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Abstract

Although the concept of a knowledge graph has been discussed since at least 1972 [93] it wasn’t until
Google [96] unveiled their version in 2012 that it truly took off. Since then, several companies have
started working on their own knowledge graphs, including Google, Amazon [54], eBay [82], Twitter,
IBM [21], LinkedIn [37], Microsoft [95], and Uber. There has been a rise in the number of academic
publications devoted to the topic of knowledge graphs in recent years, reflecting the growing interest
in this idea. There are several books [79, 85, 52] and papers [84, 24] that detail knowledge graphs, as
well as unique techniques to generating and analysing knowledge graphs and assessments of various
knowledge graph aspects [103].

Apart from these enterprise Knowledge Graphs which are private and not accessible to public, there
are a number of a number of public knowledge graphs published where the content is accessible for
users of the web. The publicly available Knowledge Graphs are called open KGs. DBpedia [58], YAGO
[40], Freebase [101], Wikidata [8] are the top few examples of such open KGs which are multi-domain
and are built using the data from Wikipedia.

Automatic extraction of information from text and its transformation into a structured format is an
important goal in both Semantic Web Research and computational linguistics. Knowledge Graphs (KG)
serve as an intuitive way to provide structure to unstructured text. A fact in a KG is expressed in
the form of a triple which captures entities and their interrelationships (predicates). Multiple triples
extracted from text can be semantically identical but they may have a vocabulary gap which could lead
to an explosion in the number of redundant triples. Hence, to get rid of this vocabulary gap, there
is a need to map triples to a homogeneous namespace. In this work, we present an end-to-end KG
construction system, which identifies and extracts entities and relationships from text and maps them to
the homogenous DBpedia namespace. For Predicate Mapping, we propose a Deep Learning architecture
to model semantic similarity. This mapping step is computation heavy, owing to the large number of
triples in DBpedia. We identify and prune unnecessary comparisons to make this step scalable. Our
experiments show that the proposed approach is able to construct a richer KG at a significantly lower
computation cost with respect to previous work.

Over recent years, document similarity has grown to become the foundation of various natural lan-
guage processing activities, which are crucial to information retrieval, automatic question answering,
machine translation, dialogue systems, and document matching. For document or topic similarity, fo-
cusing on the semantics within the text has been the most common and pursued direction of effort.

vii



viii

Our novel KG-based similarity classifier works on the limitations of previous approaches and also pro-
vides reasoning behind the classification. Our results show that we’re able to score similarity between
Wikipedia documents accurately. Furthermore, the accuracy of our approach is able to withstand against
noise and paraphrasing. We also see that our classifier can be used for category outlier detection in DB-
pedia.

In this thesis, we will focus on Knowledge Graph construction from unstructured text and document
similarity. Our knowledge graph construction approach performs better > 25% better than Cosine
& Rule-based approaches, and is also computationally cheaper than state-of-the-art T2KG [53] by a
magnitude of atleast 106. We use these constructed knowledge graphs to classify similarity between
two documents, which is used to detect category outliers in DBpedia and find highly similar documents.
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Chapter 1

Introduction

1.1 Motivation

The correspondence of data is all text driven. Specialists produce papers and articles that are made
accessible in on the web and disconnected from distribution media as text reports. The whole library,
innovation, administration, and exploration scene is based on unstructured text articles, blogs, research
papers, and so on. With all this large amount of unstructured information stored in form of text doc-
uments, there is a rising need to organize and structure them inorder to being able to use information
effectively. One of the most effective and popular ways to extract knowledge from text is Knowlege
Graphs.

A KG built over any unstructured text document helps in making the information in the document
queryable. This makes the previously inoperable information usable for tasks such as search result
ranking, recommendation, question answering, etc [77, 32, 97, 78, 3]. Another interesting application
of constructing KG over text is to add new or missing information to an existing KG like DBpedia [3],
Freebase [7].

1.2 Knowledge Graph

In any industry, text documents that contain important data are a common occurrence. Hence, im-
proving the ability of machines to understand the intent and context of information to the level of humans
is one of biggest challenges faced today. Achieving this would involve transformation of unstructured
text to a structured format. Knowledge graphs provide an intuitive way of giving shape and structure to
the initially unstructured information. A fact in a KG is represented by a triple of the form <S; P; O>.
S, O denote the subject and object, respectively and P is the predicate which describes the relationship
between S and O.

1



Figure 1.1 Graphical extraction of a webpage’s information

1.3 Brief study of a KG: Chilean tourism

Chilean Tourism KG [42] is a made-up knowledge network based on Chilean tourism to illustrate the
notion of a KG. Government agencies are responsible for maintaining an up-to-date knowledge graph so
that the KG can be used to advertise both new and established tourism attractions. To name only a few
examples of what the knowledge graph will ultimately cover: cities, intercity lines, tourist destinations,
cultural events, services, and businesses. Among the many potential applications for this data, one is
the development of a multilingual website where tourists can search for attractions, events, and related
services; the gathering of more information about the visitors’ demographics popular season, nationality,
etc.; and the investigation of tourists’ attitudes toward various topics such as reviews, event and service
summaries, reports of crime, etc. The KG could also help with common itineraries that detail the order
and sequence of attractions to see on a vacation. We can also have bus, train and airlines network graphs
which can be used for not only planning trips but also to offer more strategically sound alternate routes.

2



Figure 1.2 Tourism in Chile illustrated as a knowledge graph of transport connections [42]

1.4 Problem 1: Text to KG

Owing to a large amount of information in form of text, it becomes important to construct Knowledge
Graph from unstructured text. In chapter 3, we introduce a novel end-to-end text-to-KG construction
system, which is mapped to DBpedia namespace in-order to reduce the redundancy due to vocabulary
gap in unstructured text. We introduce an effective pruning strategy which reduces the Predicate Map-
ping step to be highly efficient (refer section 3.2.3 for details). We perform automatic evaluation using
Wikipedia articles which shows that our system is able to generate knowledge graph with an F1-score of
0.678 (as shown in table 3.1). Due to a lack of standard evaluation metric for the problem statement, we
also perform manual evaluation which showcases that we’re able to generate a Knowledge Graph with a
precision of 0.77, which is better than the state of the art. We also analyse at which step and why we’re
getting errors. Apart from this, we evaluate the significance of the sentence simplification module, as
seen in section 3.3.3 we not only get higher number of KG triplets, but also improve the quantity of
accurate triplets and reduce the number of misleading and incorrect triplets. We also see that our system
is able to get rid of redundancy due to vocabulary gap, details are in section 3.3.4.

1.5 Problem 2: Document Similarity

Determining similarity between two texts has been a challenging problem in Natural Language Pro-
cessing world. In chapter 4, we use our KG generation system and introduce a novel KG-based docu-
ment similarity classifier. Our multi-level system focuses on unique set of structural qualities to deter-
mine whether the similarity between any pair of documents, either Low, Medium or High. Not only
that, our approach provides meaningful reasoning to explain the similarities and differences between the
documents pair. We perform evaluations on Wikipedia articles and analyse the strengths and limitations
of both the levels of our approach. Our approach can be used to determine category outliers, we perform

3



an experiment to see that we’re able to detect outliers in DBpedia categories with high accuracy. Our
approach is also tested to be robust to noise, as we evaluate documents after paraphrasing and noise,
more details in section. More details on experiments and results in section 4.6.

1.6 Contributions of the thesis

We focus on two main problem statements. First, text to knowledge graph construction. Second,
finding similarity between two text documents. In this thesis we propose an end-to-end pipeline of
knowledge graph construction from text and a knowledge-graph based document similarity classifier
with explanation. Our main contributions are as follows:

• We introduce a system to construct KG from text which is consistent with the DBpedia names-
pace.

• We introduce a novel Deep Learning based model to calculate similarity between two predicates
for the Predicate Mapping step.

• Our approach is able to reduce complexity of Predicate Mapping by a factor of 107.

• Our approach outperforms T2KG [53] with improved Precision and F1-score

• We evaluate the sentence simplification’s effectiveness in improving the quality of triplet extrac-
tion.

• We evaluate the Redundancy Reduction of our approach for Science and History articles

• We survey the different methodologies of text document similarity

• We introduce SimX: a novel KG driven document similarity classification. SimX also provides
explanations and we evaluate our approach on Wikipedia articles, for DBpedia category outliers
and against paraphrasing + noise.

The organization of thesis is as follows:

• Chapter 2 presents the related work that has been done on Knowledge Graph construction from
scratch and different approaches for Document similarity

• Chapter 3 presents our novel end-to-end pipeline of Knowledge Graph construction from unstruc-
tured text

• Chapter 4 presents our Knowledge Graph based Document similarity approach with explanations,
SimX.

• Chapter 5 will conclude our contributions and discuss future work

Chapter 3 and 4 are self-contained, with experiments, evaluations and results.
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Chapter 2

Related Work

A knowledge graph is a comprehensive receptacle to exemplify perception, founded on the calcula-
tion of beings and connections. Knowledge graphs contribute an instinctive means of lending pattern
and hierarchy to originally undeveloped data.

2.1 Text to Knowledge Graph

Traditional methods ([25]) focus on building KGs from infobox templates and categorization infor-
mation in the Wikipedia articles. However, the unstructured text of these articles is left unprocessed.
In order to make this natural language text structured and usable, generating a KG over text becomes
an important task. Previous works such as [11, 27, 92, 12, 4, 55] use information extraction system to
extract facts from NL text. But these facts do not necessarily follow the paradigm of a KG (such as
DBpedia), making the KG construction task challenging. For instance, consider the output of sample
sentence (a) from (table 2.1) using OLLIE information extractor - (Barack Obama, was born in, Hon-
olulu). This fact is identical to (Barack Obama, birthPlace, Honolulu) in DBpedia. Although these two
facts are identical, there is a vocabulary gap between them. In the fact extracted from text, ”was born
in” is a natural language phrase, whereas ”birthPlace” is a formatted predicate in DBpedia. These two
relational phrases have different surface forms and hence they cannot be mapped just on the basis of
string similarity.

Furthermore, same DBpedia entities and predicate could be used in multiple NL excerpts. For in-
stance, ”He”, ”Barack Obama” and ”Barack” in the facts extracted for (a), (b) and (c) (from 2.1)
correspond to ”Barack Obama” in DBpedia. Similarly, the predicates such as ”was born in”, ”grew up
in”, ”belongs to” are related to the same predicate ”birthPlace” in DBpedia. As shown in fig 2.6, this

(a) Barack Obama was born in Honolulu.
(b) Obama was elected in 2009 as the president of the United states. He belongs to Honolulu.
(c) Barack served as the 44th president of the United States and grew up in Honolulu.

Table 2.1 Examples of few sentence which hold information
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leads to a high amount of redundancy in the constructed KG, giving rise to an unnecessarily large sized
KG.

This redundancy leads to wastage of space for its storage and wastage of time in execution of graph
retrieval algorithms [62, 64, 104]. Therefore, it is important to efficiently resolve entities and their
relationships in triples to facilitate a queryable Knowledge Graph. The most common approach to
resolve them is by mapping them to a single homogeneous namespace, such as DBpedia namespace.

A number of studies have proposed ideas for Entity Mapping [70]. However, only a few studies
have worked on the task of Predicate Mapping. A few rule-based [26] and similarity-based approaches
[53] have been proposed in recent years, but both of them have their own limitations. Simple rule-based
approaches cannot generate rules efficiently, especially when text sources are sparse. This is due to the
fact that these rules are manually generated and hence it cannot get rid of all redundancies. On the other
hand, similarity-based solutions for Predicate mapping are challenging in two aspects:
a) To map a predicate to another namespace, they need to capture the accurate semantics for calculating
similarity scores
b) Comparing a predicate to each of the predicate in DBpedia is highly time consuming owing to the
number of candidates (i.e. the number predicates in DBPedia namespace to which a particular text
predicate can map to)

2.2 Document Similarity

2.2.1 Overview

In the coming sections, we will be building context of current work on text similarity from scratch
and in increasing order of sophistication. The aim of this section is to develop fundamentals around the
topic. According to information theory [63], similarity is defined as the shared characteristics of two text
samples. The degree of resemblance increases with increasing commonality and vice versa. In many
NLP (Natural Language Processing)-based activities, including information retrieval [61], topic detec-
tion, topic tracking, automatic question answering [49], machine translation [102], dialogue systems
[94], and document matching [81], text similarity is quickly emerging as a significant tool.

Traditional document similarity measurements distinguish between similar and dissimilar documents
in a coarse manner. They usually overlook the perspective in which two documents are identical. This
restricts the level of detail that programees like recommendation systems, which depend on document
similarity, can reach.

Over the past thirty years, many semantic similarity methodologies have been measured in various
ways. On the basis of statistics, corpora, and knowledge sources like Wikipedia, most academics cat-
egorise text similarity measurement techniques [34]. This categorization disregards the text distance
computation method and just takes into account the text representation. Text similarity not only takes
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into consideration the semantic similarity between texts, but also takes a more comprehensive approach
by examining the common semantic characteristics of two terms. In contrast to the words ”King” and
”Queen”, which are semantically comparable, ”King” and ”Man”, for instance, are closely related but
not semantically identical. Therefore, one of the aspects of semantic relatedness that can be considered
is semantic similarity. The similarity of the semantic connection.

The text similarity measures differ fundamentally, in the following sections we’ll take a close look on
the different algorithms on ranking text similarity. First we’ll take a close look at the different methods
of calculating

2.2.2 Text Distances

In this section, we will examine numerous distances defined between two pieces of text, to determine
the semantic closeness between them.

2.2.2.1 Block Distance

Block Distance calculates the distance needed to travel along a grid-like path to go from one data
point to the next. The sum of the discrepancies between two strings’ respective components is known as
the Block distance [69]. It is also referred to as Manhattan Distance, Boxcar Distance, Absolute Value
Distance, L1 Distance, City Block Distance, and Manhattan Distance. Consider two strings - A and B,
represented as a combination of two components x and y, then the block distance between A and B for
example would be,

2.2.2.2 Euclidean Distance

Euclidean distance or L2 distance is the square root of the sum of squared differences between
corresponding elements of the two vectors.

Formula is stated in equation 2.1

d(p, q) =

√√√√ n∑
i=1

(qi − pi)2 (2.1)

p, q = two points in Euclidean n-space

qi, pi = Euclidean vectors, starting from the origin of space (initial point)

n = n-space

2.2.2.3 Manhattan Distance

The separation between two real-valued vectors is also determined using the Manhattan distance. The
problem we are working on gives more importance to the distance between the points only along with
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the grids, but not the geometric distance. Manhattan distance is calculated as the sum of the absolute
differences between the two vectors, which typically only works if the points are arranged in the form
of a grid. Following one-hot encoding, the Manhattan distance is used to determine how similar two
documents are [22]. The Manhattan formula for two-dimensional space is as follows,

Sim(x, y) = |x1 − x2|+ |y1 − y2| (2.2)

2.2.2.4 Cosine Similarity

A comparison of two vectors in an inner product space using a cosine-based measure of similarity is
known as ”cosine similarity.” It helps determine whether or not two vectors are pointing in roughly the
same direction. Cosine Similarity can be used to rank documents in relation to a given vector of search
terms or to compare documents. Let’s compare two vectors, x and y.

Sim(Sa, Sb) = cosθ =
~Sa. ~Sb

||Sa||.||Sb||
(2.3)

An illustration of cosine similarity is shown below in Fig 2.4

Figure 2.1 Cosine similarity running example

2.2.2.5 JS Divergence

The Jensen-Shannon divergence [66] is a tool for evaluating how similar two probability distributions
are. It is often referred to as the total divergence from the average or the information radius (IRAD). In
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order to compare the topic distributions of new documents with all topic distributions of documents in
the corpus and to identify which documents are more similar in distribution by comparing their distri-
bution differences, JS divergence is typically used in conjunction with LDA (latent dirichlet allocation).
The distribution of the two documents is more comparable when the Jensen-Shannon distance is less
[76].

JS(P1||P2) =
1

2
KL(P1||

(P1 + P2)

2
) +

1

2
KL(P2||

(P1 + P2)

2
) (2.4)

2.2.2.6 KL Divergence

Kullback-Leibler divergence is a measure of the differences between one probability distribution’s
degrees and a second base or reference probability distribution. KL divergence is also known as relative
entropy or I-divergence.

KL(p||q) =
n∑

i=1

p(x) log(
p(x)

q(x)
) (2.5)

2.2.2.7 Word Mover’s Distance

Word mover’s distance measures the smallest distance needed for a word in one text to reach a word
in another text in the semantic space on the basis of expressing the text as a vector space [107] in order
to reduce the cost of transferring text from text to text. It is based on earth’s mover distance [1].

Word Mover’s Distance” is based on a word vector and uses linear programming [56] at its founda-
tion.

2.2.2.8 Word Mover’s Distance Extension

Mahalanobis distance [65] is an improvement of the Word Mover’s distance. The similarity in word
mover’s distance is determined using the Euclidean distance. According to Euclidean distance, each
dimension in a space has the same weight, meaning that they are all equally important. However, the
relationship between the various dimensions is not considered. Instead of using the Euclidean distance,
you can use the improved Mahalanobis distance to account for this information. To do this, first perform
a linear transformation on the sample in the original space before calculating the Euclidean distance in
the modified space.

The unsupervised word mover’s distance is changed into the supervised word mover’s distance by
the addition of matrix loss, making it more effective for the purpose of text categorization [43].

9



2.2.3 String-based similarity measures

In this section, we’ll look at the text representation, which displays text as directly calculable nu-
merical properties. Measures of string similarity focus on character composition and string sequences.
When two text strings are compared or approximate string matching is performed, a string metric is
used to determine how similar or dissimilar (distance) the two text excerpts are. There are two ways that
texts might be similar: lexically and semantically.

Lexical Similarity If the character sequences of the words that make up the text are similar, then the
words are lexically similar. Formally, by combining word sets from the same or other languages, lexical
similarity offers a way to compare two texts’ similarities. A score of 0 indicates that there are no shared
words between the two texts, while a score of 1 indicates that the vocabularies completely overlap. Lex-
ical similarity can be measured in a variety of ways, including Jaccard Similarity, Cosine Similarity,
Levenshtein Distance.

Semantic Similarity If two words have the same meaning, contrast one another, are used in the same
way, are used in the same context, or are types of one another, then they are semantically similar. For-
mally, Semantic similarity gauges the resemblance between two texts based on their meaning as opposed
to their lexical similarity. In order to summarise texts and extract important characteristics from lengthy
papers or document collections, semantic similarity is a very valuable tool. Salient Semantic Analy-
sis (SSA), Normalized Google Distance (NGD), and other techniques can be used to assess semantic
similarity.

2.2.3.1 Longest Common Substring

Consider two strings Sa and Sb from two different documents. LCS, when viewed as a string repre-
sentation of the text, denotes the length of the longest substring that matches in strings Sa and Sb. The
length of the contiguous chain of characters that are present in both strings is what the algorithm uses
to determine how similar two strings are. More information is shared among the lengthy strings ([98],
[44], [45]).
The method of LCS [46] matching is frequently employed to assess how similar two strings (Sa, Sb) are
to one another. LCS, when viewed as a string representation of the text, denotes the length of the longest
substring that is identical to the strings Sa and Sb. Algorithm for finding LCS similarity between two
strings Sa and Sb is described below:
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LCS(Sa, Sb) =



0, if Sa = 0 or Sa = 0

1 + LCS(Sa − 1, Sb − 1), if x[Sa] == y[Sb]

max =

LCS(Sa, Sb − 1)

LCS(Sa − 1, Sb)
if x[Sa] 6= y[Sb]

(2.6)

2.2.3.2 Edit Distance - Damerau-Levenshtein

The least amount of changes needed to change the string from Sa to Sb is represented by the edit
distance. The terms Levenshtein-distance [60] and Damerau-distance [18] are two different ways that
editing distance is defined.

The atomic operations of D-distance and L-distance are different in that the former only includes
delete, insert, and replace operations, while the latter also includes adjacent exchange activities. D-
distance can only handle a single editing error because the definition of D-distance includes one addi-
tional adjacent action, whereas L-distance can handle numerous editing errors.

The lower the edit distance between Sa and Sb, higher the similarity.

Figure 2.2 Edit distance = 5, with one delete, one insert and 3 substitute operations

An example of a D-L edit distance is shown in fig 2.2

2.2.3.3 Jaro Similarity

Jaro [48] is based on the quantity and arrangement of the shared characters between two strings; it
accounts for common spelling mistakes and is mostly applied to record linking. The formula is as shown
in Equation 2.7.

11



Sim =

0, if m = 0

1
3(

m
|Sa| +

m
|Sb| +

m−t
m )

(2.7)

Jaro-Winkler [106] is an extension of Jaro distance that use a prefix scale to reward strings that match
from the start for a predetermined prefix length.

2.2.3.4 Needleman-Wunsch

Needleman-Wunsch method, which was the first to be used to compare biological sequences uses
Dynamic Programming for it’s computation. To determine the optimal alignment across both sequences,
a global alignment is conducted. It works best when the two sequences are roughly the same length and
share a lot of similarities overall [75].

2.2.3.5 N-gram

A subsequence of n items from a particular text sequence is known as a ”n-gram.” The n-grams from
each character or word in two strings are compared by n-gram similarity algorithms. By dividing the
number of similar n-grams by the maximum number of n-grams, distance is calculated [5].

Figure 2.3 N-gram example with uni-gram, bi-gram and tri-gram for a sentence

2.2.3.6 Dice’s Similarity Coefficient

The Sørensen–Dice coefficient [23] is a statistical approach used to gauge the similarity of two
sample strings, Sa, Sb. It is defined by the following formulae, where comm (Sa, Sb) is the count of
common characters in the two strings, known as collinear phrases.
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Dice(Sa, Sb) =
2 ∗ comm(Sa, Sb)

len(Sa) + len(Sb)
(2.8)

2.2.3.7 Jaccard Similarity

The size of the intersection divided by the size of the union of two sets is how Jaccard similarity
is calculated [47]. When the text is somewhat long, the similarity will be smaller, so Jaccard must
resolve the similarity through the set. Therefore, Jaccard is typically first normalised before computing
similarity. Chinese words can be reduced to synonyms, whereas English terms can be reduced to the
same root.

Formula is stated in equation 2.9

S(Sa, Sb) =
Sa ∩ Sb
Sa ∪ Sb

(2.9)

The range of the Jaccard Similarity score is 0 to 1. Jaccard Similarity is 1 if the two documents are
identical. In cases when there are no shared terms between two papers, the Jaccard similarity score is 0.

Consider two documents,
doc1 = ”Data is the new oil of the digital economy”
doc2 = ”Data is a new oil”

The Jaccard similarity formula would apply for the example as follows,

J(doc1, doc2) =
(data, is, the, new, oil, of, digital, economy) ∩ (data, is, a, new, oil)

(data, is, the, new, oil, of, digital, economy) ∪ (data, is, a, new, oil)

=
(data, is, new, oil)

(data, a, of, is, economy, the, new, digital, oil)

=
4

9
= 0.444

(2.10)
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Figure 2.4 Jaccard similarity between doc 1 and doc 2 using Pie chart

2.2.4 Corpus-based similarity

Corpus-Based Similarity is a semantic similarity metric that assesses word similarity using data
gleaned from sizable corpora. A vast collection of written or spoken materials called a corpus is utilised
in linguistic studies.

A significant distinction between corpus-based and string-based approaches is as follows: The corpus-
based method calculates text similarity using data from the corpus, which might either be a textual char-
acteristic or a co-occurrence probability. The string-based method, however, compares texts at the literal
level.

2.2.4.1 Pointwise Mutual Information (PMI-IR)

Turney [99] proposed the pointwise mutual information as a non-supervised method for assessing
the semantic similarity of words utilising data gathered by information retrieval 776 (PMI-IR).

The PMI-IR similarity score of two words increases with how frequently they appear together nearby
on a web page. Given two words w1 and w2, their PMI-IR is measured as

PMI − IR(w1, w2) = log2
p(w1&w2)

p(w1) ∗ p(w2)
(2.11)

The above equation serves as a gauge of the semantic similarity between w1 and w2, indicating the
level of statistical reliance between them. We are utilising the NEAR query (co-occurrence within a ten-
word frame), which strikes a balance between accuracy (results from synonymy tests) and efficiency
(number of queries to be executed against a search engine), out of the four different types of queries
provided by Turney [99]. The search engine AltaVista is specifically used to gather counts using the
following query.
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2.2.4.2 Latent Semantic Analysis (LSA)

LSA [57] makes the assumption that words with similar meanings will appear in texts with similar
structures. A large piece of text is converted into a matrix with word counts per paragraph (rows for
unique words and columns for each paragraph), and a mathematical method known as singular value de-
composition (SVD) is used to decrease the number of columns while maintaining the similarity structure
among rows. The cosine of the angle generated by any two rows’ two vectors is then used to compare
words.

One method to get around the sparseness and large dimensionality of the traditional vector space
model is by using LSA. In reality, the LSA similarity is calculated in a lower-dimensional space that
takes use of second-order relationships between terms and texts. The conventional cosine similarity is
then used to calculate the similarity in the resulting vector space. Also take note of the fact that LSA
produces a vector space model that enables uniform representation and comparison of words, word sets,
and texts.

By using singular value decomposition, LSA (latent semantic analysis) [19] maps the text from a
sparse high-dimensional vocabulary space to a low-dimensional latent semantic space to determine how
comparable the possible semantic space is. Values near 1 indicate documents that are quite similar,
whereas values near 0 indicate documents that are very distinct [35]. Then, Hofmann proposes the
subject layer based on LSA, training the topic with the improved PLSA (probabilistic latent semantic
analysis) algorithm [41] utilising the expectation maximisation algorithm (EM).

2.2.4.3 Generalized Latent Semantic Analysis (GLSA)

The Generalized Latent Semantic Analysis (GLSA) [67] framework is used to compute term and
document vectors that are motivated by semantics. By concentrating on term vectors rather than the dual
document-term representation, it expands the LSA technique. A dimensionality reduction technique
and a measure of semantic association between concepts are needed for GLSA. Any form of similarity
measure on the space of words and any useful dimensionality reduction technique can be combined with
the GLSA methodology.

2.2.4.4 Normalized Google Distance

The number of results provided by the Google search engine for a certain set of keywords is used to
calculate the Normalized Google Distance (NGD) [16], a semantic similarity metric. In terms of Google
distance, terms having the same or comparable meanings in a natural language sense tend to be ”near,”
and terms with different meanings tend to be further apart.

The normalised Google distance between two search phrases is infinite if x and y never appear
together on the same web page but do so separately. NGD is equal to zero if x and y always appear
together.
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2.2.4.5 Bag-Of-Words

It is referred to as a ”bag” of words because any details regarding the arrangement or structure of the
words within the document are ignored. The model doesn’t care where in the document recognised terms
appear; it is only interested in whether they do. The key component of BOW is count vectorization,
which measures similarity in applications like search, document categorization, and topic modelling by
counting the amount of words that exist in a document to represent text. Refer [91] for more details.

2.2.4.6 TF-IDF

TF-IDF [89], which stands for term frequency-inverse document frequency, is a metric that can be
used to quantify the significance or relevance of string representations (words, phrases, lemmas) in
a document among a group of documents (known as corpus). It is used in the fields of information
retrieval (IR) and machine learning. The reason TF-IDF is effective is that a word is present in many
papers and is used frequently in those documents. The words do not, despite the fact that they regularly
appear in a document, have any particular significance.

tfidf(w, d,D) = tf(w, d) ∗ idf(w,D) (2.12)

where,

tf(w, d) = Freq(w, d)

idf(w,D) = log
|D|
N(w)

• Freq (w, d) represents the frequency count of usage of word w in document d.

• |D| indicates the total number of documents

• N (w) is the number of documents where the word w appears

2.2.4.7 Latent Dirichlet Allocation

LDA (latent dirichlet allocation) presupposes that each document will have multiple themes, re-
sulting in topic overlap in the document. Each document’s words add to these topics/themes. Every
document will be discretely distributed across all themes, and every word will be discretely distributed
across all topics.
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Latent Dirichlet Allocation (LDA), a generative statistical model used in natural language processing,
explains a set of observations through unseen groups, with each group explaining why certain portions
of the data are similar. LDA is used for topic modeling. This involves gathering words into documents
and assigning each word’s presence to one of the topics covered in the text. There will be a limited
amount of topics in each paper.

In order to initialise the model, a topic is randomly assigned to each word in each document. Then,
after iterating over each word, we cancel the assignment to its current topic, decrease the corpus scope
of the topic count, and reassign the word to a new topic based on both the local and global (corpus
scope) probabilities that the topic is assigned to the current document.

2.2.4.8 Word2Vec

Word2vec [90] uses trained models of Bag-of-Words (BoW) and the model of word-skipping. The
model fundamentals lies in predicting a middle word, based on the context and meaning of the surround-
ing words. A brief illustration of how it works is given in Figure 2.2

Figure 2.5 Word2Vec illustration
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2.3 Summary

T2KG [53] lacks in both of these aspects. Firstly, it uses a word2vec based model which is not able
to capture all semantic features since it uses shallow neural networks1. Secondly, it scans all DBpedia
triples in order to map a single predicate of KG to DBpedia namespace. So, when the text sources are
large, it becomes a time consuming task to map all text predicates to DBpedia predicates. Even tougher
when the size of the DBpedia itself is as large as 1.3 billion2 triples, such as in the case of English
version of DBpedia. We address both of the above challenges in the proposed approach.

Barack
Obama Honolulu

was born in

was born at

grew up in

was born on

He

Barack

belongs to

Figure 2.6 Knowledge Graph obtained using information extraction (OLLIE [92])

The different document similarity approaches differ fundamentally from a Knowledge-Graph driven
similarity, because

• We focus on structural based qualities in determining similarity, which are not considered by most
of the above solutions,

• We provide explanation along with similarity classification whereas none of the above solutions
provide explanation,

• We provide a classification of Low,Medium,High, not a numerical score.

Hence, due to these fundamental qualitative and quantitative differences, we should not compare our
approach with current state of document similarity work.

1https://en.wikipedia.org/wiki/Word2vec
2https://wiki.dbpedia.org/develop/datasets/dbpedia-version-2016-10
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Chapter 3

Text to Knowledge Graph

In this chapter, we introduce an end-to-end KG construction system from unstructured text. In order
to make this KG more useful, we map our KG to DBpedia namespace far more efficiently than the
previous approaches. Under the Predicate Mapping step, we implement a pruning strategy to reduce a
large number of unnecessary comparisons in order to make this step scalable. The end-to-end system
is able to build a larger KG, with less redundancy while significantly reducing the computation cost in
finding the Predicate Mapping step. Our main contributions are as follows:

• We developed a novel end-to-end pipeline to construct KG from text which is consistent with the
DBpedia namespace.

• We proposed a Deep Learning model to calculate similarity between two predicates for the Pred-
icate Mapping step.

• We developed optimization strategy to reduce the Candidate Set (described in section ??) for each
text predicate.

• We introduced a sentence simplification component to improve triple extraction.

• We performed multiple experiments to evaluate our KG construction system with other systems.
The experiments show the effectiveness of our Predicate Mapping component and the benefits of
the Sentence Simplification component.

• We conducted a separate study to quantify the extent of redundancy reduction in different domains
of Wikipedia articles in the KGs constructed using our system.
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Figure 3.1 Flow chart of our text to KG approach

In the following section, we describe in detail, the step-by-step procedure (as shown in Figure 3.1)
to construct a Knowledge Graph from unstructured text. Our end-to-end pipeline has six components:
The Entity Mapping (section 3.1.1) component maps the entities in the text triples to the DBpedia
entities. The Sentence Simplifier (section 3.1.2) which simplifies sentences before triple extraction
step to overcome limitations of triple extraction on complex sentences. The Co-reference Resolution
component (section 3.1.3) which finds and replaces all the expressions that refer to the same entity in the
text. The Triple Extractor (section 3.1.4) that uses information extraction techniques to extract relation
triples from text (called text triples). The Metadata Processing (section 3.1.5) component prepares and
stores the set of candidate DBpedia predicates for a given text predicate, that could possibly be the
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mapping. The Predicate Mapping component (section 3.1.6 and details in section 3.2) maps a text
triple’s predicate to its matching predicate in DBpedia namespace.

3.1 End-to-end pipeline: Text to KG

3.1.1 Entity Mapping

An important step in KG construction is linking named entities to unique identifiers. In this compo-
nent, we use a named entity recogniser (NER) [70] to mark all the named entities in the text. The NER
algorithm uses a four-step procedure to find and mark named entities. First, it finds substrings of the
input that may be entities. Second, it checks the these substrings if they are matching with any of the
DBpedia resources. After that, it does disambiguation to determine the most probable named entities
for the input string. Lastly, for any given user-configurations, it performs annotations and outputs the
result.

Now, for an entity which has a possible mapping in DBpedia, we use the URI of such a DBpedia
entity as the representation of the text entity. Otherwise, we define a custom namespace to create their
URIs. The output from Entity Mapping step are the same set of sentences, but entities replaced by the
URIs as defined by above conditions. For eg: ”Barack Obama”, ”Obama” and ”Barack” will be replaced
by DBpedia:Barack Obama, which is the URI of Barack Obama entity in DBpedia. Hence, output of
this layer for above three instances will be,

(a) DBpedia:Barack Obama was born in DBpedia:Honolulu.
(b) DBpedia:Barack Obama was elected in 2009 as the president of the DBpedia:United States. He

belongs to DBpedia:Honolulu.
(c) DBpedia:Barack Obama served as the 44th president of the DBpedia:United States and grew up

in DBpedia:Honolulu.

3.1.2 Sentence Simplification

English is a difficult language for machines to comprehend. As and when sentences grow complex in
nature, extraction of relation triples from unstructured text becomes tougher. Due to complex structure
of sentences, the frameworks which try to convert unstructured text into a relation triple, cease to identify
correct relationships between the entities at hand. Hence, the aim of this component is to identify
complex sentences and convert them into simpler sentence(s), such that the semantics is consistent
even after simplification. We implement the approach proposed in [73] to achieve this. The sentence
simplification framework works as follows:

1. It splits the sentences into simpler sentences based on semantics.

2. It uses a probabilistic model trained on semantic representations to delete that get rid of unneces-
sary words
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3. It uses a substitution and reordering component based on translation and language model to sim-
plify sentence

Here, (a) (table 2.1) remains unchanged, because it is not a complex English sentence whereas (b)
and (c) change to:

(b) DBpedia:Barack Obama was elected in 2009. DBpedia: Barack Obama was the president of the
DBpedia:United States. He belongs to DBpedia:Honolulu.

(c) DBpedia:Barack Obama served as the 44th president of the DBpedia:United States. DBpe-
dia:Barack Obama grew up in DBpedia: Honolulu.

In section 3.3.3, we perform a separate study to evaluate the impact of this component in our system.

3.1.3 Co-reference Resolution

There are a lot of expressions for a given entity in unstructured text, such as pronouns and abbrevia-
tions, which act as a proxy for some real-world entity. And if these expressions are left unannotated, we
may lose crucial information. Hence it is important to group all the mentions of an entity and link them
to an URI. We use approach proposed by [86] to determine and replace all the linguistic expressions
which refer to the same real-world entity and link them to its URI, as determined by the Entity Mapping
component. The algorithm uses a multi-pass approach to do the job. In the first pass, it links two men-
tions if they match exactly to each other. In the second pass, it links two mentions if they match a set of
syntactic rules. In the next three pass, it links two mentions if both of them have same head matching
according to a set of rules, from high strict to low strict. In the final pass, it links the pronouns to their
based on Named entity recognition and attributes like gender.

The output of this layer replaces all the co-reference chains by their URI. Only (b) changes, since it
is the only sentence with a co-reference chain.

(b) DBpedia:Barack Obama was elected in 2009. DBpedia:Barack Obama was the president of the
DBpedia:United States. DBpedia:Barack Obama belongs to DBpedia:Honolulu.

3.1.4 Triple Extraction

In this component, we extract relation triple from plain text. This is the primary step in extracting
information from unstructured text. A relation triple is a data entity composed of a subject-predicate-
object. Subject and object are real-world entities and predicate describes the relationship that the subject
entity has with object entity. Below we show the triples extracted from the portion of text that talk about
the birth place of Obama.

(a) {< DBpedia:Barack Obama; was born in; DBpedia:Honolulu >, < DBpedia:Barack Obama;
was born at; DBpedia:Honolulu, < DBpedia:Barack Obama; was born on; DBpedia:Honolulu >}

(b) {< DBpedia:Barack Obama; belongs to; DBpedia:Honolulu >}
(c) {< DBpedia:Barack Obama; grew up in; DBpedia:Honolulu >}
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The task of extracting a relation triple from plain text can be carried out by any information extrac-
tion [2, 28, 105, 20, 68] technique. These techniques extract relation triples from text by identifying
relation phrases and associated arguments in a sentence without requiring a pre-specified vocabulary.
We use Open Language Learning for Information Extraction (OLLIE) [92] as the triple extractor in
our implementation. The OLLIE algorithm takes a sentence as input an converts it a triplet of the form
¡S;P;O¿. It uses high precision seed tuples to bootstrap a large training dataset to learn learn pattern
templates. These pattern templates are then used to do pattern matching on the sentences and after
context analysis, triplets are generated.

3.1.5 Metadata Processing

This step is a preprocessing step for our main task of Predicate Mapping (discussed in section 3.2).
The aim of this component is to store all possible DBpedia predicates to which a predicate from text
triple can map, by using a pruning strategy. To find such a set of possible DBpedia predicates for a given
text predicate, later defined as Candidate Set, we define two sub-tasks. Let our text triple be of the form
Rt =<S;Pt;O>. At first, we need to find the class to which S and O entities belong. If the S and O are
mapped to some entities in DBpedia, we extract S class andO class using DBpedia class information.
Otherwise, we use a Named Entity Recognizer (NER) [33] to predict it’s class and map it to a DBpedia
class using NER and Disambiguation (NERD) ontology [88], which is based on a bunch of NLP tools
available.

For example, an NER class Person maps to its equivalent DBpedia class, DBpedia:Person. Sec-
ondly, after the subject and object class of a text triple are extracted correctly, we prune the DBpedia
predicates which can surely not be the mapping for Pt. The idea is, if the relation triple in the text Rt,
is defined between a Person class entity and a Place class entity, clearly the map of Pt in DBpedia
namespace will also be only among the predicates which have domain as DBpedia:Person and range
as DBpedia:Place. So, instead of evaluating its similarity score with all the predicates of DBpedia, we
only do it for relationships between a DBpedia:Person and a DBpedia:Place class. This remaining
set, after pruning the unimportant predicates, is defined as the Candidate Set (CS) (described in sec-
tion ??) for Pt. We explain in detail (section 3.2.2) the difference in cost of computation of previous
similarity-based approach and our approach.

3.1.6 Predicate Mapping

The aim of this component is to map predicate of a text triple to its matching predicate in DBpedia.
From the previous component we obtained the Candidate Set (CS) for Pt. Here, we find the similarity
of the text predicate with every candidate in the CS using the model explained in next section. We
finally map Pt to the most similar candidate predicate in DBpedia. Our model is able to map ”was
born in”, ”belongs to”, ”was born at”, ”was born on” and ”grew up in” correctly to DBpedia:birthPlace.
Hence, the output for the examples becomes:
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(a) <DBpedia:Barack Obama; DBpedia:birthPlace; DBpedia:Honolulu>

(b) <DBpedia:Barack Obama; DBpedia:birthPlace; DBpedia:Honolulu>

(c) <DBpedia:Barack Obama; DBpedia:birthPlace; DBpedia:Honolulu>

Simply extracting relation triples using OLLIE (as shown in fig 2.6) will give us a graph with four
nodes (entities: ”Barack Obama”, ”He”, ”Barack”, ”Honolulu”) and five edges (predicates: ”was born
at”, ”was born in”, ”was born on”, ”belongs to”) which clearly holds redundant information. Our
approach is able to resolve all the identical mentions of entities and predicates hence forming a more
precise graph with two nodes and one edge between them, i.e. <DBpedia: Barack Obama;DBpedia:
birthPlace;DBpedia: Honolulu>.

The output of the Predicate Mapping step for a particular text triple is a triple that has its entities and
predicate linked to DBpedia. The collection of such triples is our constructed KG. Thus, our system
has constructed a KG over a specific text article or document. This KG makes the raw text information
available for document specific tasks such as question answering and information retrieval. Furthermore,
if there is some information present in this text, but not in DBpedia then we could add the missing
information to DBpedia, by merging it with our constructed KG.

3.2 Predicate Mapping Model

Going back to the Figure 2.6, we can see that that Barack Obama has been linked to Honolulu
using multiple relationships, ”was born in”, ”was born at”, ”was born on”, ”grew up in”. Owing to
to synonymity in Natural Language, this becomes the root-cause for an explosion in number of triples
with redundant information. This causes the applications of Knowledge Graphs such as summarization,
question-answering, querying, etc that much in-efficient. Hence in order to remove this redundancy, it is
crucial to map all the above relationships to a URI of a publicly accepted namespace. In our approach,
we map all of our relationships (or predicates) to DBpedia namespace to tackle the explosion problem.
In section 3.1.6 we had a brief overview of the Predicate Mapping component. In this section, we will
cover details on how that is acheived.

Let<Sdb;Pt;Odb> denote a relation triple extracted from the text using the above pipeline. Our aim
is to find a DBpedia predicate (say Pdb) which is semantically similar to Pt and map Pt to Pdb. We use
a deep learning based similarity approach to find this Pdb.
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Distance Function

P_Enc(a) P_Enc(b)

Triple  
(ST,PT,OT)

Triple
(SDB,PDB,ODB)

Figure 3.2 Overview of Predicate Mapping Model

The idea is to get a vector representation of the text predicate and compare its similarity with pos-
sible DBpedia candidates. The representation of the predicate is formed using the Predicate Encoder
(P Enc(a) and P Enc(b) as shown in fig.3.2). The predicate encoder is a multi-stage architecture
(described in Section 3.2.1) which uses subject and object class as initial context to generate the repre-
sentation since they store valuable information about the predicate.

Let the final encoded vector representation of the two predicates obtained from the predicate encoder
be Ht = [x1, .., xk] and Hdb = [y1, .., yk]. The similarity between the two vector representations Ht

and Hdb is given by the following equation:

f(Ht, Hdb) = exp(−||Ht −Hdb||) ∈ [0, 1] (3.1)

In the next section, we define our Predicate Mapping model.
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Figure 3.3 End-to-end Predicate Mapping model

Predicate Mapping Model
(Fig 1(a))

(S;(was,born,in);O) (S;(birth,place);O) 

(S;(was,born,in);O) (S;(known,for);O) 

(S;(was,born,in);O)
{(S;(birth,place);O),

(S;(previous,post);O),
......... 

(S;(known,for);O)} 

Take max of all the similarity score and
output the closest

(S;(was,born,in);O) (S;(previous,post);O) 

(S;(birth,place);O)

Figure 3.4 An illustrative example of Predicate Mapping, where S and O are Subject Class and Object

Class respectively

3.2.1 Model

Our Predicate Mapping model (shown in fig 3.3) is a hierarchical multi-stage Siamese Network, in-
spired by [72]. A Siamese Neural Nxetwork is an artificial neural network that uses the same weights
while working in tandem on two different input vectors to compute comparable output vectors. In our
use case, we are want to compare two sentences having synonymity between text and DBpedia. Hence,
the idea of running two identical neural networks on two different inputs fits well for our usecase. There-
fore, we picked Siamese neural network. The model consists of five layers. The Embedding Layer maps
each word to a vector space using a pre-trained embedding model. The Contextual Embedding Layer
utilizes the vector representations of surrounding words to refine the embeddings of the words. The
Projection Layer forms the initial state for our Modeling Layer by densely combining subject class and
object class embeddings. The Modeling Layer employs a Siamese Recurrent Network to create final
embedding of the predicate using the combined embedding of subject class and object class as context.
The Distance Layer computes the final similarity score.

Embedding Layer This is a word embedding layer which maps each word to a high-dimensional vec-
tor space. In our model, we use d-dimensional pre-trained GloVe word embeddings [80]. Let
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{s1, s2, ...skt}, {p1, p2, ...plt} and {o1, o2, ...omt} denote the sequence of words in subject, predi-
cate and object of a text triple and similarly for a DBpedia triple. The output of this layer consists
of three matrices for text triple: Sr

t ∈ Rd×kt , P r
t ∈ Rd×lt , Or

t ∈ Rd×mt .

Sr
t = [sr1s

r
2...s

r
kt ]

P r
t = [pr1p

r
2...p

r
lt ]

Or
t = [or1o

r
2...o

r
mt

]

where sri ∈ Rd×1, pri ∈ Rd×1 and ori ∈ Rd×1 represent the embedding of si, pi and oi. Similarly
for DBpedia triple, we obtain: Sr

db, P
r
db and Or

db.

Contextual Embedding Layer In this layer, we use LSTM [39] to output the encoded representation
of a given sequence. We use four LSTMs, two for St and Sdb to form subject class encodings and
the other two for Ot and Odb to form object class encodings.

LSTMs adapt feedforward neural networks for sequence data where at each time-step (say x), up-
dates to a hidden state vector hx are performed. In our case, the input sequence data is, [sr1s

r
2...s

r
kt
].

These updates also rely on a memory cell containing four components (which are real-valued vec-
tors): a memory state cx, an output gate qx (that determines how the memory state affects other
units), an input gate ix (that controls what gets stored in memory) and a forget gate fx (that con-
trols what does not get stored in memory). Below are the updates performed (for St) at each
time-step x ∈ 1, ..., kt:

ix = sigmoid(Wis
r
x + Uihx−1 + bi)

fx = sigmoid(Wfs
r
x + Ufhx−1 + bf )

c̃x = tanh(Wcs
r
x + Uchx−1 + bc)

cx = ix · c̃x + fx · cx−1
qx = sigmoid(Wqs

r
x + Uqhx−1 + bq)

hx = qx · tanh(cx) (3.2)

where Wi,Wf ,Wc,Wq, Ui, Uf , Uc, Uq are the trainable weight matrices and bi, bf , bc, bq are the
trainable bias-vectors. We take the last hidden state of the LSTM (i.e. hkt) as our final represen-
tation. Hence, we obtain Gt ∈ Rd×1, Ut ∈ Rd×1 for subject classs (St) and object class (Ot) of
text triple and Gdb ∈ Rd×1, Udb ∈ Rd×1 for subject class (Sdb) and object class (Odb) of DBpedia
triple.
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Projection Layer: This layer aims to prepare context for Modeling Layer using G and U vectors. We
define

Jt = {Gt;Ut}

Jdb = {Gdb;Udb}

as the concatenation of subject class and object class representation of text triple and DBpedia
triple respectively. This layer maps Jt ∈ R2d×1 to Zt ∈ Rd×1 by applying a Dense Layer and
similarly Jdb ∈ R2d×1 to Zdb ∈ Rd×1. Zt and Zdb store the combined representation of subject-
object class of text and DBpedia triple and serve as the context for finding the representation of
their respective predicates.

Modeling Layer: In this layer, we use another pair of LSTMs to create encoded representation of text
predicate and candidate predicate. We use the output of the previous layer as context, i.e., Zt and
Zdb become the first hidden states (h0 in eq. (3.2)) for the two LSTMs respectively. The input to
this LSTM is Pt. We obtain Ht ∈ Rd×1 as the last hidden state of this S-LSTM (as shown in fig
3.3). Similary, we obtain Hdb ∈ Rd×1. Ht and Hdb represent the final text and DBpedia triple
encoding, respectively.

Distance Layer: This layer computes the similarity score between Ht and Hdb using the equation
3.1. This score is used to choose the most similar predicate amongst a set of predicates called
Candidate Set (discussed in detail in the next section).

3.2.2 Candidate Selection

In the previous work, the approach to map predicate of a text triple to DBpedia predicate requires
high computation cost. The high computation is because it requires an entire scan of DBpedia. Thus
making the computation cost in the order of total number of triples in DBpedia (1.3×109). This step has
many unnecessary comparisons, for example, an extracted predicate ”was born in” is being compared
with DBpedia predicates such as DBpedia:biggestCity and DBpedia:altitude. To overcome this, we
identify the DBpedia predicates which can be the possible mapping for the text triple’s predicate.

The idea is as follows: each predicate, say Pdb in DBpedia has a unique subject class and object class,
defined in the RDF-schema as rdfs:domain and rdfs:range respectively. This defines that, in any relation
triple which has Pdb as it’s predicate, say <S;Pdb;O>, all such S’s and O’s belong to the class defined
by rdfs:domain and rdfs:range, respectively. We exploit this information about a text triple, to narrow
down our search space significantly. DBpedia ontology forms a subsumption hierarchy [59], hence our
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new search space does not lose any potential candidates. Thus, we introduce a notion of Candidate Set
(CS) for a text triple.

Formally, a CS for a text triple, say Rt =<S;Pt;O>, is a set of all the DBpedia predicates (stored
as<S class;Pdb;O class> in the CS) whose predicates occur between S’s class andO’s class. In our
experiments, we find that the average size of the Candidate Set for a predicate is approximately 200,
which reduces the search space by an order of 106 for each text predicate. Now that we have defined
CS for each extracted predicate, we describe the steps to output the closest (most similar) DBpedia
predicate for a particular Rt. Consider Ct =<S class;Pt;O class> and the Candidate Set for Pt,

CS = {<S class;P 1
db;O class>,

...., <S class;PK
db ;O class>} (3.3)

where K is the size of the Candidate Set.
Let us do a running example for Candidate Selection. Consider a Rt and its corresponding Ct and
Candidate Set (CS) be

Rt = <DBpedia:Barack Obama; was born in; DBpedia:Honolulu>

Ct = <DBpedia:Person; was born in; DBpedia:Place>

CS = {<DBpedia:Person; DBpedia: birthPlace; DBpedia:Place>,

<DBpedia:Person; DBpedia: previousPost; DBpedia:Place>,

... ,<DBpedia:Person; DBpedia:knownFor; DBpedia:Place>}

where K = 255 since there are 255 different predicates between DBpedia:Person and DBpedia:Place1.
The steps are:

1. We calculate the similarity score for Ct and ith element of the Candidate Set (CS[i]), ∀i ∈ [1,K]

by feedingCt andCS[i] to our Predicate Mapping model. That is, we calculate similarity score of
<DBpedia:Person; was born in; DBpedia:Place>with<DBpedia:Person; DBpedia:birthPlace;
DBpedia:Place> and so on with all the elements of CS.

2. We find the candidate from the CS which gives maximum similarity score with Ct, say CS[j].
In our example, we find that <DBpedia:Person; DBpedia:birthPlace; DBpedia:Place> has the
maximum similarity with <DBpedia:Person; was born in; DBpedia:Place>.

3. Finally, we map Pt with the predicate of CS[j] by replacing all occurrences of Pt with P j
db. That

is, we update our Rt to <DBpedia:Barack Obama; DBpedia:birthPlace; DBpedia:Honolulu>.

So effectively, we compare ”was born in” with only 255 predicates in DBpedia. We input each pair
Ct and CS[i] to our model (as shown in 3.4) and get similarity scores for each of them. The vector

1We use SPARQL endpoint (http://yasgui.org/) to query DBpedia
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representation of ”was born in” using Person and Place as context comes out to be closest (using eq.
3.1) to the vector representation DBpedia:birthP lace calculated using Person and Place as context. If
the size of CS for any text predicate is zero, we discard that text triple.

3.2.3 Scalability

Consider a text triple Rt =<St;Pt;Ot> and let its mapping be Rdb =<Sdb;Pdb;Odb>. In the
previous similarity based approach [26], it does an entire scan of DBpedia to find this Pdb. We find
that it makes a lot of unnecessary computations. In our approach, we get rid of them by defining our
Candidate Set using SPARQL queries. As per the latest release of DBpedia2 , in order to map a single
Pt to Pdb, our system requires approximately 200 computations while T2KG[53] essentially requires
computation in the order of size of DBpedia, that is, 1.3× 109.

To train this model in an end-to-end fashion, one would require a dataset consisting of pairs of similar
triples. But, to the best of our knowledge, there is no such dataset available. Therefore, we need to train
the components independently. We train two different models on two different datasets: SNLI[9] corpus
and SemEval STS [51]. The SNLI dataset is a set of human-written English sentence pairs manually
labeled for the task of Recognizing Textual Entailment (RTE). While the SemEval STS dataset consists
of labeled cross-level semantically similar pairs of a paragraph and a sentence. The Predicate Mapping
model is divided into three parts for training.

3.2.4 Contextual Embedding Layer Training

This part aims at obtaining the weights (Wi,Wf ,Wc,Wq, Ui, Uf , Uc, Uq in eq. (3.2)) for the Con-
textual Embedding Layer. We train the LSTM in this layer similar to a Language Model (LM)[71]. The
goal of an LM is to predict the (k + 1)th word of sequence, given the previous k words. A huge chunk
of text is given as input to the LSTM to train it as an LM. This way, it learns to encode a sequence of
words and hence we use this trained LSTM as a sequence encoder in the Contextual Embedding Layer.
We transform the sentences in the dataset into a sequence of tokens or words that is used for training the
model. The weights obtained by training this model are used in all the four LSTMs in the Contextual
Embedding Layer.

3.2.5 Projection Layer Training

This part aims at obtaining the weights for the Projection Layer. Since this layer, at its core, aims to
reduce the dimension of the output of the Contextual Embedding Layer from 2dx1 to dx1, we use an
autoencoder[38] for this task. The input to the autoencoder is the concatenation of the two dx1 outputs
of the LSTMs of the previous layer, which gives us a 2dx1 vector. We store such 2dx1 vectors for
multiple triples and use them to train the autoencoder. The input is first transformed into a dx1 vector

2https://wiki.dbpedia.org/develop/datasets/dbpedia-version-2016-10
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using a weight matrix W1 ∈ R2d×d, and then this intermediate vector is converted back to a 2dx1 vector
using another weight matrix W2 ∈ Rd×2d. The first part of the autoencoder reduces the input to dx1
vector. Hence, we use this W1 matrix, as our weight matrix for this layer.

3.2.6 Modeling and Distance Layer Training

This part aims at obtaining the weights of the Modeling Layer. We train the LSTMs in Modeling
Layer and the Distance Layer as an end-to-end Siamese Network [74]. For a given pair of sentences in
the dataset, first and second sentence are respectively fed to the two S-LSTMs. In the Distance Layer,
similarity score between the last hidden states of the two S-LSTMs (Ht and Hdb) is calculated using
eq. 3.1. With similarity label known, the corresponding contrastive loss[36] is back propagated to the
S-LSTMs according to the equation:

L(Y,Ht, Hdb) = (Y )
1

2
(D)2 + (1− Y )

1

2
{max(0, 1−D)} (3.4)

where D is the similarity score obtained using 3.1 and Y is the similarity label.

3.3 Experiments and Results

The aim of these experiments is to evaluate the performance and impact of different components
in our pipeline. We also show how the Sentence Simplification component improves the quality and
quantity of triples extracted. We perform following four experiments:

3.3.1 Automatic Evaluation

The aim of this experiment is to evaluate our Predicate Mapping model. Since there is no gold stan-
dard dataset for evaluation, we build a testable dataset by setting a ground truth. Consider a text triple,
say Rt =<St;Pt;Ot>, which after performing Entity Mapping would become Rt =<Sdb;Pt;Odb>

where Sdb and Odb are the corresponding DBpedia URIs. Now, if there is only one predicate, say Pdb,
between Sdb and Odb in DBpedia then Pdb is the ground truth for P . Such Rt constitute our test dataset.

This experiment is performed using 140,000 randomly selected Wikipedia articles. A total of 3,271,660
triples were extracted and the ground truth was established for 58,842 triples. We compare our system’s
results with a baseline model defined below3.

In the baseline model, we use cosine distance metric to calculate the similarity score between a text
predicate and a DBpedia predicate. Let a text predicate (Pt) be a sequence of {t1, t2, ..., tn} words.
We encode Pt as the sum average of GLoVE vector embeddings (which are generated based on neural
networks) of the t′is. Similarly a DBpedia predicate (Pdb) is encoded as a sum average of GLoVE

3We could not compare our results with the state-of-the-art paper ([53]) due to ambiguities in the implementation details
of their paper
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Recall Precision F1-score
Baseline - GLoVE + Cosine 0.2561 0.3478 0.2949

Rule-based 0.3514 0.4627 0.3994
SNLI trained - Our approach 0.6069 0.7684 0.6781
STS trained - Our approach 0.5382 0.6762 0.5994

Table 3.1 Automatic Evaluation results

embeddings of {d1, d2, ..., dm} words. The cosine similarity score between these two encodings Pt and
Pdb is defined as:

CosineSimilarityScore =
Pt · Pdb

||Pt|| · ||Pdb||

Table 3.1 shows comparative results using cosine metric baseline, the rule-based approach [26], and
our model trained on SNLI dataset [9] and SemEval STS dataset [51]. We observe that training our
model on SNLI dataset gives the high F1 score of 0.678. It is interesting to note that the model is trained
on text similarity dataset to identify the similar DBpedia triples (essentially verb phrases).

It took approximately 35 hours to complete the steps before Predicate Mapping for 140,000 Wikipedia
articles, a majority of which is network latency time due to large number of SPARQL [83] queries in
defining Candidate Set for each triple. For the final step of Predicate Mapping, we were able to generate
the mappings in approximately six hours using the pre-trained model for 58,842 triples.

3.3.2 Manual Evaluation

Since there is no standard evaluation metric to evaluate the quality of the Predicate Mapping step,
it is necessary to perform a manual evaluation since in Experiment 1, we are able to consider a special
case when only one predicate exists between a particular subject and object. In this experiment, we
randomly select 200 sentences and were able to extract 416 triples using our triple extraction step. We
then map the predicates of these triples manually to DBpedia predicates. We feed this set of triples to
our Predicate Mapping model and observe that we are able to map predicates with a recall of 0.633 and
with a precision of 0.771.

Based on our error analysis of the extracted triples, results show that the most errors i.e. 35.2%
are caused due to triple extractor. While 30.7% errors are caused from co-reference resolution step,
18.3% due entities and 15.8% due predicates. The rule-based approach [26] indicates that the most
errors (46% approximately) were caused due to wrong Predicate Mapping, making this step a severe
drawback. Our Predicate Mapping along with the Sentence Simplifier is able to reduce this bottleneck
leading to improvement of 0.22 in F1 score.
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Sentence Type Correct Incorrect Misleading Total
Complex 109 40 64 213
Simple 171 33 54 258

Table 3.2 Sentence Simplification Evaluation results

3.3.3 Sentence Simplification Evaluation

Previous studies show that significant amount of errors are due to limitations of triple extraction,
especially, when dealing with complex sentences. Hence in this experiment, we aim to quantify the
extent to which the Sentence Simplification model improves the triple extraction performance, when
dealt with complex sentences. We analyze OLLIE information extractor performance when it is fed
with i) complex sentences only ii) simplified sentences using the Sentence-Simplification idea [73]. We
randomly choose 100 complex sentences from Zhu dataset [110] and obtain their corresponding simple
sentences and run OLLIE triple extractor on these simple sentences. We then manually classify each
triple in three of the following categories: (a) Correct triple is a relation triple that can be justified as
true, given the sentence, (b) Incorrect triple is a relation triple that can not be justified as true, given
the sentence, and (c) Misleading triple is a triple which is neither correct nor incorrect but possess
incomplete information, and may lead to incorrect relation if added in the KG.

As shown in 3.2, there is not only increase in total number of relation triples extracted, but also a
36.25% increase in the number of correct triples obtained and a 17.5% decrease in the number of incor-
rect triples from OLLIE when fed with simplified sentences vs complex sentences. This entails that the
simplification component helps construct larger KG with less ambiguity and less incorrect relationships.

3.3.4 Redundancy Reduction Evaluation

The aim of this experiment is to evaluate how well our system is able to match similar relationships
and entities into a homogeneous set of URIs in order to reduce redundancies in the KG. We take a
Wikipedia article, say A, and paraphrase it to A′. We combine A and A′ into a single document, say B.
The idea is, this B will give out redundant triples since same information is paraphrased and added to it
(in the form of A and A′) and we want to evaluate how well these redundant triples are resolved by our
system. Ideally, the triples generated from A should be identical to the triples generated from B. We
perform our end-to-end KG generation system over A and B independently and study the (a) number
of accurate triples - triples which are identical across A and B, and (b) number of additional triples
- which are present in B but are absent in A. We use an online paraphrasing tool called spinbot4 to
paraphrase an article. We collect 1, 000 such A’s and build their corresponding B’s separately for two
different topics of Wikipedia Science and History. Some examples of Science topic are Chlorophyll,

4www.spinbot.com
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Accurate Additional Total Triples Accuracy
History 1895 278 2173 0.872
Science 948 217 1165 0.813

Table 3.3 Redundancy Reduction Evaluation results

Photosynthesis, etc and History topic are French Revolution, World War, etc. We obtain a total of
2173 triples from History articles and 1165 triples from Science articles. We define accuracy for this
experiment in the following manner:

Accuracy =
n(a)

n(a) + n(b)

where n(a) and n(b) represent the number of accurate triples and additional triples, respectively. This
accuracy will evaluate to 1.0 when the paraphrasing module and our system perform perfectly. The
results show that, the average accuracy over Science and History articles is 84.3%. As shown in table
3.3, we observe that the accuracy for History articles is 87.24%, slightly higher than 81.37% for Science
articles. We randomly sample 50 articles each of Science and History to qualitatively analyze the
difference in accuracy and following are the observations:

• Science articles have a lesser share of facts but a lot of complex definitions which our Sentence
Simplifier is often not able to correctly simplify. This could be improved by using a labeled
training dataset consisting of complex scientific definitions and their corresponding simplified
definitions for learning.

• History articles are almost entirely fact driven. This leads to high number of total triples as well
as less ambiguity due to paraphrasing.

3.4 Cleaning KGs

For knowledge-driven applications, the correctness and quality of the content of Knowledge Graphs
becomes very important. For that matter, it becomes important to clean noisy or possibly incorrect facts
from Knowledge Graph.

One of the constant issues in Knowledge Graph based applications is identifying and fixing corrupt
data, and failing to do so can lead to erroneous analytics and unreliable conclusions. The interest in data
cleaning issues, including new abstractions, interfaces, scalability approaches, and statistical method-
ologies, has increased recently in both industry and academics. We will first describe a taxonomy of the
data cleaning literature in which we highlight the recent interest in methods that use constraints, rules,
or patterns to find errors, which we refer to as qualitative data cleaning, in order to better understand the
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recent developments in the field. With a number of illustrated examples, we will present the most recent
techniques and also point out their shortcomings.

Large volumes of data are become easier for businesses to store and collect. These data sets can help
with better decision-making, more in-depth analytics, and a rising amount of machine learning training
data. However, poor data quality continues to be a significant problem, as it can result in erroneous
judgments and inaccurate analyses. Missing values, typos, mismatched formats, duplicate entries for
the same real-world item, and infractions of business rules are a few examples of frequent errors. Data
cleaning has been a crucial field of database study since analysts must take the impact of unclean data
into account before making any conclusions - see Johnson and Dasu [50] and Rahm and Do [87].

Data cleaning has gained increased attention from both industry and academics [14]. Four categories
can be used to group existing data cleaning techniques and prototypes:

• KG powered cleaning techniques;

• Statistical cleaning techniques

• User (specialist or public) interaction cleaning techniques

Figure 3.5 An illustration of KG that needs cleaning

Let’s discuss an example of a KG cleaning scenario (Figure 3.5). There are total three problems in
the given Figure:

1. < Kyle ; direct ; The Bride of Madison County > - ”Kyle” is not the director of the movie ”The
Bridge of Madison County”,

2. < San Francisco ; capital of ; U.S > - San Francisco is not the capital of the US

3. < ? ; produce ; U.S > - ’?’ is not defined
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Items 1 and 2 are wrong factually whereas item 3 is incomplete. As an example, let’s talk about triplet
2: < San Francisco ; capital of ; U.S >. Inorder to fix this, we can either modify the relationship to
city of or change San Francisco to Washington D.C. Unfortunately, current approaches for knowledge
graph construction cannot detect incorrect values for entities or relationships in these triples, let alone
indicate which adjustment is more appropriate nor rectify the errors.

Cleaning dirty data, or identification and rectification of incorrect values, is a crucial and efficient
technique to further enhance the data accuracy of KGs. The ability to recognise incorrect values is
referred to in the ”identification”, while the ability to fix incorrect values is referred to in the ”rectifica-
tion”.

For general graph networks, there are many error detecting methods that have been known to identify
([10], [17], [29], [31], [109]) and rectify [30] errors. Most of these approaches are rule-based. However,
gathering enough data quality rules requires a lot of work, which reduces the efficiency of such cleaning
techniques. It is absurd to believe that all necessary rules might be found when a graph’s data is complex.
As a result, it is challenging to fix mistakes that are not covered by any of the rules mentioned and often
many errors are still left out.

Knowledge graph embedding techniques, whose goal is to convert words from a corpus into various
values in vector spaces while preserving their semantic content, are becoming more widely available.
For knowledge graph embedding, each triplet of a KG must follow the causality rules (can be treated
as a weighted rule). A factually correct triplet must have a strong causality, whereas, a triplet is more
likely to be incorrect if the causation is weak.

Furthermore, knowledge graph embedding is able to learn the causalities that possible triplets should
obey in addition to automatically assessing the magnitude of the causalities followed by the given
triplets.

3.4.1 Error Detection

Finding anomalies or errors is the first step when dealing with a dirty database instance. Our taxon-
omy of qualitative error detection is shown in Figure 1. Every technique must solve the following three
issues: The first three are a) ”What to Detect?”, b) ”How to Detect?”, and c) ”Where to Detect”.

Type of Error: What to Look for? The type of errors that are captured can be used to categorise
qualitative error detection approaches. What languages are used to define the patterns or limitations of
a legal data instance, in other words. Integrity constraints (ICs), a subset of first order logic, are widely
used to encapsulate the data quality standards that the database should adhere to, including functional
dependencies (FDs [6])) and Denial Constraints (DCs [15]).

Despite the fact that record duplication might be seen as a breach of an integrity constraint (key
constraint), we acknowledge the substantial body of research that focuses on this issue. For the exact
scoping, we treat duplication separately from other types of integrity constraints. Automatic discovery
strategies are crucial and have been proposed for numerous ICs because manual developing such ICs
[15] or patterns requires extensive domain knowledge and takes time. We categorise IC discovery
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methods into schema-driven and instance-driven methods, and we will talk about and contrast these two
methods.

Automation: How to Detect? Some approaches on error detection are fully automatic such as
Holistic data cleaning [15], DBRx [13], while other approaches, such as CrowdER [100], Scorpion
[109], etc involve human intervention.

3.4.2 Error Repairing

KG Error Repairing is a process of repairing errors in triplets as shown in Figure 3.5. Every repairing
technique must answer the following three questions, a) ”What to Repair?”, b) ”How to Repair?” and c)
”Where to repair?”. In the following sections we will discuss the impacts on the techniques’ efficiency
and design.

Figure 3.6 Error Detection Approaches

Repair Target: What to Repair? Different assumptions are made about the data and the quality
rules by different repair algorithms:

1. trust the Integrity Constraints - Meaning that at no point can the integrity constraints be altered,
only the triplet data can be modified.

2. trust the data completely and allowing relaxation to constraints - this can mean that the schema
can be evolved and obselete and old rules can be updated

3. looking at the prospect of altering the limits as well as the data [11].

The driver of the repairing activity, or the kinds of faults they are focusing on, can further categorise
strategies by either trusting the rules and altering only the fact triplets. The vast majority of procedures
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just correct one form of error at a time while fixing data, whereas newly developed solutions take
interactions between many types of faults into account and correct data holistically.
Automation: How to Repair? We categorise suggested methods in terms of the equipment utilised
throughout the repair process. We focus on the level of automation in the repair procedure and the
level of human intervention needed. Some approaches for repair involve human intervention. People
are involved either to confirm the modifications, to make suggestions for improvements, or to teach
machine learning models used for automatic repair. However, some techniques work along the lines
of minimizing the cost between original KG k and the repaired KG k’ using a cost function model and
hence these approaches are fully automatic [108].

Repair Model: Where to Repair? We categorise suggested methods according to whether they
alter the database in-place or create a model to outline potential fixes. The majority of suggested ways
fix the database while it is still in use, destroying the originality. Generally, a model is constructed to
describe the various approaches to repair the underlying database for non on-site repairs. These models
respond to queries using various probabilistic strategies, such as sampling from all possible repairs [10].

A sample of data repair methods employing the taxonomy is shown in Table 3.6.

3.5 Summary

Most organizations have high number of textual documents that need to be processed. But domain
specific document processing has not seen a lot of work and different kinds of metric are needed to
evaluate such a system. In this work, we present an end-to-end system for construction of Knowledge
Graph from unstructured text. Our major focus lies in:

1. Improving the Predicate Mapping step for greater searchability in applications such as question
answering and information retrieval.

2. Developing a pruning strategy to make our KG generation system scalable.

3. Studying the impact of the Sentence Simplification component in improving the quality of open
Information Extraction techniques and evaluating the redundancy reduction in different domains
of Wikipedia. Furthermore, these two experiments are novel and reproducible.

4. Evaluating the quality of constructed KG by performing automatic and manual experiments

Even though text data from different sources have vocabulary gap, our system is able to construct a
Knowledge Graph with a F1-score of 0.678 as shown in table 3.1.
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Chapter 4

SimX: KG-based Document Similarity Classification with Explanation

4.1 Overview

In 2.2, we established fundamentals on the importance of document similarity in Natural Language
Processing and different approaches to do so. In this chapter, we will study the limitations of those
approaches and propose our novel multi-level Knowledge Graph based similarity classifier, which can
be coupled with any of the semantic approaches to enhance the similarity scoring system.

4.2 Limitations

We saw in 2.2 various number of document similarity approaches. In 2.2.2 we discuss different
distance formulae between two pieces of text to determine similarity between them, such as Euclidean
distance, Manhattan distance, Cosine similarity, and more sophisticted semantics based Word Mover’s
distance. In 2.2.3 we focussed on similarity approaches which used string literals to compute distance
between two texts. In those, some focused on character-level differences like Longest Common Sub-
string, DL-edit distance, etc. while some focussed on phrase-level differences, like Dice’s coefficient,
Jaccard similarity. Then we discuss corpus based similarity approaches like, Latent Semantic Analysis,
Normalized Google distance, TF-IDF, and so on. All these approaches lack the ability to encapsulate
structure and the connected-ness of the text. On top of that, similarity can mean differently for different
people and contexts. Hence it is sometimes difficult to interpret what a similarity score of 0.8 can mean.
Not only that, if two pairs of topics have same similarity score, it can sometimes become challenging
to make an explanation so as to why they have exactly the same similarity scores. None of the current
document similariity solutions provide explanation for the similarity scores.

Keeping in mind the limitations of current state of work, we propose a novel Knowledge Graph
based Document similarity modeling. Given two documents and their topics, we propose a multi-level
KG driven comparative study of documents with explanations.
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4.3 Our Approach

Figure 4.1 Overview of Document to KGE construction

Given two text documents da and db, we use our novel KG generation pipeline to generate Knowl-
edge Graphs (Chapter 3), kga and kgb respectively. From these KGs since we want to focus on the
structural aspect and the kinds of connectivity, we will convert the entities of the kgs into entity types
of DBpedia namespace, let us call them kgea and kgeb. We will define certain measurable qualities
of kge’s that can be used to evaluate the similarity between them. The overview of Document to kge
construction is shown in Figure 4.1.
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Figure 4.2 SimX flow diagram

Lets look at the Algorithm 1 to convert a kg to kge. Formally, given a kg as a list of
< Subject, Predicate,Object > triplets, like kg = [< s1, p1, o1 >, < s2, p2, o2 >, ..], the algorithm
extractKGE(kg) will convert it into kge. Let number of triplets be, N = len(kg). Let the topic of
the document be defined by variable topic.

After we have got kges for both the documents, we will use our multi-level algorithm to determine the
level of similarity between the two topics, either - Low,Medium,High. Along with this classification,
our approach will provide a explanations so as to why we have given the specific classification. See
figure 4.2 for understanding the flow of our approach.

4.4 Level 1 - High level classifier with explanation

4.4.1 Theory

In this section, we will establish our Level 1 classifier based on High Level (HL) structural features
of the two document kges. Once we have kgea and kgeb for da and db, we will proceed on defining
measurable qualities that will help classify the similarity between two documents.

1. Type of topic - We can use the class types of the topics of the documents da and db to rule out the
comparisons between two topics of different class types.
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Algorithm 1: extractKGE(KG) - Getting kge triples from kg triples

Initialise:1

topic← Topic of the document2

kg ← [[s1, p1, o1], [s2, p2, o2], ..];3

N ← len(kg);4

kge← kg;5

for i = 0, N do6

currentSubject← kg[i][0];7

currentObject← kg[i][2];8

if (topic == currentSubject) then9

typeOfObject← findHLType(currentObject) ;10

kgei ← [topic, ”related”, typeOfObject];11

12

else if (topic == currentObject) then13

typeOfObject← findHLType(currentSubject);14

kgei ← [topic, ”related”, typeOfObject];15

16

endfor17

return kge;18

2. Count/Percent of connections of document’s topic with entities of type DBpedia:Person -
The count of number of connections of the topic to other human beings will quantify the direct
influence of the topic on other significant human entities. Formally, let us call this count person
of a document.

3. Count/Percent of connections of document’s topic with entities of type DBpedia:Place - The
count of number of connections of the topic to other human beings will quantify the direct related-
ness of the topic on other significant places Formally, let us call this count place of a document.

4. Count/Percent of connections of document’s topic with entities of type DBpedia:Thing - The
count of number of connections of the topic to other human beings will quantify the direct related-
ness of the topic on other significant places Formally, let us call this count thing of a document.

5. Count of total connections of document’s topic with entities of type DBpedia:Person or DB-
pedia:Place or owl:Thing - This will help us evaluate the difference in scope of the two docu-
ments. Formally, let us call it scope of a document. scope will also help us normalise qualities
of one documents with respect to other, so you will see scope used in algorithms. Consider a
case where we want to calculate similarity between Wikipedia page of Umesh Yadav (one of the
bowlers of the Indian cricket team) and Wikipedia page of Sachin Tendulkar. The scope aspect
would help us differentiate between them amount of significance that both of these Person type
entities have on the world.
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4.4.2 Algorithms - Quality Extraction and Classifier

Algorithm 2: extractLevel1(kge) - Getting Level 1 qualities from a given kge

Initialise:1

topic← Topic of the document2

kge← extractKGE(kg);3

N ← len(kge);4

type← findType(topic);5

scope← 0;6

count person← 0.0;7

count place← 0.0;8

count thing ← 0.0;9

for i = 0, N do10

TypeOfObject← kge[i][2];11

if (DBpedia : Person == TypeOfObject) then12

scope← scope+ 1;13

count person← count person+ 1;14

15

if (DBpedia : Place == TypeOfObject) then16

scope← scope+ 1;17

count place← count place+ 1;18

19

if (DBpedia : Thing == TypeOfObject) then20

scope← scope+ 1;21

count thing ← count thing + 1;22

23

endfor24

percent person← count person/scope;25

percent place← count place/scope;26

percent thing ← count thing/scope;27

return {”type” : type, ”scope” : scope, ”percent person” :28

percent person, ”percent place” : percent place, ”percent thing” : percent thing};

Algorithm 2, shows a pseudo-snippet of implementation of our high level quality extraction. For
finding entity types, we use https://dbpedia.org/sparql endpoint on a python script. For example, the
following SPARQL query can be used to determine the type of Cristiano Ronaldo,

SELECT DISTINCT ?type

WHERE {

< http : //dbpedia.org/resource/Cristiano Ronaldo > rdf:type ?type

}

Once we have the individual quality values for both the documents, we will have a classifier function
to classify the pair of documents based on the quality comparison. The output of this is going to be a
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Algorithm 3: level1Classifier(kgea, kgeb) - Level 1 similarity classifier between two docu-
ments A and B

Initialise:1

level1 a← extractLevel1(kge a);2

level1 b← extractLevel1(kge b);3

sim class← 1;4

explanation← [];5

type← [];6

scope ratio← level1 a.scope/level1 b.scope;7

threshold← 0.2;8

topicA← Topic of Document A9

topicB ← Topic of Document B10

if (scope ratio ∗ threshold < 1 or scope ratio > threshold) then11

sim class← 0;12

type.add(”scope mismatch”);13

explanation.add(’Scope of the two documents is too varied.’);14

15

if (level1 a.type 6= level1 b.type) then16

sim class← 0;17

type.add(’type mismatch’);18

explanation.add(’The documents talks about two entities of very different types.’);19

20

if (level1 b.percent person− level1 a.percent person > threshold) then21

sim class← 0;22

type.add(’percent person b’);23

explanation.add(’The {topicB}’s interactions with other24

human entities is too high than that of {topicA}.’);25

26

if (level1 a.percent person− level1 b.percent person > threshold) then27

sim class← 0;28

type.add(’percent person a’);29

explanation.add(’The {topicA}’s interactions with other30

human entities is too high than that of {topicB}.’);31

32

if (level1 b.percent place− level1 a.percent place > threshold) then33

sim class← 0;34

type.add(’percent place b’);35

explanation.add(’The {topicB}’s interactions with other36

places is too high than that of {topicA}.’);37

38

continued..39
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boolean, Y es or No. A Yes signifies that these two entities can either be highly or mediumly similar,
go ahead with Level 2 Similarity measures to find the exact similarity classification. However, with a
No, we deterministically say that that these two documents differ based on fundamental connectedness,
resulting in a Low similarity score. This also confirms that there’s no need to go further to Level 2.
When we output a No, it will result to the classfication Low, with appropriate reasoning. So a Y es also
means that the similarity classification is to-be-decided (TBD) but it is either going to be Medium or
High. Algorithm 3 provides pseudo-code for implementation details of our Level 1 classifier.

if (level1 a.percent place− level1 b.percent place > threshold) then1

sim class← 0;2

type.add(’percent place a’);3

explanation.add(’The {topicA}’s interactions with other4

places is too high than that of {topic B}.’);5

6

if (level1 b.percent thing − level1 a.percent thing > threshold) then7

sim class← 0;8

type.add(’percent thing b’);9

explanation.add(’The {topic B}’s interactions with other things, ie.,10

non-person/non-place type things is too high than that of {topicA}.’);11

12

if (level1 a.percent thing − level1 b.percent thing > threshold) then13

sim class← 0;14

type.add(’percent thing a’);15

explanation.add(’The {topicA}’s interactions with other things, i.e,16

non-person/non-place type things is too high than that of {topicB}.’);17

18

return {”sim class” : sim class, ”no type” : no type, ”explanation” : explanation};19

4.5 Level 2 - Low Level classifier with explanation

4.5.1 Theory

After the high-level classifier gives a Y es, we will use our Level 2 classifier for futher similarity
classificiation. This classifier will double-down on the structural aspects and go lower to compare niche
connectedness qualities. A No from Level 1 classifier will not be using Level 2.

In Level 1 logic, refer Algorithm 3, we define statistical rules based on connectnedness to claim that
two documents are not similar. If a pair of document does not satisfy any of those rules, we will be
going deeper to further score the similarity between high level qualities.
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We will determine level 2 qualities which we will use in conjunction to deeper high-level qualities to
further understand the kind of similarity/dissimilarity between two documents. Following are the low
level qualities:

1. Low level Topic types - A given entity has a number of entities. For eg: Cristiano Ronaldo,
as a dbpedia resource - http://dbpedia.org/resource/Cristiano Ronaldo it has multiple types -
dbo:Person, dbo:Animal, dbo:Athelete, dbo:SoccerPlayer. As you can see, some of them, like
Athelete and SoccerPlayer are more niche and provide details about the topic

2. Low level Connection types - All the entities that the topic is connected to (as described above)
will also have multiple type classes. We will use the categorization of DBpedia, to calculate the
count of not just Person, Place and Thing type entities, but all the classes of connected entities

3. Deeper analysis of the High level Qualities - In level 2, we will use the high level qualities 3, 4
and 5 to further highlight and score the differences and similarities.

4.5.2 Algorithms - Quality Extraction and Classifier

In this section, we will define the implementation of low level quality extraction that will be used
by our Level 2 Classifier. Algorithm 4 shows a pseudocode of implementation of our low level quality
extraction. As mentioned earlier, we only apply level 2 Classifier for worthy comparisons, i.e leave out
the pair of documents which are of low similarity, along with explanation using Level 1 approach.

The low level classifier focuses at determining whether the similarity between the pair of documents
is High or Medium. Using the low level qualities, we determine a similarity score and find more
sophisticated explanations. let us take a closer look on level2Classifier(kgea, kgeb) algorithm, as
shown in Algorithm 5.

4.6 Experiments and Results

This is a unique problem, and there isn’t a readily available labelled dataset for us to test results
against. On top of that, there really isn’t a well defined way to evaluate the explanations for the similarity
of documents. Hence we will do best effort work to take handful of examples to build trust on our system
and discuss the results.

4.6.1 Wikipedia Article Evaluation

SimX(doca, docb) not only classifies the similarity into Low,Medium,High, but also provides
explanation. For our analysis, we work with 5 Wikipedia pages to understand the strengths and limita-
tions of our approach. Refer Table 4.1 for the topics that we choose for our experiments. We choose
these set of articles so that we can showcase various different scenarios and outputs that our Level 1
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Algorithm 4: extractLevel2(kge) - Level 2 qualities between two documents A and B

Initialise:1

level1 results← level1Classifier(kge a, kge b);2

sim class← level1 results[′sim class′];3

dbpedia types← All DBpedia class types;4

connection types← {};5

t types← getTopicTypes(topic);6

for type in dbpedia types do7

connection types[type] = 0;8

topic types[type] = 0;9

endfor10

if sim class == 0 then11

print(”No need for Level 2 analysis”);12

break;13

14

for type in t types : do15

topic types[type]← topic types[type] + 1;16

endfor17

for triplet in kge do18

types← getTopicTypes(triplet[2]);19

for type in types do20

connection types← connection types+ 1;21

endfor22

endfor23

return {”topic types” : topic types, ”connection types” : connection types};24

Figure 4.3 Document similarity of Barack Obama with Atmosphere wikipedia article is LOW
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Algorithm 5: level2Classifier(kgea, kgeb) - Determining similarity class with explanation

Initialise:1

level1 a← extractLevel1(kge a);2

level1 b← extractLevel1(kge b);3

topicA← Topic of Document A4

topicB ← Topic of Document B5

level1 result← level1Classifier(kge a, kge b);6

explanation← [];7

ratio = level1 result[′scope ratio′];8

level2 a← extractLevel2(kge a);9

level2 b← extractLevel2(kge b);10

topic diff ← 0.0;11

connection diff ← 0.0;12

dbpedia types← All DBpedia class types;13

topic types a← level2 a[”topic types”];14

topic types b← level2 b[”topic types”];15

connection types a← level2 a[”connection types”];16

connection types b← level2 b[”connection types”];17

sim class← 2;18

threshold← 3;19

percent threshold← 0.1;20

topic total← 0;21

person diff ← level1 a.percent person− level1 b.percent person;22

place diff ← level1 a.percent place− level1 b.percent place;23

thing diff ← level1 a.percent thing − level1 b.percent thing;24

if person diff > percent threshold then25

sim class← 1;26

explanation.add(’{topicA} has slightly more person type connections than {topicB}’);27

28

if person diff < −1 ∗ percent threshold then29

sim class← 1;30

explanation.add(’{topicB} has slightly more person type connections than {topicA}’);31

32

if place diff > percent threshold then33

sim class← 1;34

explanation.add(’{topicA} has slightly more place type connections than {topicB}’);35

36

if place diff < −1 ∗ percent threshold then37

sim class← 1;38

explanation.add(’{topicB} has slightly more place type connections than {topicA}’);39

40

if thing diff > percent threshold then41

sim class← 1;42

explanation.add(’{topicA} has slightly more thing type connections than {topicB}’);43

44

part 2 in next page - continued..45
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if thing diff < −1 ∗ percent threshold then1

sim class← 1;2

explanation.add(’{topicB} has slightly more thing type connections than {topicA}’);3

4

for type in dbpedia types do5

type a = topic types a[type];6

type b = topic types b[type];7

if type a 6= 0 and type b == 0 then8

explanation.add(’{topicA} is a type, whereas {topicB} is not.’);9

topic mismatch← topic mismatch+ 1;10

11

if type a == 0 and type b 6= 0 then12

explanation.add(’{topicB} is a type, whereas {topicA} is not.’);13

topic mismatch← topic mismatch+ 1;14

15

topic total← topic total + 1;16

endfor17

topic diff = (topic mismatch/topic total);18

if topic diff > 0.3 then19

sim class← 1;20

explanation.add(’Overall: There’s more than 30% topic mismatch between {topicA} and {topicB}’);21

22

part 3 in next page - continued..23

Figure 4.4 Document similarity of Barack Obama with Cristiano Ronaldo wikipedia article is to be
determined by Level 2
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for type in dbpedia types do1

type a = connection types a[type];2

type b = connection types b[type];3

type diff ab = (type a/type b) ∗ ratio;4

if type a == 0 or type b == 0 then5

if type a 6= 0 and type b == 0 then6

explanation.add(’{topicA} has type a connects with type type entities,7

whereas {topicB} has none.’);8

9

if type a == 0 and type b‘ 6= 0 then10

explanation.add(’{topicB} has type b connects with type type entities,11

whereas {topicA} has none.’);12

13

14

else15

if type diff ab ∗ threshold < 1 then16

explanation.add(’{topic A} has significantly higher connection with17

type type entities than {topic B}. {topic A} has type a connections18

whereas {topic B} has type b.’);19

20

if type diff ab > threshold then21

explanation.add(’{topic B} has significantly higher connection with22

type type entities than {topic B}. {topic B} has type b connections23

whereas {topic A} has type a.’);24

25

endif26

connection diff = connection diff + absolute(1− type diff);27

endfor28

connection diff ← connection diff/len(dbpedia types);29

if connection diff > 0.1 then30

sim class← 1;31

explanation.add(’Overall: There’s more than 10% type mismatch32

between the connections of {topic A} and {topic B}’);33

34

return {”sim class” : sim class, ”explanation” : explanation};35
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Wikipedia Person Place Thing Total
Barack Obama 278 60 143 481

Percent→ 0.58 0.12 0.3
Joe Biden 270 42 150 462
Percent→ 0.58 0.09 0.32

Cristiano Ronaldo 188 80 210 478
Percent→ 0.39 0.17 0.44

Atmosphere 36 92 330 458
Percent→ 0.08 0.2 0.72

Methyl Formate 3 5 36 44
Percent→ 0.07 0.11 0.82

Table 4.1 Level 1 values

classifier produces. We have taken similar sized excerpts from Wikipedia articles so that our compar-
ison is not biased. You will see that, wikipedia document on Methyl Formate is also taken because of
its small scope and size. Take a look at Figure 4.3 and 4.4 as an illustrative of connectivity comparison.
Different colors represent different entity types.

4.6.1.1 Level 1 Classifier Results

let us analyse our document comparison results, as shown in Table 4.2.

Strengths:

1. Our approach is correctly able to identify major differences between two document topics which
makes their similarity classification to be Low. For instance, we can see that Barack Obama
vs Atmosphere comparison results in Low classification. The explanation is crisp and accurate
- That these two documents differ in their types, that the interaction of Obama are mostly with
other human whereas Atmosphere has barely any. On contrary, the interactions of Atmosphere
topic with other things is much higher than that of Obama. Hence we are able to catch all true
negatives

2. Our approach is able to correctly able to differ wrt Scope of the documents. Atmosphere-
MethylFormate both being similar entity types, are correctly identified to be different in their
scopes.

3. Our approach is showcase no additional/untrue explanations. Wikipedia document of Ronaldo
and Methly Formate differ in their entity types connections and scope which is exactly what our
approach is able to establish as well.
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Wikipedia A vs B Similarity Explanation
Obama-Biden Med/High They are similar, forward to level 2
Obama-Atmosphere Low The document talks about two entities of very different types. Obama’s

interactions with other human entities is too high than that of At-
mosphere. Atmosphere’s interactions with other things, ie., non-
person/non-place type things is too high than that of Obama.

Obama-Ronaldo Med/High They are similar, forward to level 2
Obama-Methyl For-
mate

Low Scope of the two documents is too varied. The document talks about two
entities of very different types. The Obama’s interactions with other hu-
man entities is too high than that of Methyl Formate. Methyl Formate’s
interactions with other things, ie., non-person/non-place type things is
too high than that of Obama.

Biden-Ronaldo Med/High They are similar, forward to level 2
Biden-Atmosphere Low The document talks about two entities of very different types. Biden’s

interactions with other human entities is too high than that of At-
mosphere. Atmosphere’s interactions with other things, ie., non-
person/non-place type things is too high than that of Biden.

Biden-Methyl For-
mate

Low Scope of the two documents is too varied. The document talks about two
entities of very different types. The Biden’s interactions with other hu-
man entities is too high than that of Methyl Formate. Methyl Formate’s
interactions with other things, ie., non-person/non-place type things is
too high than that of Biden.

Ronaldo-Atmosphere Low The document talks about two entities of very different types. Ronaldo’s
interactions with other human entities is too high than that of Atmo-
sphere.

Ronaldo-Methyl For-
mate

Low The document talks about two entities of very different types. Ronaldo’s
interactions with other human entities is too high than that of Methyl
Formate. Methyl Formate’s interactions with other things, ie., non-
person/non-place type things is too high than that of Methyl Formate.

Atmosphere-
MethylFormate

Low Scope of the two documents is too varied.

Table 4.2 SimX: Level 1 classifier results
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4. Our approach is able to correctly identify when it cannot decide if the Similarity class is either
Medium or High. Our system is able to correctly conclude that Wikipedia article of Obama and
Ronaldo are not significantly different, so as to label them as Low.

5. Our approach does not have any false negatives because of strictness of our qualitative rules.

Limitations:

1. Our approach lacks insights when comparing two similar documents. When we compare Wikipedia
article on Joe Biden with Barack Obama, our approach is able to not conclude that they are highly
related.

2. Due to the above, Level 1 system cannot deterministically differentiate between highly similar
documents vs medium similarity documents. As shown in Figure 4.4 the similarity classification
is TBD :Medium or High.

4.6.1.2 Level 2 Classifier Results

From table 4.2, only Obama-Biden and Obama-Ronaldo are sent to Level 2 classifier. We pick
additional samples to test Level 2 classifier, take a look at Table 4.3 to check the results. Take a look
at Figure 4.5 and Figure 4.6 to focus on the difference in structural connected-ness of these the two
wikipedia documents - one of Barack Obama and other of Cristiano Ronaldo.

Figure 4.5 Connected-ness of Barack Obama with different entity types. Numbers is bracket represent

the count of the relationships with given entity types.
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Figure 4.6 Connected-ness of Cristiano Ronaldo with different entity types. Numbers is bracket repre-

sent the count of the relationships with given entity types.

Strengths:

1. Level 2 approach is correctly able to identify major differences between Barack Obama and Cris-
tiano Ronaldo, which our Level 1 wasn’t able to achieve.

2. Low level classifier is effectively able to separate Highly similar pair of documents with that of
medium similarity. Wikipedia article of Barack Obama and Joe Biden are highly similar to each
other, which is also the output of our approach. Hence we’re able to identify True Negatives

3. Our approach is providing a suitable explanation, showing significant differences that the two
documents might have based on the low-level qualities based on individual connectedness of the
documents. Take a look at Obama-Ronaldo from Table 4.3.

4. Our approach is sophisticated, for example it is able to obtain difference between two atheletes
who play different sports, take a look Tendulkar-Ronaldo.

Limitations:

1. Our approach lacks insights when comparing Joe Biden with Barack Obama and not able to spot
all the minute differences.

2. Our approach can be extended to use actual node and relationship labels to get even more detailed
comparison of two Documents.
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Wikipedia A vs B Similarity Explanation
Obama-Biden High Both Obama and Biden are Politician type entities. Both of them are connected

with similar number of OfficeHolder, Politician, Legislature and University
type entities.

Obama-Ronaldo Medium Obama has more person type connections than Ronaldo. Ronaldo has slightly
more thing type connections than Obama. Ronaldo is a SoccerPlayer and
Athelete whereas Obama is not. Obama is a Politician and OfficeHolder
whereas Ronaldo is not. Obama has higher connections with Organization,
Legislature, PoliticalParty and University type entities. Ronaldo has higher
connections with SportsClub, SoccerClub, SoccerTournament, SoccerPlayer
type entities.

Tendulkar-Ronaldo Medium Ronaldo is a SoccerPlayer whereas Tendulkar is not. Tendulkar is a Cricketer
whereas Ronaldo is not. Tendulkar has higher connections with CricketTeam
and Cricketer type entities. Ronaldo has higher connections with SoccerClub,
SoccerTournament, SoccerPlayer type entities.

Tendulkar-Kohli High Both Tendulkar and Kohli are Athelete and Cricketer type entities. Both of
them are connected with similar number of CricketTeam, Cricketer and Orga-
nization type entities.

Messi-Ronaldo High Both Messi and Ronaldo are Athelete and SoccerPlayer type entities. Both of
them are connected with similar number of SoccerTournament, SoccerPlayer,
SportsClub and SoccerClub type entities.

Table 4.3 SimX: Level 2 classifier results

3. Our approach might have some false positives, wherein the structural aspects of two entities are
very similar, but the documents are in reality different. But, based on our experiments, we find the
quantity of false positives to be as low as 6%, even with noise introduction, as shown in section
4.6.3.3.

4.6.2 Miscategorized DBpedia entities

DBpedia is one of the largest hubs of Linked data on web. Given the large scope of knowledge that
DBpedia holds, it is not surprising that it contains many different kinds of errors. In this experiment, we
focus on error in categorization of entities. Our experiment setup is as follows:

• We collect a set S of DBPedia entities which are marked as dbo : Cricketer. That is, all the
people in this set are cricketers or were cricketers in the past.

• We choose a baseline cricketer to be Sachin Tendulkar. We use our approach to compare a
Wikipedia document on each entity in S with the Wikipedia document of Sachin Tendulkar.

• If our classifier computes their similarity class to be Low, we claim that our chosen entity is
wrongly categorized.
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Wikipedia Difference Score SimX miscategorized? Actually miscategorized?
A-001 0.37 Yes Yes
A-002 0.3 Yes Yes
A-003 0.31 Yes Yes
A-004 0.43 Yes Yes
M. Amir 0.07 No No
AB De Villiers 0.05 No No
ACTH 0.4 Yes Yes
Bracken School
Readiness Assessment

0.37 Yes Yes

Table 4.4 Outlier Detection of dbo : Cricketer entities

Wikipedia
Diff Score SimX Outlier? Actual Outlier?

London Bombay Sydney
James W. Everington 0.29 0.23 0.3 Yes Yes
Aurangabad 0.11 0.1 0.09 No No
Mobile, Alabama 0.14 0.12 0.13 No No
Nelle Peters 0.33 0.26 0.27 Yes Yes
Delhi 0.09 0.04 0.08 No No
Wardell Milan 0.41 0.35 0.41 Yes Yes
Blaise Siwula 0.33 0.35 0.39 Yes Yes
Dick Nourse 0.37 0.36 0.39 Yes Yes
Slough 0.08 0.10 0.09 No No
Peter Calandra 0.4 0.41 0.29 Yes Yes

Table 4.5 Outlier Detection of dbo : City entities

• We repeat this for dbo : City category, where we take three different baselines - Wikipedia page
of London, Bombay and Sydney.

We calculate the difference between the connectned-ness of baseline vs the entity. Our score will
be between 0 and 1. All the difference scores greater than 0.2 will be determined as Outlier by our
approach SimX.

We run category outlier detection for 100 Cricketer type entities and find that 13 of them are outliers
in reality and all the 13 are recognized accurately by our approach. Some results are shown in 4.4.

Similarly, for City type entities (see table 4.5), we find that 11 out of 100 entities are real outliers and
again all of them are deterministically classified as outliers by SimX. We also take a special (ambiguous
city) known as Mobile, which is a city in Alabama and find that Mobile, Alabama is also accurately
determined to be a city and not an outlier. By taking multiple baselines for dbo : City, we also confirm
that any (true) city can be selected as a baseline for outlier detection.
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Overall, based on our analysis, we neither spot any false negatives nor any false positives, i.e., cases
when there’s a mismatch between SimX’s output vs actual outlier or not. This is due to two reasons:

1. One, the stanford NER we use has an F-1 score of > 92% for English language, hence we get all
the named Entities accurately

2. Second, the type of these entities is determined by DBpedia using a SPARQL query (as shown in
section 4.4.2) which has no cause for errors.

Hence, owing to the high accuracy of individual components, and setting meaningful thresholds we do
not observe any false negatives or false positives.

4.6.3 Same Topic Evaluation with noise

4.6.3.1 Part 1

Our KG-based document similarity should be able to highly score similarity between exactly same
document. The aim of this section is to evaluate the robustness of our approach against a pair of same
documents. We took 100 wikipedia pages, and our algorithm is consistently able to score all the pairs
(doca, doca) with ”High” score. Not only that, there were no contradicting explanations which con-
firmed that our similarity evaluation algorithms are robust.

4.6.3.2 Part 2 - Paraphrasing

To make this more challenging for our system, we use paraphrasing tool to generate two not-exactly
same, but similar documents. The procedure is as follows. We take a wikipedia article A on topic T ,
and paraphrase it using online tools to B. Ideally, the similarly score of (A,B) should be High, since
these two documents have nothing but same content.

We use an online paraphrasing tool called spinbot1 to paraphrase an article. We collect 10 such A’s
and build their correspondingB’s separately for two different categories of Wikipedia Person and Place.
Some examples of Person topic are Barack Obama, Joe Biden, etc and Place topic are London, Mumbai,
etc. These documents are all large with 50+ sentences in each so that we make sure that we allow the
algorithm to make some mistakes. We define accuracy for this experiment in the following manner,

Accuracy =
count(SimX(A,B).class == High)

Total

Our Approach had a brilliant accuracy of 98%, meaning that almost all the paraphrased documents
(A′) were evaluated to be highly similar to their original counterparts. This also strengthen’s that our
fundamentals are based on structural connected-ness of the KGs, which are robust to paraphrasing.

1www.spinbot.com
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4.6.3.3 Part 3 - Paraphrasing with noise

To make the experiment setup we check performance of SimX against noise. The setup is as follows
- we take 20 sentences from a wikipedia topic A and 10 sentences from a random document N and
combine them to make a document B. The motive behind adding 10 sentences of N is to introduce
noise to A. We then paraphrase B to become A′. Now we use our approach to test whether similarity
between A and B is still high or not. And that our approach does not show high similarity between B
and N , because N is just acting as noise here. So we count two kinds of accuracies as,

• First for evaluating that we maintain high simialrity score between A and A′ even after introduc-
tion of noise.

Accuracy1 =
count(SimX(A,A′).class == High)

Total

• Second, that our approach doesn’t output high similarity score between A′ and the noise N .

Accuracy2 =
count(SimX(N,A′).class 6= High)

Total

We choose 10 different candidates for A against 5 different versions of noise N , so we evaluate a
total of 50 noisy documents paraphrased against original documents and the noise. We get Accuracy1
of 88%, showcasing that we’re consistently able to reduce the affect of noise in most cases. Of the
remaining 12% cases, we observe that we get a Medium similarity, confirming that the effect of noise
is non-zero. We get an even better Accuracy2 of 94%, meaning that only 3 out of 50 times we get a
High similarity score between N and A′.

4.7 Summary

• Our level 1 (super-fast) classifier is effectively and efficiently able to rule out all pairs of document
comparisons with Low scores along with crisp explanation, as shown in Table 4.2.

• As shown in Table 4.3, our level 2 classifier is accurately able to determine Medium or High
classification, along with appropriate reasoning based on deeper structural aspects of the docu-
ment KG.

• Our approach can be used for Category Outlier detections in DBpedia with excellent accuracy,
refer Section 4.6.3.

• Our approach is able to effectively reduce the importance of noise or paraphrasing or both, giving
strong results as shown in Section 4.6.3.

• Similarity can take different meanings in different contexts, which makes this problem space
twisted. By providing explanations along with document similarity classification, we not only
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explain reasoning behind our classification, but also lower down the ambiguity around the ”simi-
larity” meaning.

• Our approach is tunable to different settings depending on the requirements. We have a set of
thresholds defined which are used to do the classification and explanation. With different appli-
cations, if one wishes the classifier to be more strict or lenient, we could tune the thresholds to
adapt to the requirements.

• Our approach focuses on unique set of structural aspects of documents, which makes them usable
alongside any other text similarity approaches, as discussed in Related Work.
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Chapter 5

Conclusion

Automatic extraction of information from text and its transformation into a structured format is an
important goal in both Semantic Web Research and computational linguistics. Knowledge Graphs (KG)
serve as an intuitive way to provide structure to unstructured text. Simple rule-based approaches cannot
generate rules efficiently, especially when text sources are sparse. This is due to the fact that these rules
are manually generated and hence it cannot get rid of all redundancies. On the other hand, similarity-
based solutions for Predicate mapping are challenging in two aspects:

1. To map a predicate to another namespace, they need to capture the accurate semantics for calcu-
lating similarity scores

2. Comparing a predicate to each of the predicate in DBpedia is highly time consuming owing to
the number of candidates (i.e. the number predicates in DBPedia namespace to which a particular
text predicate can map to

In Chapter 3, we present our novel end-to-end KG construction system, where we improve the Pred-
icate Mapping computationally, by introducing an effective pruning strategy. Low redundancy of our
approach enhances the KG’s searchability in applications such as question answering and information
retrieval. We evaluate to see that our approach generates a Knowlege-graph, which has more number
of correct triplets, less number of misleading or incorrect triplets and has lower redundant triplets as
compared to other approaches.

In chapter 4, we introduce SimX: a novel multi-level knowledge-graph based document similarity
classifier by using chapter 3’s system to generate KGs from the documents. SimX has a unique ability to
spot structural similarities and differences in the documents and use that to provide an explanation along
with a Low/Medium/High classification. Since our approach uses non-conflicting and unique set of
statistical qualities, it can be used along with any of the existing text similarity solutions to enhance the
results. Our level 1 fast classifier accurately spots articles which have Low score along with providing
crisp explanations. Level 2 classifier uses low level qualities to differentiate highly similar documents
with medium level of similarity consistently. We observe that our approach is robust to noise and
paraphrasing. Our approach also spots category outliers in DBpedia with high accuracy.
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In the future, we continue to explore the space of problems where knowledge graph can be useful.
We plan to work on constructing domain specific Knowledge Graphs for Health, History and Science.
We will also explore Automatic Question Answering using these domain specific knowledge graphs.
With respect to document similarity, we focussed on structural aspects of knowledge graphs. In or-
der to enhance SimX, we plan to use node and edge labels to determine more sophisticated pieces of
similarities and differences between documents.
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Related Publications

• Aman Mehta, Aashay Singhal, and Kamalakar Karlapalem. 2019. Scalable Knowledge Graph
Construction over Text using Deep Learning based Predicate Mapping. In Companion Pro-
ceedings of The 2019 World Wide Web Conference (WWW ’19).
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