry parameters rr, l1, and ϕ, which are shown in Fig. 3.6. Refer to [37] for
details about this function. Denoting the initial length of the elastic band by L0, its deformation
is ∆L(Ls; rr, l1, ϕ) = L(Ls; rr, l1, ϕ)− L0. We devised a simplified test setup and derived the
following empirical relationship between ∆L and the axial force fe in the elastic band:

fe = Ke3∆L
3 +Ke2∆L

2 +Ke1∆L+ C (3.9)

where Ke3, Ke2, Ke1, and C are elasticity parameters. This force is active only for the duration
∆t in which the elastic band is in contact with the object. Denoting the set of all end-effector
parameters by ηee = {rr, l1, ϕ,Ke3, Ke2, Ke1, C,∆t}, the total magnitude of the force acting
on the object is fo(Ls; ηee) = 2fe(Ls; ηee) cosα (see [37] for details about α). This force acts
in the direction shown in Fig. 3.6, in the plane of the end-effector. It can be converted to the
world coordinate system using the known end-effector pose. We denote this force generated
by the end-effector, represented in the world coordinate system, as the 3D vector wfo(Ls; ηee).
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Figure 3.6: Kinematic representation of the end-effector for computing the end-effector’s force

3.2.3 Object Dynamics

Having established the initial force applied to the object, the 3D trajectory of the object
can be determined through object dynamics. The governing equations of an object’s motion,
considering the effect of air drag in the world coordinate system, are as follows:

mẍ = wfo(Ls, τ ; ηee)x + fDx

mÿ = wfo(Ls, τ ; ηee)y + fDy

mz̈ = wfo(Ls, τ ; ηee)z + fDz

Ixxω̇x + (Izz − Iyy)ωyωz = 0

Iyyω̇y + (Ixx − Izz)ωzωx = 0

Izzω̇z + (Iyy − Ixx)ωxωy = 0

(3.10)

Where fD = fd + fg, with fd representing the drag force and fg the force due to gravity, I
is the object inertia matrix, and wfo(Ls, τ ; ηee) is the end-effector force expressed in the world
coordinate system. Note that wfo(Ls, τ ; ηee) is non-zero only during time τ ∈ [0,∆t], when the
elastic potential is being discharged. Denoting the set of object parameters as ηo = {m, l, b, h}
(used to calculate I) and expressing (3.10) as a first-order state space equation:

q̇(t) = g(τ, q(t), Ls; ηe, ηo) + fD (3.11)
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Where g is a nonlinear function describing the object dynamics. This first-order form is used
for parameter identification and Throw Optimization (TO).

Equations (3.10) allow determining the object’s trajectory for the given initial conditions.
In summary, this section reports on the working principle of the different capabilities of the
proposed gripper. The next section discusses the mathematical modelling and fabrication of
the gripper.

3.3 Prototyping of the End Effector

3.3.1 Design and Fabrication

The end effector, predominantly 3D printed using polylactide polymer (PLA), has been
meticulously designed to optimize its functionality and efficiency in performing various tasks.
The design emphasizes energy provision through significant displacement of the elastic contact
surface, allowing for versatile and effective grasping capabilities.

3.3.2 Elastic Element Selection

Based on the specific task requirements, the characteristics of the elastic element have been
selected to maximize elastic energy storage and release. After evaluating various materials,
natural latex rubber sheets were identified as the most viable solution due to their superior ten-
sile strength and elongation capabilities. Off-the-shelf natural latex rubber strips with varying
thicknesses (0.5mm, 0.7mm, 1mm) were used in the construction and testing of the prototype,
allowing for fine-tuning of the gripper’s performance based on different experimental needs.

3.3.3 Gripping Surface and Components

The gripping surface of the end effector is made from polyurethane rubber, chosen for its
high friction properties, which enhance the grip on various objects. To ensure stability and
precision in movement, torsion springs are used to preload the two fingers at their respective
pivots.

The spool drum, designed to wind the inextensible thread, features flanges that prevent
derailing, ensuring smooth and reliable operation. An encoder attached to the spool drum esti-
mates the gripper’s stroke length (Ls), which is critical for accurately controlling the effective
wound thread length and, consequently, the gripping force.
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3.3.4 Integration and Control

The entire gripper is designed to be compact and lightweight, making it suitable for attach-
ment to floating bases, such as drones, for aerial tasks, including throwing. The gripper is
integrated with a Raspberry Pi 4 and a low-level controller for control and measurement pur-
poses. This setup manages the motors and measures the stroke length from the rotary encoder,
providing precise control over the gripper’s movements.

3.3.5 Prototype Development and Testing

Figure 3.7: Prototype of the end-effector design 2.0

A laboratory prototype of the gripper has been developed, as shown in Fig. 3.7. This
prototype serves as a testbed for conducting experimental studies and validating the design’s
effectiveness. Various tests have been conducted using natural latex rubber strips of different
thicknesses to determine the optimal material properties for specific tasks. The experimental
results have demonstrated the gripper’s ability to perform robust and versatile grasping, con-
firming the design’s suitability for practical applications.
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Integrating advanced materials and precise control mechanisms has resulted in a highly
functional and adaptable end effector capable of meeting the demands of various challenging
tasks.

The current chapter outlines the modeling and prototyping of a versatile end-effector for
industrial applications. The chapter begins with a detailed description of the experimental
setup used to determine the force-elongation relationship of an elastic strip, revealing a linear
behavior within a specific displacement range. This elastic behavior is crucial for the gripper’s
function, providing the necessary force for secure grasping. The design integrates kinematic
relationships to compute changes in the elastic strip’s length during gripping, with a focus on
achieving both power and fingertip grasps for various objects.

The gripping force is experimentally validated and modeled to ensure reliable performance.
Additionally, the chapter discusses the dynamics of the throwing system, including the para-
metric modeling of force impulse and object trajectory. The prototyping section describes the
end effector’s design, emphasizing energy provision through elastic elements and precise con-
trol mechanisms. Various materials were tested to optimize performance, with natural latex
rubber strips proving most effective.

The chapter concludes with the successful development and testing of a laboratory proto-
type, demonstrating the end effector’s capability for robust and versatile grasping. The next
chapter will delve into system identification and throw optimization, further refining the end
effector’s functionality for practical applications.
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Chapter 4

Parameter Identification and Throw Optimization

This chapter delves into two critical components for enhancing the accuracy of robotic
throwing: parameter identification and throw optimization. Due to the highly sensitive na-
ture of throwing dynamics to model uncertainties, it is essential to accurately estimate both
the gripper’s and the object’s parameters. The chapter presents a comprehensive two-stage pa-
rameter identification process to minimize the discrepancies between observed and predicted
trajectories. It addresses the throw optimization problem, aiming to find the optimal initial
conditions and control variables to achieve precise target locations. The integration of these
methodologies forms the backbone of the approach to dynamic and accurate object manipula-
tion in robotics.

4.1 Parameter Identification

The dynamics of throwing are highly sensitive to uncertainties in both the gripper’s model
and the object’s model parameters. Even minor discrepancies can significantly affect the ob-
ject’s trajectory and final position. Accurately modelling the interaction between the gripper
and the object is challenging. To approximate the relationship between the object’s final lo-
cation (pg) and the gripper’s control variable (Ls) with high fidelity, we exploit the coupled
nature of the gripper model and the object’s dynamics, as detailed in Algorithm 1.

We perform a two-stage parameter identification process:

1. Gripper Model Parameters (η): The gripper model parameters are estimated by min-
imizing the error norm between the experimentally observed final reach (xe) and the
computed reach from the mathematical model (xm). The gripper parameters include
Ke1, Ke2, Ke3, C as defined in (3.9), and rr, l1, ϕ obtained from the geometry of the grip-
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per. A set of N samples is collected using various sample objects (cylinder, cuboid, and
cube) thrown at different ranges with different stroke lengths.

2. Object Model Parameters (o∗): Using the optimal gripper parameters (η∗) obtained
from Stage 1, the object’s parameters (m, l, b, h)—representing the mass, length, breadth,
and height of the object, respectively—are estimated.

Algorithm 1 is employed to identify and incorporate these parameters into the model. Figure
4.3 demonstrates the improved accuracy of the model after incorporating η∗ and ξ∗, showing
a significant enhancement in the closeness between the experimentally estimated and system
model predicted reaches.

To predict the target location of the object, we integrate the object’s dynamics forward in
time from Equation (3.10) until z = 0, where the object hits the ground plane. This requires
knowledge of the object and end-effector parameters (ηo and ηee, respectively). Given the
dynamic nature of throwing, even small errors in these parameters can lead to substantial de-
viations in the predicted target location (pm(Ls;ηo,ηee)). Thus, we develop the parameter
identification algorithm.

In our iterative two-stage algorithm (Algorithm 1), N denotes the number of data points,
pobs the observed landing location, and K the number of objects. The process involves:

1. Initializing η
(j)
o from CAD models and minimizing the L2 distance between the experi-

mentally observed final reach of the object and its model-based estimate. This updates
the end-effector parameters ηee, which are consistent across all K objects.

2. Using the updated ηee from Stage 1 in the same objective function to update theK object
parameters {η(j)

o }Kj=1.

These stages are repeated until convergence, i.e., until the changes in the end-effector and
object parameters between iterations fall below a specified threshold.

4.1.1 Assessment of Parameter Identification

We assess the effectiveness of the parameter identification (PI) process described in the
above section 4.1 by comparing the observed reach of the thrown object with the reach pre-
dicted by the mathematical model. Reach is calculated as the component of the 3D landing
location along the axis straight ahead of the robot.

Figures 4.1 & 4.2 show that the reach prediction accuracy of the model increases signifi-
cantly after PI for all the objects considered. Specifically, Figure 4.3 compares the throw reach
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Algorithm 1: Parameter Identification

Inputs:1

• Dataset: (object target location, stroke length, object ID) {
(
p
(i)
obs, L

(i)
s , o(i)

)
}Ni=1.

• Initial end-effector parameters ηee,init.

• Initial object parameters {η(j)
o,init}Kj=1 from CAD models.

Output: Optimized parameters η∗
ee, {η

(j)∗
o }Kj=1

Initialization:

ηee ← ηee,init

for j = 1 to K do

η
(j)
o ← η

(j)
o,init

end

repeat

Stage 1:

ηee = argmin
ηee

N∑
i=1

||pm(L
(i)
s ;η(o(i))

o ,ηee)− p
(i)
obs||

2
2

Stage 2: for j = 1 to K do

η(j)
o = argmin

ηo

∑
i∈Nj

||pm(L
(i)
s ;η(j)

o ,ηee)− p
(i)
obs||

2
2

end
until change in ηee or {η(j)

o }Kj=1 is less than threshold;

η∗
ee ← ηee

for j = 1 to K do

η
(j)∗
o ← η

(j)
o

end
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Figure 4.1: Illustrates the comparison between the throw reach of 4 different cubes and 3

different cuboids obtained from the mathematical model before and after performing parameter

identification. The boxplot shows the experimental horizontal reach of the considered object.
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Figure 4.2: Illustrates the comparison between the throw reach of 4 different cylinders and 3

different spheres obtained from the mathematical model before and after performing parameter

identification. The boxplot shows the experimental horizontal reach of the considered object.
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Figure 4.3: Illustrates the comparison between the throw reach of a cube obtained from the

mathematical model before and after performing parameter identification. The boxplot shows

the experimental horizontal reach of the cube.

for a cube of side 5 cm before and after PI (refer to the supplementary material for the plots
of other objects considered for PI). It is important to note the limitations of PI, which lead
to inaccuracies when throwing unseen objects to the target location. This occurs because the
end-effector (EE) and model parameters are not updated within the throw optimization (TO)
settings, as detailed in Section 4.2.

To address this issue, we adopt residual learning techniques as detailed in Chapter 5, and
the outcomes are elaborated in the subsequent sections.

4.2 Throw Optimization

To achieve the desired target location pdes, we solve a constrained nonlinear optimization
problem to determine the optimal initial state q(0)∗ and the stroke length L∗

s:

q(0)∗, L∗
s = arg min

q(0),Ls

||pm(Ls;η
∗
o,η

∗
ee)− pdes||22

s.t. Eq. (3) (object dynamics),

q(0)min ≤ q(0) ≤ q(0)max,

Ls,min≤ Ls ≤ Ls,max (4.1)
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Here, η∗
ee and η∗

o are the identified end-effector and object parameters, respectively. The
limits for the initial state (q(0)min,q(0)max) and stroke length (Ls,min , Ls,max ) are determined
based on the robot’s operating environment and the end-effector dimensions.

Once the optimal initial state q(0)∗ and L∗
s are obtained, the robot plans a secondary tra-

jectory to reach the end-effector pose. The throwing event is executed once the robot reaches
these optimal initial conditions.

The nonlinear constrained optimization technique finds the initial condition σ for placing
the object at the desired location. The decision variable σ is defined as follows:

σ = [x, y, z, ẋ, ẏ, ż, ϕ, θ, ψ, Ls]
T (4.2)

Here, x, y, z represents the initial position of the object’s center of mass, ẋ, ẏ, ż represents
the initial velocity of the object, ϕ, θ, ψ represent the object’s orientation with respect to the
F frame, and Ls is the stroke length control variable. The initial velocity [ẋ, ẏ, ż]T for a fixed
base is assumed to be zero, thus eliminating the need for acceleration and deceleration phases
to launch the object. However, the initial velocities are treated as free variables for a moving
base.

The throw optimization problem, which is equivalent to the trajectory optimization problem,
is defined as follows:

• Goal Position: pg = [xg, yg, zg]
T

• Decision Variable: σ = [x, y, z, ẋ, ẏ, ż, ϕ, θ, ψ, Ls]
T

• Objective Function:

min
σ
||pg − p||22 (4.3)

• Subject to:

ṗ = f(q) + g(Ls, τ) (Object dynamics) (4.4)

σL < σ < σU (Boundary conditions) (4.5)

Here, σU and σL are the upper and lower bounds for the variable σ. Once the optimal
initial condition σ∗ is obtained from the throw optimization, the mobile manipulator plans the
secondary trajectory to reach the gripper’s pose with nonzero velocity. The robot then executes
the throw upon reaching the optimal initial position.

This chapter focuses on improving the accuracy of throwing dynamics by addressing uncer-
tainties in both gripper and object models. The parameter identification (PI) process is detailed
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through a two-stage algorithm to estimate gripper and object model parameters by minimiz-
ing the error between observed and model-predicted object reaches. The effectiveness of PI is
assessed by comparing the accuracy of reach predictions before and after parameter identifi-
cation. Furthermore, the throw optimization problem is formulated as a constrained nonlinear
optimization task to determine the optimal initial state and stroke length for achieving a de-
sired target location. The next chapter highlights the need to integrate throw optimization with
learning-based approaches to further address limitations and enhance accuracy.
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Chapter 5

Learning Based Control

In this chapter, the integration of learning-based control techniques for enhancing the ac-
curacy and repeatability of targeted throwing tasks is explored. Beginning with the collection
of experimental data, which involved capturing manipulator movements and calibrating cam-
eras to obtain precise object pose data, the chapter proceeds to discuss the implementation of
residual learning methodologies. Various machine learning algorithms are assessed for their
effectiveness in predicting stroke length adjustments (∆Ls), with support vector regression
(SVR) emerging as the most suitable approach.

The targeted throwing process, facilitated by throw optimization and SVR-based residual
learning, is then detailed. This process enables accurate throwing of unseen objects to speci-
fied target locations, showcasing the system’s adaptability and precision. Finally, repeatability
tests conducted on both robot arm and drone platforms demonstrate the system’s consistent
performance across multiple trials under various conditions, underscoring its reliability and
robustness.

5.1 Data Collection

Our experimental setup involved varying stroke lengths (Ls) as measured by an encoder
in the end-effector and conducting throws of sample objects, including cubes, spheres, and
cylinders of various sizes and masses. Data collection was conducted by setting the EE’s
pose and capturing images of the manipulator during experiments, with a camera positioned
to provide a lateral view of the manipulator’s movement and a checkerboard placed in the
ackground to be considered as the reference plane. We perform camera calibration to obtain
extrinsic and intrinsic parameters, along with the offset between the checkerboard and the
plane of the object’s trajectory. Next, we identify the object’s centre pixel coordinates from
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each captured image. Finally, we calculate the object’s world coordinates by utilizing the
known offsets and camera parameters. This pose data was then utilized to determine the reach
of the thrown object. Our final dataset consists of 865 throws of 14 objects, such as cubes,
cylinders, spheres, and cuboids. These objects were selected to represent different dimensions
and masses.

5.2 Residual Learning

Figure 5.1: Illustrates the methodology describing the end-to end operations from the given

input parameters to applying motion commands to the robots.

The effectiveness of residual learning is assessed by the accuracy of ∆Ls prediction. Out
of the 14 objects comprising our dataset, as discussed in Section 5.1, we held out two objects
in a round-robin fashion and trained on the remaining 12 objects. The mean and standard
deviation of the mean square prediction error are computed over all the training runs as shown
in Table 5.1.

We tried the following learning algorithms: multi-layer perceptron (MLP) neural network,
random forest (RF), and support vector regression (SVR). The MLP considered in this context
is a three-layered network that takes in the feature vector extracted from a pre-trained PointNet
architecture [39] and the object parameters as input to give the residual stroke length (∆Ls).
Table 5.1 shows that in our low-data regime, the MLP underperforms due to low data and over-
fits on the seen data, whereas the SVR model performs best. Hence, all the throw experiments
described after this are conducted with the SVR residual learning model.

41



Table 5.1: Comparison of machine learning algorithms for residual learning (error in ∆Ls

prediction). The mean square error (MSE) is computed between the predicted and calculated

∆Ls.

Residual Learning Algorithm ∆Ls MSE (mm)

Multi-layer Perceptron (MLP) 610.5039± 268.2805

Random Forest (RF) 0.2082± 0.1334

Support Vector Regression (SVR) 0.2056 ±0.1146

5.3 Targeted Throwing

In this subsection, we evaluate the ability of our entire system to throw a given object to a
specified target location. We used unseen objects (see object shapes presented in Fig. 5.2) that
are distinct from those used for parameter identification and residual model training. Specifi-
cally, we used 5 non-convex and 2 primitive shapes (a cube and a cuboid of unseen mass and
dimensions). We conducted 5 throws per object using the following procedure (depicted in
Fig. 5.1) to throw a given object to a specified target location. First, we calculate the end-
effector pose q(0) and stroke length Ls using throw optimization. The object mass is assumed
to be known, and the inertia matrix is calculated from the CAD software. Next, we compute the
object surface point cloud from the mesh and use the composite point cloud as shown in Fig.5.3
to calculate the residual stroke length. Finally, we ensure that the object roughly matches the
pose taken in the mesh file and set the end-effector stroke length to Ls+∆Ls, following which
a flag is transmitted to the controller to initiate the throwing event. The object takes a flight
trajectory and ultimately lands on the ground. The landing location is recorded and compared
with the target landing location.

Figure 5.2 shows that our throw optimization algorithm, in conjunction with SVR-based
residual learning, is able to throw all the unseen objects with reasonable accuracy near their
specified target locations. Residual learning significantly increases throw accuracy. We observe
that model-based throw optimization tends to overshoot the target, possibly because it does not
account for the extra stretching of the elastic band induced by the complex-shaped objects.
Residual learning overshoots much less, possibly because it is trained to predict ∆Ls based on
the object shape and its location within the end-effector grip.
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Figure 5.2: Illustration of the comparison between the throw reach of a cube obtained from the

mathematical model before and after performing parameter identification. The boxplot shows

the experimental horizontal reach of the cube.

5.3.1 Repeatability of Targeted Throwing

A preliminary assessment of the repeatability of the targeted throwing ability of our end-
effector on two platforms: a robot arm and a drone. Different from accuracy, this tests how
closely the object lands over multiple trials for a given stroke length.

When mounted on the robot arm and throwing a cube with a side length of 5 cm, the ob-
served reach was 1.345± 0.1086m over 20 trials.

When mounted on a drone and throwing the same cube, we conducted 20 trials with the
same stroke length for four different propeller speeds to test the effect of propeller wash. The
observed reach was 3.046 ± 0.0941m, 3.0387 ± 0.0949m, 2.832 ± 0.0955m, and 2.8221 ±
0.1003m for propeller speeds of 0, 8900, 13900, and 14860 RPM respectively.
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Figure 5.3: The point cloud of the end-effector’s fingers grasping an object is used as one of

the inputs to the residual network.

Figure 5.4: Repeatability of the throwing end-effector integrated with a manipulator

Platform Propeller Speed (RPM) Reach (m)

Robot Arm N/A 1.345± 0.1086

Drone

0 3.046± 0.0941

8900 3.0387± 0.0949

13900 2.832± 0.0955

14860 2.8221± 0.1003

Table 5.2: Repeatability of targeted throwing on different platforms.
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Figure 5.5: Repeatability of the throwing end-effector integrated with drone

These results indicate that while the accuracy of the throw can vary depending on the plat-
form and conditions such as propeller speed, the system exhibits good repeatability under con-
sistent conditions.

The chapter outlines the methodology and results of utilizing machine learning techniques
to enhance the accuracy and repeatability of targeted throwing tasks. Data collection involved
capturing images of the manipulator’s movements and calibrating the camera to obtain object
pose data. Residual learning, assessed through various machine learning algorithms, effec-
tively predicted stroke length adjustments (∆Ls). Support vector regression (SVR) emerged as
the best-performing algorithm for this task. The targeted throwing process involved employ-
ing throw optimization coupled with SVR-based residual learning to accurately throw unseen
objects to specified target locations. Repeatability tests conducted on a robot arm and a drone
demonstrated consistent performance across multiple trials, indicating the system’s reliability
under various conditions.
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Chapter 6

Conclusion

In this thesis, we have introduced a significant advancement in robotic manipulation through
the development of a novel two-DoF gripper, inspired by the mechanics of a slingshot. This
innovative design offers a versatile approach to object handling, enabling the gripper to pick,
place, or dynamically throw objects to designated locations. The core of our design is the use
of an elastic membrane as a gripping surface, which is activated through a latching mechanism
to store elastic potential energy. The controlled release of this energy determines whether an
object is gently placed or swiftly propelled towards its target.

We implemented a throw optimization technique to calculate the initial parameters required
for targeted throws. However, the inherent dynamics of throwing introduce uncertainties due to
variations in model or environmental parameters, which can affect accuracy. To mitigate these
challenges, we developed a comprehensive two-stage parameter identification process. This
iterative refinement method has significantly improved our ability to reach desired goal loca-
tions, as demonstrated through experimental validation. To further address the uncertainties in
the object’s reach, we incorporated a residual learning algorithm along with throw optimiza-
tion. This combination reduces the effects of unmodeled dynamics and enables the system to
accurately throw unseen objects to target locations.

Our experiments have highlighted the remarkable capabilities of the proposed gripper, both
in standalone operations and when integrated with robotic platforms such as manipulators and
drones. Notably, the end-effector has demonstrated the ability to project objects well beyond
the traditional manipulation workspace, indicating its potential for applications requiring ex-
tended reach and dynamic object manipulation.

Looking ahead, there are several exciting avenues for future work. One promising direction
is the development of an updated version of the end-effector that can catch, grasp, pick, and
throw objects. Integrating this enhanced gripper with various robotic systems could enable
it to perform tasks with non-zero initial velocities, such as catching or transferring objects
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between robots. This capability would be particularly useful in scenarios where two robots
need to transfer an object from one to another, adding a new dimension to collaborative robotic
manipulation.

Furthermore, scaling the design appropriately holds promise for enhancing reach capabili-
ties, opening up possibilities for a wide range of practical applications. By continuing to refine
and optimize the gripper design and control algorithms, we envision even greater advancements
in robotic manipulation, with significant implications across various industries and domains.

In conclusion, this thesis represents a contribution to the field of robotics, offering a trans-
formative approach to object manipulation through the development of this innovative end-
effector. With its unique design, advanced control mechanisms, and demonstrated capabilities,
the end-effector sets a new standard for how robots interact with and manipulate objects in
diverse real-world scenarios. The future work proposed here will further enhance its function-
ality and broaden its applicability, paving the way for more sophisticated and versatile robotic
systems.
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