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Abstract

In recent years, advances in computer vision have opened up multiple applications in virtual reality,
healthcare, robotics, and many other domains. One crucial problem domain in computer vision, which
has been a key research focus lately, is estimating the 3D human pose, shape, and correspondences from
monocular input. This problem domain has applications in various industries like fashion, entertain-
ment, healthcare, etc. However, it is also highly challenging due to various reasons like large variations
in the pose, shape, and appearance of humans and clothing details, external and self-occlusions, chal-
lenges with ensuring consistency etc.

As part of this thesis, we tackle two key problems related to 3D human pose, shape, and correspon-
dence estimation. First, we focus on the problem of temporally consistent 3D human pose and shape
estimation from monocular videos. Next, we focus on dense correspondence estimation across images
of different (or the same) humans. We show that despite receiving a lot of research attention lately,
existing methods for these tasks still perform sub-optimally in many challenging scenarios and have
significant scope for improvement. We aim to overcome some of the limitations of existing methods
and advance state-of-the-art (SOTA) solutions to these problems.

First, we propose a novel method for temporally consistent 3D human pose and shape estimation
from a monocular video. Instead of using the traditionally used, generic ResNet-like features, our
method uses a body-aware feature representation and an independent per-frame pose and camera ini-
tialization over a temporal window followed by a novel spatio-temporal feature aggregation by using
a combination of self-similarity and self-attention over the body-aware features and the per-frame ini-
tialization. Together, they yield enhanced spatio-temporal context for every frame by considering the
remaining past and future frames. These features are used to predict the pose and shape parameters of
the human body model, which are further refined using an LSTM.

Next, we expand our focus to the task of dense correspondence estimation between humans, which
requires understanding the relations between different body regions (represented using dense corre-
spondences), including the clothing details, of the same or different human(s). We present Continuous
Volumetric Embeddings (ConVol-E), a novel robust representation for dense correspondence-matching
across RGB images of different human subjects in arbitrary poses and appearances under non-rigid
deformation scenarios. Unlike existing representations, ConVol-E captures the deviation from the un-
derlying parametric body model by choosing suitable anchor/key points on the underlying parametric
body surface and then representing any point in the volume based on its Euclidean relationship with
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the anchor points. This allows us to represent any arbitrary point around the parametric body (clothing
details, hair, etc.) by an embedding vector. Subsequently, given a monocular RGB image of a person,
we learn to predict per-pixel ConVol-E embedding, which carries a similar meaning across different
subjects and is invariant to pose and appearance, thereby acting as a descriptor to establish robust, dense
correspondences across different images of humans.

We thoroughly evaluate our methods on publicly available benchmark datasets and show that our
methods outperform existing SOTA. Finally, we provide a summary of our contributions and discuss
the potential future research directions in this problem domain. We believe that this thesis improves the
research landscape for the domain of the human body, pose, shape, and correspondence estimation and
helps accelerate progress in this direction.
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Chapter 1

Introduction

In recent years, advances in computer vision have opened up new avenues for applications in vir-
tual reality, healthcare, robotics, and many other domains. One key problem domain in this area is
estimating 3D human pose, shape, and correspondences from monocular input. This problem domain
has applications in various industries like fashion, entertainment, healthcare, etc. However, it is also
a highly challenging problem for various reasons, like large variations in the pose, shape, and appear-
ance of humans and clothing details, external and self-occlusions, challenges with ensuring consistency
across, etc. In this chapter, we discuss our motivation for exploring this problem domain and describe
our specific problem statements and the related research challenges. Subsequently, we briefly discuss
the existing literature and its limitations, followed by providing an outline of our major contributions.

1.1 Motivation

Vision is the most dominant human sense by a large margin. According to a study [53], it is responsi-
ble for up to 80% of our perception, cognition, and learning abilities. Consequently, significant research
efforts have focused on mimicking (and potentially outperforming) human visual capabilities using ma-
chines. While this field of study - Computer Vision - has made remarkable strides in recent years, many
important problems remain to be solved. One such problem domain, which still has significant scope
for improvement, is estimating human body pose, shape, and the correspondences across humans from
a given visual input (videos or images).

As illustrated in Figure 1.1, estimating human pose, shape, and the correspondences between hu-
mans is an important problem with diverse applications across various fields. For instance, estimating
human shape aids in creating personalized virtual avatars, while pose estimation helps in accurately pos-
ing these avatars. This is useful in AR/VR, gaming, and the movie industries, where the need to animate
virtual characters for specific actions is common. Pose estimation is also beneficial for sports analytics
and healthcare for analyzing and identifying any potential issues in the movement patterns of a player or
a patient. Another application for pose estimation is in robotics, where understanding a person’s motion
and predicting their future motion is helpful for tasks like collision avoidance.
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Figure 1.1 Examples of diverse domains where estimating human pose, shape and correspondences is

beneficial. (A) A virtual cloth try-on platform. (B) An augmented reality platform. (C) Motion transfer

example. (D) A sports analytics platform. (E) Healthcare application - Gait analysis. (F) Robotics

application - Avoiding collisions with humans. (Image Credits: (A)-Kivisense; (B)-UK Gov Blog; (C)-

AvatarBlog @ Typepad; (D)-AIWS; (E)-Tekscan; (F)-IEEE Spectrum).
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Figure 1.2 Our problem statements. (A) depicts the problem of temporally consistent 3D human pose

and shape estimation. The input is a RGB sequence, and the output is the estimated parametric body

model, visualized by overlaying it on the RGB frames. (B) depicts the problem of dense human-centric

correspondence estimation. The input is images of humans, and the output is the estimated dense corre-

spondences.

In addition to estimating the pose and shape of humans, certain problems also require understand-
ing the relations between different body regions, including the clothing details, of the same or different
human(s). For instance, 3D reconstruction requires feature matching across images. Similarly, tasks
like virtual try-on and animation/motion transfer, where we want to transfer attributes (such as clothing
details or motion) from a source human to a target can also benefit from understanding the correspon-
dences between different body regions. Thus, in addition to estimating the pose and shape, we also
focus on the task of dense correspondence estimation across humans.

1.2 Problem Statement

We focus on two important problems in the domain of human pose, shape, and correspondence
estimation from monocular input, which are described below.

• Temporally Consistent 3D Human Pose and Shape Estimation from Monocular Videos:
Given a monocular input video, our aim in this problem is to estimate the underlying human
body pose and shape dynamics by fitting a parametric body model to the individual frames in a
temporally consistent fashion. This is illustrated in Figure 1.2-(A).

• Dense Human-Centric Correspondence Estimation: In this problem, given two or more im-
ages containing the same or different human(s), we aim to establish dense (pixel-to-pixel) 2D cor-
respondences across the humans, including their clothing details, present in those images. This
must be done along with dealing with variations in identity, background information, appearance,
and occlusions by garments - especially loose garments. This is illustrated in Figure 1.2-(B).
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1.3 Research Challenges

Both of the aforementioned problem statements present a wide range of research challenges, which
are illustrated in Figure 1.3, and described below:

• Large variations in pose, shape, and appearance: Both humans and clothing details can ex-
hibit significant variations in their pose, shape, and appearance (see Figure 1.3-(A, E)), making it
difficult to capture these diverse characteristics accurately.

• Occlusions: Occlusions ( Figure 1.3-(B)) caused by external objects in the scene (external occlu-
sion) or by the human’s own body parts like crossed limbs (self-occlusions) introduce visibility
obstruction and ambiguity, thus complicating the estimation process.

• Poor Lighting Conditions: Diminished input quality due to poor lighting conditions (Figure 1.3-
(C)) makes it challenging to localize humans (and other objects) in the scene or reason about them
effectively.

• Camera viewpoint variations: Variations in camera viewpoints ( Figure 1.3-(D)) add additional
complexity, as certain viewpoints (like side-views or back-views) provide much lesser information
than other views, forcing our methods to infer about the non-visible parts of the human body.

• Clothing details: Clothing, like human bodies, exhibits a wide range of complex poses, shapes,
and appearances (Figure 1.3-(E)). Further, clothing details, particularly loose clothing, can make
it difficult to localize the underlying human body, making the task of pose, shape, and correspon-
dence estimation more challenging.

• Ensuring Temporal Consistency: Temporal data, such as videos, require maintaining tempo-
ral consistency across frames to ensure the plausibility of estimated results (refer to Figure 1.3).
However, achieving temporal consistency in estimates is not straightforward due to the complex
nature of human motion, which makes effective integration of information across frames chal-
lenging.

• Inherent ambiguity of recovering 3D information from monocular 2D input: Recovering 3D
information from monocular images is inherently challenging due to the loss of depth information
during imaging. For example, in Figure 1.3-(G), the elbow joint appears incorrectly positioned
above the head despite being behind in 3D.

• Limited reliable real-world data: Obtaining reliable ground-truth data for human pose, shape,
and correspondences is challenging. Establishing ground truth requires fitting a parametric model
to raw 3D human scans using some fitting method (usually multi-view optimization-based). How-
ever, this restricts the accuracy of ground truth to the accuracy of the fitting method used. Fig-
ure 1.3-(G) illustrates an example of inaccurate annotations from a popular dataset, where the

4



Figure 1.3 Various research challenges in our target problem domain. (A) Large pose, shape and ap-

pearance variation in humans. (B) Occlusions (external and self). (C) Poor lighting conditions. (D)

Camera viewpoint variations. (E) Clothing variations. (F) Temporally consistent (and inconsistent)

results example. (G) Ambiguity of recovering 3D information from monocular 2D input; And noisy

ground truth annotations. (Image credits: (A)-Shutter Stock; (B,C)-YouTube Videos; (D,E)-3DHumans

Dataset [29]; (F) - Our results on a YouTube video; (G) MPI-INF-3DHP Dataset [45]).
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Figure 1.4 Evolution of human body representations over the years. (A) Skeleton based representa-

tion, e.g., [3] (B) Geometric primitive based representation, e.g., [12], (C) Statistical body model, e.g.,

SMPL [40]. (Image Credit: [61]).

annotation erroneously depicts the right elbow as bent towards the person’s head, even though it
is bent away.

1.4 Research Landscape

Humans can exhibit a wide variety of body poses and shapes. However, the human body has a well-
defined structure, and thus can be represented using parametric body models. Figure 1.4 illustrates the
evolution of human body models over the years. The earliest body models were stick-based models [12],
where labeled landmarks were used to represent the joints, and the edges between those landmarks in-
dicated the connectivity. These models evolved into geometric primitive-based models [12], where
geometric primitives like cubes, cylinders, and spheres were used to provide a more human-like repre-
sentation of the body. More recently, state-of-the-art parametric models rely on thousands of 3D scans
of people to learn the shape and structural statistics of the human body and can provide a very realistic
representation of humans [1, 40]. These parametric body models can model the human body in much
lower dimensions than voxel-grid or point clouds. Since a lower-dimensional representation is easier
to learn, problems related to reasoning about the human body, especially pose & shape estimation, can,
thus, be modeled as a problem of estimating the pose and shape parameters of a parametric body model.

The optimal setting for recovering the 3D information about a human would involve a multi-view
calibrated camera setup. However, constructing and managing such a setup is challenging and incurs
significant costs. Dependence on such a setup would limit the applicability of related technologies to
specialized labs capable of affording such intricate setups. Therefore, to ensure broader accessibility,
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there is a need to develop methods that can work with simple commodity input sensors like a single
mobile phone camera. Consequently, a significant fraction of research in this problem domain operates
under the challenging constraint of a single-view (monocular) input.

Initial efforts in the problem domain [13, 30, 35, 49, 50] focused on the task of 3D human pose and
shape estimation from monocular images. These methods typically employ a CNN-based image feature
extractor, followed by an MLP-based regressor to regress the SMPL parameters. This may be followed
by additional (learning or non-learning based) constraints to ensure physically plausible pose and shape
estimates. However, many applications critically depend on the temporal consistency of the estimated
human motion, where single-image-based methods give jittery and implausible results due to the lack
of any temporal consistency constraints. Further, when used on videos, single image-based methods, by
their very design, fail to effectively capture the temporal information available across frames and thus
perform sub-optimally.

To overcome the above-mentioned limitations of image-based methods, specialized video-based mo-
tion estimation methods have been proposed [33, 7, 65, 57, 68]. These methods typically introduce a
CNN module similar to image-based methods, followed by an RNN module to perform spatio-temporal
feature aggregation from neighboring frames before estimating the human pose and shape. However,
despite recent research efforts in this problem domain, many methods fail to capture long-term temporal
dynamics and show poor performance when the body is under partial occlusion. Thus, there is a need
to develop more robust video-based methods.

For the task of dense correspondence estimation, one approach would be to use one of the above (or
similar) methods to establish dense correspondences between the human image and the parametric body
model, followed by establishing correspondences between the humans in the parametric body model
space. DensePose [17] and Continuous Surface Embeddings (CSE) [48] follow a similiar approach.
However, since parametric body models are designed to model only the underlying human body, this
approach will not account for points lying away from the underlying human body, like clothing or
hair details. BodyMap [24] proposes to overcome this limitation by doing a geodesic distance-based
extrapolation of the CSE embeddings [48] in the SMPL’s UV space. However, such extrapolation is
insufficient to prevent distant vertices from having similar embedding values, resulting in false matching
across different regions of the human body. Additionally, BodyMap’s approach does not guarantee
consistent pixel-wise embeddings for loose clothing scenarios, as the effect of geodesic distance will
diminish in the far-apart regions of the UV space. Thus, there is a need to develop a representation that
is unique across different body parts but consistent across the same body parts of different humans, even
for points at arbitrary distances from the underlying human body.

7



1.5 Thesis Contributions

As part of this thesis, we propose solutions for the problems of (1) Temporally Consistent 3D Human
Pose and Shape Estimation from Monocular Videos and (2) Dense Human-Centric Correspondence
Estimation. Our major contributions as part of these works are outlined below.

1. Enhanced Spatio-Temporal Context for Temporally Consistent Robust 3D Human Motion
Recovery from Monocular Videos: In this work, we propose a method for temporally consistent
3D human body pose and shape estimation, where our key contributions are:

(a) Using a body-aware feature representation instead of generic ResNet-like features, which
allows us to exploit prior knowledge about the human body and leads to more robust perfor-
mance.

(b) A self-attention and self-similarity based improved spatio-temporal feature aggregation scheme
which yields enhanced per-frame spatio-temporal context for our task, leading to more ac-
curate and temporally consistent results.

(c) An LSTM-based motion refinement module for fine-grained refinement of the initial coarse
pose and shape estimation.

2. ConVol-E: Continuous Volumetric Embeddings for Human-Centric Dense Correspondence
Estimation: In this work, we propose a method for dense correspondence estimation across
humans, where our key contributions are:

(a) A novel volumetric representation that can be used to establish dense correspondences
across images of humans, including correspondences for points lying significantly far away
from the underlying human body. This allows us to model details like loose clothing or hair.

(b) A novel evaluation metric to better evaluate the richness of a given representation.

1.6 Organization of the Thesis

In this chapter, we have introduced our target problem domain, our motivation for exploring it, the
related research challenges, and provided a brief overview of the existing literature and its limitations.
The remainder of this thesis is structured as follows: In Chapter 2, we describe some of the key methods
we build upon, providing the necessary background for the remainder of the thesis. In Chapters 3 and 4,
we discuss our proposed solutions for the problem of temporally consistent 3D human pose and shape
estimation from monocular videos and the problem of dense human-centric correspondence estimation
in detail. Finally, in Chapter 5, we summarize our key contributions and discuss the potential future
research directions in this problem domain.
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Chapter 2

Background

In this chapter, we discuss the relevant prior literature, useful for the rest of the thesis. Specifically,
we talk about the Skinned Multi-Person Linear Model (SMPL) [40], Continuous Surface Embeddings
(CSE) [48], and geodesic distance calculation over meshes.

2.1 Skinned Multi-Person Linear Model (SMPL)

The Skinned Multi-Person Linear Model (SMPL) [40] is a learned statistical body model, compatible
with existing rendering engines, designed to represent the human body in various poses and shapes,
including the pose-dependent shape variations, using a set of pose and shape parameters. Each SMPL
mesh comprises N = 6890 vertices and K = 23 (body) joints, along with an additional root joint. The
joints and vertices are arranged in a kinematic tree structure. SMPL is learnt and made available in three
mesh representations - Male, Female, and (Gender) Neutral.

SMPL’s body pose is parameterized using θ = [θ0, θ1, . . . , θK ], where, ∀i ∈ [1, 23], θi denotes the
relative angle formed by the ith joint with its parent joint in the kinematic tree, while, θ0 denotes the
orientation of the root joint. The body shape is parametrized by a shape vector, β = [β1, β2, . . . , βnc].
Here, nc refers to the number of shape coefficients, typically chosen to be 10 (but can be up to 300).
Overall, the model can be expressed mathematically as: M(β⃗, θ⃗; Φ) : R|θ|×|β| → R3N . It should be
noted, that here, Φ denotes the learned model parameters, which remain fixed once the model has been
learnt, while θ and β, respectively, refer to the pose and shape parameters as described above, and can
take different values during inference.

Figure 2.1 illustrates the working of the SMPL body model. We begin with a template mesh T̃ and
a set of learned blend weights, W . Next, an identity-driven blend shape function (’identity-driven’ as it
is just based on the shape parameters and does not account for the pose-dependent shape deformations)
is used to deform the mesh based on the shape parameters, as Bs(β⃗) : R|β⃗| ↣ R|3N |. Following this,
the pose-driven blend shape function, Bp(θ⃗) : R|θ⃗| ↣ R|3N | is used to add the pose-dependent shape
deformations. Finally, a standard blend skinning function W (·) is used to obtain the final mesh by
rotating the vertices around the joint centers as per the given body pose.
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Figure 2.1 Working of the SMPL body model. (a) shows the template mesh, where the different colors

represent the blend weights, while the joints are highlighted in white. (b) shows the identity-driven

(driven by the shape parameters only) shape deformation of the template mesh. (c) shows the pose-

dependent shape deformation of the mesh. It can be seen that the hips in (c) are expanded as compared

to (b). (d) shows the final re-posed body in the target shape and pose. (Image Credit: [40].)

Mathematically, this is formulated as:

M(β⃗, θ⃗; Φ) = W (TP (β⃗, θ⃗), J(β⃗), θ⃗,W) (2.1)

Here, M(β⃗, θ⃗; Φ) : R|θ|×|β| ↣ R3N . W (·) is a standard blend skinning function. TP , (as defined in
Equation 2.2) is the mesh obtained after deforming the template mesh with the identity-driven, BS(β⃗)

(see Equation 2.3), and the pose-driven BS(θ⃗) (see Equation 2.4) shape deformations. J(β⃗) (see Equa-
tion 2.5) are the joint locations in the deformed mesh. While, θ and W are the joint angles, and the
blend skinning weights, respectively.

TP (β⃗, θ⃗) = T̄+BS(β⃗) +BP (θ⃗) (2.2)

BS(β⃗;S) =
|β⃗|∑
n=1

βnSn (2.3)

BP (θ⃗;P) =

9K∑
n=1

(Rn(θ⃗)−Rn(θ⃗∗)))Pn (2.4)

J(β⃗;J , T̄,S) = J (T̄+BS(β⃗;S)) (2.5)

It should be noted that θ∗ in Equation 2.3 above denotes the SMPL rest pose. Similarly, Rn in
Equation 2.4 denotes the nth element of R(θ⃗), the pose rotation vector for all joints, as per the rotation

10



Figure 2.2 Overview of CSE. Given an input image containing an object and a canonical mesh for that

object class, CSE helps us establish dense correspondences by learning a common embedding space for

the image and the canonical mesh (Image Credits: [48]).

matrix representation. Further, as per the notational convention, the function parameters learnt during
training but kept fixed during inference are written after the ‘;’ (semi-colon), while the parameters which
can be varied during inference are specified before the semi-colon.

2.2 Continuous Surface Embeddings

Continuous Surface Embeddings (CSE) [48] focuses on the task of learning dense correspondences
between deformable object categories. Methods prior to CSE provided ad-hoc solutions for specific
object types, often with significant manual work involved. The key idea of CSE is to learn an image-
based representation of dense correspondences. CSE learns to predict an embedding vector for each
pixel in a 2D image, such that the embedding vector corresponds to the vertex corresponding to the
pixel in a canonical object mesh. The authors demonstrate that compared to existing methods, CSE
achieves competitive performance on the task of dense pose estimation for humans while also being
able to generalize to new object categories by sharing a single dense pose predictor across categories.

Figure 2.2 provides an overview of the method of CSE. Given an input image I and a trained predictor
network Φ, the per-pixel embeddings for the image are obtained as E = Φ(I). Now, the per-pixel
embeddings for the image, E, and the per-vertex embeddings for the canonical mesh, E′, can be used
to establish dense correspondences as follows:

p(k|x, I, E′,Φ) =
exp(−⟨ek,Φx(I)⟩)∑K
k=1 exp(−⟨ek,Φx(I)⟩)

(2.6)
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here, p(k|x, I, E′,Φ) is the probability, represented using a softmax-like function, that the kth vector
of the canonical mesh corresponds to xth pixel of the image I . While ⟨·, ·⟩ denotes the inner product
between two vectors.

The model is learnt by using a modified version of the cross-entropy loss. Instead of using the vanilla
cross-entropy loss, the cross-entropy between a gaussian-like distribution centered on the point k and
the predicted posterior is minimized, as follows:

Lσ =
K∑
q=1

gs(q; k)L(E,Φ)

L(E,Φ) = − avg
(I,x,k)∈τ

logp(k|x, I, E,Φ)

gs(q; k) ∝ exp

(
− 1

2σ2
ds(Xq, Xk)

) (2.7)

Additionally, CSE authors use spectral analysis to inject geometrical knowledge into their embed-
dings. This helps them to ensure that their embeddings are (1) of (relatively) low dimensions, (2) ag-
nostic to mesh discretization, and (3) easy to relate across two different object categories (like humans
and chimps). We refer readers to the CSE [48] paper for more details.

For our problem statements, the pre-trained CSE network is beneficial as it can help us obtain rich
information about the human body from the provided input. For the task of 3D human pose and shape
estimation, we use CSE as an initializer to provide a strong prior about the per-pixel relations with the
SMPL mesh. This leads to more robust and accurate pose and shape estimation. For the task of dense
correspondence estimation, while CSE does not solve our problem, as it can not handle points lying
away from the body model (like clothing details), it can still provide us with a strong prior about the
underlying human body, which can be used as a foundation for further reasoning about the clothing
details and other points lying away from the body model.

2.3 Geodesic Distance Calculation over Meshes

Geodesic distance represents the shortest distance between two points along a given surface, such as
a sphere or mesh surface. Unlike Euclidean distance, which measures the direct, ’straight-line’ distance
between points in a flat, Cartesian space, geodesic distance considers the curvature and topology of
the underlying space. This concept is illustrated in Figure 2.3, where the straight line between points
A and B depicts the Euclidean distance, while the curved line along the surface depicts the geodesic
distance between the two points. Calculating geodesic distance becomes crucial when dealing with
non-flat surfaces, where a straight-line path may not accurately reflect the actual distance between two
points. For instance, using Euclidean distance to measure distances on the Earth’s surface would lead to
inaccuracies due to the Earth’s curvature.

A few key application areas where geodesic distances are commonly used are:
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Figure 2.3 Geodesic Distance vs Euclidean distance: The straight line between points A and B shows

the Euclidean distance between the two points, while the curved line, along the surface, shows the

geodesic distance between the points. (Image Credits: [23])

• Geographic Information Systems (GIS): Geodesic distances are widely employed in Geo-
graphic Information Systems for tasks like computing distances over topographical maps while
accounting for roads or other permissible paths for travelers.

• Manifold Learning: Manifold learning refers to a class of Machine Learning problems related
to projecting high-dimensional data onto lower-dimensional manifolds. These techniques com-
monly use geodesic distances between points to compute the similarity or proximity between
points in a dataset.

• 3D Computer Vision: Another common application area of geodesic distances, and the one
most relevant to us, is 3D Computer Vision. In 3D computer vision, geodesic distances are used to
establish relations between features on a surface. For example, after we detect the eyes and mouth
of a face, the inter-feature distances can be used to help characterize a surface for recognition or
correspondence.

|▽ϕ| = 1 (2.8)

A popular class of algorithms for computing geodesic distances involves solving the eikonal equa-
tion (see Equation 2.8), subject to boundary conditions ϕ|γ = 0 over some subset γ of the domain (like
a point or curve). Typically, the equation is solved using fast marching [56] and fast sweeping. Fast
marching methods involve propagating distance information in wavefront order using a priority queue
and provide a fast but approximate solution for computing geodesic distances over the meshes. On the
other hand, heat-diffusion-based methods [10] are another class of methods that provide fast but ap-
proximate solutions for computing geodesic distances. Heat-diffusion-based methods offer even higher
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computational efficiency than fast-marching methods and are generally more robust for different data
types. However, both these classes of algorithms provide approximate solutions. For computing the ex-
act distances, the MMP algorithm is one popular algorithm [46] for computing exact geodesic distances
is the MMP algorithm. This method provides an exact solution for the geodesic distance. However,
it offers limited computational and memory efficiency. We refer the readers to [9] for a more detailed
discussion on this topic.
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Chapter 3

Enhanced Spatio-Temporal Context for Temporally Consistent Robust

3D Human Motion Recovery from Monocular Videos

As introduced in chapter 1, recovering temporally consistent 3D human body pose, shape and motion
from a monocular video is a challenging task due to (self-)occlusions, poor lighting conditions, complex
articulated body poses, depth ambiguity, and limited availability of annotated data. Further, doing a
simple per-frame estimation is insufficient as it leads to jittery and implausible results. In this chapter, we
propose a novel method for temporally consistent motion estimation from a monocular video. Instead
of using generic ResNet-like features, our method uses a body-aware feature representation and an
independent per-frame pose and camera initialization over a temporal window followed by a novel
spatio-temporal feature aggregation by using a combination of self-similarity and self-attention over
the body-aware features and the per-frame initialization. Together, they yield enhanced spatio-temporal
context for every frame by considering remaining past and future frames. These features are used to
predict the pose and shape parameters of the human body model, which are further refined using an
LSTM. Experimental results on the publicly available benchmark data show that our method attains
significantly lower acceleration error and outperforms the existing state-of-the-art methods over all key
quantitative evaluation metrics, including complex scenarios like partial occlusion, complex poses and
even relatively low illumination.

3.1 Introduction

Recovering 3D human body pose, shape and motion from a monocular video is an important task that
has tremendous applications in augmented/virtual reality, healthcare, gaming, sports analysis, human-
robot interaction in virtual environments, virtual try-on, etc. A lot of work has been done in estimating
3D body pose and shape from a single-image [13, 30, 35, 49, 50] by learning to regress the explicit 3D
skeleton or parametric 3D body model like SMPL [40] (Please see section 2.1 for a detailed discussion
about SMPL). However, many applications such as human motion analysis, sports analytics, behavior
analysis, etc., critically depend on the temporal consistency of human motion where single-image-based
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Figure 3.1 Acceleration error plot on unseen test video from 3DPW dataset [62]
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methods seem to fail frequently. Temporally consistent 3D human pose, shape and motion estimation
from a monocular video is a challenging task due to (self-) occlusions, poor lighting conditions, complex
articulated body poses, depth ambiguity, and limited availability of annotated data. Efforts on monocu-
lar video-based motion estimation [33, 41, 7, 36, 51, 60] typically introduce a CNN or RNN module to
perform spatio-temporal feature aggregation from neighboring frames followed by SMPL [40] param-
eters regression, thus modeling relatively local temporal coherence. However, these methods tend to
fail while capturing long-term temporal dynamics and show poor performance when the body is under
partial occlusion. Another class of works [52, 20, 44, 70] attempt to model the generative space of mo-
tion modeling using Conditional VAEs, often followed by a global, non-learning-based optimization at
inference time using the entire video. Such global optimization is also used in [71] with a plug-and-play
post-processing step for improving the existing methods by exploiting long-term temporal dependen-
cies for human motion estimation. However, due to the post-processing over the entire sequence, such
methods find limited applicability to real-world scenarios.

A relevant work, MPS-Net [65], explicitly models the visual feature similarity across RGB frames
and uses it to guide the learning of the self-attention module for spatio-temporal feature learning fol-
lowed by a local to global temporal feature aggregation for per-frame SMPL prediction. A recent work
GLoT [57] uses random masking along with a global (at a window-level) encoder to regress a coarse
global mesh sequence followed by per-frame local parameter correction using a local transformer-based
encoder and a Hierarchical Spatial Correlation Regressor (HSCR). Another recent work, PMCE [68],
attempts to directly regress the SMPL mesh vertices by jointly updating off-the-shelf temporal image
features and 2D pose estimates using an attention based co-evolution decoder. Nevertheless, similar
to the majority of the existing methods, these methods neglects the body-aware spatial context in the
images, while using generic ResNet [21] features extracted from the RGB frames.

In this chapter, we propose a holistic method that exploits enhanced spatio-temporal context and
recovers temporally consistent 3D human pose/shape from monocular video. At first, we select a set
of continuous frames in a temporal window and pass it to the Initialization module which extracts the
body-aware deep features from individual frames and in-parallel predict initial per-frame estimates of
body pose/shape and camera pose using an off-the-shelf method. Subsequently, we pass these ini-
tial estimates and features to novel Spatio-Temporal feature Aggregation (STA) module for recovering
enhanced spatio-temporal features. Finally, we employ our novel Motion estimation and Refinement
module to obtain temporally consistent pose/shape estimation using these enhanced features. Figure 3.2
provides outline of our method.

In regard to functionality/relevance of these modules, the initialization module extracts a body-aware
feature representation [48] for each frame of the local non-overlapping temporal frame window, instead
of the generic ResNet feature used by existing methods and the independent per-frame pose and camera
initialization estimated using [14]. This provides a strong spatial prior to our method. Further, our
proposed novel STA module computes the self-similarity and the self-attention on initial spatial priors
provided by the previous module. In particular, the self-similarity between the body-aware features in a
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temporal window helps us to correlate the body parts across frames even in the presence of occlusion.
Similarly, the self-similarity among the pose parameters and the camera reveals the continuity of the
human motion along with the camera consistency. We also use self-attention on the camera parameters
and the body-aware features. Together, they yield spatio-temporal aggregated features for every frame
by considering the remaining past and future frames inside the window. Here, the joint characteristics of
the self-similarity and the attention map find the more appropriate range in the input video to reveal the
long-horizon context. Finally, our novel motion estimation and refinement module first predicts the per-
frame coarse estimation of pose/shape using the spatio-temporally aggregated features from the STA
module and subsequently passes it to an LSTM-based joint-temporal refinement network to recover
the temporally consistent robust prediction of pose/shape estimates. In order to generate continuous
predictions near the temporal window boundaries, we average the pose/shape parameters for consecutive
border frames across neighboring windows. We empirically observed that applying LSTM-based joint
refinement on pose/shape yields superior performance instead of applying it on STA features and then
predicting pose/shape parameters (see subsection 4.4.6).

As a cumulative effect, our method produces significantly lower acceleration errors in comparison
to SOTA methods (see subsection 3.4.2). Figure 4.1 shows a plot of acceleration where our method
(in black) yields significantly lower acceleration errors compared to other methods. Moreover, owing
to our enhanced spatio-temporal context and motion refinement, our method significantly outperforms
the state-of-the-art (SOTA) methods even in relatively poor illumination and occlusions (see subsec-
tion 3.4.3).

3.2 Related Work

Image based 3D human pose, shape and motion estimation: Existing methods either solve for the
parameters of SMPL [40] from the images or directly regress the coordinates of a 3D human mesh [18].
[30, 35, 49] are some of the early succesful works for human pose and shape estimation from monocular
images.

HyBrik [38] and KAMA [27] leverage 3D key points for the 3D mesh reconstruction. In partic-
ular, HyBrik uses twist and swing decomposition for transforming the 3D joints to relative body-part
rotations. Instead of full body, methods like HoloPose [16] and PARE [34] have introduced parts parts-
based model. While HoloPose does part-based parameter regression, PARE uses a part-guided attention
mechanism for exploiting the visibility of individual body parts and predicting the occluded parts using
neighboring body-part information. While these methods are quite effective for estimating the 3D pose
and shape from images, they are not capable of producing temporally consistent 3D human motion from
video by frame-based processing.

Video based 3D human and pose estimation: Recently, a considerable amount of work has been
carried out to address the challenge of temporally consistent 3D human pose and shape estimation from
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video. For instance, HMMR [31] trains a temporal encoder that learns a representation of 3D human
dynamics from a temporal context of image features. Along with 3D human pose and shape, such
representation is also used for capturing the changes in the pose in the nearby past and future frames.
Similarly, VIBE [33] proposes a temporal encoder that encodes static features into a series of temporally
correlated latent features and feeds them to a regressor to estimate the SMPL parameters. MEVA [41]
uses a two-stage model that first captures the coarse overall 3D human motion followed by a residual
estimation that adds back person-specific motion details. However, these methods fail to reconstruct
the humans under partial occlusions. TCMR [7] uses GRU-based temporal encoders with different en-
coding strategies to learn better temporal features from images. They also propose a feature integration
from the three encoders for the SMPL parameter regressor. GRU-based techniques can only deal with
local neighborhoods which makes it difficult for them to learn long-range dependencies. Hence, [2, 75]
use a transformer to learn long-range temporal dependencies. However, such methods require a large
number of consecutive frames (around 250), making them slower. Another class of methods like Hu-
MoR [52] and GLAMR [70] use a variational autoencoder which takes single frame-based human pose
estimates to predict the human motion sequence in an auto-regressive way followed by a non-learning
based global optimization on the human pose and trajectory obtained from the entire video for temporal
refinement. Similarly, SmoothNet [71] also does a global optimization on the estimated trajectory of
any human pose estimation method to improve their temporal continuity. The global optimization in
the test time limits the applicability of such methods. MPS-Net [65] tries to produce locally global
temporal coherence using a MOtion Continuity Attention (MOCA) module. More specifically, their
method explicitly models the visual feature similarity across RGB frames and uses it to guide the learn-
ing of the self-attention module for spatio-temporal feature learning. MOCA enables focusing on an
adaptive neighborhood range for identifying the motion continuity dependencies. This is followed by
a Hierarchical Attentive Feature Integration (HAFI) module to achieve local to global temporal fea-
ture aggregation. GLoT [57] uses a combination of global and local encoder-decoder networks, where
the global branch helps perform feature aggregation across a larger temporal window, while the local
branch operates over a smaller temporal window and learns the local pose corrections using a Hierar-
chical Spatial Correlation Regressor (HSCR). Unlike most other methods, which regress the joint poses
and shapes together, HSCR regresses the body pose and shape in a sequential fashion, following the
kinematic structure of the parametric body. PMCE [68] uses a GRU over per-frame, off-the-shelf image
features to obtain temporal image features, and a spatial-temporal transformer over per-frame, off-the-
shelf 2D pose estimates to obtain the mid-frame 3D pose. The temporal image features and mid-frame
3D pose are used to jointly update the vertex positions of a coarse template SMPL mesh using and the
mid-frame 3D pose, using an attention based architecture such that they agree with the visual cues avail-
able in the image features. Unlike other methods discussed above, PMCE does not predict the SMPL
parameters. Instead, it directly regresses the vertices of the body model.
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Figure 3.2 Architecture overview of our proposed method.

3.3 Method

In this section, we provide a detailed overview of the key modules of our proposed method. As
discussed in section 3.1 (and outlined in Figure 3.2), our method takes a set of consecutive frames as
input and feeds it to the three key modules, namely, initialization, spatio-temporal feature aggregation
and motion prediction & refinement, to predict temporally consistent body pose and shape parameters
of SMPL [40], a statistical body model.

More specifically, given an input video V = {Fi}Ni=1 composed of N frames, with Fi representing
the ith frame, we aim to recover SMPL-based human body pose and shape parameters for each frame,
i.e., Θpred

i = {Ti, Ri, θi, βi}. Here, Ti ∈ R3 and Ri ∈ R3 represents the translation and rotation (in
axis-angle format) of the root joint, θi ∈ R23×3 represents the relative rotations of the remaining 23
joints while βi ∈ R10 represents body shape parameters. Please note that we sample a temporal window
(a subset of continuous frames) of size W (we choose W = 16) from the input video and learn/infer
over it instead of doing inference on all frames in the video sequence.

3.3.1 Initialization

Per-frame Body Pose and Camera Estimation: We perform independent estimation of per-frame
body pose (θinit) and camera (ωinit) parameters using a SOTA method (HMR2.0 [14]) and feed it as
initialization to our STA module.

Body-aware Spatial Feature Extraction: Continuous Surface Embedding (CSE) [48], as described in
section 2.2, proposed to learn a body-aware feature representation for obtaining dense correspondences
across images of humans. CSE predicts, per pixel 16-dimensional embedding vector (associated with
the corresponding vertex in the parametric human mesh), thereby establishing dense correspondences
between image pixels and 3D mesh surface, even in the presence of severe illumination conditions and
(self-) occlusions. Figure 3.3 shows the color-coded visualization of CSE embeddings demonstrating
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Figure 3.3 Sample 3-channel visualization of CSE embedding (row-1 : RGB frame & row-2: embed-

ding plot).

its robustness to severe illumination and/or occlusion scenarios. Thus, we propose to extract and use the
16-dimensional body-aware spatial features H = {Hi}Ni=1 using a pre-trained CSE encoder for each
frame Fi, such that:

Hi = Ψ(Fi) (3.1)

3.3.2 Spatio-Temporal Feature Aggregation (STA)

The spatial features Hi extracted from each frame can be directly regressed to estimate per-frame
motion and shape parameters. However, this typically leads to jittery and implausible motion estimates
as the predictions are not temporally consistent. One possible remedy to this is to use self-attention
across frames in a temporal window [63]. Interestingly, [65] showed that a regular attention network
is unreliable and can give high attention scores between temporally distant frames which would lead to
inaccurate results. They address this problem by using a Normalized Self-Similarity Matrix (NSSM)
in their MOCA module. Nevertheless, their method only exploited the spatial features for such self-
attention guidance. Instead, as per the recent trend of exploiting per-frame pose initialization [70, 37],
we propose to encode additional information to our temporal features in terms of initial estimates of
body pose and camera parameters. More specifically, we obtain for each ith frame the initial pose/shape
and camera parameters using [14] as: Θinit

i = {Ti, Ri, θi, βi} and camera parameters ωinit
i ∈ R3

(assume a weak perspective camera model). It is important to note that we represent rotation using the
6-dimensional vector representation [73] and then flatten them into a single 144-dimensional vector to
recover body pose as: [Ri, θi] ∈ R144.

Our STA module has three key blocks: (1) Frame-wise Similarity Computation, (2) Frame-wise self-
attention, and (3) Feature Aggregation.
The first block deals with the computation of the three {W × W} self-similarity matrices, namely,
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NSSM (H) for the Body-aware spatial features, NSSM ([R, θ]) for initial body pose estimates and
NSSM (ωinit) for initial camera estimates. More specifically, we uplift [Ri, θi] and ωinit

i ∈ R3 to
512 dimensions using linear layers Γ1 and Γ2 and similarly transform the spatial feature Hi to 2048
dimensions using Γ3. These multiple NSSMs help us to correlate the frames based upon body parts
appearance, body pose, and cameras thereby giving robustness to occlusions as well as revealing the
continuity of the human motion along with the camera consistency.

The second block obtains a self-attention map on our spatial features i.e., AM (H) and initial camera
estimates i.e., AM (ωinit), respectively. When applying self-attention on our spatial features Hi , first
we transform Hi to 2048 dimension using a linear layer Γ3 , and later down-sample them to 1024 by
learning two different 1 × 1 convolution layers Φ3 and Φ4. Similarly, when applying self-attention on
the initial camera estimates, we first uplift this vector to 512 dimension vector using an MLP Γ2 and
subsequently learn two different 1× 1 convolution layers Φ1 and Φ2. This self-attention on the camera
parameters and the body-aware features help us adaptively find the range which is important to capture
the temporal smoothness.

Finally, the feature aggregation block first concatenates all the attention and NSSM maps to get a
W × W × 5 tensor and later resize it to W × W matrix using a 1 × 1 convolution layer (Φ6). This
W ×W matrix represents the consolidated similarity between frames across the window. This feature
is subsequently multiplied with the down-sampled spatial features (of 1024 dimension obtained by Φ5)
and the result is then uplifted (using convolution layer Φ7) to get Y ∈ RW×2048. Thus, together, they
yield spatio-temporal aggregated features for every frame by considering the remaining past and future
frames inside the window. The per-frame temporally aggregated feature Yi is finally added to the spatial
features to get the spatio-temporally aggregated features Zi for ith frame as:

Zi = Hi + Yi. (3.2)

3.3.3 Motion Estimation & Refinement

Once we have the spatio-temporal features Zi, we obtain an independent coarse pose/shape, and
camera estimation for each frame using predictor network (g)

Θcoarse
i , ωpred

i = g(Zi) (3.3)

where g predicts the SMPL parameters i.e., Θcoarse
i ∈ R85 and the camera parameters i.e., ωpred

i ∈ R3

for frame Fi.

We propose to further refine these estimated independent coarse poses and shapes (obtained using
spatiotemporally aggregated features) using an LSTM [22] based joint residual prediction. The LSTM
ζ takes as input the features Zi and coarse SMPL pose estimates Θcoarse

i and predicts the residual
Θres

i ∈ R85 , which is subsequently added to Θcoarse
i in order to recover the refined pose and shape
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parameters Θpred.

Θres
i = ζ(Zi,Θ

coarse
i ) (3.4)

Θpred
i = Θcoarse

i +Θres
i (3.5)

To ensure temporally consistent predictions at the window boundaries, we average the pose and shape
parameter estimates of bordering frames across the neighboring windows.

3.3.4 Loss Functions

Similar to existing literature [65, 30, 33], we adopt loss functions on body pose and shape (LSMPL),
3D joint coordinates (L3D), and 2D joint coordinates (L2D) obtained with predicted weak-perspective
camera parameters (ωpose). These loss functions are briefly explained below.

LSMPL = λshape||β̂i − βi||2
+ λpose||{R̂i, θ̂i} − {Ri, θi}||2

(3.6)

where βi and {Ri, θi} respectively are the predicted pose and shape parameters for the ith frame, and
β̂i, {R̂i, θ̂i} are the corresponding ground truths.

L3D = ||Ĵc
i − Jc

i ||2 (3.7)

where Jc
i represents predicted the 3D joint coordinates for the ith frame and Ĵc

i are the corresponding
ground truth 3D joint coordinates.

L2D = ||x̂i −Π(Jc
i )||2 (3.8)

where x̂i represents the ground truth 2D keypoints for the ith frame and Π represents the 3D-2D projec-
tion obtained from the predicted camera parameters ωpred.

The final loss function is a linear combination of these losses defined as:

Lfinal = λ1LSMPL + λ2L3D + λ3L2D (3.9)

It is important to note that our model is trained in an end-to-end trainable fashion where Lfinal is
applied on the final predicted pose and shape parameters obtained from LSTM ζ. There is no separate
training performed for the coarse estimation predictor g.

3.4 Experiments & Results

In this section, we evaluate our method on different publicly-available datasets and report superior
qualitative as well as quantitative results in comparison with SOTA methods.
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3.4.1 Experimental Setup

Datasets Details: We evaluate our method on the standard test split of Human3.6M [26] and 3DPW [62]
used in existing literature [33, 7, 65, 57, 68]. We separately discuss the challenges associated with the
quality of ground truth annotations in another popularly reported dataset MPI-INF-3DHP [45] in subsec-
tion 3.5.1. Nevertheless, for a fair comparison with existing methods, we still use MPI-INF-3DHP [45]
for training, along with Human3.6M [26] and 3DPW [62] datasets. A brief description of the datasets
is given below.

Human3.6M is a large scale dataset containing video sequences with corresponding 3D pose and shape
annotations of various subjects performing different actions like discussion, smoking, talking on the
phone etc. It is collected using a multi-view calibrated system and a high-speed motion capture system.
Similar to existing work [33, 7, 65, 57, 68], we use the sub-sampled dataset (25 FPS) for our experi-
ments.

3DPW is an in-the-wild dataset, captured with a moving cell-phone camera. It uses inertial measure-
ment unit (IMU) sensors patched to the human body parts to calculate the ground truth SMPL [40]
parameters. It contains 60 video sequences with 18 3D models in different clothing, performing daily-
life activities like walking, buying vegetables etc.

MPI-INF-3DHP is a dataset which provides the pose annotations of 8 subjects with 16 videos per sub-
ject. It is captured in a combination of indoor and outdoor settings, with actions ranging from simple
actions like walking and sitting, to complex dynamic actions like exercising. It is captured using a mark-
erless motion capture system using a multi-view camera setup.

Further, in order to evaluate the generalization ability of our method to unseen data, we use two
additional datasets: i3DB [47] and PROX [19]. These datasets contain action sequences of humans
interacting with objects in an indoor setting like a room/office. These sequences contain occlusions and
are fairly different from our training datasets. Thus, serving as a good measure to evaluate generalization
ability.

Evaluation Metrics: We use the standard evaluation metrics used in existing literature [33, 41, 7, 65,
57, 68] to evaluate our method’s performance. These are discussed in more details below.

Mean Per Joint Position Error (MPJPE) is defined as the mean of the Euclidean distances between the
ground truth and the predicted joint positions. It is measured in millimeters (mm).

Procrustes-Aligned Mean Per Joint Position Error (PA-MPJPE) is defined as the MPJPE computed after
using Procrustes alignment (PA) to solve for translation, scale and rotation between the estimated body
and the ground truth. Similar to MPJPE, PA-MPJPE is also measured in millimeters (mm).
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Acceleration Error (ACC-Err) is defined as the mean difference between the accelerations of the ground
truth and predicted 3D joints. Specifically, the change in position of the 3D joints in unit time (i.e.
across two consecutive frames) gives us the velocity of the joints, and the change in velocity in unit
time gives us the acceleration. Acceleration error is then measured by finding the difference between
the groundtruth and predicted accelerations. It is measured in mm/t2 (where t denotes unit time - the
time interval between two consecutive frames).

Mean Per Vertex Position Error (MPVPE) is given by the mean of the Euclidean distances between the
ground truth and the predicted vertex positions of each vertex in the SMPL [40] body model constructed
using the predicted pose/shape parameters. It is also measured in milimeters (mm).

Comparison with SOTA: We compare our method with existing SOTA methods for monocular video-
based pose and shape estimation. Speicifically, we provide comparison with VIBE [33], MEVA [41],
Uncertainity Aware [36], TCMR [7], HuMoR [52], MPS-Net [65], GLAMR [70], GLoT [57], PMCE [68].
A brief discussion about these methods is provided in section 3.2.

Evaluation Protocol: Existing methods report best performance by learning different models for spe-
cific datasets with hyper-parameter tuning optimal for a given dataset. For example, TCMR, MPS-Net
and GLoT use the same model for evaluation on Human3.6M and MPI-INF-3DHP, but use a model
trained with different hyperparameters for evaluation on 3DPW. A few other methods report results by
training and evaluating on a single dataset. For example, D&D reports results by performing individ-
ual training and evaluation on Human3.6M and 3DPW. While, PMCE uses a common model (trained
on Human3.6M, 3DPW and MPI-INF-3DHP) for reporting results on the 3DPW and MPI-INF-3DHP
datasets, but reports results on Human3.6M by training and evaluating only on Human3.6M. Addition-
ally, some methods also train their common model on additional large datasets on which they do not
evaluate on. For example, PMCE trains on the COCO dataset.

For consistency, we adopt two protocols of reporting quantitative results across all methods. Namely,
prot-1 : training a common model on the three datasets (Human3.6, 3DPW, MPI-INF) and reporting
inference results on individual datasets; prot-2 : training an optimal model for specific dataset with
hyper-parameter tuning using the single or multiple datasets (only for Human3.6, 3DPW, MPI-INF).

Implementation Details: We obtain the body aware features and per-frame pose/camera initializations
using the pre-trained CSE [48] and HMR2.0 [14] models, respectively. Similar to existing work [33,
7, 65, 57], we initialize our pose, shape, and camera predictor in the motion estimation and refinement
module with the pre-trained SPIN [35] checkpoint. In the same module, the LSTM has 3 layers and uses
2048 as the hidden feature size. We use a mini-batch size of 32 and an initial learning rate of 5× 10−5.
The learning rate is reduced by a factor of 10 every time the 3D pose accuracy does not improve for
the 5 consecutive epochs. Adam Solver [32] is used for optimization. For our experiments, we use a
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Method
Human3.6M [26] 3DPW [62]

PA-MPJPE↓ MPJPE ↓ ACC-ERR↓ PA-MPJPE↓ MPJPE↓ MPVPE↓ ACC-ERR↓

VIBE [33] 41.4 65.6 - 51.9 82.9 99.1 23.4

MEVA [41] 53.2 76.0 15.3 54.7 86.9 - 11.6

Uncertainty-Aware [36] 38.4 58.4 6.1 52.2 92.8 106.1 6.8

TCMR [7] 52.0 73.6 3.9 52.7 86.5 102.9 7.1

HUMOR [52] 47.3 69.3 4.2 51.9 74.8 81.4 6.3

MPS-Net [65] 47.4 69.4 3.6 52.1 84.3 99.7 7.4

GLAMR [70]∗ 48.3 72.8 6.0 51.7 72.9 86.6 8.9

D&D [37] 35.5 52.5 6.1 42.7 73.7 88.6 7.0

GLoT [57] 46.3 67.0 3.6 50.6 80.7 96.3 6.6

PMCE [68] 37.7 53.5 3.1 46.7 69.5 84.8 6.5

Our Method 30.1 41.1 3.0 39.2 63.5 61.8 5.3

Table 3.1 Quantitative comparison of mean error values of our methods with other monocular video-

based methods as per prot-2. Best results are in bold and second best are underlined. (∗: GLAMR uses

Human3.6M, 3DPW and AMASS [43] as 3D datasets.)

Method
Human3.6M [26] 3DPW [62]

PA-MPJPE↓ MPJPE ↓ ACC-ERR↓ PA-MPJPE↓ MPJPE↓ MPVPE↓ ACC-ERR↓

MPS-Net [65] 53.2 72.5 3.8 52.1 84.3 99.7 7.4

GLoT [57] 51.4 72.0 3.3 52.3 82.8 98.5 6.5

PMCE [68] 34.4 48.6 3.8 46.7 70.4 85.3 6.7

Our Method 31.0 41.3 3.3 39.2 63.5 61.8 5.3

Table 3.2 Quantitative comparison of our methods with SOTA methods as per prot-1. Best results are

in bold and second best are underlined.
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Method
Human3.6M [26] 3DPW [62]

PA-MPJPE↓ MPJPE ↓ ACC-ERR↓ PA-MPJPE↓ MPJPE↓ MPVPE↓ ACC-ERR↓

MPS-Net [65] 17.7 22.3 3.2 23.2 31.4 37.2 14.8

GLoT [57] 18.3 23.1 3.4 22.7 31.0 36.7 13.4

PMCE [68] 11.0 15.4 4.0 20.0 27.2 27.2 12.7

Our Method 6.0 7.4 0.6 12.4 5.2 16.3 3.3

Table 3.3 Quantitative comparison of our method with other SOTA methods using standard deviations

of evaluation metrics. Best results are in bold and second best are underlined.

window size of 16 (see Table 3.7 for discussion on choice of window size). Training is done for 40
epochs and takes about 8 hours using 3 NVIDIA RTX A-6000 GPUs.

3.4.2 Quantitative Results

Table 3.1 provides a quantitative comparison between our method and existing SOTA methods fol-
lowing the evaluation protocol prot-2 and standard evaluation metrics, as introduced in section 3.4.
More specifically, prot-2 evaluation protocol entails training an optimal model for specific dataset with
hyper-parameter tuning using the single or multiple datasets. However, some methods perform different
hyper-parameter tuning for different datasets. Nevertheless, all methods use the same combination of
3D datasets for training, except GLAMR, which uses Human3.6M, 3DPW and AMASS [43].

It can be observed from Table 3.1 that our method significantly outperforms all other methods across
different evaluation metrics on both the Human3.6M and 3DPW datasets. Additionally, there is no
consistently second best performing method across all evaluation metrics. On Human3.6M dataset,
D&D is the second-best performer in terms of the PA-MPJPE and MPJPE metrics where we outperform
it by a margin of 5mm and 10mm, respectively. However, it has significantly higher Acc-Err values
in comparison with other competing methods. On the other hand, PMCE, which is the second-best
performer on Acc-Err on Human3.6M dataset has higher PA-MPJPE and MPJPE values than D&D.
Nevertheless, our method outperforms PMCE in terms of PA-MPJPE and MPJPE by a margin of 7mm
and 12mm, respectively. Similarly, on 3DPW dataset, we observe that D&D is the second-best by
a margin of 3mm on PA-MPJPE, PMCE is the second-best by a margin of 6mm on MPJPE while
HuMoR is the second-best on MPVPE and Acc-Err metrics. It is important to note that we have a
huge improvement of 20mm on the MPVPE metric and a considerable improvement of 1mm/(unit time)
on the Acc-Err metric. Thus, we outperform these SOTA methods while there seems to be no single
second-best performing method across all evaluation metrics.
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Figure 3.4 Qualitative results showing the estimated pose overlaid on the frames of videos from the test

sets of Human3.6M [26] and 3DPW [62] datasets.
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Method
i3db [47] PROX [19]

PA-MPJPE ↓ MPJPE ↓ ACC-ERR↓ PA-MPJPE ↓ MPJPE↓ ACC-ERR↓

MPS-Net [65] 29.8 39.9 2.6 22.7 31.1 2.5

GLOT [57] 26.4 36.8 2.4 19.1 28.0 2.1

PMCE [68] 24.7 32.0 2.4 17.0 23.5 2.1

Ours 20.2 29.5 1.8 12.1 18.3 1.6

Table 3.4 Generalization results on unseen datasets.

Further, we also evaluate and report the comparison with most recent/relevant methods, namely,
MPS-Net, GLoT and PMCE in Table 3.2 where we follow the evaluation protocol prot-1 (as described
in section 3.4). In contrast to prot-2, prot-1 protocol use a common model trained with the same dataset
combination. Once again, it can be seen that our method significantly outperforms other methods across
all metrics on Human3.6M and 3DPW datasets.

It is important to note that the aforementioned results are only reporting the mean values of the
evaluation metrics computed over the test split. However, the mean value of evaluation metric can be
significantly affected by few (outlier) sequences. Thus, for more robust evaluation, we report the stan-
dard deviations of the evaluation metric for most relevant methods (results computed using prot-1) in
Table 3.3. Once again, it can be observed that our method significantly outperforms other methods in
terms of standard deviation of evaluation metrics across Human3.6M and 3DPW datasets. The tighter
standard deviation bounds indicate that our method yields superior as well as more stable/robust perfor-
mance over the SOTA methods.

3.4.3 Qualitative Results

Figure 3.4 visualizes qualitative comparison with SOTA methods where red and green arrows indi-
cates regions with inaccurate and accurate SMPL fitting, respectively. More specifically, rows 1 & 2
show selected frames from a 3DPW dataset sequence where it can be observed that our method pro-
vides more accurate SMPL fitting in comparison to other methods. Similarly, rows 3 & 4 show selected
frames from another 3DPW sequence where it can be observed that our method is able to accurately
detect both the humans in the image (and get better SMPL fitting) while other methods only detect
one human. Further, we can also observe that in row 3, where a large portion of the body is occluded,
our method provides a much more plausible pose prediction. In regard to performance on Human3.6M
dataset, rows 5-8 show results of SMPL fitting on selected frames from different sequences that include
diverse poses like sitting on a chair and lying on the ground. It can be observed from these qualitative
results that our method consistently provides more accurate SMPL fitting across all these sequences.
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Figure 3.6 Qualitative comparison across frames on a sequence of 3DPW dataset. The green arrows

show the regions with improved SMPL fitting compared to the red ones .

Further, in Figure 3.5 we also depict results on selected frames from a few challenging sequences
selected from the aforementioned standard datasets, as well as in-the-wild images taken from the inter-
net. The results demonstrate our method’s ability to handle significantly challenging cases, where other
methods often fail.

Additionally, in Figure 3.6, we demonstrate the results of the most relevant/recent methods and our
method across multiple successive frames of a video sequence from 3DPW where the person is trying
to lift a bag. It can be observed that our method provides more accurate SMPL fitting across the frames
in comparison to other SOTA methods, demonstrating the superior temporal consistency ability of our
method.

3.4.4 Generalization to Unseen Datasets

We also test the generalization ability of our method by evaluating its performance on completely
unseen i3DB [47] and PROX [19] datasets. These datasets contain diverse scenarios and were not part
of training data. As reported in Table 3.4, our method significantly outperforms existing SOTA on
unseen datasets, demonstrating superior generalization ability of our method. We also show qualitative
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Figure 3.7 Qualitative comparison demonstrating generalization ability of our method on unseen

datasets.

comparison for the same in Figure 3.7 where we can observe that our method yields more accurate pose
and shape estimates in comparison to SOTA methods.

3.4.5 Ablation Study

We perform a detailed ablative study to analyze the contributions of different components of our
method. Table 3.5 provides the quantitative ablative results, which list our final method’s performance
in row 8. We sequentially removed each component of our method and reported the performance drop in
rows 1-7. More specifically, row 1 reports the results where we replace our body-aware feature encoder
with generic ResNet. This leads to a drop in performance, demonstrating the contribution of the body
aware features to our overall performance. In row 2, we train our network without using the per-frame
pose and camera initialization. This too leads to a drop in the model performance. In row 3, we report
the performance after removing the NSSM and Attention blocks. And we see a considerable drop in per-
formance, demonstrating the importance of a well-designed feature aggregation strategy. In row 4, we
further remove the 2D loss L2D during training, and find a further drop in performance, demonstrating
the contribution of L2D (please see Table 3.8 for a more detailed analysis of the contribution of different
loss terms to the model’s performance). In row 5 & row 6, we report the performance of the model
by individually removing the pose initialization and camera initialization. The results demonstrate that
both pose initialization and camera initialization contribute individually to our method’s performance.
In row 7, we report the performance by removing the LSTM-based motion refinement component, and
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Configuration
Human3.6M [26] 3DPW [62]

PA-MPJPE ↓ MPJPE ↓ ACC-ERR↓ PA-MPJPE ↓ MPJPE↓ ↓ ACC-ERR↓

1. Ours w/o Body-Aware Features (i.e., w/o H) 34.8 45.0 3.5 41.6 67.3 5.3

2. Ours w/o Per-Frame initialization (i.e., w/o {Rinit, θinit} and w/o ωinit) 43.8 71.9 4.2 49.8 78.5 5.5

3. Ours w/o NSSM and w/o Attention (simply concatenation) 55.1 67.7 6.0 63.8 88.6 6.5

4. Ours w/o NSSM, w/o Attention and w/o L2D 57.8 68.3 6.2 65.5 89.0 6.6

5. Ours w/o pose initialization (i.e., w/o {Rinit, θinit}) 41.5 53.2 3.6 48.1 74.7 5.5

6. Ours w/o camera initialization (i.e., w/o ωinit) 37.3 49.1 3.5 47.3 73.8 5.4

7. Ours w/o LSTM based refinement on coarse estimates (i.e., w/o ζ) 32.7 42.8 3.5 40.3 69.3 5.6

8. Ours - Final 31.0 41.3 3.3 39.2 63.5 5.3

9. Ours + AM on pose (i.e., AM on {Rinit, θinit}) 33.8 44.8 3.4 42.7 68.0 5.3

10. Ours w. LSTM on Feature Space (followed by motion estimation) 39.2 47.2 4.0 44.3 72.9 5.8

11. Ours w. Transformer in place of LSTM (8 head transformer) 41.9 51.4 3.8 42.7 67.8 5.4

12. Ours w. Transformer in place of LSTM (16 head transformer) 43.3 53.7 3.9 49.1 73.4 5.5

Table 3.5 Ablation study on our method’s performance while considering different architectural config-

urations. (Best results are in bold.)

once again find a drop in performance, especially in the ACC-Err metric, demonstrating the contribution
of the motion refinement module.

We also report three additional ablative results in the last three rows of Table 3.5 as modifications
to our proposed method. Specifically, row 9 reports the performance of the modified method by adding
the self-attention on the body pose initialization to our method. However, unlike self-attention on body-
aware features and camera pose, we empirically find that self-attention on body pose leads to a degra-
dation in performance. One possible explanation for this degradation is that self-attention to body
poses can sometimes be misleading due to the frequently repeating body poses in a temporal window
(e.g. walking involves very similar body poses). Nevertheless, we observed that using self-similarity
(NSSM) on body pose helps as it exploits the spatio-temporal ordering (see row 3 & row 4). In row
10, we report the performance of an alternate setup for temporal refinement where we use the LSTM
to aggregate temporal features before passing them to the pose/shape predictor, thereby eliminating the
coarse prediction step. However, this leads to a drop in performance. As an explanation to this, we
hypothesize that learning pose/shape corrections is more conducive to LSTM and hence our method
provides a better estimate of body pose. Finally, in row 11 and row 12, we report the performance of
our method when using a transformer in place of LSTM for motion refinement. We report this in two
settings - transformer with 8 heads (row 11), and transformer with 16 heads (row 12). We observe that
simpler architectures perform better in this setting, as results obtained with the 8 head transformer, out-
perform the results obtained with the 16 head transformer. While, the results obtained with LSTM (our
final method; row 8) outperform the results obtained with both the 8 head and 16 head transformers.
This observation seems consistent with results also reported in [70] (section 4.2), where the authors
report that they obtain better results with LSTM compared to a transformer.
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Method
Human3.6M [26] 3DPW [62]

PA-MPJPE↓ MPJPE↓ ACC-ERR↓ PA-MPJPE↓ MPJPE↓ ACC-ERR↓

PARE [34] 53.8 72.8 6.9 46.5 74.5 7.1

Ours w. PARE 42.6 66.4 4.1 49.3 67.3 5.4

CLIFF [39] 32.7 47.1 6.7 43.0 69.0 7.3

Ours w. CLIFF 31.2 42.7 5.7 39.3 65.1 6.7

HMR 2.0 [14] 33.8 45.3 3.8 44.4 69.8 5.6

Our Method 31.0 41.3 3.3 39.2 63.5 5.3

Table 3.6 Evaluation of our method with different per-frame initializers. (Best results are in bold.)

Window size
Human3.6M [26] 3DPW [62]

PA-MPJPE ↓ MPJPE ↓ ACC-ERR ↓ PA-MPJPE ↓ MPJPE ↓ MPVPE ↓ ACC-ERR ↓

8 frames 31.3 41.7 3.4 40.1 64.4 62.3 5.4

16 frames 31.0 41.3 3.3 39.2 63.5 61.8 5.3

32 frames 32.0 42.0 3.8 40.7 65.8 63.1 5.4

Table 3.7 Ablation study on performance of our method with different temporal window sizes. (Best is

in bold.)

Configuration
Human3.6M [26] 3DPW [62]

PA-MPJPE ↓ MPJPE ↓ ACC-ERR ↓ PA-MPJPE ↓ MPJPE ↓ MPVPE ↓ ACC-ERR ↓

Our Method 31.0 41.3 3.3 39.2 63.5 61.8 5.3

w/o LSMPL 43.5 56.4 3.7 47.8 76.7 79.2 5.8

w/o LSMPL & L2D 50.2 64.6 4.1 56.8 81.4 87.2 6.0

w/o L3D & L2D 37.8 49.2 3.5 43.6 70.4 72.9 5.5

Table 3.8 Ablation study on the effect of different loss terms on training. (Best is in bold.)
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Method
MPI-INF-3DHP [45]

PA-MPJPE↓ MPJPE ↓ ACC-ERR↓

MPS-Net [65] 65.9 100.0 8.6

GLoT [57] 62.6 95.5 7.7

PMCE [68] 55.0 80.4 7.4

Our Method 53.2 88.7 8.1

Table 3.9 Quantitative comparison of our method with other SOTA methods on MPI-INF-3DHP dataset

(as per prot-1 described in section 3.4). Best results are in bold and second best are underlined.

Next, we evaluate the performance of our method with different per-frame initialization methods and
report results in Table 3.6. It can be observed that our method consistently improves over the per-frame
initialization methods (especially in terms of acceleration errors).

In Table 3.7, we report the performance of our method when using different temporal window sizes.
Similar to existing works [33, 7, 65], we find that a temporal window of size 16 provides optimal
performance.

In Table 3.8, we report the results of ablative experiment evaluating the impact of different loss terms
(or a combination thereof) on model performance. In row 2, we report results of our model trained
without using LSMPL (i.e. only using L2D and L3D) during training. It can be observed that this leads
to a drop in performance, indicating the contribution of LSMPL loss term to the learning process. In
row 3, we report results with further removing L2D (i.e. training our model with only L3D) and observe
that this leads to a further degradation in performance, indicating the contribution of the L2D loss term.
In row 4, we report the results of removing L3D and L2D (i.e. using only LSMPL for training), and
observe that this too, leads to a drop in performance compared to our final method (row 1). However,
this drop in performance is not as severe as that of observed in rows 2 and 3 (i.e., when LSMPL is
removed). This suggest that LSMPL seems to be contributing more to the learning process than L3D

and L3D.

3.5 Discussion

3.5.1 Noisy Annotations

Accurate ground truth annotations are essential for training supervised learning methods, and also
for reliably evaluating different methods. However, ensuring availability of reliably annotated ground
truth data is a major challenge in this problem domain due to the large amount of data that needs to
be annotated. One popular dataset which seems to suffer from this issue, is the MPI-INF-3DHP [45]
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Figure 3.10 Additional examples of a sequence of frames from MPI-INF-3DHP showing noisy ground

truth annotations for a sequence of consecutive frames.

dataset. Few such examples of noisy ground truth annotations are shown in Figure 3.9 (selected random
frames) and Figure 3.10 (selected successive frames). We can attribute this to the fact that unlike other
datasets, the capture setup used by MPI-INF-3DHP had only RGB cameras and lacked any additional
sensing modality like IR sensors, depth sensors or inertial measurement units (IMU) during capture
to obtain improved fidelity. It may be noted that since the MPI-INF-3DHP dataset only provides the
3D joint locations, we have estimated the SMPL body in Figure 3.9 by using SMPL shape parameter
estimates from an off-the-shelf method, along with the provided ground truth 3D joint locations to obtain
the posed SMPL body. This SMPL body is then overlaid on the RGB frames to get the visualization in
the figure.

As a consequence, although our method yields superior qualitative results on MPI-INF-3DHP dataset,
in comparison to other methods (as shown in Figure 3.8), our quantitative results on this dataset (as re-
ported in Table 3.9) are not consistently best performing across all metrics. Thus, owing to the noisy
ground truth annotations, PMCE seems to obtain better quantitative results as reported in Table 3.9, how-
ever, our qualitative results (shown in Figure 3.9 Figure 3.10) indicate superior SMPL fitting with our
method. We argue that the use of the pre-trained body-aware feature network in our method regularizes
the learning of our method, and prevents it from learning the noise in the dataset.

3.5.2 Recovering from Inaccurate Initialization

The spatio-temporal feature aggregation (STA) module incorporated in our method plays a crucial
role in providing temporal context by analyzing both preceding and subsequent frames. This module
enables our method to precisely recover the pose and shape, even in scenarios where CSE [48] and
HMR2.0 [14] fail to provide adequate initialization. Figure 3.11 demonstrates qualitative examples
where our method is able to estimate accurate pose and shape despite inaccurate initialization on selected
frames from two different sequences in challenging scenarios (such as low light and occlusion). We can
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Figure 3.12 Failure cases involving extremely loose clothing or occlusion on in-the-wild sequences

taken from the internet.
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observe in row 2 that the CSE initialization misses the leg region in the left sequence, and completely
misses the body in the right sequence. Similarly, in row 3, CSE misses the head region in the left
sequence and misses the leg region in the right sequence. Likewise, it can be observed that in row 3,
HMR2.0 is estimating two humans for the left sequence, while the orientation of the estimated human
is wrong in both rows 2 and 3 for the right sequence. Nevertheless, we can observe that our method is
able to accurately estimate the body pose and shape for these cases, as it is able to exploit the temporal
context from the nearby frames with accurate initialization (rows 1 and 4).

3.5.3 Limitations and Future Work

Our method excels in estimating human pose and shape under diverse conditions including occlu-
sions, low lighting, and intricate poses, yielding improved temporally consistent outcomes. Neverthe-
less, it still has certain limitations that future research needs to address. Similar to various other studies
in human mesh recovery, our approach is restricted to retrieving SMPL parameters, thereby overlooking
intricate details like clothing in human meshes. Moreover, as shown in Figure 3.12, our method can fail
in certain scenarios with humans with extremely loose clothing as it is difficult to localize the underly-
ing body in such scenarios. Similarly, in scenarios involving very severe occlusions of the human body,
our method is prone to failure as the missing information makes it difficult to understand the pose of
the occlulded body regions. We plan to explore an extension of our work to very loose clothing (e.g.,
robes/abaya) in the near future.

3.6 Conclusion

In this chapter, we described our novel method for recovering temporally consistent 3D human pose
and shape from monocular video. Our method utilizes body-aware spatial features along with initial
per-frame SMPL pose parameters to learn spatio-temporally aggregated features over a window. These
features are then used to predict the coarse SMPL and camera parameters which are then further refined
using a joint prediction of motion with LSTM. We demonstrate that our method consistently outperforms
the SOTA methods both qualitatively and quantitatively. We also reported detailed ablative studies to
establish relevance of key components of proposed method. As part of future work, it will be interesting
to see extension of this work for humans with very loose garments.

40



Chapter 4

ConVol-E: Continuous Volumetric Embeddings for Human-Centric

Dense Correspondence Estimation

In the previous chapter, we have described our method for temporally consistent 3D human pose and
shape estimation. In this chapter, we describe our next problem statement - dense human-centric corre-
spondence estimation. As introduced in section 1.1, dense human centric correspondence estimation is
another important yet highly challenging problem in this domain. To this end, we present Continuous
Volumetric Embeddings (ConVol-E), a novel robust representation for dense correspondence-matching
across RGB images of different human subjects in arbitrary poses and appearances under non-rigid de-
formation scenarios. Unlike existing representations [48, 24], ConVol-E captures the deviation from the
underlying parametric body model by choosing suitable anchor/key points on the underlying parametric
body surface and then representing any point in the volume based on its euclidean relationship with the
anchor points. It allows us to represent any arbitrary point around the parametric body (clothing details,
hair, etc.) by an embedding vector. Subsequently, given a monocular RGB image of a person, we learn
to predict per-pixel ConVol-E embedding, which carries a similar meaning across different subjects and
is invariant to pose and appearance, thereby acting as a descriptor to establish robust dense correspon-
dences across different images of humans. We empirically evaluate our proposed embedding using a

(c) Dense Correspondence Matching
across different suibjects using ConVol-E

ConVol-E
(Ours)BodyMapCSEInput ImageConVol-E

(Ours)BodyMapCSEInput Image

(b)(a)

Figure 4.1 Comparing correspondences on 3D meshes when encoded with BodyMap [24] (left) and

ConVol-E (right). Multiple false matching can be seen in the representation of BodyMap whereas,

ConVol-E provides robust matching even in presence of loose clothing scenario.
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novel metric and show superior performance compared to the state-of-the-art for the task of in-the-wild
dense correspondence matching across different subjects, camera views, and appearance.

4.1 Introduction

Dense pixel-level understanding and labelling of humans in images is a well-attempted, yet chal-
lenging research problem in computer vision. Traditionally, it helps estimate body pose & shape,
part semantics, dense correspondence/flow with key applications, including instance level segmenta-
tion, human tracking, gait analysis, 3D/4D human body reconstruction, virtual try-on, etc. In partic-
ular, the dense correspondence estimation can immensely benefit by associating each pixel with body
pose/shape/appearance agnostic characterization. The key idea for establishing dense correspondences
is to identify a per-pixel feature-based representation that can explain the relationship across different
images of humans. The representation should be agnostic to appearance, i.e., it should carry the same
meaning across images of different individuals. The formulation of such a representation is non-trivial
owing to challenges such as large space of complex pose articulations, significant variations in body
shape & size and large camera viewpoint variations. Moreover, the arbitrary and non-rigid nature of the
garments causes deformations in the topology, which are extremely hard to model just from an image.
The underlying representation should also understand the relationship between the garments and the
body, especially under the loose clothing setup, which is a highly ill-posed problem.

Continuous Surface Embeddings (CSE) [48] is one such pixel-level representation that leverages
the parametric human body model by estimating common embedding space between vertices of the
SMPL [40] mesh and the pixels occupied by the humans in RGB image. However, SMPL doesn’t cap-
ture high-frequency details such as clothing and hair, as shown in Figure 4.1(a,b). Recently, BodyMap [24]
proposed to extend this representation to include these high-frequency details by assigning a three-
dimensional embedding to the vertices of a human scan by extrapolating the CSE embedding, repre-
sented as simple RGB values, in the UV space based on the geodesic distance. This allows them to
establish a relationship between different human scans by estimating similar extrapolated pixel-level
embeddings. Subsequently, a network is trained to predict these dense three-dimensional embeddings
in the form of color-coded RGB maps from the rendered images of the ground truth scans. However,
such extrapolation of the RGB colors in UV space can not prevent distant vertices from having similar
colors (as stated by the authors in their original paper [24]), thereby resulting in false matching across
different regions of the human body, as shown in Figure 4.2. Additionally, it doesn’t guarantee to pro-
duce consistent pixel-wise embedding for loose clothing scenarios as the effect of the geodesic distance
will diminish in the far-apart regions of the UV space.

In this chapter, we propose Continuous Volumetric Embeddings (ConVol-E), a novel representation
for establishing dense correspondence across humans in arbitrary poses and appearances. Our repre-
sentation can handle any arbitrary point in the volume occupied by the human subject, i.e., each point
in the 3D space is associated with a continuous value representing its relationship with the underlying
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Figure 4.2 Comparing correspondences on 3D meshes when encoded with BodyMap [24] (left) and

ConVol-E (right). Multiple false matching can be seen in the representation of BodyMap whereas,

ConVol-E provides robust matching even in presence of loose clothing scenario.

parametric body model (SMPL to be specific). To ensure uniqueness and avoiding repetitions of the
embeddings, we carefully designate anchor nodes on the SMPL surface. The embedding values for
the anchor nodes are assigned such that the extrapolated embeddings vary significantly across different
regions of the body and the volume, thereby ensuring a minimal chance of repeated values for far-away
points in different directions (refer to supplementary for a detailed analysis). The anchor nodes are des-
ignated for a gender-neutral SMPL model, and their embedding values are extrapolated to all the vertices
of a 3D human scan by registering the shape and pose parameters of SMPL with the scan. It is impor-
tant to note that unlike BodyMap [24], our approach of volumetric extrapolation inherently addresses
the challenge of far-away surface deformations (typically caused by loose clothing). Subsequently, we
propose to learn dense pixel-wise ConVol-E values using a U-Net [55] encoder-decoder network given
an input image of a human with a corresponding ground truth scan, which can later be inferred on
in-the-wild images with high accuracy. Finally, the predicted embeddings are used for dense corre-
spondence matching across different viewpoints and subjects, as shown in Figure 4.1(c). We perform a
thorough evaluation of ConVol-E and compare with existing state-of-the-art methods and demonstrate
applications like segmentation label transfer and appearance transfer.

4.2 Related Works

Estimating dense correspondence embeddings across different images of humans is an active area
of research, with tons of potentially useful human-centric applications. The problem is well-attempted
for general objects, and many solutions exist [8, 67, 54]. However, the complexity and difficulty in-
crease drastically for humans, due to articulation, non-rigid deformation and clothing. Initial attempts
were made to first solve the problem in a sparse way using pose estimation [6, 5, 64, 25], which
mostly involves fitting either a human joint-skeleton or a parametric model such as SMPL [40], as
introduced in chapter 2. While such solutions are widely used in the case of 3D human body re-
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construction [72, 29, 66] and garment reconstruction from images [4, 74, 58], they can not provide
dense universal correspondences across humans. DensePose [17] aims at establishing dense correspon-
dence from 2D images to a surface-based representation of human body (SMPL), but requires a lot of
hand-annotated data. Moreover, it either provides sparse image-to-surface correspondence landmarks
(DensePose-COCO) or part-specific UV coordinates on top of the input image (DensePose-RCNN). It
doesn’t provide pixel-wise unique embedding, which is essential for dense correspondence matching.

Continuous Surface Embeddings (CSE) [48], as introduced in section 2.2 propose a drop-in replace-
ment of DensePose by introducing a better and more flexible representation of correspondences using
learnable positional embeddings. Given a canonical surface model of humans (SMPL), the idea is to
estimate the deformation variant identity of any point on the canonical surface, and additionally, train a
neural network to predict a per-pixel color-coded embedding corresponding to one such surface points,
visible in the given image. Since these embeddings vary smoothly over a 3D manifold, they are con-
tinuous in nature. CSE provides a reliable way to match pixel-wise color-coded embeddings across
different images of humans, however, it is not guaranteed that every pixel belonging to the human in
the image is assigned some unique embedding. However, many pixels are left out, as SMPL does not
cover all the intricate details, e.g. hair, clothing, skin deformations, etc. Nevertheless, it provides a
universal intrinsic representation applicable to any human body, agnostic to appearance, body shape &
pose. HumanGPS [59] tries to circumvent the issues in CSE prediction by proposing to use geodesic
distances between corresponding points on the surface of a human scan, but it does not produce an ex-
plicit per-pixel mapping from image to scan, and additionally does not generalize well to loose clothing
as reported in [24].

Recently, BodyMap [24] proposes to build on top of CSE to include the aforementioned intricate
details. The authors propose to extrapolate CSE representation to human scans, by first registering a
canonical SMPL mesh to the scan, and then extrapolating the embeddings from SMPL vertices to Scan
vertices in the UV space based on the geodesic distance between them. This approach is reasonable as
it becomes easier to render images for both the RGB and dense per-pixel correspondences to generate
the training data. However, it does not handle loose clothing deformations very well. Modelling ex-
treme deformations that lie far apart from the underlying body can not be achieved in UV space while
preserving the uniqueness of the embedding values. Far apart values can have repeated values as they
are only influenced by geodesically closer vertices. Although, the authors said that this can be mitigated
partially by putting additional constraints on the learning side, however, this is still an inherent flaw in
the representation that needs to be addressed.

Another relevant work, Virtual Correspondence [42], aims at establishing correspondences across
different views of a human subject in a fixed pose, by fitting a common SMPL model to multi-view
images of the subject. However, the method does not establish correspondences across different subjects
or even the same subject in a different pose. Hence, we propose our appearance agnostic representation
that can be used to establish dense correspondences across the different subjects, viewpoints, and mainly
to handle loose clothing deformations during the matching.
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STAGE-1Anchor Nodes Geodesic Extrapolation

Non-Rigid Registration

SMPL Fitting Volumetric Extrapolation

Predicted per-pixel ConVol-E

STAGE-2

(Training)

Training Data

Dense Correspondense MatchingSTAGE-3

(Inference)Subject-1

Subject-2\

Figure 4.3 Overview of the three-stage method-pipeline for learning ConVol-E representation on the

human images.

4.3 Our Method

We aim to find a novel pixel-wise unique characterization of in-the-wild clothed humans with the
goal of establishing appearance-agnostic dense correspondences across multiple images. Our method
consists of three key stages as shown in Figure 4.3. In Stage-1, we prepare the training data using
high-quality human scans registered with corresponding SMPL meshes, which are rendered to generate
RGB images and ConVol-E encoded maps. As part of Stage-2, we train a U-Net based encoder-decoder
to predict the ConVol-E maps given RGB images as input. Finally, Stage-3 use the trained U-Net to
predict ConVol-E maps for unseen images and then perform dense correspondence matching based on
predicted embeddings.

4.3.1 Continuous Volumetric Embeddings

The proposed ConVol-E is the representation of an arbitrary 3D point embedded in the volume of
an underlying parametric model. Unlike BodyMap [24], which defines these embedding in 2D UV
space, ConVol-E encodes the volume around a parametric model in 3D Euclidean space. ConVol-E
can be formally defined as a mapping F : R3 → Rk which takes a 3D point x ∈ R3 and assigns it
an embedding vector e ∈ Rk (we choose k=3 in our experiments). The embedding vector precisely
captures the information about where a given point x lies in the vicinity of a given parametric human
model. More specifically, let M = {V,F} be a 3D human mesh scan (obtained either from an off-
the-shelf 3D reconstruction solution or using a 3D scanning methods) and Mc = {Vc,Fc} be the
parametric human mesh (SMPL [40] in our case) in neutral pose and shape. Here, Vc and Fc are the
fixed number of vertices and faces of the canonical mesh in canonical pose and shape.
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First, we select a set of anchor vertices Vc
anchor ⊂ Vc. These anchor vertices are distributed across

the SMPL mesh at 19 key locations like pelvis, shoulder, feet etc. (see supplementary for visualization),
and each anchor vertex is assigned a unique value denoted by êvc ∈ Rk. The embeddings for the
remaining vertices Vc

non−anchor ∈ Vc (such that Vc
non−anchor ∩ Vc

anchor = ϕ) are computed using the
weighted geodesic distance from all the anchor vertices over the canonical mesh. Thus, we can compute
embedding for every canonical mesh vertex vcj ∈ Vnon−anchor as

evcj =

|Vanchor|∑
i=1

wi ∗ êvci

|Vanchor|∑
i=1

wi

(4.1)

wi =
1

g(vcj , vi)
(4.2)

where, g(vcj , v
c
i ) is the geodesic distance between vcj ∈ Vc

non−anchor and vci ∈ Vc
anchor.

It is important to note that, such embedding is only defined for vertices of canonical SMPL mesh
Mc. To obtain ConVol-E ebemdding for every vertex of a 3D human mesh M (in arbitrary pose and
shape), we first perform a non-rigid registration with canonical SMPL mesh. This yields aligned SMPL
mesh surface close to input 3D human mesh scan.

Subsequently, for each vertex vj ∈ V of M, we compute the nearest neighbor set Nj ∈ Vc consisting
of p = 32 closest vertices of the registered SMPL mesh, and assign the vertex an embedding value using
the following equation:

evj =

|Nj |∑
i=1

wi ∗ evci

|Nk|∑
i=1

wi

(4.3)

wi =
1

d(vj , vci )
,∀vci ∈ Nj (4.4)

where, d(·, ·) is the Euclidean distance. The choice of anchor vertices and the embedding values
assigned to them is important and empirically chosen to allow highly diverse values during the extrapo-
lation, so that each vertex is assigned a sufficiently unique embedding value.

Neighborhood Consistency Score : The underlying representation for dense correspondence esti-
mation should be rich and varied enough to avoid repetitions in the feature space when extrapolated,
otherwise different body parts would map nearby in the embedding space. More specifically, geodesi-
cally far-apart vertices should map far apart in the embedding space and vice-versa. Keeping this idea in
mind, in order to quantify the efficacy of the proposed ConVol-E embeddings with other representations,
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we design a novel metric named Neighborhood Consistency Score(NCS), for each vertex vi of the scan
mesh, and is calculated as follows:

NCSi = (NCSneari +NCSfari)/2 (4.5)

NCSneari =
1

q2

q∑
i=1

min(|N rank
geo −N rank

emb |, q) (4.6)

NCSfari =
1

q2

q∑
i=1

min(|Frank
geo −Frank

emb |, q) (4.7)

where, N rank
geo & N rank

emb denotes the ranks (relative orders) of q-nearest neighbors of vi in both
geodesic and embedding space, and similarly, Frank

geo & Frank
emb denotes the ranks of q-farthest neighbors

of vi in both geodesic and embedding space (q is emprically set as 32). Thus, NCS penalizes the
representation if the rank of these nearest/farthest neighbours in geodesic and embedding space doesn’t
match, i.e. j-th nearest-neighbor in geodesic space should be j-th nearest-neighbor in embedding space
as well. Any neighbor among the q-neighbors of vi can take maximum rank as q, so we divide by q2

for normalization. Hence, NCS takes values between 0 and 1 where lower values are preferred. We
compare the efficacy of ConVol-E with BodyMap[24] in subsection 4.4.4.

4.3.2 Learning Embeddings in Image Space

Given an input image Irgb and the prior Icse, of size WxH we train a U-Net [55] style encoder-
decoder network to predict the per-pixel embeddings, represented as a three-channel feature map IE .
We train the U-Net by minimizing the L1 loss between the foreground pixels of predicted feature map
IE and the corresponding ground-truth ÎE generated in the previous stage.

It should be noted that we estimate the prior Icse using a pre-trained Densepose-CSE [48] network,
however with a key difference that instead of their default per-vertex embedding, we replace it with
our proposed ConVol-E embedding. Additionally, BodyMap uses a Vision Transformer (ViT) [11]
architecture instead of U-Net for predicting dense pixel-wise embeddings. However, the authors treat
U-Net as a baseline and show that the performance of U-Net is on par with the ViT and convergence of
ViT is slow and challenging in general. Therefore to avoid overkill, we decide to go with U-Net style
encoder-decoder network.

4.3.3 Dense Correspondence Matching

Let Irgb1 and Irgb2 be two input RGB images with the known foreground, where we aim to establish
dense correspondences between them. These images can have the same or different human subject,
viewpoint, pose, clothing, etc. We predict the respective per-pixel ConVol-E embedding IE1 and IE2
using the U-Net trained in the previous stage. Following this, we can establish correspondences by
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finding, for each pixel p1 ∈ Irgb1 , the closest matching pixel p2 ∈ Irgb2 , where the matching is es-
tablished if the absolute difference in embedding values of pixels p1 & p2 is below a threshold, i.e.
|IE1(p1)− IE2(p2)| ≤ tmatch. Further, to ensure more robustness in matching, we provide an additional
bi-directional constraint that the matching pixels should mutually be the best matches of each other.
More specifically, we consider a correspondence match between pixels p1 and p2 to be a valid corre-
spondence if and only if p1 is the best match of p2 and p2 is the best match of p1. Figure 4.3 shows the
obtained dense correspondences across different subjects and different viewpoints.

4.4 Experiments and Results

4.4.1 Dataset Details

We perform quantitative and qualitative evaluation of our method on two publicly available datasets
- 3DHumans [29] and THUman2.0 [69]. 3DHumans, contains around 180 meshes of people in diverse
body shapes in various garments styles and sizes, including a wide variety of clothing styles ranging
from loose robed clothing to relatively tight fit clothing, like shirts and trousers. THUman2.0 contains
500 high-quality scans of multiple human subjects in arbitrary clothing and poses. We perform a random
80:20 split for training and testing for both datasets. We render RGB images and corresponding embed-
dings for each textured scan from 70 viewpoints using a Pre-computed Radiance Transfer (PRT)-based
renderer.

4.4.2 Implementation Details

We adopt Pix2Pix [28] architecture to build our U-Net encoder-decoder network. Since, the final
task involves regression and not synthesis, we do not require adversarial training and hence we remove
the discriminator from the original Pix2Pix [28] architecture, retaining only the generator network. The
generator is a U-Net style encoder-decoder, with 5 convolution and 5 transposed-convolution layers.
We train the network to minimize L1 loss, with an initial learning rate of 0.0002 and the standard LR-
decay. An input images resized to 512 × 512 resolution before passing through the encoder. For all the
experiments, the network is trained with a batch size of 4 for 200 epochs.

4.4.3 Quantitative Evaluation Metric

Efficacy of ConVol-E: In terms of quantitative evaluation, we first intend to compare the efficacy of
ConVol-E representation (i.e., ability to preserve the geodesic neighborhood in the embedding space)
in comparison with BodyMap[24] representation. This would indicate the robustness of the underlying
representations for the task of correspondence matching in 3D space itself (i.e., on the mesh surface). To
this end, we compute Neighborhood Consistency Score (NCS) using Equation 4.5 for both ConVol-E
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and BodyMap.

Representation NCS (3DHumans [29]) ↓ NCS (THUman2.0 [69]) ↓

BodyMap [24] 0.955 0.957

ConVol-E (Ours) 0.838 0.835

Table 4.1 Comparison between BodyMap [24] and ConVol-E using the proposed Neighborhood Con-

sistency Score.

Evaluation of Predicted 2D Embedding Maps: Inspired from [59], we develop another metric
Geodesic Distance Error (GDE) to quantitatively evaluate the predicted pixel-level embedding against
the ground-truth. Specifically, we find the geodesic distance between the corresponding ground truth
and predicted vertices for each pixel, followed by computing the percentage of pixels having geodesic
error less than a particular distance threshold. GDE is computed as:

GDEt =
1

N

N∑
i=1

g(vi, v
′
i) < t (4.8)

where t represents the distance threshold, i ∈ {1...N} represents the indices of all foreground pixels and
vi, v′i represent the corresponding ground-truth and predicted vertices. We compute threshold-specific
numbers as that gives us additional information about performance of a method for different thresholds.

4.4.4 Quantitative Results

We compare our method with the current state of the art method BodyMap [24]. Firstly, we report
NCS in Table 4.1 where our ConVol-E representation outperform BodyMap [24] by attaining lower NCS
score on two datasets.

Table 4.2 report GDE values where our method significantly outperforms BodyMap across thresh-
olds. The observed improvement in performance is even higher for smaller distance thresholds, indi-
cating that our method is better than BodyMap [24] for correspondence estimation, both overall, and
specially, for fine-grain correspondence estimation.

Further, in Table 4.3 we also report the L1 and L2 loss between the ground-truth per-pixel embed-
dings and the predicted per-pixel embeddings for both ConVol-E and BodyMap representations. It can
be seen that the L1 and L2 loss values for ConVol-E are lower than the values for BodyMap for both
the cases - RGB only and RGB with CSE prior, respectively. This shows that along with being better
than BodyMap in terms of the richness of the representation, our ConVol-E representation is also more
easily learnable by a U-Net style encoder-decoder network.

4.4.5 Qualitative Results

Figure 4.5 shows a qualitative comparison with BodyMap on test samples from 3DHumans and
THUman2.0 datasets, and internet images. Figure 4.6 and Figure 4.7 show additional qualitative results
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Input-1 Input-2ConVol-E-1 ConVol-E-2 Correspondence
Matching

Figure 4.4 Predicted ConVol-E maps and dense correspondence matching on samples from

3DHumans[29] (first row), THUman2.0[69] (second row) & internet images (third row) [Some faces

have been blurred according to the dataset T&C].
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Method
GDE (3DHumans [29]) GDE (THUman2.0 [69])

5cm ↑ 10cm ↑ 15cm ↑ 5cm ↑ 10cm ↑ 15cm ↑

BodyMap [24]: RGB-only 24.85 44.62 58.33 16.37 33.60 48.47

BodyMap [24]: RGB+CSE 25.45 45.02 58.65 21.77 40.76 55.44

ConVol-E (Ours): RGB-only 58.89 68.41 73.30 41.60 53.85 61.72

ConVol-E (Ours): RGB+CSE 63.98 72.40 76.17 51.94 62.35 68.72

Table 4.2 Comparison between BodyMap [24] and ConVol-E using GDE (eq. 4.8) for varying values

of threshold t={5cm,10cm,15cm}.

Method
3DHumans [29] THUman2.0 [69]

L1 ↓ L2 ↓ L1 ↓ L2 ↓

BodyMap [24]: RGB-only 0.064663 0.000713 0.178216 0.001234

BodyMap [24] 0.060392 0.000699 0.088864 0.000847

ConVol-E (Ours): RGB-only 0.046234 0.000212 0.090537 0.000412

ConVol-E (Ours) 0.038513 0.000191 0.061203 0.000280

Table 4.3 Comparison of L1 and L2 loss between predictions and ground truth across datasets for

BodyMap [24] and ConVol-E.

(a) RGB (b) CSE (c) BodyMap (d) Ours

Figure 4.5 Qualitative comparison between CSE [48], BodyMap [24] and the proposed ConVol-E rep-

resentation on internet images.
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(a) Input RGB Image (b) Output ConVol-E (c) Input RGB Image (d) Output ConVol-E

Figure 4.6 Visualization of ConVolE embeddings of our method on internet images.
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(a) Input RGB Image (b) Output ConVol-E

Figure 4.7 Results of our method on internet images with multiple humans and occlusions.
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Figure 4.8 Additional results for correspondence matching across images (number of correspondences

have been sampled for visualization.)

Method
THUman2.0 [69] 3DHumans [29]

L1 L2 L1 L2

Ours: RGB-only 0.090537 0.000412 0.046234 0.000212

Ours: RGB + PGN 0.066555 0.000301 0.043039 0.000192

Ours: RGB + CSE 0.061203 0.000280 0.038513 0.000191

Table 4.4 Effect of different input priors on L1 and L2 errors between predictions and ground truth of

our method.

with the predicted ConVol-E embeddings. Figure 4.4 and Figure 4.8 show qualitative results for dense
correspondence matching obtained using the ConVol-E embeddings. Overall, the results demonstrate
ConVol-E’s ability to generalize on challenging scenarios involving loose clothing deformations, where
CSE and BodyMap fail drastically.

4.4.6 Ablation Study

4.4.6.1 Choice of Input Prior

We perform an ablative study by providing different inputs to our network and compare its perfor-
mance. Specifically, we use following input setup : (1) Using only RGB images as the input, (2) Using
output of Part Grouping Network (PGN) [15], which provides a semantic prior for different human body
parts to the network and (3) Using ConVol-E encoded CSE prior. The results are reported in Table 4.4
where we can conclude that RGB + CSE prior outperforms any other setting, and yields lower L1 and
L2 errors. This observation is supported by GDE values reported in Table 4.5 where RGB + CSE prior
input setup outperform other two setups. This is due to the fact that CSE prior (encoded with proposed
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Method
GDE (3DHumans [29]) GDE (THUman2.0 [69])

5cm ↑ 10cm ↑ 15cm ↑ 5cm ↑ 10cm ↑ 15cm ↑

Ours: RGB-only 58.89 68.41 73.30 41.60 53.85 61.72

Ours: RGB + PGN 61.87 71.06 75.81 49.99 60.83 67.56

Ours: RGB + CSE 63.98 72.4 76.17 51.94 62.35 68.71

Table 4.5 Effect of different input priors for our method shown using GDE for varying values of thresh-

old t={5,10,15}.

ConVol-E embedding) provides a good initialization for the network to further refine the intricate details
covering hair, clothing, etc. Further, it can also be observed that providing part-segmentation prior from
PGN leads to some improvement over the RGB-only case. This is because, part segmentation labels
provide the network with information about which pixel corresponds to which body part, and acts as a
coarse initialization. However, results obtained with PGN prior are still not as good as those obtained
with CSE prior, as CSE provides a more meaningful initialization.

4.4.6.2 Anchor Points Selection

As shown in Figure 4.9, the positions and ConVol-E values (RGB colors) of the 19 anchor points
on the SMPL mesh are selected manually, to ensure that the extrapolation to remaining vertices does
not result in any repetitions, which is not guaranteed by a random selection. We empirically found that
manual placement is a good strategy for better efficacy. One can achieve a similar effect by taking a
large number of randomly designated anchor points, e.g. designating all 6890 vertices of the SMPL
mesh as anchor points. However, neural networks cannot learn such drastically varying embedding
values, which will further become dramatic once extrapolated to human scans. On the other hand,
placing anchor points symmetrically on the SMPL will ease the learning of the embeddings.

Table 4.6 shows a quantitative study of anchor point selection. We compare the manual placement
of 19 anchor points with random placement and also with varying numbers of anchor points using the
proposed metric Neighborhood Consistency Score on the meshes from 3DHumans [29] dataset.

No. of Anchor Points NCS ↓

10 (Random) 0.975

19 (Random) 0.952

50 (Random) 0.913

100 (Random) 0.847

19 (Manual) 0.838

Table 4.6 Quantitative study regarding anchor point selection.
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Figure 4.9 Manually selected anchor points on SMPL

Figure 4.10 Segmentation label transfer performed with dense correspondences obtained with our

method on 3DHumans test samples.

4.5 Applications

4.5.1 Segmentation Label Transfer

A potential application of our robust, dense representation is transferring image-based segmentation
information across different subjects (given that the style of garments is similar). Given an unlabelled
and labelled image of two human subjects Iu and Il respectively, we can use our method of dense
correspondence matching to add labels to the unlabelled image Iu. To do this, we iterate over the pixels
of Iu and for each unlabelled pixel pu ∈ Iu, we identify the ”matching” pixel pl ∈ Il and label pu with
the same label as pl. The pixels are ”matched” using the output of our dense correspondence matching
network. Figure 4.10 shows the result of dense pixel-wise semantic label transfer where the two images
have different subjects with significantly different body poses and appearances.
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Figure 4.11 Garment appearance transfer performed with dense correspondences obtained from our

method on 3D Humans test samples.

4.5.2 Garment Appearance Transfer

Another interesting application of the dense correspondence matching includes garment appearance
transfer i.e., transferring the appearance of a garment worn by one person to another person. Consider
an image I1 with a human H1 wearing a garment G1 and another image I2 with a human H2 wearing
a garment G2. We want to transfer the appearance of the garment G1 worn by human H1 onto human
H2. The task is closely related to the application of virtual try-on, where we would like to see how a
garment draped on a mannequin or worn by any other human would look on us.

This appearance transfer is achieved in the same way as semantic label transfer is performed. We
first identify the pixels which belong to the garment in images I1 and I2. This segmentation can be
obtained either by using a PGN [15]-like method on the input images or alternatively, we can also use
the method described above to transfer the segmentation labels from the labelled image, if any. Once we
have identified the pixels which belong to the required garment(s) in both images, then, for each pixel
of interest p2 ∈ I2, we find the corresponding pixel in p1 ∈ I1 and transfer the RGB value of p1 to p2,
as shown in Figure 4.11.

4.6 Limitations of Our Method

Figure 4.12 shows limitation of our method with first case (top row) involving the garment type
(south-asian attire Saree ) that is very loose, wrapped clothing as well as out of training distribution
(from the training set). In the second case (bottom row), the failure is due to severe occlusion caused by
another body with a similar appearance of the garment.
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(a) Input RGB Image (b) Output ConVol-E

Figure 4.12 Failure cases of proposed ConVol-E.
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4.7 Conclusion

We present ConVol-E, a robust representation for dense correspondence matching across RGB im-
ages of different human subjects in different poses/shapes/appearances. Existing methods fail to capture
correspondences for points which do not lie in the vicinity of the body model. Our proposed volumetric
representation can model arbitrary deviation from the underlying body model by making use of use of
carefully chosen anchor nodes and volumetric extrapolation around the parametric body model. The
proposed representation is easily learned with a simple U-Net-based architecture demonstrating supe-
rior qualitative and quantitative results. Further, we also show qualitative results on internet images,
including, loose clothing scenarios. Finally, we discuss two potential applications of this work. Though
the proposed embedding is inherently view-invariant, we would like to model the learning process in a
way to provide explicit constraint over multi-view consistency. We can also explore explicit solutions
for enforcing the embedding to be temporally consistent.
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Chapter 5

Conclusion and Future Directions

In this chapter, we provide a summary of our contributions and discuss the potential future research
directions that can be explored.

5.1 Summary of Our Contributions

In this thesis, we have focused on the task of 3D human pose, shape, and correspondence estimation
from monocular input. This is a crucial problem with extensive applications in various industries like
augmented/virtual reality, fashion, entertainment, healthcare, robotics, etc. However, it is also highly
challenging due to large variations in the human body’s pose, shape, and appearance, (external or self)
occlusions, loose clothing details, difficulty in ensuring temporal consistency in results, etc. As part
of this thesis, we focused on two key problems in this domain: (1) Temporally Consistent 3D Human
Pose and Shape Estimation from Monocular Videos and (2) Dense Human-Centric Correspondence
Estimation.

First, we proposed a novel method for temporally consistent 3D human pose and shape estima-
tion from monocular videos. In this work, instead of using the traditionally used, generic ResNet-like
features, our method uses a body-aware feature representation and an independent per-frame pose and
camera initialization over a temporal window. This is followed by a novel spatio-temporal feature aggre-
gation strategy by using a combination of self-similarity and self-attention over the body-aware features
and the per-frame initialization. Together, they yield enhanced spatio-temporal context for every frame
by considering the remaining past and future frames. These features are used to predict the pose and
shape parameters of the human body model, which are further refined using an LSTM.

Next, we expanded our focus to the task of dense correspondence estimation between humans, which
requires understanding the relations (represented using dense correspondences) between different body
regions, including the clothing details, of the same or different human(s). In this work, we proposed
Continuous Volumetric Embeddings (ConVol-E), a novel robust representation for dense correspon-
dence estimation across RGB images of different human subjects in arbitrary poses and appearances
under non-rigid deformation scenarios. Unlike existing representations, ConVol-E captures the devi-
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ation from the underlying parametric body model by choosing suitable anchor/key points on the un-
derlying parametric body surface and then representing any point in the volume based on its Euclidean
relationship with the anchor points. This allows us to represent any arbitrary point around the parametric
body (clothing details, hair, etc.) by an embedding vector. Subsequently, given a monocular RGB image
of a person, we learn to predict per-pixel ConVol-E embedding, which carries a similar meaning across
different subjects and is invariant to pose and appearance, thereby acting as a descriptor to establish
robust, dense correspondences across different images of humans.

Overall, this thesis advances the current state-of-the-art in estimating human pose, shape, and cor-
respondences. We identify and address some of the key limitations of existing methods and introduce
novel strategies that overcome these limitations and achieve state-of-the-art performance. We hope our
research benefits the broader community and lays the foundation for developing practical computer
vision systems with real-world applications in this domain.

5.2 Future Research Directions

Although our work significantly improves the existing state-of-the-art, a few limitations remain. We
encourage future research to explore these limitations/challenges as described below:

• More Efficient Human Pose and Shape Estimation: Existing human pose and shape estima-
tion methods rely on massive architectures that are memory and compute-intensive. This makes
them slow, and limits their applicability for real-time use cases. Future research should focus on
methods for obtaining similar (or better performance) using lightweight architectures.

• Multi-view and Temporally Consistent Correspondence Matching: As already discussed in
section 4.7, our work on dense correspondence matching can be extended to incorporate explicit
multi-view and temporal consistency constraints, enhancing the method’s applicability in dynamic
and multi-view settings.

• Handling Extremely Loose Clothing: While our proposed solutions can handle loose clothing
to some extent, handling extremely loose clothing like a saree remains a challenge, as such loose
clothing make it difficult to localize the underlying human body.

• Inter-human Evaluation for Dense Correspondence Matching: For our work (and other exist-
ing works) on dense correspondence estimation, training and quantitative evaluation is possible
only for intra-human scenarios. This is because different human scans have different topologies,
which makes establishing the ground-truth dense correspondences between them challenging.
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recovery. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,

Proceedings, Part XVII 16, pages 768–784. Springer, 2020.

[14] S. Goel, G. Pavlakos, J. Rajasegaran, A. Kanazawa, and J. Malik. Humans in 4d: Reconstructing and

tracking humans with transformers. arXiv preprint arXiv:2305.20091, 2023.

[15] K. Gong, X. Liang, Y. Li, Y. Chen, M. Yang, and L. Lin. Instance-level human parsing via part grouping

network. In ECCV, 07 2018.

[16] R. A. Guler and I. Kokkinos. Holopose: Holistic 3d human reconstruction in-the-wild. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10884–10894, 2019.
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