
Towards Label Free Few Shot Learning : How Far Can We Go?

Thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science in Computer Science and Engineering by Research

by

Aditya Bharti
201502014

aditya.bharti@research.iiit.ac.in

International Institute of Information Technology
(Deemed to be University)

Hyderabad - 500 032, INDIA
January 2024

Copyright © Aditya Bharti, 2024

All Rights Reserved

International Institute of Information Technology
Hyderabad, India

CERTIFICATE

It is certified that the work contained in this thesis, titled “Towards Label Free Few Shot Learning: How
Far Can We Go” by Aditya Bharti, has been carried out under my supervision and is not submitted
elsewhere for a degree.

Date Advisors:
Dr. C. V. Jawahar

Dr. Vineeth N. Balasubramanian

Abstract

Deep learning frameworks have consistently pushed the state-of-the-art limit across various problem
domains such as computer vision, and natural language processing applications. Such performance
improvements have only been made possible by the increasing availability of labeled data and com-
putational resources, which makes applying such systems to low data regimes extremely challenging.
Computationally simple systems which are effective with limited data are essential to the continued pro-
liferation of DNNs to more problem spaces. In addition, generalizing from limited data is a crucial step
toward more human-like machine intelligence. Reducing the label requirement is an active and worth-
while area of research since getting large amounts of high-quality annotated data is labor intensive and
often impossible, depending on the domain. There are various approaches to this: artificial generation
of extra labeled data, using existing information (other than labels) as supervisory signals for training,
and designing pipeline that specifically learn using only a few samples. We focus our efforts on that
last class of channels which aims to learn from limited labeled data, also known as Few Shot Learning.
Few-Shot learning systems aim to generalize to novel classes given very few novel examples, usually
one to five. Conventional few-shot pipelines use labeled data from the training set to guide training, then
aim to generalize to the novel classes which have limited samples. However, such approaches only shift
the label requirement from the novel to the training dataset. In low data regimes, where there is a dearth
of labeled data, it may not be possible to get enough training samples. Our work aims to alleviate this
label requirement by using no labels during training. We examine how much performance is achievable
using extremely simple pipelines overall. Our contributions are hence twofold. (i) We present a more
challenging label-free few-shot learning setup and examine how much performance can be squeezed
out of a system without labels. (ii) We propose a computationally and conceptually simple pipeline to
tackle this setting. We tackle both the compute and data requirements by leveraging self-supervision for
training and image similarity for testing.

iv

Contents

Chapter Page

1 Introduction . 1
1.1 Proposed Few Shot Learning Setup . 2

1.1.1 Label-Free Training . 3
1.1.2 Label-Free Testing . 4

1.2 Contributions . 4

2 Related Work . 6
2.1 Few Shot Learning . 6

2.1.1 Data Augmentation . 7
2.1.2 Constraining Parameter Search Space . 8
2.1.3 Guiding Parameter Search Strategy . 9

2.2 Metric Learning . 9
2.2.1 Sample Selection for Metric Learning . 11

2.3 Self-Supervised Learning . 12
2.3.1 Contrastive Learning . 13

2.4 Novelty . 13

3 Label Free Framework . 15
3.1 Label Free Training Framework . 17

3.1.1 SimCLR Base . 17
3.1.2 MoCo Base . 18

3.2 Label-Free Inference . 19
3.2.1 Label Free Classifiers . 19

4 Label Free Experiments . 21
4.1 Experimental Setup . 21

4.1.1 Datasets and Evaluation Protocol . 21
4.1.2 Models and Implementation Details . 22

4.2 Results . 22
4.2.1 Empirical Analysis . 22

5 Further Inquiry . 25
5.1 Qualitative Analysis . 25

5.1.1 Classification Quality . 25
5.1.2 Clustering Quality . 26

v

vi CONTENTS

5.2 Extending the Label-Free Framework : Directions for Future Work 28
5.2.1 Focusing on clustering . 28

Visualizing clustering quality per few-shot task 30
5.2.2 Dimensionality Reduction . 30
5.2.3 Introducing Limited Label Information at Test Time 30
5.2.4 Data Transformation Techniques . 34

6 Conclusions . 38

Bibliography . 40

List of Figures

Figure Page

1.1 Label-free Few-shot Classification: Proposed setting (Best viewed in color) 2

2.1 Metric Learning: Distance between similar samples must be minimized in the embed-
ding space, while distance between dissimilar samples must be maximized. (Best viewed
in color) . 11

2.2 Contrastive Learning: A simple overview. For a given input image, positive and nega-
tive samples are chosen. Each input is separately embedded in the latent space before
calculating similarity scores. Samples drawn from the same distribution should lie close
to each other in the embedding space while samples from different distributions should
lie further apart. (Best viewed in color) . 14

3.1 Graphical overview of our pipeline: Left: Our training method is designed to learn con-
trastive representations without the use of labels. Specifically, we use a self-supervised
approach in which a single input minibatch is augmented using two simple image trans-
forms to generate key and query image batches. The encoder networks then learn to
preserve image similarity between keys and queries generated from the same input.
This is accomplished by minimizing the contrastive loss function during training. For
further details on our training algorithm, please refer to Algorithm 1. Right: During the
testing phase, we use the network from the training phase to encode images and perform
few-shot classification without using labels. Our approach is based on image similarity,
and we employ a label-free classifier that predicts the most similar key image for every
query image. This allows us to classify images at test time without labels, which is con-
sistent with our label-free setting. For further details on our testing algorithm, please
refer to Algorithm 2. 16

5.1 Visualizing a few examples from the miniImagenet test set using the OURS S pipeline.
Far Left: One labelled example visualized per class. Middle: Few correctly classified
examples from the test set. Right: Mis-classified examples. Similarity in texture and
coarse object category are contributing factors for mis-classification. 26

5.2 tSNE embedding of the miniImageNet dataset using our MoCo trained network. Con-
sidering the complexity of the dataset, the separation is evident. Improving the cluster-
ing quality should further improve test results, which is investigated in Section 5.2.1 . . 27

5.3 Visualizing the clustering quality for specific instances of few-shot tasks. Each color
represents an input from the same class. Best viewed in color. 31

vii

viii LIST OF FIGURES

5.4 Visualizing the clustering quality for specific instances of few-shot tasks. Each color
represents an input from the same class. Best viewed in color. 32

List of Tables

Table Page

1.1 Comparing number of labels used in traditional few shot pipelines, 1ImageNet data was
used to train the network tested on miniImageNet. 3

4.1 Average accuracy (in %) on the miniImageNet dataset. 1Results from [3], which did not
report confidence intervals. 2AmDimNet [13] used extra data from the ImageNet dataset
for training the network used to report mini-Imagenet numbers. 3Results from our ex-
periments adapting the published training code from [84]. 4Results on other datasets not
available. OURS was implemented here using OURS S pipeline and ATTN classifier. . 23

4.2 Average accuracy (in %) on the CIFAR100FS dataset. 1Results from [48]. 2Results
from our experiments adapting the published training code from [84]. OURS was im-
plemented here using OURS S pipeline and ATTN classifier. 23

4.3 Avg accuracy (in %) on FC100 dataset. 1Results from [48]. 2Results from our experi-
ments adapting published training code from [84]. OURS was implemented here using
OURS S pipeline and ATTN classifier. 24

5.1 A comparison of multiple classifiers on the miniImagenet dataset. Average accuracy and
95% confidence intervals are reported over 10,000 rounds. The centroid classifiers
use class labels to compute the centroids per class. Best results per few-shot task are in
bold. 28

5.2 A comparison of multiple classifiers on the CIFAR100FS dataset. Average accuracy and
95% confidence intervals are reported over 10,000 rounds. The centroid classifiers
use class labels to compute the centroids per class. Best results per few-shot task are in
bold. 29

5.3 A comparison of multiple classifiers on the FC100 dataset. Average accuracy and 95%
confidence intervals are reported over 10,000 rounds. The centroid classifiers use
class labels to compute the centroids per class. Best results per few-shot task are in bold. 29

5.4 Results of our experiments on the miniImageNet dataset with different embedding di-
mensions, using the Ours SF pipeline. After learning network weights during training,
we embed the training set and perform PCA to reduce the dimensionality of the repre-
sentations. At test time we use the same learned transformation matrix to reduce the
dimensionality of the test set. Best results for each dimension in bold. Accuracies
averaged over 10,000 tasks and 95% confidence intervals are reported. 33

ix

x LIST OF TABLES

5.5 Results of our experiments on the CIFAR100FS dataset with different embedding di-
mensions, using the Ours SF pipeline. After learning network weights during training,
we embed the training set and perform PCA to reduce the dimensionality of the repre-
sentations. At test time we use the same learned transformation matrix to reduce the
dimensionality of the test set. Best results for each dimension in bold. Accuracies
averaged over 10,000 tasks and 95% confidence intervals are reported. 33

5.6 Results of our experiments on the FC100 dataset with different embedding dimensions,
using the Ours SF pipeline. After learning network weights during training, we embed
the training set and perform PCA to reduce the dimensionality of the representations. At
test time we use the same learned transformation matrix to reduce the dimensionality of
the test set. Best results for each dimension in bold. Accuracies averaged over 10,000
tasks and 95% confidence intervals are reported. 34

5.7 Results of our experiments with different combinations of data transforms. Crop refers
to RandomResizedCrop. Blur refers to GaussianBlur. Distort refers to ColorDistortion.
Representations learned using the Ours S pipeline on the respective datasets. Accuracies
averaged over 10,000 tasks and 95% confidence intervals reported. Best results in each
setting in bold. 37

5.8 Results of our experiments with different combinations of data transforms. Crop refers
to RandomResizedCrop. Blur refers to GaussianBlur. Distort refers to ColorDistortion.
Representations learned using the Ours S pipeline on the respective datasets. Accuracies
averaged over 10,000 tasks and 95% confidence intervals reported. Best results in each
setting in bold. 37

5.9 Results of our experiments with different combinations of data transforms. Crop refers
to RandomResizedCrop. Blur refers to GaussianBlur. Distort refers to ColorDistortion.
Representations learned using the Ours S pipeline on the respective datasets. Accuracies
averaged over 10,000 tasks and 95% confidence intervals reported. Best results in each
setting in bold. 37

Chapter 1

Introduction

The goal of machine learning as a field is to make machines as intelligent as humans. Recent ad-
vances in computing power and availability of data have enabled deep neural networks to successfully
push the boundary of the state-of-art in a variety of applications ranging from computer vision [16, 78],
natural language processing [37, 74], recommendation [40], and computer graphics [72]. Even in rule-
based strategy games such as Go [65], chess [66], machines outperform humans. There are a variety
of factors contributing to this success. The recent increases in computing power (GPUs and distributed
training) allows for training of ever larger networks with billions of parameters [10]. Algorithmic ad-
vances [38, 45] and powerful models [31] allow for more efficient domain representation and learning.

However, a large part of this success is driven by the availability of larger and larger labeled data
sets in the modern world. From user actions, to social media photos, to purchase history, almost every
human activity forms another annotated example for a neural network to learn and improve.

Despite these victories, the data and compute-hungry nature of these systems is far from ideal. From
a purely academic standpoint, learning from a few samples is a hallmark of human intelligence. Humans
are able to learn physical (object definitions, categories) as well as abstract (mathematics, sciences) con-
cepts from a few examples. Traditional machine learning approaches are unable to transfer knowledge
from a few examples. Bridging this gap between human and machine understanding is an active area of
research.

The reliance on large data sets is also a barrier to wide adoption of deep learning techniques in a
practical sense. Getting high-quality labeled data is challenging for various natural and artificial visual
classes [33], and may not always be possible for all domains due to privacy concerns (such as medical
images) or simple lack of availability (endangered species classification). This prevents the usage of
deep learning methods in low-data regimes.

While state-of-the-art deep learning architectures have found immense success using billions of pa-
rameters [44, 68] and large number of parameter update computations [38, 48], this limits deep learning
applications to being deployed on powerful machines (or on distributed clusters). This makes them
unsuitable for embedded systems, small devices such as interet-of-things (IoT) devices, and end user

1

Figure 1.1: Label-free Few-shot Classification: Proposed setting (Best viewed in color)

mobile phones for example. Reducing the computational cost involved in training and inference will
open up new avenues for deep learning model deployment.

The Few Shot Learning (FSL) domain aims to reduce the data dependence problem by creating
learners which are able to generalize and efficiently transfer knowledge from few novel examples. The
challenge for the learner is to effectively update its prior experience with a small amount of new data
without overfitting to the new samples. In our work, we show how current FSL approaches, while
removing the label requirement, still depend on large amounts of data. Our contribution is to propose a
more challenging extension of this which aims to tackle both the data and compute issue. Further, our
proposed pipeline shows it is possible to achieve good performance at a fraction of the data and compute
cost of traditional (both FSL and otherwise) pipelines. This chapter presents a brief overview of the FSL
setup before presenting our more challenging pipeline and contributions.

1.1 Proposed Few Shot Learning Setup

Traditional machine learning approaches are supervised [44, 68] and learn using a large number
of labelled training samples. The labelled training examples are drawn from a set of classes C =

C1, C2, . . . , Cn. During testing, a new set of unseen samples is drawn from the same set of classes C
and is used to evaluate the learner.

2

Table 1.1: Comparing number of labels used in traditional few shot pipelines, 1ImageNet data was used
to train the network tested on miniImageNet.

Method Dataset
miniImageNet CIFAR100FS FC100

MAML [20] 50,400 48,000 -
RelationNet [73] 50,400 48,000 -
ProtoNet [69] 50,400 48,000 48,000
TADAM [56] 50,400 - 48,000
MetaOptNet [48] - 60,000 60,000
S2M2 [50] 50,400 48,000 -
Gidaris et al. [24] 50,400 48,000 -
Tian et al. [76] 50,400 48,000 48,000
AmDimNet [13]1 1,281,167 - -

Few Shot Learning (FSL) systems [20, 59, 69, 80] focus on creating learners capable of generalizing
to learn novel categories from a small number of labeled samples. A typical few-shot learning setup [20,
69, 80] also consists of a training and testing phase. However, instead of training and inference on the
same set of classes, the two sets are disjoint. The learner has access to a potentially labeled set of classes
Ctrain = {C1

train, C
2
train, . . .} where each training class Ci

train has a large number of samples.
At test time, the network is presented with a few labeled examples (typically 1 to 5) from a different

set of testing classes Ctest = {C1
test, C

2
test, . . .} such that Ctrain ∩ Ctest = ∅, and then performance is

evaluated on the unlabeled samples from this set of unseen classes. Given the limited number of labels,
the learner must quickly generalize to classify arbitrary examples from the test class.

This model of training on one set of possibly-labelled examples, using a small number of novel
class examples, and testing on the novel class set represents a real improvement compared to traditional
approaches. The number of labelled examples required for the learner to effectively adapt is greatly
reduced. However, this pipeline overall still uses a lot of labelled data. The data burden has simply
been shifted from the testing set to the training set. Traditional methods in this area require up to
60, 000 labels from standard benchmark datasets [56,80] despite the ‘few-shot’ moniker. (See Table 1.1
for a comparison.) While this reduction in data requirements is an improvement which should not be
understated, we show it is possible to push the limits of this setup. This thesis proposes a learning
framework which can effectively learn to classify using almost no labels overall. In addition, we also
keep our training and testing pipelines as computationally simple as possible so that it can be deployed
on computationally constrained devices as well. Our proposed training and inference pipelines are thus
thoroughly label-free, computationally simple, and achieve competitive performance.

1.1.1 Label-Free Training

Traditional few-shot pipelines have a very label-intensive training phase. We directly address the
label requirement at training time by leveraging advances in self-supervision [14, 30, 35, 41] and metric

3

learning [8, 69, 73, 80] to allow our classifiers to learn effective visual representations without labels.
Instead of labeled examples, self-supervised pipelines use a supervisory signal from the data itself,
usually via a number of pretext tasks [18, 26, 47, 55, 91] such as colorizing images and jigsaw puzzles
and classifying image rotations. Typically, the task is chosen such that it is very simple to compute the
ground truth. Metric learning approaches learn to embed inputs in a high dimensional space such that
semantically similar images are embedded close to each other in the latent space. Combining these two
areas, we choose image similarity as our pretext task. It allows the successful learning of useful visual
representations [41] and does not require manual labeling.

We formulate our image similarity pre-training task using recent advances in contrastive learning
approaches [14, 30, 35, 75]. The basic premise is that a learner can improve on image similarity by
learning to compare and contrast similar images. Contrastive learning frameworks improve the basic
image similarity task by applying simple distortion transforms on input images to generate a set of
distorted images. Each pair of distorted images forms an input to the learner, which must recognize if
both pair elements are from the same original undistorted input image. By learning to predict image
similarity in the presence of distortions in the input data, the network can effectively distill information,
making it suitable for quick generalization on novel classes.

This approach of a self-supervised contrastive learning training phase allows for a totally label free
training pipeline.

1.1.2 Label-Free Testing

At test time, few-shot learning frameworks must generalize to novel classes given only a few (pos-
sibly labeled) examples while avoiding overfitting on the limited data set. Traditional architectures,
which update a few billion parameters on every update, have a tendency to overfit on data and present a
significant computational burden preventing their deployment on low-power devices. Computationally
simple classifiers such as nearest neighbors [81], clustering [69], and attention kernels [80], are effective
in this low data regime. They also present a lower barrier to deployment on less powerful machines.

At test time, our classifier is presented with an N way, K shot task of K labeled images (called key
images) from N classes each, followed by 15 unlabelled images (called query images) to be classified.
We use various test time classifier variants (such as nearest neighbors [82] and attention kernels [80])
to select the most similar key image for every query image. The class of this selected key image is
the predicted query image class, which allows us to maintain our label-free setting while keeping the
inference pipeline computationally simple. Our ablation studies in Chapter 5 also investigate a simple
extension to this label-free setting using limited label information.

1.2 Contributions

We make the following contributions to this thesis:

4

1. We present a new, more challenging, label-free few-shot learning setup. In addition to bridging
the gap between human and machine intelligence, this also expands the fields of application which
can benefit from deep learning systems.

2. Our proposed pipeline is both conceptually and computationally simple, making it easy to adapt
to new areas. Our label-free framework can be used with any inference and training technique
that does not use labels. In Chapter 5, we showcase this flexibility by using a separate clustering-
oriented training task, instead of our proposed self-supervised contrastive learning task.

3. By leveraging self-supervision for training and image similarity for testing, we achieve competi-
tive performance while using zero training or testing labels. This is 10,000 times fewer labels than
existing state-of-the-art. (See Table 1.1)

4. In our ablation studies, we examine extensions of our pipeline and show how including limited
label information at test time and using a clustering-oriented task at training time influence per-
formance.

We will be diving into the details of our framework and contributions to our thesis. The next chapter
explores existing literature from related fields which have motivated our work, and presents how our
contributions are novel in that context. We end with a brief qualitative assessment of our results and
avenues for future work.

5

Chapter 2

Related Work

Few-shot learning literature is highly diverse [82]. There are various approaches to generalizing from
a limited number of samples while avoiding overfitting the limited testing data. This chapter presents a
broad classification of relevant few-shot literature before delving into the other related areas of metric
learning, self-supervised learning, and contrastive learning, which have motivated our work.

2.1 Few Shot Learning

The goal of a machine learning program is to learn from experience such that it measurably improves
performance over some class of tasks [52]. Typically, the learner incorporates experience using a super-
visory signal from the input examples. The supervisory signal may or may not be directly derived from
the performance measure itself. This setup is called supervised learning and requires labelled data sam-
ples where the labels form the supervisory signal. As such, traditional machine learning applications
require a large number of samples with labels for the source of supervised information.

For a variety of reasons outlined in the introduction, the easy availability of labels is not a given in
all domains. For this reason, the field of Few-Shot Learning (FSL) aims to perform machine learning
under the constraint where only a few labelled examples are present. It is important to make clear what
exactly we are constraining here. The learner is allowed to access labels for any examples not related
to the final task at hand. The few-shot constraint only applies to the final task over which we measure
the performance. For example, in a typical few-shot image classification setup, the learner can initially
be trained using labelled images from the full ImageNet dataset, but performance is evaluated on a
completely novel set of classes, of which only a few labelled examples per class are present.

In the context of deep learning, a neural network incorporates new information by using the super-
visory signal to update the network parameters. Typically, this is done via a loss function related to the
performance measure and task at hand, and the supervisory signal comes from the labelled examples. In
this setup, neural network optimization is essentially a search through the space of all parameter combi-
nations. Since the parameter search space is huge, finding a reasonable optimum in a reasonable amount
of time is a challenge. The most straightforward approach is to use as much supervision as possible, and

6

use powerful machines which can perform more updates in the same amount of time. As a result, deep
learning has had the most success in domains with good availability of labelled examples, coupled with
the availability of increasingly powerful compute.

In the FSL setup, the lack of supervisory signal presents significant challenges. Without enough
signals to guide the search, the network may find and settle in a local optimum and overfit. To generalize
well, the learner must effectively distill knowledge from the limited samples present while avoiding
overfitting. There are three broad categories of approaches that deal with this problem in different ways:

1. Data-focused approaches: This is the most straightforward category of approaches which effec-
tively increases the dataset size. More data implies more signals to guide the search. Intelligent
techniques are used to generate (or find) more data to train on in such a way as to improve the per-
formance on the final few-shot task. This extra data can either be artificially generated or sourced
from related tasks with labeled data available (via label propagation, for example).

2. Model-focused approaches: This second category focuses on the internal representation of the
learner. Having fewer parameters to optimize reduces the size of the search space, and a better
optimum can be found with limited data. Simpler architectures can be used instead of the usual
billion-parameter models, which will not overfit. Generalization can also be achieved by training
the learner on multiple tasks, learning with external memory, or learning to embed. This category
also encompasses self-supervised and contrastive learning methods.

3. Optimizer-focused approaches: This final category aims to quickly find an optimal path through
the parameter search space in as few updates as possible, allowing the model to generalize using
limited data. This is akin to searching ‘faster’ through the search space. In many cases, the
optimizer itself is a complex neural network that learns to make large meaningful updates based
on limited data. Some approaches learn an optimizer itself, while another class of approaches
called “meta-learning” aims to learn a model that quickly learns given limited data.

We will now go over these approaches in some detail.

2.1.1 Data Augmentation

Also known as data augmentation, this class of approaches adds extra labelled training samples for
the network. New samples are generated from existing samples by modeling inter-class and intra-class
variations using hallucination [29], feature transfer [64], and variational autoencoding [46] methods. It is
important that the extra samples are related to the existing data set, otherwise the network may optimize
for the wrong representations. Informative samples can be chosen from a related weakly supervised or
unlabeled dataset (when such a dataset is available) and existing labels can be propagated to the new
dataset to yield new labeled samples [19, 57]. It is also possible to use completely different datasets to
guide the learning process [22, 77], effectively increasing the labeled dataset size.

7

However, the limitation of such approaches is that they require the presence of related datasets,
reliable methods to select informative samples, and correctly propagating labels from known to unknown
examples. Since there are only a few truly labelled samples and the rest need to be somewhat artificially
generated, the learner is extremely sensitive to the label propagation technique, the example generation
technique, and also the similarity between the task at hand the the related dataset. By increasing the
dataset size using these approaches, these methods also consure more compute resources both in the
data generation and network training steps. In our proposed approach, we avoid both of these limitations
by using no labels at all and using extremely simple pipeline components.

2.1.2 Constraining Parameter Search Space

The main reason large number of labels are needed in the first place is due to the large size of
the parameter search space. A smaller search space is easier to search through, and if an optimum
set of parameters exists within this constrained space, it is more likely to be found using the limited
data. While using simpler architectures with fewer parameters is the most straightforward method to
constrain the search space, there are various methods in this category. Multi-task learning methods
leverage knowledge from multiple tasks by learning them simultaneously [12, 93], with knowledge
being shared between tasks by sharing [6,53,92] or tying parameters [87] between various task-specific
learners. Since the set of parameters optimal for all tasks is strictly smaller than the optimal settings for
any specific task, this restricts the size of the parameter search space. Deep learning networks encode
a lot of redundant information in their parameters. Another way to reduce the parameter search space
is to reduce the dimensions of the learned representations. Embedding learning methods [36] learn a
semantically meaningful embedding function into a lower-dimensional space such that similar inputs are
embedded closer than dissimilar ones. Both Matching Networks [80] and Prototypical Networks [69]
fall into this category: [80] learns train and test specific embeddings, and [69] learns to embed class
prototypes directly. Memory networks [51, 58] directly store training samples in external memory to
fetch and compare again at test time. However, choosing the right examples to store is a non-trivial
task [86,96], and the accuracy of the final learner is extremely sensitive to this choice. It is also possible
to directly learn the underlying input data probability distribution [60, 62].

These methods place heavy constraints on the model. Labelled data from separate tasks related to
the main task at hand must be found. It can be difficult to analyze if a learned embedding is semanti-
cally meaningful for the final classification task. Choosing a specific network architecture, embedding
method, or probability model also ties the model into a certain representation. Even though the search
space has been reduced, there is no guarantee that the remaining space is the most optimal for few-shot
tasks. Our framework places no such constraints on the model, availability of tasks, or category of
learned representations, allowing our framework to be more generally applicable.

8

2.1.3 Guiding Parameter Search Strategy

The core problem with a large search space is that there are more parameter combinations to search
through before finding an optimal one. Instead of using more samples to guide the search or constraining
the search space, this class of methods aims to make the search ‘smarter’. We guide the search strategy
for optimal parameters by either learning a good initialization or a better parameter update strategy.
Approaches such as [11,42,89] directly fine-tune parameters learned from a different but related pre-text
task. A hugely popular class of methods called meta-learning methods [20] aims to “learn a learner”. A
“meta” learner is trained from multiple related tasks to output a “base” learner, which can be optimized
for specific novel tasks in relatively fewer gradient updates [7, 54]. Advances in the meta-learning
space focus on incorporating task-specific information [49], modelling uncertainty [21, 28, 61, 90], or
improving training strategy [2, 4]. Finally, [1, 59] learn an optimizer that directly guides parameter
updates of the task-specific learner. In contrast, we do not update any network parameters at test time.

In addition to a large amount of labeled training data, this class of approaches requires significant
computing resources. In addition to training more complex optimizer and learner networks, we also
need to perform parameter updates at inference time. To keep our inference pipelines computationally
simple and investigate how far a few-shot framework can go without using labels, we have opted for
simple test time classifiers and no parameter updates at inference time.

2.2 Metric Learning

Typically, once a machine learning system has been trained on a specific set of classes, it cannot
easily generalize to other classes or tasks. This is due to the nature of traditional loss functions which
try to align network predictions to actual labels from each class. Instead of learning to directly classify,
metric learning methods “learn to compare”. Metric learners embed inputs in a semantically meaningful
embedding space, which groups similar inputs close to each other and dissimilar inputs far apart. This
allows them to sidestep the need for labels by using image similarity as the supervisory signal. While it
is possible to assign image similarity based on image classes, this is not always necessary. In our work,
we use a notion of image similarity which does not use labels at all.

Since the learnt embedding is ‘semantically meaningful’, the metric learner must embed similar
inputs close to each other in the embedding space, and dissimilar inputs far away from each other in the
final embedding space. To that end, we need a notion of a distance metric in the embedding space, and a
way to assign similarity scores between pairs of inputs. The starting point of metric learning methods is
the Mahalanobis distance metric. Given two inputs xi, xj the Mahalanobis distance dM between them
is given by:

dM (xi, xj) =
√

(xi − xj)TM(xi − xj)

9

Since dM is a distance metric, it needs to satisfy certain properties:

d(x, y) = 0 =⇒ x = y

d(x, y) = d(y, x)

d(x, z) ≤ d(x, y) + d(y, z)

These constraints imply that the matrix M needs to be symmetric and positive semi-definite and can
be decomposed as M = W TW . The Mahalanobis distance metric can then be decomposed as follows:

dM (xi, xj) =
√

(xi − xj)TM(xi − xj)

=
√

(xi − xj)TW TW (xi − xj)

=
√

[W (xi − xj)]T [W (xi − xj)]

= ‖Wxi −Wxj‖2

The matrix W represents a linear transformation on the inputs xi and xj . The Mahalanobis distance
in the original space can be represented as a simple Euclidean distance in the transformed space. Meth-
ods which learn such linear transformation impose fewer constraints on the input data and have been
shown to be robust to overfitting [5]. Unfortunately, the linearity of the transform imposes constraints
on the set of representations that can be learned. By leveraging non-linearity, metric learners can learn
more representations possibly better suited to the data and task at hand. In addition to kernel methods
to introduce non-linearity, metric learners replace this linear transformation matrix W by a non-linear
transformation function f(·), allowing a greater richness in the possible set of learned representations.
This allows for more natural data modelling from a wide range of domains [83, 85].

dM (xi, xj) = ‖f(xi)− f(xj)‖2

It is also possible to choose non-Euclidean measures of distance in the final embedding space to
better model similarity of embeddings. Cosine similarity is one such example:

s(xi, xj) =
xi · xj
‖xi‖ · ‖xj‖

By learning to predict image similarity in this way, a model can use the similarity scores to label in-
stances of novel classes by comparing them to a few known examples. It is also an effective pretext task
for few-shot learning [41]. Metric learning models use a variety of techniques in place of the linear trans-
formation function, ranging from cosine similarity [80], Euclidean distances [69], network-based [73],
ridge regression [8], convex optimization based [48], or graph neural networks [63]. Combined with
supervised pipelines, regularization techniques such as manifold mixup [50] also improve performance
on few-shot tasks. Metric learning methods on their own need not be label-free, as they aim to minimize
intra-class distances and maximize inter-class distances. In the next section, we present a brief overview
of motivating self-supervised techniques. Our proposed framework combines metric learning methods
with self-supervised techniques to create a completely label-free setting.

10

Figure 2.1: Metric Learning: Distance between similar samples must be minimized in the embedding
space, while distance between dissimilar samples must be maximized. (Best viewed in color)

2.2.1 Sample Selection for Metric Learning

Metric learners must embed similar sampler close together and dissimilar samples farther apart in the
learned embedding space. To achieve this, they are trained on pairs of samples from the training data, as
opposed to single samples. A pair of samples which need to be grouped closely together is designated
a positive pair, while a pair of samples which needs to be embedded far apart is designated a negative
pair.

The strategy to choose positive and negative samples has a great effect on the effectiveness of the
final learned system [67]. It is important to sample pairs with a high discriminative power. It has been
found that easy to discriminate samples have little effect on the learned parameters. Randomly creating
pairs from the input data does not achieve the best results.

There are various sampling approaches in the literature to create positive and negative samples from
the input data. The goal is to ensure the network is always presented with hard to discriminate, in-
formative sample pairs. One approach is hard negative mining [94], where false positive sample pairs
(negative sample pairs which are classified to be positive) are chosen and fed into the network. The
goal is to let the network adapt to discriminate between dissimilar inputs which have been classified as
similar.

Another approach is to use triplets [32]. Instead of pairs of samples, a triplet of inputs consisting of
anchor input, positive sample, and negative sample is created. The network is simultaneously trained to
minimize distance between the anchor and the positive sample, while maximizing distance between the
anchor and negative sample using a triplet loss.

11

2.3 Self-Supervised Learning

In machine learning, a supervisory signal is essential to measure performance and establish a clear
definition of what constitutes an ”optimal” outcome when searching for optimal parameter values within
a search space. In a supervised classification setting, the class labels themselves serve as the supervisory
signal. At its core, the supervisory signal is what guides the machine learning algorithm towards the
desired outcome.

When evaluating the performance of a model with a specific parameter set on a classification task,
the measure of success is how accurately it predicts the class labels. The model’s accuracy is a measure
of the its ability to correctly identify inputs and predict the class labels, and is therefore a good measure
of overall performance. In self-supervised learning, the supervisory signal along with the performance
measure is used to fine tune the model and ensure it is optimized for the task at hand.

Self-supervised methods utilize unlabelled data to learn useful representations. A popular approach
is to use a supervisory signal from the data itself and train the learner on pretext tasks that help it learn
useful internal representations. An effective self-supervised setup requires two properties:

• The supervisory signal must be easily extractable from the data itself without too much process-
ing. This is to ensure that the supervisory signal effectively exposes information present in the
data, and is not an artefact of the computations required to create it.

• The pretext task that the network is initially trained on must be related to the final task upon which
the performance of the network must be measured. This is to ensure that the knowledge learnt to
perform one task effectively transfers over to the final task.

A number of pretext tasks are available in the existing literature. Colored images are widely avail-
able, and converting them to grayscale is a simple process. Networks which accurately predict image
coloration [47, 91] are effective at image segmentation tasks. In order to predict image color from
grayscale images, such networks effectively learn to distill object information such as shape, size, and
boundaries. This ability transfers to image segmentation tasks as well. Other tasks, such as predicting
image patch positions [18,55], and predicting image rotations [26], are used in the literature. Combining
self-supervision with supervised approaches [13,24,70] has also resulted in improved performance over
few-shot tasks.

Self supervised approaches can fall into various categories [34]. Generative models learn representa-
tions by trying to generate artificial examples which are similar to the existing data samples. Generative
Adversarial Networks (GANs) [27] have inspired a number of works due to their success, such as Cycle-
GAN [95], StyleGAN [39], and PixelRNN [79]. However, these networks are difficult to train and are
often compute heavy. A more recent class of relevant self-supervised approaches known as “Contrastive
Learning” learns by comparing images against each other.

12

2.3.1 Contrastive Learning

Contrastive learning methods learn by comparing pairs of samples from the dataset. The goal is to
group similar samples close together, and dissimilar samples far away from each other in the embedding
space. This requires a notion of similarity between the input data. Formally, for a given sample input
I , a sample from the same distribution is denoted a positive sample I+, and a sample from a different
distribution is denoted a negative sample I−. Given a similarity function d(·, ·), the network must learn
an embedding function f(·) on the input samples such that it can simultaneously

• Maximize the distance between input and negative sample: d(I, I−)

• Minimize the distance between input and positive sample: d(I, I+)

See Figure 2.2 for a graphical summary.
There are various approaches to generating the positive and negative sample pairs in the literature [14,

30, 35, 75]. For our experiments, we demonstrate our new framework using two recent contrastive
learning approaches: SimCLR [14] and MoCo [30]. These approaches first perturb the input image
using simple transforms before embedding it in the latent space and calculating similarity scores. These
transformed images serve as inputs to the pipeline. Two inputs are said to belong to the same distribution
if they are transformations of the same initial image, otherwise, they are said to belong to different
distributions. This allows us to generate positive and negative samples without using class labels at
all. By learning to predict image similarity in the presence of distorting transforms, the network is able
to effectively distill information, making it suitable for quick adaptation to novel classes. This quality
makes it suitable for use in our label-free few-shot framework.

2.4 Novelty

In this thesis, we ask the questions: Are labels really required for few-shot classification tasks? Are
existing few-shot architectures making effective use of labels?

Existing few-shot classification methods enjoy high performance but also use a lot of labels during
the training phase. We investigate how much of the final accuracy can be achieved by using no labels at
all, thereby gauging how effectively these networks are extracting information from labels.

To examine the effect of label information on classification accuracy we experiment with different
architectures, extremely simple classifiers, and don’t fine tune on labels at all.

To the best of our knowledge, the label-free few-shot framework we propose is the first attempt to
evaluate few-shot systems in the complete absence of labels. While other related works do use self
supervised learning and contrastive learning methods, we differ in that we investigate the efficacy of
these methods in the context of few-shot learning while achieving accuracy close to that of the state-of-
the-art label using systems.

13

Figure 2.2: Contrastive Learning: A simple overview. For a given input image, positive and negative
samples are chosen. Each input is separately embedded in the latent space before calculating similarity
scores. Samples drawn from the same distribution should lie close to each other in the embedding space
while samples from different distributions should lie further apart. (Best viewed in color)

14

Chapter 3

Label Free Framework

In this chapter, we provide an in-depth overview of our label-free framework and introduce the spe-
cific settings used in our experiments. The figure 3.1 graphically presents an overview of the framework.
During the training phase, our network learns contrastive representations, which is achieved by the pre-
text task of predicting similarity between distorted images. The presence of image distortions forces
our models to learn general image representations, enabling them to generalize well to novel classes
that have few examples. During the testing phase, we utilize the learned representations to embed im-
ages and rely on similarity in the embedded space to perform a few-shot classification. Our framework
ensures that the test-time classifier does not fine-tune itself using labels and has no label information
whatsoever. Instead, labels are only utilized to calculate the final classifier accuracy.

In addition, we conduct ablation studies in Chapter 5 to investigate the effects of introducing limited
label information into our pipeline. By doing so, we can further evaluate the overall effectiveness of our
label-free approach and determine its optimal implementation. Overall, our framework offers a robust
and efficient solution for performing few-shot classification tasks in the complete absence of labels,
while also enabling our models to learn and generalize from a wide range of image representations.

In this study, we adopt a simple two-phase approach based on recent work [14, 30, 81]. During the
training phase, we train the base network using self-supervised approaches on the training classes. The
goal is to develop a robust and efficient network that can effectively generalize to novel classes during
the testing phase. In the testing phase, we use the trained network in extremely simple classifiers for
the few-shot tasks. Notably, we ensure that the network has no access to label information at any point,
which aligns with our label-free setting.

Although we have access toK labeled examples perC classes, the network does not access the labels
during testing. Instead, we rely on the effectiveness of our training scheme and the simplicity of our
classifiers to achieve optimal results. There are two main reasons for using only very simple classifiers
during the testing phase. Firstly, recent literature [14,15,69,80] has demonstrated the competitiveness of
these simple classifiers, and secondly, simple classifiers require no labels during test time. This allows
us to focus solely on the effectiveness of our training scheme while maintaining a label-free setting.
Overall, our two-phase approach offers a simple yet effective solution for few-shot learning tasks.

15

Figure 3.1: Graphical overview of our pipeline: Left: Our training method is designed to learn con-
trastive representations without the use of labels. Specifically, we use a self-supervised approach in
which a single input minibatch is augmented using two simple image transforms to generate key and
query image batches. The encoder networks then learn to preserve image similarity between keys and
queries generated from the same input. This is accomplished by minimizing the contrastive loss func-
tion during training. For further details on our training algorithm, please refer to Algorithm 1. Right:
During the testing phase, we use the network from the training phase to encode images and perform
few-shot classification without using labels. Our approach is based on image similarity, and we employ
a label-free classifier that predicts the most similar key image for every query image. This allows us to
classify images at test time without labels, which is consistent with our label-free setting. For further
details on our testing algorithm, please refer to Algorithm 2.

16

3.1 Label Free Training Framework

Few-shot learning is a challenging problem that has garnered significant interest in recent years. One
effective approach to few-shot learning is to focus on learning image similarity, as demonstrated by [41].
However, unlike [41], we aim to completely ignore labels during our training phase. To accomplish this,
we utilize a contrastive learning approach that focuses on learning contrastive representations.

In our contrastive learning approach, we start by applying two different data augmentations to an
input image, generating two augmented images. We then train our neural network f(·) to learn image
representations such that the encoding of two augmented images generated from the same input is as
similar as possible. This allows us to learn robust image representations without relying on any label
information. A detailed description of one training epoch is presented in Algorithm 1, and a visual
overview of our approach can be found in Figure 3.1.

Overall, our self-supervised contrastive learning approach is quite effective for the few-shot classifi-
cation task, allowing us to ignore labels completely and focus solely on learning robust image represen-
tations. This is a significant advantage over traditional few-shot learning approaches that rely on labeled
data, as our approach is more flexible and can be applied to a wider range of domains.

Given an input minibatchM, a stochastic augmentation module A generates two minibatches, one
of the query images Mq

A, and the other of the key images Mk
A by performing two different image

transforms. For a given query image, q the key image generated from the same input is denoted k+, and
k− otherwise. Pairs of query and key generated from the same input (q, k+) are denoted positive and
negative (q, k−) otherwise.

Encoder networks f(·) and g(·) are used to learn representations of key and query images, respec-
tively. Note that depending on the setting, these networks may be the same. Network f(·) is used for
downstream test time tasks. After computing the encoded representations Rk of the key, and Rq of the
query, the networks are trained to maximize the representation similarity for positive pairs, and mini-
mize for negative pairs. This is achieved by minimizing the following contrastive loss in Equation 3.1,
where τ is a temperature hyperparameter, and s(·, ·) is a similarity function.

L(Rq, Rk+ , {Rk−}) = − log
exp s(Rq, Rk+)/τ

exp s(Rq, Rk+)/τ + Σ
Rk−

exp s(Rq, Rk−)/τ
(3.1)

In our experiments, we use two recent works SimCLR [14] and MoCo [30], which fit into our overall
training framework above. In practive, both these approaches differ in how they generate positive and
negative sample pairs. We now present the specific details and training settings.

3.1.1 SimCLR Base

This training setting operates on minibatches of images rather than the entire dataset. From each
input minibatch of N images, two minibatches of key and query images are generated using stochastic
data augmentation. After applying image transforms, augmented minibatches of key and query images

17

Algorithm 1 Overall Training Methodology
Input: Augmentation Module A(·)
Input: Encoders f(·) g(·)
Input: Constrastive Loss Module L(q, k+, {k−})
Data: Training dataset Dtr

Result: Trained network f(·)
for minibatchM in Dtr do

Mq
A,Mk

A = A(M) ; // get augmented minibatches

{Rq} = f(Mq
A) ; // encode query representations

{Rk} = g(Mk
A) ; // encode key representations

for query Rq in {Rq} do
Rk+ = ChoosePositive(Rq, {Rk}) ; // positive key image
{Rk−} = ChooseNegative(Rq, {Rk}) ; // negative key images
L(Rq, Rk+ , {Rk−}) ; // minimize contrastive loss
UpdateParams(f , g) ; // update network parameters

end
end
return f

are treated on an equal footing with no distinction. Each query image has a corresponding positive
key image, generated from the same input, and 2N − 2 negative key images, generated from different
inputs. Taking image order into account, this leads to a total of 2N positive pairs and 2N(2N − 2)

negative pairs. The same neural network, f(·), is used to encode both the key and query images. During
training, the network is optimized to maximize the similarity between the embeddings of positive image
pairs and minimize the similarity between negative pairs using the contrastive loss in Equation 3.1.
The cosine similarity function s(x,y) = xTy/|x||y|, is used to calculate the similarity between image
embeddings. This setup is referred to as OURS˙S in the results.

3.1.2 MoCo Base

In this setting, the few-shot task is formulated as a dictionary lookup problem, decoupling the number
of negative samples from the batch size. The dictionary consists of key images and the unknown image
to be looked up is the query. The goal of the encoder network is to map the query image to a vector that
is close to the vector of the correct class in the dictionary. This is done by minimizing a contrastive loss
function that encourages the encoded query vector to be close to the encoded vector of the correct class,
while pushing it away from the encoded vectors of the other classes.

In contrast to the previous setting, we use two different encoders for this task: a momentum encoder
and a non-momentum encoder. The momentum encoder is used to encode the key images and maintain a
set of positive and negative samples for each query, while the non-momentum encoder is used to encode
the query images from the dictionary. The momentum encoder is updated using a momentum-based

18

weight update rule, which allows it to maintain a more stable set of positive and negative samples over
time.

The query (non-momentum) encoder is used for downstream few-shot tasks. This setting uses a dot
product as the similarity function for contrastive loss s(x,y) = xTy and is referred to as OURS M in
our results.

3.2 Label-Free Inference

Following standard literature [81], our test phase consists of multiple C-way K-shot tasks, where
the model has to learn to classify new classes with very limited labeled data. In each task, the model is
presented with C classes that it has not seen during training, and it is given only K labeled examples
(key images) for each class. The model must then use these examples to classify 15 query images
(unlabeled) for each of the C classes.

The use of class labels in task generation is only for ensuring that the task is a valid few-shot learning
scenario, and does not provide any additional information to the model during testing. In fact, the
classifier used during testing, Cf , does not have access to class labels and can only match each query
image q to its corresponding key image k based on its learned representation.

The matching process is based on the similarity between the query and key image representations
learned by the network f(·). The classifier Cf returns the index j of the key image that is most similar
to the query image q in terms of their learned representations. This is a form of nearest neighbor
classification, where the label of the query image is inferred from the label of its nearest neighbor in the
key set. This approach is often used in few-shot learning scenarios where the labeled data is limited,
and it has been shown to be effective in a variety of tasks. More importantly, this allows us to maintain
our label free setting. No parameter updates were made to the classifiers using the key or query images.
See Algorithm 2 for details and Figure 3.1 for a visual overview.

3.2.1 Label Free Classifiers

The inference framework in our experiments is based on using simple classifiers that are both compu-
tationally efficient and label-free. We draw inspiration from the work of [15, 81] and use the 1-Nearest
Neighbour classifier (1NN) from SimpleShot [81], as well as a simplified version of the soft cosine
attention kernel (ATTN) from Matching Networks [80].

Our choice of these simple classifiers allows us to focus on the effectiveness of our training methods
while avoiding the need for labelled data during testing. This is especially important in few-shot learning
scenarios where labelled data may be scarce or non-existent.

The algorithm for the test phase is presented in Algorithm 2.
The 1NN classifier is a simple Nearest Neighbour classifier. It simple chooses the key image which

minimizes the Euclidean distance in the embedding space between the key and the query image under

19

Algorithm 2 Test Phase: N -way, K-shot Task
Input: Trained Encoder f
Input: Classifier Cf
Input: Similarity Function s(x,y)
Data: N ×Q query images: {(qi, yqi)}
Data: N ×K test images: {(ki, yki)}
Result: Accuracy on task
correct← 0 foreach query image qi do

// return index of most similar key since classifier has no label
access

l = Cf (qi, {kj}) if yqi == ykl then correct = correct + 1;
end
return correct/(N ×Q)

consideration.
Cf (q, {k}) = arg min

j
|f(q)− f(kj)|2 (3.2)

The ATTN classifier used in the experiments described in the paper uses an attention mechanism to
choose the key image corresponding to each query. Specifically, the attention mechanism calculates a
softmax over the cosine similarity between the query and each key image. However, unlike the original
Matching Networks algorithm [80], which uses a weighted average over the labels of the key image set,
the ATTN classifier simply takes the arg max of the attention weights to identify the most similar key
image. This is because our classifier has no access to the probability distribution over the labels or the
number of labels, and we want to keep the inference framework label-free. More details on the inference
process can be found in Algorithm 2.

Cf (q, {k}) = arg max
j

a{k}(q, kj)

a{k}(q, kj) =
exp c(f(q), f(kj))∑
i exp c(f(q), f(ki))

c(x,y) =
x · y
|x| · |y|

(3.3)

20

Chapter 4

Label Free Experiments

We test various settings of our label-free framework using standard Few Shot Image Classification
benchmarks and evaluation protocols. This chapter presents details of our experiments and our results.

We test various settigns of our label-free framwork using standard Few-Shot Image Classification
benchmarks and evaluation protocols. These benchmarks evaluate few-shot learning algorithms on
three different datasets. This chapter presents details of our experiments and our results.

4.1 Experimental Setup

4.1.1 Datasets and Evaluation Protocol

We empirically evaluate the effectiveness of our label-free pipeline on three common few-shot image
classification benchmark datasets: miniImageNet [80], CIFAR-100FS [56], and FC100 [56] (FewShot
CIFAR100).

The miniImageNet dataset [80] is a subset of ImageNet [17] containing 100 classes and 600 examples
per class. Following [59], we split the dataset to have 64 base classes, 16 validation classes, and 20 novel
classes. Following [80], we resize the images to 84 × 84 pixels via rescaling and center cropping. The
CIFAR-100FS dataset is a subset of CIFAR-100 [43], containing 100 image classes, with each class
having 600 32×32 images. Following the setup proposed in [56], we split the classes into 60 base, 20
validation, and 20 novel classes for few-shot learning. The FC100 dataset is also a subset of CIFAR-100.
The 100 classes of the CIFAR-100 [43] dataset are grouped into 20 superclasses to minimize information
overlap between the superclasses. The train split contains 60 classes belonging to 12 superclasses, and
the validation and test splits contain 20 classes belonging to 5 superclasses each, following the setup
in [56].

Following established literature in the field, we follow a standard evaluation protocol [61,81]. At test
time, the classifier is presented with 10,000 tasks to calculate average accuracies and 95% confidence
intervals. Given the set of C novel classes, we generate an N -way K-shot task as follows. N classes
are uniformly sampled from the set of C classes without replacement. From each class, K key and

21

Q = 15 query images are uniformly sampled without replacement. The classifier is presented with the
key images and then used to classify the query images. Following prior work [81], we focus on 5-way
1-shot and 5-way 5-shot benchmarks. To highlight the efficacy of self-supervised label-free training
and keep our testing methods label-free, we use extremely simple non-parametric classifiers (1NN and
ATTN) over the base networks.

4.1.2 Models and Implementation Details

All experiments use a ResNet-50 [31] backbone. SimCLR [14] pre-training is done for 500 epochs,
a learning rate of 0.1, nesterov momentum of 0.9, and weight decay of 0.0001 on the respective datasets.
For the training phase, distorting transforms of RandomResizedCrop and ColorDistortion were found
to achieve the best results. The augmentations use the default hyperparameters from the published
work [14]. MoCo [30] pre-training is done for 800 epochs over the entire ImageNet [17] dataset
using the default parameters and details mentioned in their paper. Downstream tasks use the query
(non-momentum) encoder network. All code is published on https://github.com/adbugger/
FewShot.

4.2 Results

This work aims to examine the performance of our label-free pipeline for Few-Shot Learning and
critique the performance benefits of traditional label-intensive frameworks. To that end, in addition to
simply comparing classification accuracy we categorize frameworks into supervised, semi-supervised
using labels, and semi-supervised without using labels. Further, a comparison of the number of labels
used is also presented. The number of labels used by the pipelines is compared using the following
strategy: if the network trains by performing gradient updates over the training labels, we count the
labels in the training set; if the network fine-tunes over the test labels or uses test labels to compute
class representations, we count the labels in the test set; if the network uses training and validation data
to report results, we count training and validation labels. Unless otherwise specified in the published
works, we assume that the validation set has not been used to publish results, and that the train and test
pipelines are the same.

4.2.1 Empirical Analysis

Tables 4.1, 4.2 and 4.3 present our results on the miniImageNet, CIFAR100FS and FC100 datasets
respectively. For a more comprehensive comparison, we also adapt the work presented in Wu et al. [84]
to include another unsupervised method in these results. Accuracies are averaged over 10,000 tasks
and reported with 95% confidence intervals. The number of labels used by the methods is computed
as follows: if the network trains by performing gradient updates over the training labels, we count the
labels in the training set; if the network fine-tunes over the test labels or uses test labels to compute

22

https://github.com/adbugger/FewShot
https://github.com/adbugger/FewShot

Table 4.1: Average accuracy (in %) on the miniImageNet dataset. 1Results from [3], which did not
report confidence intervals. 2AmDimNet [13] used extra data from the ImageNet dataset for training the
network used to report mini-Imagenet numbers. 3Results from our experiments adapting the published
training code from [84]. 4Results on other datasets not available. OURS was implemented here using
OURS S pipeline and ATTN classifier.

Approach Setting Labels Used1-shot 5-shot

Fully Supervised

MAML [20] 49.6 ± 0.9 65.7 ± 0.7 50,400
CloserLook [15] 51.8 ± 0.7 75.6 ± 0.6 50,400
RelationNet [73] 52.4 ± 0.8 69.8 ± 0.6 50,400
MatchingNet [80] 52.9 ± 0.8 68.8 ± 0.6 50,400
ProtoNet [69] 54.1 ± 0.8 73.6 ± 0.6 50,400
Gidaris et al. [25] 55.4 ± 0.8 70.1 ± 0.6 50,400
TADAM [56] 58.5 ± 0.3 76.7 ± 0.3 50,400
SimpleShot [81] 62.8 ± 0.2 80.0 ± 0.1 38,400
Tian et al. [76] 64.8 ± 0.6 82.1 ± 0.4 50,400
S2M2 [50] 64.9 ± 0.2 83.2 ± 0.1 50,400
Gidaris et al. [24] 63.77 ± 0.45 80.70 ± 0.33 50,400

Semi Supervised Antoniou et al. [3]1 33.30 49.18 21,600
With Finetuning AmDimNet [13]2 77.09 ± 0.21 89.18 ± 0.13 21,600
Semi Supervised Wu et al. [84]3 32.4 ± 0.1 39.7 ± 0.1 0
And Label Free BoWNet [23]4 51.8 70.7 0

Ours 50.1 ± 0.2 60.1 ± 0.2 0

Table 4.2: Average accuracy (in %) on the CIFAR100FS dataset. 1Results from [48]. 2Results from
our experiments adapting the published training code from [84]. OURS was implemented here using
OURS S pipeline and ATTN classifier.

Approach Setting Labels Used1-shot 5-shot

Fully Supervised

MAML [20]1 58.9 ± 1.9 71.5 ± 1.0 48,000
RelationNet [73]1 55.0 ± 1.0 69.3 ± 0.8 48,000
ProtoNet [69]1 55.5 ± 0.7 72.0 ± 0.6 48,000
R2D2 [8]1 65.3 ± 0.2 79.4 ± 0.1 48,000
MetaOptNet [48] 72.8 ± 0.7 85.0 ± 0.5 60,000
Tian et al. [76] 73.9 ± 0.8 86.9 ± 0.5 48,000
S2M2 [50] 74.8 ± 0.2 87.5 ± 0.1 48,000
Gidaris et al. [24] 73.62 ± 0.31 86.05 ± 0.22 48,000

Semi Supervised Wu et al. [84]2 27.1 ± 0.1 31.3 ± 0.1 0
And Label Free Ours 53.0 ± 0.2 62.5 ± 0.2 0

23

Table 4.3: Avg accuracy (in %) on FC100 dataset. 1Results from [48]. 2Results from our experiments
adapting published training code from [84]. OURS was implemented here using OURS S pipeline and
ATTN classifier.

Approach Setting Labels Used1-shot 5-shot

Fully Supervised

ProtoNet [69]1 35.3 ± 0.6 48.6 ± 0.6 48,000
TADAM [56]1 40.1 ± 0.4 56.1 ± 0.4 48,000
MTL [71] 45.1 ± 1.8 57.6 ± 0.9 60,000
MetaOptNet [48] 47.2 ± 0.6 62.5 ± 0.6 60,000
Tian et al. [76] 44.6 ± 0.7 60.9 ± 0.6 48,000

Semi Supervised Wu et al. [84]2 27.4 ± 0.1 32.4 ± 0.1 0
And Label Free Ours 37.1 ± 0.2 43.4 ± 0.2 0

class representations, we count the labels in the test set; if the network uses training and validation data
to report results, we count training and validation labels. Unless otherwise specified in the respective
works, we assume that the validation set is not used to publish results, and that the train and test pipelines
are the same.

Our method achieves strong baselines on the benchmarks while using extremely limited label in-
formation, as can be seen in the comparison with Wu et al. [84], which operates in the same setting.
These are the only two methods across all benchmark datasets that use almost no label information.
Other methods are provided for comparison and the label count is calculated accordingly. The super-
vised methods use tens of thousands of labels, which can be very expensive depending on a particular
domain. Our methodology seeks to provide a pathway to solving problems in such settings with no
annotation cost whatsoever.

BowNet [23] operates in a similar setting and performs well on the mini-Imagenet benchmark. There
are similarities to our pipeline but we believe that their 2-phase training approach can be seen as a more
information-rich version of our pipeline and explains the higher performance on 5-shot tasks. Phase
1 uses rotation [26] as a pre-training task to train network A. This network A is used to perform k-
means clustering in the representation space. Their hypothesis is that these clusters represent high
level features. In Phase 2, the k-means cluster assignments generated using network A are used as
supervisory signal to train network B to predict the cluster assignment probability in the presence of
image perturbations. This task of predicting a probability distribution over the cluster assignments is
more information rich than our task of detecting whether two perturbed images are coming from the
same input. The supervisory signal is a probability vector, instead of a binary decision. The explicit
decision to predict high level features also helps few-shot classification accuracy.

A higher number of input images increases the classification accuracy, as seen in our 5-way-5-
shot tasks. The best results are achieved over the challenging miniImageNet dataset, followed by CI-
FAR100FS and FC100 datasets. This is expected as FC100 is a coarse-grained classification task and is
specifically constructed to have dissimilar classes.

24

Chapter 5

Further Inquiry

Our label-free framework is meant to be the first step towards machine learning systems that bridge
the gap between human and machine intelligence. While the previous chapter established the viability
of label-free few-shot, this chapter presents a qualitative analysis before exploring simple extensions to
our methods.

5.1 Qualitative Analysis

We present a visual representation of the performance of our image classification pipeline through
visual inspection of the learned representations. We demonstrate the generalizability of our model
and how it is able to capture meaningful visual features that are crucial for accurate classification.
Additionally, we analyze the impact of optimizing for a different metric (instead of image similarity)
on the model’s performance and provide insights into how they affect the learned representations. This
qualitative analysis not only serves as a useful tool for understanding the inner workings of our model
but also provides valuable insights for improving its performance in future work.

5.1.1 Classification Quality

We provide a qualitative analysis of our image classification results on the miniImageNet dataset us-
ing our OURS˙S pipeline. Figure 5.1 displays a mosaic of several examples, showcasing both successful
and failed classification instances. Our results are generally positive, with the network successfully de-
tecting an hourglass in the foreground of an image, even when a person is present in the background.
However, the network also made some mistakes, such as classifying a black and white polka-dotted
dog (DALMATIAN) as a HUSKY, which is a fine-grained classification task and a challenging few-shot
problem due to the close similarity between the two dog breeds. Nevertheless, our results demonstrate
that our method can achieve reasonable performance with limited label information when the classes
are coarse-grained and well-separated.

25

Figure 5.1: Visualizing a few examples from the miniImagenet test set using the OURS S pipeline. Far
Left: One labelled example visualized per class. Middle: Few correctly classified examples from the
test set. Right: Mis-classified examples. Similarity in texture and coarse object category are contribut-
ing factors for mis-classification.

5.1.2 Clustering Quality

Our label-free pipeline is based on the idea of image similarity, which means that images that are
similar should be represented by points that are closer together in a high-dimensional space. Conversely,
dissimilar images should be represented by points that are farther apart from each other. This can be
seen as a clustering problem, where similar images belong to the same cluster and dissimilar images
belong to different clusters. To evaluate the effectiveness of our pipeline, we use a tSNE embedding
technique to visualize the clusters formed by the representations of the miniImageNet test dataset that
were learned by our MoCo trained network. The quality of the learned representations is reflected in
the degree of separation between clusters in the tSNE embedding space. If the clusters are more distinct
and well-separated, it indicates that the network has learned better representations. Hence, we believe
that improving the semantic information captured by the learned representations in the final embedded
space is an important direction for future research.

In Figure 5.2, we show a tSNE plot of the entire test dataset embedded using the OURS˙M trained
network. Despite the dataset’s complexity, we can observe evident cluster separation in the tSNE em-
bedding. However, there is still room for improvement to further improve the cluster separation, which
can be achieved by exploring ways to enhance the semantic information in learned representations in
the final embedded space. One possible promising direction for future work is to use self-supervision to
improve the cluster separation further. In fact, we have experimented with such a pipeline in Chapter 5.
By improving cluster separation via self-supervision, we can obtain more pronounced clusters in the
final embedded space, leading to better performance in image similarity-based classification.

26

Figure 5.2: tSNE embedding of the miniImageNet dataset using our MoCo trained network. Consid-
ering the complexity of the dataset, the separation is evident. Improving the clustering quality should
further improve test results, which is investigated in Section 5.2.1

27

Table 5.1: A comparison of multiple classifiers on the miniImagenet dataset. Average accuracy and
95% confidence intervals are reported over 10,000 rounds. The centroid classifiers use class labels
to compute the centroids per class. Best results per few-shot task are in bold.

Training Testing Setting
1-shot 5-shot

Ours S

1NN 48.7 ± 0.2 59.0 ± 0.2
Attn 50.1 ± 0.2 60.1 ± 0.2

1NN centroid - 64.6 ± 0.2
Attn centroid - 63.6 ± 0.2

Ours M

1NN 44.2± 0.2 61.4± 0.2
Attn 59.8± 0.2 73.1± 0.1

1NN centroid - 69.3± 0.1
Attn centroid - 75.7± 0.2

Ours SF

1NN 46.8± 0.2 61.2± 0.1
Attn 55.6± 0.2 68.2± 0.2

1NN˙centroid - 72.4± 0.1
Attn centroid - 72.1± 0.1

5.2 Extending the Label-Free Framework : Directions for Future Work

5.2.1 Focusing on clustering

The core of our proposed image classification framework lies in the comparison of similarity scores
of the input representations, which in turn relies on the minimization of the distance metric (described
in Equations 3.2 and 3.3) for samples belonging to the same class, and maximization for samples from
different classes. This distance minimization task is essentially equivalent to a clustering problem. Rec-
ognizing this similarity, we explore the idea of integrating clustering as a training step. This clustering
step can be seamlessly incorporated into our framework, given its flexible and general nature. Moreover,
since clustering is also a label-free approach, it aligns well with our overall label-free setting, making it
a natural extension to our framework.

In our experiments, we study the utility of the SelfLabel [88] (OURS SF in Tables 5.1, 5.2, and 5.3)
method as a pre-training framework. This work simultaneously performs representation learning and
image label assignment. Since the label assignment is constrained to form good clusters in the represen-
tation space, this work is a good candidate to test our hypothesis, while requiring no labels at all. This
is a natural extension to our pipeline and fits in our label free few-shot setting, showcasing the adapt-
ability of our proposed pipeline. As shown in Table 5.1, this improves performance on mini-ImageNet
by a significant amount. However, OURS SF approach does not yield benefits on other datasets. More
complex clustering techniques and metrics can be investigated for future work.

28

Table 5.2: A comparison of multiple classifiers on the CIFAR100FS dataset. Average accuracy and 95%
confidence intervals are reported over 10,000 rounds. The centroid classifiers use class labels to
compute the centroids per class. Best results per few-shot task are in bold.

Training Testing Setting
1-shot 5-shot

Ours S

1NN 52.0± 0.2 61.7± 0.2
Attn 53.0± 0.2 62.5± 0.2

1NN centroid - 65.8± 0.2
Attn centroid - 63.8± 0.2

Ours M

1NN 32.2± 0.1 45.1± 0.2
Attn 44.6± 0.2 56.7± 0.1

1NN centroid - 52.8± 0.1
Attn centroid - 59.5± 0.2

Ours SF

1NN 42.5± 0.2 56.1± 0.2
Attn 49.3± 0.2 61.6± 0.2

1NN˙centroid - 65.7± 0.2
Attn centroid - 64.9± 0.2

Table 5.3: A comparison of multiple classifiers on the FC100 dataset. Average accuracy and 95%
confidence intervals are reported over 10,000 rounds. The centroid classifiers use class labels to
compute the centroids per class. Best results per few-shot task are in bold.

Training Testing Setting
1-shot 5-shot

Ours S

1NN 36.0± 0.2 42.6± 0.2
Attn 37.1± 0.2 43.4± 0.2

1NN centroid - 47.2± 0.2
Attn centroid - 46.0± 0.1

Ours M

1NN 32.0± 0.2 41.3± 0.2
Attn 38.3± 0.2 47.4± 0.2

1NN centroid - 47.7± 0.2
Attn centroid - 48.8± 0.2

Ours SF

1NN 30.9± 0.1 39.0± 0.2
Attn 33.4± 0.2 41.3± 0.2

1NN˙centroid - 44.6± 0.2
Attn centroid - 43.5± 0.2

29

Visualizing clustering quality per few-shot task

To investigate the impact of clustering on the final N -way K-shot task, we analyse tSNE plots of
each task below (See Figures 5.4 and 5.3).

Each subplot consists of a visualization of one instance of a 5-way 5-shot task. Each task contains 5
key images and 5 query images for each of the 5 classes. The 100 inputs are then embedded using our
learned network weights and then visualized.

From our experiments, the various instances fall into two broad categories. The visualizations in
Figure 5.3 show a certain degree of inter-class separation, but also have intra-class separation. Classi-
fication accuracy in these cases would be improved by a better clustering which maximizes inter-class
separation while simultaneously minimizing intra-class separation. This is a challenging setup in a
label-free environment.

The visualizations in Figure 5.4 show a different story. All images are clustered into a small common
center with a few far outliers. These cases show a complete failure of clustering. We hypothesize that
these represent local minima of our loss functions, where the contrastive loss is maximized by having
all inputs go to a common cluster center with some examples embedded a large distance away. These
cases require a more thorough examination to show consistent improvement.

5.2.2 Dimensionality Reduction

At test time, we classify images using image similarity. Since the similarity is directly affected
by the distance between representations in the embedded space, we also experiment with reducing the
dimension of our learned representations using Principal Component Analysis (PCA). We perform this
set of experiments using the OURS SF pipeline since it trains by performing simultaneous clustering
and labeling, hence this pipeline is most likely to be affected by the embedding dimension. Without
PCA, the original dimension of our embeddings is 2048.

Once our backbone encoder network is trained, we use the learned weights to embed our entire
training set and perform PCA. At test time, we use the same transformation matrix to reduce the di-
mension of our test set. We experiment with various output dimension sizes and present our results in
Tables 5.4, 5.5, and 5.6. From the tables, we can see that the reducing the dimension using PCA does
not affect the accuracies much. The quality of the learned representations is not affected by a simple
linear transform. More complex dimensionality reduction techniques can be attempted as future work
to study this further.

5.2.3 Introducing Limited Label Information at Test Time

A natural extension to our label-free framework is to incorporate the limited number of labels
(1-5) from novel samples at test time to guide classification. We introduce CENTROID versions of
our classifiers: 1 Nearest Neighbour Centroid (1NN CENTROID), and Soft Cosine Attention Centroid
(ATTN CENTROID), in the multi-shot setting. First the encoder network converts each novel key image

30

Figure 5.3: Visualizing the clustering quality for specific instances of few-shot tasks. Each color repre-
sents an input from the same class. Best viewed in color.

31

Figure 5.4: Visualizing the clustering quality for specific instances of few-shot tasks. Each color repre-
sents an input from the same class. Best viewed in color.

32

Table 5.4: Results of our experiments on the miniImageNet dataset with different embedding dimen-
sions, using the Ours SF pipeline. After learning network weights during training, we embed the train-
ing set and perform PCA to reduce the dimensionality of the representations. At test time we use the
same learned transformation matrix to reduce the dimensionality of the test set. Best results for each
dimension in bold. Accuracies averaged over 10,000 tasks and 95% confidence intervals are reported.

Output Classifier miniImageNet
Dimensions 1-shot 5-shot

2048 1NN 46.8 ± 0.2 61.2 ± 0.2
(no PCA) Attn 55.5 ± 0.2 68.2 ± 0.2

1024
1NN 46.9 ± 0.2 61.2 ± 0.2
Attn 55.6 ± 0.2 68.5 ± 0.2

512
1NN 46.7 ± 0.2 61.1 ± 0.2
Attn 55.5 ± 0.2 68.2 ± 0.2

256
1NN 47.0 ± 0.2 61.2 ± 0.2
Attn 55.6 ± 0.2 68.3 ± 0.2

128
1NN 47.9 ± 0.2 61.8 ± 0.2
Attn 55.2 ± 0.2 67.8 ± 0.2

Table 5.5: Results of our experiments on the CIFAR100FS dataset with different embedding dimensions,
using the Ours SF pipeline. After learning network weights during training, we embed the training
set and perform PCA to reduce the dimensionality of the representations. At test time we use the
same learned transformation matrix to reduce the dimensionality of the test set. Best results for each
dimension in bold. Accuracies averaged over 10,000 tasks and 95% confidence intervals are reported.

Output Classifier CIFAR100FS
Dimensions 1-shot 5-shot

2048 1NN 42.5 ± 0.2 56.1 ± 0.2
(no PCA) Attn 49.3 ± 0.2 61.6 ± 0.2

1024
1NN 42.5 ± 0.2 55.89 ± 0.2
Attn 49.4 ± 0.2 61.6 ± 0.2

512
1NN 42.6 ± 0.2 56.1 ± 0.2
Attn 49.5 ± 0.2 61.7 ± 0.2

256
1NN 42.8 ± 0.2 56.2 ± 0.2
Attn 49.2 ± 0.2 61.5 ± 0.2

128
1NN 43.2 ± 0.2 56.6 ± 0.2
Attn 49.1 ± 0.2 61.4 ± 0.2

33

Table 5.6: Results of our experiments on the FC100 dataset with different embedding dimensions, using
the Ours SF pipeline. After learning network weights during training, we embed the training set and
perform PCA to reduce the dimensionality of the representations. At test time we use the same learned
transformation matrix to reduce the dimensionality of the test set. Best results for each dimension in
bold. Accuracies averaged over 10,000 tasks and 95% confidence intervals are reported.

Output Classifier FC100
Dimensions 1-shot 5-shot

2048 1NN 30.9 ± 0.1 38.9 ± 0.2
(no PCA) Attn 33.4 ± 0.2 41.3 ± 0.2

1024
1NN 31.0 ± 0.1 38.9 ± 0.2
Attn 33.3 ± 0.2 41.5 ± 0.2

512
1NN 30.9 ± 0.1 38.9 ± 0.2
Attn 33.4 ± 0.2 41.5 ± 0.2

256
1NN 31.1 ± 0.14 38.9 ± 0.2
Attn 33.4 ± 0.2 41.3 ± 0.2

128
1NN 31.0 ± 0.2 38.9 ± 0.2
Attn 33.0 ± 0.2 41.0 ± 0.2

to its representation. Following [69, 80, 81], the CENTROID versions of these classifiers then compute
class representatives as the centroids of these representations. Few-shot classification is then done by
comparing each query image against each class centroid, essentially treating the class representative (or
exemplar) as the new key image for that class.

As shown in Tables 5.1, 5.2, and 5.3, the centroid versions of the classifiers increase accuracy by
5-10% in the multi-shot setting. Innovative methods of introducing label information without computa-
tional overhead present an interesting area for future work.

5.2.4 Data Transformation Techniques

The first step in our training pipeline is a data transformation step where we apply distortion trans-
forms to input data. This step generates augmented minibatches for self-supervised contrastive learning.
The goal of our pipeline is to maximize the similarity of learned representations for inputs generated
from the same image and minimize it for inputs generated from different images. The goal is to learn
representations which can be quickly generalized to new classes.

The choice of image transforms is a critical factor that can affect the quality of learned represen-
tations. Therefore, we extensively investigate the effect of the choice of data transformations on the
final accuracy. Following existing literature [14] we analyze a wide range of transformations involving
random cropping, random flipping, color jittering, and gaussian blurring, and evaluate their impact on
the classification accuracy of our framework. Random cropping allows the network to learn translation
invariance, while horizontal flipping enables learning of rotational invariance. Color jittering can help
the network learn to be invariant to color changes in the input images, while rotation can improve the

34

network’s ability to recognize objects in different orientations. However, different transforms may have
varying degrees of impact on the final performance, and some may even negatively impact it. Hence,
we conducted a series of experiments to determine the optimal combination of transforms for our spe-
cific task. This is crucial in ensuring the learned representations are of high quality, and our model can
generalize well to new, unseen data.

Based on [14] we experiment with three candidate data augmentation transforms: RANDOMRE-
SIZEDCROP, GAUSSIANBLUR, and COLORDISTORTION. We describe each of our data transformations
before presenting pseudocode for replicability.

For the RANDOMRESIZEDCROP transform, we first choose a random crop of the input image, resize
to the original size, and apply a random horizontal flip with probability 0.5

from torchvision.transforms import (

Compose, RandomResizedCrop, RandomHorizontalFlip, Normalize)

def RandomResizedCrop(options):

return Compose([

RandomResizedCrop(size=options.image_size),

RandomHorizontalFlip(0.5),

Normalize(options.image_mean, options.image_std),

])

For the COLORDISTORTION transform, we first apply the color jitter transform over the 4 channels
of the image (red-green-blue-alpha) using a jitter strength hyperparameter, with a probability of 0.8,
followed by converting the image to grayscale with probability 0.2.

from torchvision.transforms import (

Compose, RandomResizedCrop, RandomHorizontalFlip, Normalize)

def ColorDistortion(options):

s = options.jitter_strength

return Compose([

RandomApply([

ColorJitter(0.8*s, 0.8*s, 0.8*s, 0.2*s)

], p=0.8),

RandomGrayscale(p=0.2),

35

Normalize(options.image_mean, options.image_std),

])

For the GAUSSIANBLUR transform, we apply Gaussian Blur with a probability of 0.5. The blurring
kernel is 10% of the input image size, with a standard deviation chosen randomly between 0.1 and 2.0 .

from torchvision.transforms import (

Compose, RandomResizedCrop, RandomHorizontalFlip, Normalize)

def GaussianBlur(options):

kernel_size = options.image_size / 10

return Compose([

RandomApply([

GaussianSmoothing(

channels=options.image_channels,

kernel_size=kernel_size,

sigma=random.uniform(0.1, 2.0),

dim=2)

], p=0.5),

Normalize(options.image_mean, options.image_std),

])

Since each input pipeline uses 2 image transforms, we experiment with all three pairs of transforma-
tion functions across all our datasets and test time classifiers and report our results in Tables 5.7, 5.8, 5.9.
From these tables, it is clear that the best results are achieved by a combination of RANDOMRESIZED-
CROP and COLORDISTORTION which outperform the other combinations by a ∼ 15-20% across each
dataset and setting. Such a drastic improvement in accuracy based on the choice of data transform alone
indicates that experimenting with carefully crafted data augmentation transforms is a viable direction
for future work and improvements.

36

Table 5.7: Results of our experiments with different combinations of data transforms. Crop refers to
RandomResizedCrop. Blur refers to GaussianBlur. Distort refers to ColorDistortion. Representations
learned using the Ours S pipeline on the respective datasets. Accuracies averaged over 10,000 tasks and
95% confidence intervals reported. Best results in each setting in bold.

Transforms Classifier miniImageNet
1-shot 5-shot

Crop+Blur
1NN 33.47 ± 0.16 41.92 ± 0.16
Attn 34.79 ± 0.17 42.65 ± 0.16

Crop+Distort
1NN 48.65 ± 0.20 58.98 ± 0.18
Attn 50.13 ± 0.21 60.09 ± 0.18

Distort+Blur
1NN 21.96 ± 0.09 24.68 ± 0.10
Attn 22.40 ± 0.10 25.77 ± 0.10

Table 5.8: Results of our experiments with different combinations of data transforms. Crop refers to
RandomResizedCrop. Blur refers to GaussianBlur. Distort refers to ColorDistortion. Representations
learned using the Ours S pipeline on the respective datasets. Accuracies averaged over 10,000 tasks and
95% confidence intervals reported. Best results in each setting in bold.

Transforms Classifier CIFAR100FS
1-shot 5-shot

Crop+Blur
1NN 36.17 ± 0.17 47.43 ± 0.18
Attn 37.97 ± 0.18 47.79 ± 0.18

Crop+Distort
1NN 51.96 ± 0.24 61.68 ± 0.20
Attn 52.90 ± 0.24 62.46 ± 0.21

Distort+Blur
1NN 24.90 ± 0.12 30.23 ± 0.15
Attn 25.55 ± 0.13 31.10 ± 0.15

Table 5.9: Results of our experiments with different combinations of data transforms. Crop refers to
RandomResizedCrop. Blur refers to GaussianBlur. Distort refers to ColorDistortion. Representations
learned using the Ours S pipeline on the respective datasets. Accuracies averaged over 10,000 tasks and
95% confidence intervals reported. Best results in each setting in bold.

Transforms Classifier FC100
1-shot 5-shot

Crop+Blur
1NN 31.91 ± 0.15 41.14 ± 0.16
Attn 32.80 ± 0.16 41.30 ± 0.16

Crop+Distort
1NN 36.00 ± 0.18 42.54 ± 0.17
Attn 37.09 ± 0.19 43.39 ± 0.18

Distort+Blur
1NN 22.08 ± 0.08 25.08 ± 0.10
Attn 22.92 ± 0.10 26.93 ± 0.11

37

Chapter 6

Conclusions

Deep Neural Networks have applications in many vision-related domains, such as generic image-
understanding to self-driving cars [9]. This success is driven, in part, by the wide availability of large
amounts of data present in these domains. However, such networks require a huge amount of data and
compute power and cannot be easily adapted to domain with limited data or label availability.

To address this problem and to bridge the gap between human and machine intelligence, the field of
Few-Shot Learning aims to create learners that can generalize to novel classes using extremely limited
data. Conventional approaches in this area shift the label requirement from the novel set to the training
set. While such approaches are effective, it is not always possible to find high-quality labeled data which
is also related to the final task at hand.

To that end, this thesis proposes a Few-Shot learning framework that uses no labels. This has been
a more challenging setup compared to existing Few-Shot learners. Our proposed training and testing
pipeline is computationally simple, which makes it easier to adapt and modify. By leveraging self-
supervision for training and image similarity for testing, we achieve competitive performance while
using zero training or testing labels. However, this is 10,000 times fewer labels than existing state-of-
the-art.

In our ablations studies and extensions, we investigate the role of clustering quality in classification
accuracy. Due to the conceptually simple nature of our framework, we were able to adapt our pipeline
to use a clustering-oriented method, introduce limited label information at test time, and investigate the
effect of dimensionality. We also present a qualitative examination of classification performance and
present some failure cases. Finally, we show that by introducing limited label information at test time
we can achieve a 5-10% increase in accuracy without significant computational cost.

This thesis serves as a first step toward developing Few-Shot learners which require no labeled data,
increasing the applicability of deep neural networks and bridging the gap between human and machine
intelligence at the same time.

38

Related Publications

• Aditya Bharti, Vineeth N. Balasubramanian, C.V. Jawahar. Towards Label-Free Few-Shot
Learning: How Far Can We Go? 6th International Conference on Computer Vision and Image
Processing, CVIP 2021. IIT Ropar, India.

39

Bibliography

[1] M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau, T. Schaul, B. Shillingford, and N. De Fre-

itas. Learning to learn by gradient descent by gradient descent. In NeurIPS, 2016. 9

[2] A. Antoniou, H. Edwards, and A. Storkey. How to train your MAML. In ICLR, 2019. 9

[3] A. Antoniou and A. Storkey. Assume, augment and learn: Unsupervised few-shot meta-learning via random

labels and data augmentation. ICML, 2019. ix, 23

[4] H. S. Behl, A. G. Baydin, and P. H. Torr. Alpha maml: Adaptive model-agnostic meta-learning. arXiv

preprint arXiv:1905.07435, 2019. 9

[5] A. Bellet, A. Habrard, and M. Sebban. A survey on metric learning for feature vectors and structured data.

arXiv preprint arXiv:1306.6709, 2013. 10

[6] S. Benaim and L. Wolf. One-shot unsupervised cross domain translation. In NeurIPS, 2018. 8

[7] S. Bengio, Y. Bengio, J. Cloutier, and J. Gecsei. On the optimization of a synaptic learning rule, 1997. 9

[8] L. Bertinetto, J. F. Henriques, P. Torr, and A. Vedaldi. Meta-learning with differentiable closed-form solvers.

In ICLR, 2019. 4, 10, 23

[9] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel, M. Monfort,

U. Muller, J. Zhang, et al. End to end learning for self-driving cars. arXiv preprint arXiv:1604.07316, 2016.

38

[10] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry,

A. Askell, et al. Language models are few-shot learners. Advances in neural information processing systems,

33:1877–1901, 2020. 1

[11] S. Caelles, K.-K. Maninis, J. Pont-Tuset, L. Leal-Taixé, D. Cremers, and L. Van Gool. One-shot video

object segmentation. In CVPR, 2017. 9

[12] R. Caruana. Multitask learning. Machine learning, 1997. 8

[13] D. Chen, Y. Chen, Y. Li, F. Mao, Y. He, and H. Xue. Self-supervised learning for few-shot image classifi-

cation, 2019. ix, 3, 12, 23

[14] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework for contrastive learning of visual

representations. 2020. 3, 4, 13, 15, 17, 22, 34, 35

[15] W.-Y. Chen, Y.-C. Liu, Z. Kira, Y.-C. Wang, and J.-B. Huang. A closer look at few-shot classification. In

ICLR, 2019. 15, 19, 23

40

[16] Z. Dai, H. Liu, Q. V. Le, and M. Tan. Coatnet: Marrying convolution and attention for all data sizes, 2021.

1

[17] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical Image

Database. In CVPR, 2009. 21, 22

[18] C. Doersch, A. Gupta, and A. A. Efros. Unsupervised visual representation learning by context prediction.

In ICCV, 2015. 4, 12

[19] M. Douze, A. Szlam, B. Hariharan, and H. Jégou. Low-shot learning with large-scale diffusion. In CVPR,

2018. 7

[20] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep networks. In

ICML, 2017. 3, 9, 23

[21] C. Finn, K. Xu, and S. Levine. Probabilistic model-agnostic meta-learning. In NeurIPS, 2018. 9

[22] H. Gao, Z. Shou, A. Zareian, H. Zhang, and S.-F. Chang. Low-shot learning via covariance-preserving

adversarial augmentation networks. In NeurIPS, 2018. 7

[23] S. Gidaris, A. Bursuc, N. Komodakis, P. Pérez, and M. Cord. Learning representations by predicting bags

of visual words. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

pages 6928–6938, 2020. 23, 24

[24] S. Gidaris, A. Bursuc, N. Komodakis, P. P. Pérez, and M. Cord. Boosting few-shot visual learning with

self-supervision. In ICCV, 2019. 3, 12, 23

[25] S. Gidaris and N. Komodakis. Dynamic few-shot visual learning without forgetting. In CVPR, 2018. 23

[26] S. Gidaris, P. Singh, and N. Komodakis. Unsupervised representation learning by predicting image rotations.

In ICLR, 2018. 4, 12, 24

[27] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio.

Generative adversarial networks. Communications of the ACM, 63(11):139–144, 2020. 12

[28] E. Grant, C. Finn, S. Levine, T. Darrell, and T. Griffiths. Recasting gradient-based meta-learning as hierar-

chical bayes. arXiv preprint arXiv:1801.08930, 2018. 9

[29] B. Hariharan and R. Girshick. Low-shot visual recognition by shrinking and hallucinating features. In

ICCV, 2017. 7

[30] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick. Momentum contrast for unsupervised visual representation

learning. In CVPR, 2020. 3, 4, 13, 15, 17, 22

[31] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR, 2016. 1, 22

[32] E. Hoffer and N. Ailon. Deep metric learning using triplet network. In Similarity-Based Pattern Recog-

nition: Third International Workshop, SIMBAD 2015, Copenhagen, Denmark, October 12-14, 2015. Pro-

ceedings 3, pages 84–92. Springer, 2015. 11

[33] G. V. Horn and P. Perona. The devil is in the tails: Fine-grained classification in the wild. CoRR,

abs/1709.01450, 2017. 1

41

[34] A. Jaiswal, A. R. Babu, M. Z. Zadeh, D. Banerjee, and F. Makedon. A survey on contrastive self-supervised

learning. Technologies, 9(1):2, Dec 2020. 12

[35] X. Ji, J. F. Henriques, and A. Vedaldi. Invariant information clustering for unsupervised image classification

and segmentation. In ICCV, 2019. 3, 4, 13

[36] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe:

Convolutional architecture for fast feature embedding. In ACM-MM, 2014. 8

[37] H. Jiang, P. He, W. Chen, X. Liu, J. Gao, and T. Zhao. SMART: Robust and efficient fine-tuning for pre-

trained natural language models through principled regularized optimization. In Proceedings of the 58th

Annual Meeting of the Association for Computational Linguistics, pages 2177–2190, Online, July 2020.

Association for Computational Linguistics. 1

[38] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: A survey. Journal of artificial

intelligence research, 4:237–285, 1996. 1

[39] T. Karras, S. Laine, and T. Aila. A style-based generator architecture for generative adversarial networks.

In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 4401–4410,

2019. 12

[40] D. Kim and B. Suh. Enhancing vaes for collaborative filtering. Proceedings of the 13th ACM Conference

on Recommender Systems, Sep 2019. 1

[41] G. Koch, R. Zemel, and R. Salakhutdinov. Siamese neural networks for one-shot image recognition. In

ICML-W, 2015. 3, 4, 10, 17

[42] J. Kozerawski and M. Turk. Clear: Cumulative learning for one-shot one-class image recognition. In CVPR,

2018. 9

[43] A. Krizhevsky. Learning multiple layers of features from tiny images. University of Toronto, 2009. 21

[44] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural

networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems

- Volume 1, NIPS’12, page 1097–1105, Red Hook, NY, USA, 2012. Curran Associates Inc. 1, 2

[45] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural

networks. Communications of the ACM, 60(6):84–90, 2017. 1

[46] R. Kwitt, S. Hegenbart, and M. Niethammer. One-shot learning of scene locations via feature trajectory

transfer. In CVPR, 2016. 7

[47] G. Larsson, M. Maire, and G. Shakhnarovich. Learning representations for automatic colorization. In

ECCV, 2016. 4, 12

[48] K. Lee, S. Maji, A. Ravichandran, and S. Soatto. Meta-learning with differentiable convex optimization. In

CVPR, 2019. ix, 1, 3, 10, 23, 24

[49] Y. Lee and S. Choi. Gradient-based meta-learning with learned layerwise metric and subspace. In ICML,

2018. 9

42

[50] P. Mangla, N. Kumari, A. Sinha, M. Singh, B. Krishnamurthy, and V. N. Balasubramanian. Charting the

right manifold: Manifold mixup for few-shot learning. In WACV, 2020. 3, 10, 23

[51] A. Miller, A. Fisch, J. Dodge, A.-H. Karimi, A. Bordes, and J. Weston. Key-value memory networks for

directly reading documents. In EMNLP, 2016. 8

[52] M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of machine learning. MIT press, 2018. 6

[53] S. Motiian, Q. Jones, S. Iranmanesh, and G. Doretto. Few-shot adversarial domain adaptation. In NeurIPS,

2017. 8

[54] D. K. Naik and R. J. Mammone. Meta-neural networks that learn by learning. In IJCNN, 1992. 9

[55] M. Noroozi and P. Favaro. Unsupervised learning of visual representions by solving jigsaw puzzles. In

ECCV, 2016. 4, 12

[56] B. Oreshkin, P. Rodrı́guez López, and A. Lacoste. Tadam: Task dependent adaptive metric for improved

few-shot learning. In NeurIPS. 2018. 3, 21, 23, 24

[57] T. Pfister, J. Charles, and A. Zisserman. Domain-adaptive discriminative one-shot learning of gestures. In

ECCV, 2014. 7

[58] T. Ramalho and M. Garnelo. Adaptive posterior learning: few-shot learning with a surprise-based memory

module. In ICLR, 2018. 8

[59] S. Ravi and H. Larochelle. Optimization as a model for few-shot learning. In ICLR, 2017. 3, 9, 21

[60] S. Reed, Y. Chen, T. Paine, A. van den Oord, S. A. Eslami, D. Rezende, O. Vinyals, and N. de Freitas.

Few-shot autoregressive density estimation: Towards learning to learn distributions. In ICLR, 2018. 8

[61] A. A. Rusu, D. Rao, J. Sygnowski, O. Vinyals, R. Pascanu, S. Osindero, and R. Hadsell. Meta-learning with

latent embedding optimization. In ICLR, 2019. 9, 21

[62] R. Salakhutdinov, J. Tenenbaum, and A. Torralba. One-shot learning with a hierarchical nonparametric

bayesian model. In ICML-W, 2012. 8

[63] V. G. Satorras and J. B. Estrach. Few-shot learning with graph neural networks. In ICLR, 2018. 10

[64] E. Schwartz, L. Karlinsky, J. Shtok, S. Harary, M. Marder, A. Kumar, R. Feris, R. Giryes, and A. Bronstein.

Delta-encoder: an effective sample synthesis method for few-shot object recognition. In NeurIPS, 2018. 7

[65] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser,

I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,

I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis. Mastering the game

of go with deep neural networks and tree search. Nature, 529:484–503, 2016. 1

[66] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre, D. Kumaran,

T. Graepel, et al. A general reinforcement learning algorithm that masters chess, shogi, and go through

self-play. Science, 362(6419):1140–1144, 2018. 1

[67] E. Simo-Serra, E. Trulls, L. Ferraz, I. Kokkinos, P. Fua, and F. Moreno-Noguer. Discriminative learning

of deep convolutional feature point descriptors. In Proceedings of the IEEE international conference on

computer vision, pages 118–126, 2015. 11

43

[68] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014. 1, 2

[69] J. Snell, K. Swersky, and R. Zemel. Prototypical networks for few-shot learning. In NeurIPS. 2017. 3, 4, 8,

10, 15, 23, 24, 34

[70] J.-C. Su, S. Maji, and B. Hariharan. Boosting supervision with self-supervision for few-shot learning. ArXiv,

abs/1906.07079, 2019. 12

[71] Q. Sun, Y. Liu, T.-S. Chua, and B. Schiele. Meta-transfer learning for few-shot learning. In CVPR, 2019.

24

[72] W. Sun and Z. Chen. Learned image downscaling for upscaling using content adaptive resampler. IEEE

Transactions on Image Processing, 29:4027–4040, 2020. 1

[73] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. Torr, and T. M. Hospedales. Learning to compare: Relation

network for few-shot learning. In CVPR, 2018. 3, 4, 10, 23

[74] S. Takase and S. Kiyono. Lessons on parameter sharing across layers in transformers, 2021. 1

[75] Y. Tian, D. Krishnan, and P. Isola. Contrastive multiview coding. arXiv preprint arXiv:1906.05849, 2019.

4, 13

[76] Y. Tian, Y. Wang, D. Krishnan, J. B. Tenenbaum, and P. Isola. Rethinking few-shot image classification: a

good embedding is all you need? ECCV, 2020. 3, 23, 24

[77] Y.-H. H. Tsai and R. Salakhutdinov. Improving one-shot learning through fusing side information. arXiv

preprint arXiv:1710.08347, 2017. 7

[78] A. Vahdat, K. Kreis, and J. Kautz. Score-based generative modeling in latent space, 2021. 1

[79] A. Van Den Oord, N. Kalchbrenner, and K. Kavukcuoglu. Pixel recurrent neural networks. In International

conference on machine learning, pages 1747–1756. PMLR, 2016. 12

[80] O. Vinyals, C. Blundell, T. Lillicrap, k. kavukcuoglu, and D. Wierstra. Matching networks for one shot

learning. In NeurIPS. 2016. 3, 4, 8, 10, 15, 19, 20, 21, 23, 34

[81] Y. Wang, W.-L. Chao, K. Q. Weinberger, and L. van der Maaten. Simpleshot: Revisiting nearest-neighbor

classification for few-shot learning, 2019. 4, 15, 19, 21, 22, 23, 34

[82] Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni. Generalizing from a few examples: A survey on few-shot

learning. ACM Computing Surveys (CSUR), 2019. 4, 6

[83] K. Q. Weinberger, J. Blitzer, and L. Saul. Distance metric learning for large margin nearest neighbor

classification. Advances in neural information processing systems, 18, 2005. 10

[84] Z. Wu, Y. Xiong, S. X. Yu, and D. Lin. Unsupervised feature learning via non-parametric instance dis-

crimination. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages

3733–3742, 2018. ix, 22, 23, 24

[85] E. Xing, M. Jordan, S. J. Russell, and A. Ng. Distance metric learning with application to clustering with

side-information. Advances in neural information processing systems, 15, 2002. 10

44

[86] Z. Xu, L. Zhu, and Y. Yang. Few-shot object recognition from machine-labeled web images. In CVPR,

2017. 8

[87] W. Yan, J. Yap, and G. Mori. Multi-task transfer methods to improve one-shot learning for multimedia event

detection. In BMVC, pages 37–1, 2015. 8

[88] A. YM., R. C., and V. A. Self-labelling via simultaneous clustering and representation learning. In ICLR,

2020. 28

[89] D. Yoo, H. Fan, V. N. Boddeti, and K. M. Kitani. Efficient k-shot learning with regularized deep networks.

In AAAI, 2018. 9

[90] J. Yoon, T. Kim, O. Dia, S. Kim, Y. Bengio, and S. Ahn. Bayesian model-agnostic meta-learning. In

NeurIPS, 2018. 9

[91] R. Zhang, P. Isola, and A. A. Efros. Colorful image colorization. In ECCV, 2016. 4, 12

[92] Y. Zhang, H. Tang, and K. Jia. Fine-grained visual categorization using meta-learning optimization with

sample selection of auxiliary data. In ECCV, 2018. 8

[93] Y. Zhang and Q. Yang. A survey on multi-task learning. arXiv preprint arXiv:1707.08114, 2017. 8

[94] W. Zheng, Z. Chen, J. Lu, and J. Zhou. Hardness-aware deep metric learning. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 72–81, 2019. 11

[95] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image translation using cycle-consistent

adversarial networks. In Proceedings of the IEEE international conference on computer vision, pages 2223–

2232, 2017. 12

[96] L. Zhu and Y. Yang. Compound memory networks for few-shot video classification. In ECCV, 2018. 8

45

	Introduction
	Proposed Few Shot Learning Setup
	Label-Free Training
	Label-Free Testing

	Contributions

	Related Work
	Few Shot Learning
	Data Augmentation
	Constraining Parameter Search Space
	Guiding Parameter Search Strategy

	Metric Learning
	Sample Selection for Metric Learning

	Self-Supervised Learning
	Contrastive Learning

	Novelty

	Label Free Framework
	Label Free Training Framework
	SimCLR Base
	MoCo Base

	Label-Free Inference
	Label Free Classifiers

	Label Free Experiments
	Experimental Setup
	Datasets and Evaluation Protocol
	Models and Implementation Details

	Results
	Empirical Analysis

	Further Inquiry
	Qualitative Analysis
	Classification Quality
	Clustering Quality

	Extending the Label-Free Framework : Directions for Future Work
	Focusing on clustering
	Visualizing clustering quality per few-shot task

	Dimensionality Reduction
	Introducing Limited Label Information at Test Time
	Data Transformation Techniques

	Conclusions
	Bibliography

