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Abstract

Face Reenactment and Synthetic Talking Head works have been widely popular for creating realistic
face animations by using a single image of a person. In light of the recent developments in processing
facial features in images and videos, as well as the ability to create realistic talking heads, We are
focusing on two promising applications. These applications include utilizing face reenactment for movie
dubbing and compressing video calls where the primary object is a talking face. We propose a novel
method to generate realistic talking head videos using audio and visual streams. We animate a source
image by transferring head motion from a driving video using a dense motion field generated using
learnable keypoints. We use audio as an additional input for high-quality lip sync, by helping the
network to attend to the mouth region. We use additional priors using face segmentation and face mesh
to preserve the structure of the reconstructed faces. Finally, we incorporate a carefully designed identity-
aware generator module to get realistic quality of talking heads. The identity-aware generator takes the
source image and the warped motion features as input to generate a high-quality output with fine-grained
details. Our method produces state-of-the-art results and generalizes well to unseen faces, languages,
and voices. We comprehensively evaluate our approach using multiple metrics and outperforming the
current techniques both qualitative and quantitatively. Our work opens up several applications, including
enabling low-bandwidth video calls and movie dubbing.

We leverage the advancements in talking head generation to propose an end-to-end system for video
call compression. Our algorithm transmits pivot frames intermittently while the rest of the talking head
video is generated by animating them. We use a state-of-the-art face reenactment network to detect
keypoints in the non-pivot frames and transmit them to the receiver. A dense flow is then calculated
to warp a pivot frame to reconstruct the non-pivot ones. Transmitting keypoints instead of full frames
leads to significant compression. We propose a novel algorithm to adaptively select the best-suited pivot
frames at regular intervals to provide a smooth experience. We also propose a frame-interpolater at the
receiver’s end to improve the compression levels further. Finally, a face enhancement network improves
reconstruction quality, significantly improving several aspects, like the sharpness of the generations. We
evaluate our method both qualitatively and quantitatively on benchmark datasets and compare it with
multiple compression techniques.
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Chapter 1

Introduction

Videos are a rich source of information and are widely used in day-to-day activities, ranging from
entertainment and broadcasting information to communication in the form of video calls. The rapid
growth in deep learning has changed the way we use and look at videos. Generative models [17] have
enabled us to create synthetic images and videos using our imagination. It is now possible to create
realistic human faces which do not exist in the real world [21]. The scope has even broadened with the
advancement of diffusion models [15, 41]. Generating and editing images directly from the text prompt
is now possible. One exciting application of generating models is face reenactment. The problem has
been studied for a long time in the research community. The initial focus was to transfer the lip motion
to create a lip-synchronized video, followed by the transfer of the entire motion and expression of the
talking face. A lip-sync video provides an immersive viewing experience while watching it in a different
language. It also eliminates the need for hours of effort by dubbing artists. The motion and expression
transfer has made it possible to create face-swap videos without an expensive VFX setup1. It has a lot
of potential to transform the entertainment industry and redefine visual storytelling, along with video
compression and transmission.

Face reenactment is a fascinating area to work on, but at the same time, it is quite challenging. Given
a source image and a driving video, the face reenactment aims to transfer the motion and expression
from the driving video onto the identity source image and create a realistic-looking talking head video
of that particular identity. The source image and driving video can be of different identities as well.
The main reason it is challenging is the fine-grained detailing in human faces and the infinite number
of expressions and motions a human face can generate. It isn’t easy to quantify human expressions.
The face structure is different for different individuals. The method should be robust enough to handle
head rotation or eye movement and create sharp facial regions, such as teeth. The background in a
video creates an additional degree of motion and can be very difficult to handle. Generating occluded
or unseen areas in the image is also a challenge, as it should blend closely with the surroundings while
maintaining the realism of the rendered video. This thesis explores talking head generation from a

1https://en.wikipedia.org/wiki/Visual_effects
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Figure 1.1 Face reenactment pipeline depicting high-resolution talking head generation using a single

source image and a driving video. For video calling, only keypoints need to be transmitted along with

source image and audio.

single identity image and the promising applications of face reenactment, including but not limited to
high-quality movie dubbing and video call compression.

The problem of transferring motion while maintaining the identity information has been an active
research area. Talking head generation researchers have focused on either of the three modalities to
drive motion, namely: text, audio, or video. Text-driven methods, such as Li et al.[25] and Txt2Vid[50],
rely on text to drive animation parameters or convert spoken language into text for low-bandwidth video
conferencing. However, these methods heavily depend on generated speech, which can alter the original
speaker’s voice and introduce grammatical errors. They also lack fine-grained control over head and lip
movements, making the problem ill-posed. Audio-driven methods, on the other hand, utilize audio as
a more expressive and informative input. Early approaches like You-said-that?[13] and LipGAN[24]
focused on achieving lip synchronization but failed to generate synchronized head movements. Later
works, such as those by Song et al.[47] and Zhou et al.[63], employed conditional Recurrent Neural
Networks to model temporal characteristics and disentangle audio and visual representations. Zhou et
al.[65] introduced the use of dense flow to warp the source image based on audio, while Emotional
Video Portraits[20] added emotion labels as input. However, these methods still face challenges in han-
dling non-verbal cues, facial expressions, and modeling background information. Video-driven meth-
ods use a driving video to obtain motion and facial features necessary for reenacting a source image.
The influential First-Order Motion Model (FOMM) by Siarohin et al.[44] estimated motion fields from
sparse keypoints and used them to warp the source image. Subsequent works, such as Face-vid2vid[56]
and DA-GAN [18], built upon FOMM’s principles to improve quality. PC-AVS [64] combined audio
and video to formulate pose and motion codes, achieving lip sync but with lower overall video quality
compared to DA-GAN. These methods, however, still face challenges in terms of facial expressions,
non-face regions, and controlling pose and expressions.
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The major challenge to decouple the identity and pose information from given face images can be
tackled by learning sparse keypoints from the face images and using them to create dense motion fields.
The motion fields warped the feature map of the source image and drove the motion and expression
based on the driving frame. The keypoints learned in this manner lack any information about the face
structure and background. This generally leads to distortion and artifacts when the source and driving
face structures are poorly aligned. The prevailing methods use either video or audio to create talking
heads. Each method has its own drawbacks: audio-driven methods create better lip-sync, while video-
driven methods create better head motions. The driving videos are generally accompanied by an audio
signal. However, the researchers still need to adequately study combining audio and visual modalities.
The other major challenge is to preserve the source identity, which generally got affected due to the
involvement of driving images while estimating the optical flow.

Face reenactment networks hold immense practical value, such as it can be used to transmit talking
head video calls at very low bandwidth. Instead of traditional video compression methods, which com-
press and transmit each frame, facial keypoints can be used to recreate talking faces at the receiving
end. This method significantly reduces bandwidth since only ten keypoints, or 80 bytes of information,
are required to generate a frame. However, standard talking head generation networks had limitations,
such as difficulty handling large head movements, failures at high resolution, and the need to transmit
keypoints for every frame. To address these limitations, a carefully designed pipeline is needed, which
can be used for video calling. It should also be compatible with any standard keypoints based face
reenactment network such as FOMM [44], to enable better adaptability with any future research work.

1.1 Contributions

In this thesis, we look into two primary facets: ’Where’ the talking heads have promising applications
and ’How’ they can be improved to tailor the requirements of modern-day realistic media. We tackle
many of the above-mentioned challenges in face reenactment. We propose many novel approaches that
give much better results in comparison to the previous work in this domain. The main contributions of
the thesis are as follows:

• We propose a face reenactment network that generates high-quality talking heads.

– We propose the use of face mesh and face segmentation mask as additional priors to preserve
the face structure.

– We utilize the audio modality to improve the quality of lip synchronization in talking head
videos.

– The audio-visual attention help in better generation quality of mouth region.

– We propose a novel identity-aware generator that produces high-quality output with fine-
grained details leading to more realistic talking head videos with fewer flickers and artifacts.

3



• We propose the application of synthetic talking heads for video calling at extremely low band-
width.

– We carefully designed a pipeline that utilizes ten keypoints, or 80 bytes of information, to
generate a talking head frame.

– An adaptive frame selector was introduced to handle large head movements.

– A patch-based super-resolution network was proposed to upscale generated images at high
resolution.

– A frame interpolation network was used to eliminate the need to transmit keypoints for every
frame.

– The various modules of the proposed pipeline can be used directly with standard keypoint-
based face reenactment methods.

We discuss more about contributions in detail in Chapter 2 and Chapter 3.

1.2 Organization of Thesis

The rest of the thesis is organized as follows.

• In Chapter 2, we discuss about using the audio and visual modality for creating a novel face
reenactment network. We demonstrated the effectiveness of our network in creating high-quality
talking heads [8].

• In Chapter 3, we discuss the practical application of synthetic talking heads for low-bandwidth
video calling. We show that our carefully designed pipeline can achieve better results in com-
parison to standard video compressing techniques while maintaining a comparable visual quality
[7].

• Chapter 4 presents the concluding thoughts and future directions of talking head generation.

4



Chapter 2

Audio-Visual Face Reenactment

Figure 2.1 We propose AVFR-GAN, a novel method for face reenactment. Our network takes a source

identity, a driving frame, and a small audio chunk associated with the driving frame to animate the

source identity according to the driving frame. Our network generates highly realistic outputs compared

to previous works like [44] and [45]. Results from our network contain significantly fewer artifacts and

handle things like mouth movements, eye movements, etc. in a better manner.

Imagine your favorite celebrity giving daily news updates, motivating you to work out, or interacting
with you on your mobile phone! What if a movie director could reenact an actor’s image without actually
recording the actor? Or, how about skilled content creators animating avatars in a metaverse to follow
an actor’s head movements and expressions in great detail? We can also reduce zoom fatigue [16] by
animating a well-dressed image of ourselves in a video call without transmitting a live video stream!
These ideas seem fictitious, infeasible, and not scalable. But, how about animating or “reenacting” a
single image of any person according to a driving video of someone else? Face reenactment, thus, opens
up many opportunities in a world that is becoming increasingly digital with each passing day.

Face Reenactment aims to animate a source image using a driving video’s motion while preserving
the source identity. Multiple publications have improved the quality of the generations. Existing works

0Webpage for the Paper: http://cvit.iiit.ac.in/research/projects/cvit-projects/avfr
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on talking head generation generally use a single modality, i.e., either visual[18, 44, 56, 60] or audio
features[20, 54, 47]. Audio-driven talking head generation models are good at generating quality lip-
sync; however, they have a serious drawback in handling non-verbal cues. The video-driven methods
heavily rely on the disentanglement of motion from the appearance [26]. These methods generally use
keypoints as an intermediate representation [44, 18, 56] and try to align the detected keypoints of source
and driving frames. These works learn keypoints in an unsupervised manner and fail to focus on specific
regions of the face. This stems from inadequate priors regarding the face structure or the uttered speech.
The final quality of the generations also suffers from using a basic CNN-based decoder that fails to
capture the sharpness present in the source image and generates blurred output video. As a part of this
work, we provide a detailed review of different approaches in Section 2.1.

In this chapter, we analyze the shortcomings of the current works and add key modules to our net-
work. We introduce Audio-Visual Face Reenactment GAN (AVFR-GAN), a novel architecture that
uses both audio and visual cues to generate highly realistic face reenactments. We start with providing
additional priors about the structure of the face in the form of a face segmentation mask and face mesh.
We also provide corresponding speech to our algorithm to help it attend to the mouth region and im-
prove lip synchronization. Finally, our pipeline uses a novel identity-aware face generator to improve
the final outputs. Our approach generates superior results compared to the current state-of-the-art works,
as shown in Section 2.3. We comprehensively evaluate our method against several baselines and report
the quantitative performance based on multiple standard metrics. We also perform human evaluations
to evaluate qualitative results in the same section. Our proposed method opens a host of applications, as
discussed in Section 2.5, including one in compressing video calls. Our work achieves more than 7×
improvement in visual quality when tested at the same compression levels using the recently released
H.266 [11] codec.

Our contributions of this chapter are summarized as follows:
1. We use additional priors in the form of face mesh and face segmentation mask to preserve the
geometry of the face.
2. We utilize additional input in the form of audio to improve the generation quality of the mouth region.
Audio also helps to preserve lip synchronization, enhancing the viewing experience.
3. We build a novel carefully-designed identity-aware face generator to generate high-quality talking
head videos in contrast to the high levels of blur present in the previous works.

2.1 Related Work

Talking head generation works can be broadly classified in three categories based on the type of input
they use to generate a talking head: Text-driven [25, 50, 53], Audio-driven [13, 20, 28, 47, 54, 63, 65],
and Video-driven [18, 39, 44, 56, 64] Talking Head Generation.
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2.1.1 Text-driven Talking-head Generation

Text-driven natural image generation [37, 38] has recently seen a lot of progress in the computer
vision community. Inspired by the recent success of GANs in generating static faces from text[55], Li et
al. [25] proposed a method to use text for driving animation parameters of the mouth, upper face and
head. Txt2Vid [50] converts the spoken language and facial webcam data into text and transmits it to
achieve low-bandwidth video conferencing using talking head generation. However, this method relies
heavily on the generated speech, altering the original speaker’s voice, prosody, and head movements in
the video call. It depends on the quality of the Speech-to-Text module, which introduces grammatical
errors and language dependency. Text as a medium has very little information about the head and lip
movements; thus, we consider the problem ill-posed.

2.1.2 Audio-driven Talking-head Generation

While text-driven methods suffer from a significant lack of adequate priors, we now move on to
audio, a much more expressive and informative form of input. As the name suggests, audio-driven
methods [13, 20, 28, 47, 54, 63, 65] use only audio to animate a static face image. The first set of
works like You-said-that? [13], LipGAN [24] and Wav2Lip [36] achieved lip synchronization with
given audio but failed to generate head movements in sync with the speech. These works used fully
convolutional architectures and generated a single frame at a time without considering the temporal
constraints. Eventually, a different class of works starting from Song et al. [47] in 2018 and Zhou et al.
[63] in 2019, started using conditional Recurrent Neural Networks to model the temporal characteristics
of a talking face. In 2020, Zhou et al. [65] published a landmark work that predicted dense flow from
audio instead of directly generating the output video. The dense flow was then used to warp the source
image to generate the final output. Several other well-known works like Emotional Video Portraits [20]
add an additional emotion label as input to create the talking head in the desired emotion. However, all
of these works lack fine-grained control of the talking head and often contain a loopy head motion, and
thus cannot be directly used in many applications.

2.1.3 Video-driven Talking-head Generation

Finally, we move to video-driven methods, which use a driving video to get the motion and other fa-
cial features required to reenact a source image. Please note that the driving video and the source image
may not have the same identity. Owing to the significant priors in driving video, the final generation
quality of video-driven methods surpasses those of text-only and audio-only ones. The most influential
work in this area, First-Order-Motion-Model (FOMM), was published by Siarohin et al. [44] in 2019.
The key idea was to estimate the motion field from sparse keypoints detected in both source and driv-
ing frames. The motion field was used to calculate dense flow and warp the source frame in a latent
space. Several other works [56, 18] followed the same principle and added supplementary components
to improve the quality. Face-vid2vid [56] used keypoint information in a 3D space, taking care of head
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Figure 2.2 The overall pipeline of our proposed Audio Visual Face Reenactment network (AVFR-GAN)

is given in this Figure. We take the source and driving images, along with their face mesh and segmen-

tation masks to extract keypoints. An audio encoder extracts features from driving audio and use them

to provide attention on lip region. The audio and visual feature maps are warped together and passed

to the carefully designed Identity-Aware Generator along with extracted features of the source image to

generate the final output.

rotation, among other things. DA-GAN[18] further added depth-aware attention to provide dense 3D
facial geometry to guide the generation of motion fields. A similar approach in Motion-Representation-
in-Articulated-Animation [45] uses key regions instead of keypoints to generate the warpable motion
field. Approaches like ICface[51] provide a method to control the pose and expressions of a face image
using head pose angles and action unit values. Recently, Zhang et al. [62] proposed using the three-
dimensional morphable face model (3DMM) parameters to reenact a face image. They demonstrated
that motion descriptor parameters for 3DMM can be derived from a driving video and, in turn, animate
a static facial image.

To the best of our knowledge, PC-AVS [64] is the only work that uses audio and video to formulate
a low-dimension pose and motion code. Unlike FOMM, PC-AVS does not predict motion fields to
calculate dense flow and warp the source image. Instead, they try to train their network to learn motion
in a latent space inherently. While this allows them to achieve state-of-the-art lip sync, the generated
video’s overall quality is considered inferior to works like DA-GAN [18]. In this work, we base our
approach on FOMM’s [44] principles and improve it with additional audio information. We also provide
additional structural information to extract better geometries of the face. This allows us to use the best
of both worlds and propose a novel network AVFR-GAN as described in the next section.

8



2.2 Audio-Visual Face Reenactment GAN

We present Audio-Visual Face Reenactment GAN (AVFR-Gan), which takes a source image and
a driving video plus audio to create high-quality talking head videos by preserving the source identity.
As mentioned previously, we follow a similar strategy to that of FOMM [44] for our training pipeline.
Instead of generating multiple frames in the form of a video, we handle the input in a frame-by-frame
fashion. Our main goal is to estimate the motion between a source and a driving frame and then warp the
source frame accordingly to generate an approximation of the driving frame. Our model can be broadly
divided into a Generator MGen and a discriminator MDisc as shown in Figure 2.2. We first discuss the
individual components present inside the generator.

2.2.1 Additional Structural Priors to the Keypoint Detector

We start with selecting a source frame Fs and a driving frame Fd both of dimensions h×w. During
training, both of these frames are selected from the same video. We pass these frames through me-
diapipe [29] to generate a face mesh and a face segmentation map. We channel-wise concatenate the
generated mesh and the segmentation mask with their respective images and create 5 channel versions
of the same. We term the concatenated source and driving frames as Is and Id, respectively. We use
these concatenated inputs to feed into our keypoint detector, Mkp. The addition of these priors helps
us in providing the keypoint detector with more information about the respective structures of source
and driving frames. Furthermore, the segmentation mask also provides the module with foreground and
background information enabling the keypoints to be detected only from the foreground. We use the
keypoint detector from FOMM [44] in our architecture. The keypoint detector Mkp detects K keypoints.
More concretely, we can write,

{XT,n}Kn=1 = Mkp(IT ), T ∈ s, d (2.1)

The difference between the generated keypoints from the source and driving frames is used to calculate
the motion field following FOMM. The motion field is then used to calculate dense flow and generate
a warped feature map. We denote this feature map as Motion Feature Map, Encmotion as it captures
the motion between the source and the driving frames. The dimension of this feature map is kept to be
h
4 × w

4 × c. We plot sample keypoints detected in specific frames in Figure 2.5 (left). Also, note that
each keypoint has a specific region of interest in the generated motion field. We plot the heatmaps for
each keypoint in Figure 2.5 (middle). The heatmaps show that the regions of interest for each keypoints
correspond to specific facial features. For example, the dark blue keypoint attends to the mouth region,
green attends to the jaw, and sky blue attends specifically to the eye regions. Interestingly both of the
eyes are attended by the same keypoint.
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Figure 2.3 Illustration of Audio window selector mechanism. It generates a 200ms spectrogram such

that the driving frame remains in the middle of the segment. In case of a 25 FPS video, a 200ms segment

contains 5 frames.

2.2.2 Audio-conditioned Features

Audio (mainly speech in our case) is an essential source of information that often accompanies a
talking-head video. We decided to use the speech from the driving video to improve the quality of
mouth movements in the generated video. While works like MakeItTalk [65] have already generated
head movements solely from audio, our goal is to only improve the mouth movements and transfer
head motion directly from the driving video. Therefore, we follow the same strategy taken by lip-
synchronization works like [13, 24, 36] to handle speech. We select the 200ms window of speech
around our driving frame Fd such that Fd is the middle frame in the sampling window. A graphical
representation of the audio window selection is given in Figure 2.3. We generate melspectrogram Imel

from the speech window and feed it to a 2D CNN-based encoder. The encoder contains a series of
convolution blocks with upsampling layers. The audio encoder outputs a feature map, Encaud, of
h
4 × w

4 × c dimension. We concatenate (Encmotion, Encaud) along with the attention map generated as
described next.

2.2.3 Audio-Visual Attention

Apart from improving the lip synchronization in the generated video, we propose using audio to
specifically attend to the speaker’s mouth region, enhancing the fine-grained details like teeth in the
generated video. To do this, we pass Imel through an attention encoder generating an encoding Encquery

of dimensions 1× 1× c. We then take Encmotion of dimension h
4 ×

w
4 × c and calculate the dot product

at each location with Encquery, generating a h
4 × w

4 × 1 matrix. We pass this through a Sigmoid layer
to get the attention map Encattn as shown in Figure 2.4. A formal definition of this block is given in
Equation 2.2.
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Figure 2.4 Illustration of Audio Visual Attention module. Attention is generated by taking the dot

product between a learned audio feature and visual features in each location, followed by a Sigmoid

activation.

Encattn(i, j) = Sigmoid(Encquery ⊙ Encmotion(i, j)),

i ∈ [1,
w

4
], j ∈ [1,

h

4
]

(2.2)

A visualization of the audio-visual attention can be found in Figure 2.5. As we can see, audio not
only helps the model to attend to the mouth region but also helps the network attend to other regions
like the eyes, which correlates to expressions from speech.

2.2.4 Identity-Aware Generator

We propose a novel generator to decode the concatenated feature vector. We analyze the current
decoders used in FOMM [44], Face-Vid2Vid [56] and DA-GAN [18]. We realize that the pipelines
followed by the current works fail to capture information from the source image directly. The net-
work entirely depends on the warped features generated from the motion estimator to get the identity
characteristics of the source speaker. Unfortunately, the warped features are forced to encode motion
and fine-grained identity information, making it tougher to train. This ultimately causes the outputs to
contain major artifacts and lose sharpness. We improve upon this and design an identity-aware face
generator. We first concatenate Encmotion, Enccon and Encattn together to get the final warped fea-
tures, generating Encdec. Instead of only feeding the warped features, we also feed in the source image
Fs separately to the UNet-shaped [42] generator. The generator consists of an identity-encoder and a
decoder. Both the encoder and decoder contain residual convolutional blocks inspired from Spatially
Adaptive Normalization [35]. The source image Fs is first passed through an identity encoder to en-
code identity information. The output from the identity encoder is then concatenated with Encdec and
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Figure 2.5 Illustration of keypoints detected (left), colour coded heatmap corresponding to each key-

point (centre) and the attention generated by our Audio-Visual Module (right). The ROI image shows

that there are keypoints specific to the eye and mouth region. Attention image shows the important facial

regions on which AVFR-Gan focuses.

finally passed through the matching decoder with appropriate skip connections between the encoder and
decoder blocks. The final output from the generator is denoted by Fgen. Our generator produces the
sharpest output compared to the current state-of-the-art, as shown in the subsequent sections.

2.2.5 Discriminator

To improve the quality of our generated outputs, we also employ a standard discriminator, which is
trained in a GAN setup along with the rest of the network. Our discriminator MDisc, consists of a stack
of Conv2D layers each followed by either spectral normalization [32] or instance normalization [52].
Each convolution block is followed by a Leaky ReLU activation [30]. The discriminator predicts a real
or fake label and is trained to maximize the following loss function LDisc given in Equation 2.3.

max
MDisc

LDisc = Ex∼preal logMDisc(x)+

EFgen log(1−MDisc(Fgen))
(2.3)

2.2.6 Losses used to train the Generator

We use multiple loss functions similar to [44]. We use the L1 reconstruction loss between Fd and
Fgen. We also use the LPIPs [61] perceptual similarity loss (denoted by Lper) to improve the perceptual
quality of the generated outputs. Finally, we employ the equivarience constraints Leq for generating
consistent keypoints. Similar to the original FOMM paper, we use thin plate spline deformations to
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generate keypoints and extend it to the jacobians as well. We refer the reader to [44] for information
regarding these constraints. While training the generator we also minimize the discriminator loss given
in Equation 2.3. Therefore, we present our final loss function, Equation 2.4.

min
MGen

LGen = ||Fd − Fgen||1+

Lper + Leq + EFgen log(1−MDisc(Fgen))
(2.4)

2.2.7 Inference Setting

While we sample both Fs and Fd from the same video during training, our training strategy ensures
that identity and motion information are well distilled. Therefore, our method allows for cross-identity
face reenactment. During inference, we select a single image of a person as the source image Fs. Given
a driving video of N frames, Vi...N , we pass each frame separately through our network along with Fs

and the corresponding audio segment of Vi (denoted by Ai) to generate the final output as shown in
Equation 2.5.

F i
Gen = MGen(Fs, Vi, Ai), i ∈ 1...N (2.5)

2.2.8 Implementation Details

In our experiments, we set h = 256, w = 256 and predict K = 10 keypoints for training all our
models. The model is trained using the Adam optimizer[23] with a learning rate scheduler set at 60 and
90 epochs. The initial learning rate is set to be at 0.001. The training time taken by model on 4 NVIDIA
RTX 3080Ti GPUs with a batch size of 10 is around 10 days. We train our model on the VoxCeleb [33]
dataset, which contains 25 FPS videos. Thus, the 200ms audio window consists of 5 frames, of which
the 3rd frame is selected as the driving frame Fd. Any other random frame from the same video is
selected as Fs during training the network. We apply image transformations on some of the training
images to make model more robust. We also use dataset repeater for increasing the size of dataset by a
factor of 75 for VoxCeleb [33] dataset. The model is trained for 100 epochs.

2.3 Experiments and Results

We provide a comprehensive set of evaluations to measure the performance of our proposed method.
We perform the quantitative assessment by following the standard benchmarks set by the previous
works. We also perform extensive human evaluations to provide a qualitative assessment of the gener-
ated results.
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2.3.1 Evaluation Set

We use the public test set of the VoxCeleb [33] dataset. The dataset contains videos of celebrities.
All the videos are preprocessed to 256 × 256. The test set contains 465 number of videos of different
identities making up a total of 76 minutes.

2.3.2 Evaluation Metrics

To provide an extensive evaluation of video reconstruction, we use several metrics to measure the
performance of different works. We use the following metrics to measure various aspects of our gen-
eration. L1: It checks the average L1 distance between the generated and ground-truth video. LMD:
Landmark Distance calculates the distance between detected keypoints of ground-truth and developed
video using a pre-trained facial landmark detector[12]. Please note that this metric was denoted by Av-
erage Keypoint Distance in [44]. However, we renamed it Landmark Distance to avoid confusion with
the keypoint detector module used in this work. AED: Average Euclidean Distance is used to evaluate
the identity information. We use Openface[9] to find the feature vectors of generated and ground-truth
video and then take the L2 distance between them. PSNR: Peak Signal to Noise Ratio is used to evaluate
the reconstruction quality of the generated image compared to the ground truth image. SSIM: Structural
Similarity Index evaluates the perceived changes in structural information of an image. We use it along
with PSNR as it can also handle global illumination changes. FID: Fréchet Inception Distance is used
to compare the distribution of generated images with the ground truth image using the features extracted
from an InceptionV3 model [49]. Sync: Syncnet confidence score is used to measure the amount of lip
sync [14].

2.3.3 Comparison with State-of-the-Art Methods

We compare our work with the current methods published for the same task. To have a fair compar-
ison, we use the official pre-trained models of FOMM [2], MRAA [4], PC-AVS [6] and DA-GAN [1]
from their respective open-source implementations. For Face-Vid2Vid, we use an unofficial imple-
mentation in [5]. All the pre-trained models and AVFR-GAN were trained on the same train split and
evaluated on the test split of VoxCeleb[33] using two inference strategies defined below.

2.3.4 Same-identity Reenactment

We perform the face reenactment task where the source frame and the driving video are of the same
person. In this setting, we take the first frame of any video as the source frame and consider the rest of
the video as the driving video. The audio chunks corresponding to each driving frame are also fed to
the network as input. In this case, we expect the generated output to be as close to the original video as
possible. We can therefore calculate metrics like L1, LMD, PSNR, and SSIM, which requires ground
truth. We also calculate AED, FID, and Sync metrics for the generated outputs from all the models.
From Table 2.1, it is evident that our method outperforms all the other competing methods. The superior
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Figure 2.6 Qualitative results on same-identity face reenactment. Upper row: Driving Video, Lower

row: Generated Results

L1 and AED show that our model preserves identity information better. The improvement achieved by
our model in terms of LMD indicates the improved structure of generated faces. Interestingly, our
model generates improved eye movement in much more detail compared to the previous methods. We
got state-of-the-art PSNR, SSIM, and FID scores, correlating with better visual quality. Finally, the
sync quality achieved by our algorithm is superior to all the methods except PC-AVS, which performs
slightly better in this metric.

Same-id Reenactment Cross-id Reenactment

L1↓ PSNR↑ SSIM↑ FID↓ LMD↓ AED↓ Sync↑ FID↓ Sync↑

FOMM[44] 0.046 28.890 0.740 11.04 1.294 0.142 5.17 11.93 3.17

Face-vid2vid [56] 0.062 29.160 0.690 11.47 1.620 0.153 4.96 10.81 4.19

MRAA [45] 0.040 23.351 0.64 11.36 1.280 0.135 3.10 15.61 3.96

PC-AVS [64] 0.081 23.750 0.620 14.32 1.843 0.180 6.76 16.78 6.39

DA-GAN [18] 0.036 31.220 0.804 9.10 1.278 0.129 5.01 9.40 4.71

AVFR-GAN (Ours) 0.034 32.20 0.824 8.48 1.280 0.127 5.45 9.05 4.99

Table 2.1 Comparison with state-of-the-art methods on Same-identity Reenactment and Cross-identity

reenactment on VoxCeleb[33] dataset. ↑ indicates larger is better, and ↓ indicates smaller is better.

2.3.5 Cross-identity Reenactment

In this setting, we take a driving video for a different identity and animate a source image. The audio
from the driving video is also given as input to the network, as usual. However, since the generated
output does not mimic any specific ground truth, we use metrics that do not directly need the same.
We use FID, which measures the distance between real and generated distributions and does not require
one-to-one ground truths. We also use Sync to measure the quality of the lip sync in the generated video.
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Figure 2.7 Qualitative comparison on Cross-identity reenactment. Our method gives fewer artifacts,

preserves facial structure and handle motion in a better way.

As seen in Table 2.1, we achieve the best FID results and the second-best results in sync trailing only to
PC-AVS.

2.3.6 Human Evaluations

Since our algorithm generates outputs directly meant for human consumption, we perform exten-
sive human evaluations to ascertain the quality of the generations from our model from a human’s
perspective. We perform a study enrolling 20 users. Each user is shown generated samples from the
state-of-that-art method along with Ours. The users are also shown the source image and the driving
video. We select 30 samples from Cross-identity generations. Our user study shows corresponding re-
sults from each algorithm side by side, along with the source image and the driving video. The users are
asked to rate each generated output based on three characteristics. The users rate the quality of 1. Head
pose matching the driving videos, 2. Expressions matching the driving videos, 3. Identity preservation
between the source image and the generated videos. The ratings are between 1 to 5, where 1 corre-
sponds to the worst and 5 corresponds to the best. As seen in Table 2.2, our model consistently yields
better results across all the criteria. Our model can enact a better head pose and match expressions of
the driving video while preserving the source identities.

2.4 Ablation Study

Our proposed approach comprises the addition of several key priors and the use of a better image
generator. We check the contribution of each of these novel blocks in this section. For setting a baseline
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HPMS↑ EMS↑ IPS↑

FOMM[44] 3.40 3.16 2.80

Face-vid2vid [56] 3.70 3.12 2.66

MRAA [45] 3.26 3.06 2.50

PC-AVS [64] 1.58 1.64 1.92

DA-GAN [18] 3.98 3.82 3.10

AVFR-GAN (Ours) 4.56 4.22 3.94

Table 2.2 User Study quantitative comparison. ’HPMS’ represents Head Pose Matching Score, ’EMS’

represents Expression Matching Score and ’IPS’ represents Identity Preservation Score. ↑ shows higher

is better.

(very similar to FOMM), we remove Face Mesh, Face Segmentation, Audio Encoders, and used a basic
CNN-based decoder architecture[44, 18, 56]. We add one module at a time to this baseline and train
them on the same train-test split. We first add only face mesh and face segmentation to the baseline.
We separately also check the effect of adding audio to the baseline. Finally, we combine the structural
priors and audio to train a model without the novel identity-aware generator. We calculate SSIM, FID,
and Sync metrics and report them in Table 2.3.

SSIM↑ FID↓ Sync↑

Baseline 0.74 11.04 5.17

+ Structural Prior 0.801 8.98 5.19

+ Audio Prior 0.79 8.69 5.48

+ IAG 0.812 8.51 5.13

AVFR-GAN 0.824 8.48 5.45

Table 2.3 Ablation Study. The baseline represents the model without face mesh, segmentation, audio,

and identity-aware decoder. ’+ Structural Prior’ represents Baseline with face segmentation and face

mesh. ’+ Audio Prior’ represents Baseline with Audio encoders. ’+ IAG’ represents Baseline with

Identity Aware Generator. ↑ indicates larger is better, and ↓ indicates smaller is better.

As we observe clearly, the structural priors improve the SSIM significantly over baseline, while audio
improves the lip sync quality. We also observe that audio improves the visual quality (measured using
FID) of the generations marginally. Finally, the identity-aware face generator gives a significant boost
in terms of visual quality improvement.
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2.5 Applications

Our work opens up several applications in the digital industry. Our method can revolutionize multiple
industries. We can potentially replace recording famous celebrities in a studio environment costing
thousands of dollars; we can animate a single picture of them based on home-recorded driving videos.
Similar advances can also be made in the education sector, where online lectures are an integral part of
education. News readers can reduce their commute and present news from the comfort of their homes
by animating their characters. We can also make video calls simpler in more than one way. We can
replace the live video feed with a generated one reducing zoom fatigue. More importantly, this can lead
to huge bandwidth reduction due to the compact keypoint-based representation, as already noted in [56].

2.5.1 Low-bandwidth Video Conferencing

Face reenactment methods can be easily extended for video compression. In the case of a video call
between a sender and a receiver, we can first send a single high-resolution frame between the two and
follow it up with sending keypoints detected by the keypoint detector for each frame. Our model can
then generate the output frames at the receiver’s end by considering the high-resolution frame as the
source and keypoints from each of the driving frames, similar to the results shown in Figure 2.6. The 10
keypoints each consist of x and y coordinates and four jacobians, all of which are represented as float
values. Therefore, the total bits required to represent a 256 × 256 frame using FP16 representation is
10× 6× 16 = 960 bits. Therefore, the Bits-per-Pixel(BPP) achieved by our model is 960

256×256 = 0.014.
We use the latest H.266 codec [11] released in September of 2021 and compress the VoxCeleb test set
at the same BPP. While the results generated by our algorithm achieve a FID of 8.48, the H.266 lags by
a large margin at 58.32. This indicates the superior quality of the results generated using AVFR-GAN
and provides a proof-of-concept for compressing video calls in future work.

2.6 Conclusion

In this work, we propose a novel face reenactment network, Audio-Visual Face Reenactment GAN.
Our network uses audio-visual cues to reenact a source image according to a driving video. We provide
the network with additional structural priors and speech to improve lip synchronization. The final output
quality also benefits from a novel identity-aware generator. We believe these works will benefit and
reduce manual effort in professional content creation.

2.7 Ethical Concerns

The improvement in the quality of the generative networks has also led to concerns over its potential
misuse. We, therefore, urge the users of any such works to use it ethically. We also encourage users to
clearly mark the generated videos with a watermark.
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Chapter 3

Compressing Video Calls using Synthetic Talking Heads

3.1 Introduction

As we progress through the 21st century, the world continues to grow digitally and becomes more
connected than ever! Video calls are a big part of this push and are a staple form of communication.
The pandemic in 2020 led to a massive reduction in social interaction and fast-tracked its adoption.
Universities and schools were forced to use video calls as the primary means of teaching, while for
many, video calling remained the only way to connect with friends and family. While the number of
video calls will continue to rise in the future, increasing bandwidth is a daunting task. Incidentally, over
half the world’s countries do not even have 4G services 1! Therefore, introducing video compression
schemes to reduce the bandwidth requirement is a need of the hour.

3.1.1 Traditional Video Compression Techniques

Compressing video information has fascinated researchers for nearly a century. The first works
dealt with analog video compression and were released in 1929 [22]. A significant breakthrough in
modern video compression was achieved by [31] using a DCT-based compression technique leading to
the first practical applications. This was followed by the widely adopted H.264 [57] and H.265 [3] video
codecs, which remain the most popular in industrial applications. The most recent codec to be released
is H.266 [11]. However, we do not compare our work with H.266 due to the lack of availability of open-
source implementations. Deep learning-based video compression techniques like [27, 43, 34, 40] have
also been prevalent in the recent past. These techniques use autoencoder-like structures to encode video
frames in a bottlenecked latent space and generate it back on the receiver’s end. While such approaches
have proven their effectiveness in multiple situations, they are generic and do not consider the high-level
semantics of the video for compression.

0Webpage for the Paper: https://cvit.iiit.ac.in/research/projects/cvit-projects/
talking-video-compression

1https://en.wikipedia.org/wiki/List_of_countries_by_4G_LTE_penetration
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3.1.2 Talking Head Video Compression

Video calls, on the other hand, encompass a specific class of videos. They primarily contain videos of
speakers and are popularly known as talking head videos. The inherent semantic information present in a
talking head video involving the face structure, head movements, expressions on the face, etc., has long
interested researchers in developing compression schemes targeted towards such specialized videos.
Techniques like [34] transmit 68 facial landmarks for each frame, which synthesize the talking head at
the receiver’s end. In 2021, Wang et al. [56] proposed using face reenactment for video compression.
They used 10 learned 3D keypoints instead of pre-defined face landmarks to represent a face in their
work leading to significant compression. Each learned keypoint contains information regarding the
structure of the face, rotation, translation, etc., and helps to warp a reference frame.

Key point Extractor

Decoder

Frame-Interpolation

Patch-wise 
Super-resolution

Sender

Pivot Frame

Key points

Input Video: Middle Frame not Transmitted at all

FOMM-Variant
Receiver

Transmitting only key 
points

Reconstructed 
Frames

Interpolated Middle 
Frame

Generating High 
Resolution Output

Pivot Frame

Uses Lightweight Key points

Interpolates Frames at the receiver’s end

Generates high-resolution outputs using SR

Figure 3.1 We depict the entire pipeline used for compressing talking head videos. In our pipeline,

we detect and send keypoints of alternate frames over the network and regenerate the talking heads at

the receiver’s end. We then use frame interpolation to generate the rest of the frames and use super-

resolution to generate high-resolution outputs.

3.1.3 Our Contributions

We explore this concept further in this work and propose several novel improvements. We first send
a high-resolution frame (pivot frame) at the start of the video calls. For the rest of the frames, we use
a modified version of [44] to detect keypoints in each of them and transmit them to the receiver. The
keypoints are then used to calculate a dense flow that warps the pivot frame to recreate the original
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video. While [44, 56] used 24 bytes to represent a single keypoint, we further propose to reduce this
requirement to only 8 bytes. Next, we use a novel talking head frame-interpolater network to generate
frames at the receiver’s side. This allows us to send keypoints from fewer frames while rendering the
rest of the frames using the interpolater network. We use a patch-wise super-resolution network to
upsample the final outputs to arbitrary resolutions, significantly improving the generation’s quality. In
a lengthy video call sending a single pivot frame at the start of the video may lead to inferior results
on significant changes in the background and head pose. Therefore, we also propose an algorithm to
adaptively select and send pivot frames negating the effects of such changes. Overall, our approach
allows for unprecedently low Bits-per-Pixel (BPP) value (bits used to represent a pixel in a video) while
maintaining usable quality. We refer the reader to check our project web-page for numerous example
results from our approach.

3.2 Background: Synthetic Talking Head Generation

Our work revolves around synthetic talking head generation. Therefore, we survey the different
types of talking head generation works prevalent in the community. Talking head generation was first
popularized in works like [48, 13, 19, 24, 36] which attempted to generate only the lip movements from
a given speech. These works were effective for solutions that required preserving the original head
movements in a talking head video while changing only the lip synchronization to a new speech. A
separate class of works [65, 62, 54, 64] tried to generate the talking head video directly from speech
without additional information. While these works can also potentially find their usage in video call
compression, the head movements in the generated video do not match those of the original one, limiting
its usage!

3.2.1 Face Reenactment

In face reenactment, a source image is animated using the motion from a driving video. The initial
models for this class of works were speaker-specific [10, 58]. These models are specifically trained
on a single identity and cannot generalize to different individuals. On the other hand, speaker agnostic
models [44, 56, 64, 8] are more robust. They require a single image of any identity and a driving video
(need not have the same identity) to generate a talking head of the source identity following the driving
motion. We find face reenactment works to be well suited for talking head video compression. We
propose to use the inherent characteristic of the problem and send a single high-quality frame that can
be animated by the rest of the video at the receiver’s end to generate the final output. The reenactment
is driven by landmarks, feature warping, or latent embeddings. First-Order-Motion-Model (FOMM)
proposed by Siarohin et al. [44] uses self-learned keypoints to represent the dense motion flow of driving
video. Each keypoint consists of the coordinates and Jacobians representing the local motion field
between the source image and the driving video. A global motion field is then interpolated from the
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local motion field, and the source image is warped using the estimated motion field. Wang et al. [56] too
similarly learn a motion field between the source image and the driving video. However, in their case,
the keypoints are 3-dimensional, containing additional rotation and translation information.

3.3 Methodology

3.3.1 Overview of the Technique

As discussed previously, we start the video call by sending a pivot frame from the sender to the
receiver and then animate it using the rest of the frames in the video call. We use a variation of the
FOMM [44] model for achieving this task. Each keypoint in the FOMM model consists of 2D coor-
dinates and Jacobians that possess additional region-specific information. Through experiments, we
realize that Jacobians play an essential role in modeling complex motions. However, video calls are
frontal face videos with relatively fewer head motions. Thus, we reduce the bits required to store each
keypoint by removing Jacobians and transferring only the coordinates of keypoints for each frame over
the network. We also propose a talking face frame interpolation algorithm inspired by [59] to gener-
ate intermediate frames in the video, reducing the number of frames for which keypoints needs to be
transferred. Finally, we use a patch-based super-resolution network to generate arbitrary high-resolution
outputs. To counter the instability caused by the removal of Jacobians when encountered with large head
movements, we formulate a simple algorithm to send and replace pivot frames intermittently based on
the difference in head pose and background between the current pivot frame and the driving video at the
sender’s side.

3.3.2 Formalizing the Compression Strategy

Let us assume we have n + 1 frames at the sender’s end in our setup. We denote the frames by
f0, f1, f2, ..., fn. We pick f0 as our first pivot frame and transmit it to the receiver. The pivot frame is de-
noted by fpv. We then pick alternate frames f1, f3, f5, ... and pass them through the learned keypoint de-
tector of our FOMM-variant. The detected keypoints are denoted by p1, p3, p5, .... At the receiver’s end,
the decoder from the FOMM-variant uses the transmitted keypoints and fpv to generate f ′

1, f
′
3, f

′
5, ....

We use our frame-interpolater network to generate the intermediate frames, f ′
2, f

′
4, .... We then apply

our patch-based super-resolution network on all the frames on the receiver’s end, f ′
1, f

′
2, f

′
3, f

′
4, f

′
5, ... to

generate higher resolution versions of the same. Finally, for a significant difference in the head pose or
background between the pivot frame fpv and the ith frame, fi, we transmit fi to the receiver making it
the new pivot frame.
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3.3.3 Modifying the First-Order-Motion-Model

We take inspiration from First Order Motion Model for Image Animation [44] for reenacting a face
at the receiver’s end. While the original version of FOMM [44] was not designed for compression
in video calls, we re-purposed it for the task at hand and built a refined version of the model. In the
original model, a keypoint detector detects 10 keypoints along with Jacobians in the neighborhood of
each keypoint. The model detects these keypoints in both the source, and driving frames and a motion
field is calculated between corresponding keypoints between the two frames. The dense flow calculated
from this motion field is then used to warp the source frame using a decoder generating the final output.
All the network components like the generator and the keypoint detector, are trained end-to-end allowing
the keypoint detector to extract keypoints best suited for generating the most accurate result.

In this work, we remove the requirement of Jacobians and instead train a version of FOMM2 requir-
ing only coordinates of the keypoints to reconstruct a frame. This is motivated directly by our use-case
of video call compression. Jacobians are 2× 2 integer matrices for each of the 10 keypoints. By remov-
ing the Jacobians, we can represent a frame with only the (x, y) coordinates of the 10 keypoints saving
a large amount of bandwidth. We find that removing the Jacobians does not affect the performance of
our network on frontal-facing videos that are most encountered during a video call. We follow the same
training methodology and losses as stated in [44] to train this modified version of the FOMM model.
Once the model is trained, the keypoint extractor is deployed at the sender’s end while the decoder part
of the network is deployed at the receiver’s end. At any point of the video call, the current pivot frame
acts as the source frame, and the keypoints from the subsequent frames (which serve as the driving
video) are used to warp the pivot frame animating it. A graphical representation of the process is given
in Figure 3.1.

L1 Loss + Lpips Loss

Channel-wise 
Concatenation

Predicted

Real

Fake

Ground-truth

Random Crop

Downsample 

Upsample 

L1 + Lpips

Discriminator

Real Fake

Frame-Interpolater Network Patch-wise Super-resolution Network

Figure 3.2 We depict the architectures of the frame-interpolation network and the Patch-wise Super-

resolution Network.
2https://github.com/AliaksandrSiarohin/first-order-model
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3.3.4 Frame Interpolation at the Receiver’s End

To further reduce the bandwidth requirements and improve the compression ratio, we introduce
a frame interpolation network motivated by recent advances in Face Enhancement works [59]. We
use a standard GAN [17] architecture consisting of a Generator GFI and a Discriminator DFI . To
ensure lesser model complexity, we decide against using 3D convolution layers and use standard 2D
convolution in both networks. As shown in Figure 3.2, we train this network on videos in a self-
supervised manner. During training, we sample consecutive windows of three frames, {vi, vi+1, vi+2}
in a video. We then concatenate vi and vi+2 channel wise creating the input to GFI . The generator is
tasked to generate vi+1, which is used as the ground truth. The discriminator DFI is trained to maximize
the loss function given in Equation 3.2. We calculate three losses for the generator: the L1 reconstruction
loss, the LPIPS [61] perceptual loss and finally, the discriminator’s loss to train the generator GFI . The
loss and optimization functions used to train the generator are defined in Equation 3.3.

vgeni+1 = GFI(vi||vi+2) (3.1)

max
DFI

Ldisc(DFI , GFI) = Ereal[logDFI(vi+1)] + Efake[log(1−DFI(v
gen
i+1))] (3.2)

min
GFI

Lgen = Ldisc + ||vi+1 − vgeni+1||1 + LPIPS(vi+1, v
gen
i+1) (3.3)

3.3.5 Patch-wise Super-resolution Network

While users in the past were used to grainy webcam videos, the quality of the front cameras of cell
phones, webcams, and other types of cameras has improved significantly. Maintaining the quality of
the video calls is thus of utmost importance! Therefore, we train a GAN to enhance the quality and
resolution of the generations. The architecture of this network closely resembles the frame interpolation
network and is trained in a self-supervised manner. We also want our network to be able to arbitrarily
super-resolve the output to any resolution. Therefore, instead of training the network on a fixed resolu-
tion of images, we train it using k × k cropped patches from the images. During training, we randomly
sample frames from videos and take k × k random crops from them. We then bicubically downsample
the patches by a random factor between 2 − 6. We then create the input to the network by bicubically
upsampling the downsampled patches back to their original resolution, i.e., k × k. The network is
tasked to remove the blur in the input patches introduced by bicubic upsampling. This network is also
trained following a similar strategy to Equations 3.2 and 3.3. During inference, we bicubically upsam-
ple the whole image to any desired resolution. Using a sliding window, we then divide the image into
k×k patches. Our network then super-resolves each patch separately to generate sharp, high-resolution
outputs. A pictorial representation of the architecture is given in Figure 3.2.
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3.3.6 Adaptive Pivot Frame Selection

Due to the lack of Jacobians in our keypoints, our network sometimes falters when faced with mas-
sive changes in head pose. While this is unlikely to happen in a dataset, it can be pretty standard when
tested in a real-world video calling setup. We, therefore, propose a simple algorithm to adaptively
change the pivot frame based on the difference in head pose and change in background. To detect the
change in the head pose, we use an open-source codebase3 and calculate the yaw, roll, and pitch in the
pivot frame Fpv and any current frame Fi whose keypoints are to be transmitted. We empirically find
thresholds of γyaw, γroll, γpitch based on which we change the pivot frame to the current frame, i.e.,
Fpv = Fi in case of a major shift. We also use Mediapipe [29] library to generate face segmentation
masks to detect the background portions of a frame. We then use a pre-trained VGG-19 [46] network to
generate embeddings for the backgrounds of both Fpv and Fi. A simple euclidean distance dbg is calcu-
lated to determine the amount of background change. If a significant background change is determined
using an empirical threshold, the pivot frame is replaced by the current frame.

3.3.7 Dataset & Implementation Details

We train our networks on the train set from the VoxCeleb dataset [33] with a learning rate of 0.001
using the Adam optimizer [23]. The resolution of all the videos is kept at 256×256 during training. The
patch size used for training the Super-Resolution network is set to 64× 64. During inference, we apply
2× super-resolution achieving 512 × 512 resolution on the final generated videos. The thresholds that
we select after experimentation are γyaw > 15◦, γroll > 15◦, γpitch > 15◦. We select dbg > 0.05 as the
threshold for considering backgrounds as different. Please note that breaching either of the thresholds
is considered a criterion for replacing the pivot frame.

3.4 Experiments and Results

3.4.1 Comparable Methods & Metrics used

We compare our work with two of the most famous and versatile video compression techniques,
H.264 [57] and H.265 [3]. We vary the Constant Rate Factor (CRF) in both methods and generate results
in various settings. We also compare our method with the original FOMM [44] and Face-Vid2Vid [56].
All the networks were trained on the same training set for a fair comparison. Apart from other com-
parable works, we also create baselines by removing different modules from our proposed pipeline.
We report three visual quality metrics to measure the visual quality; PSNR, SSIM, and FID [49]. We
also report the BPP to measure the compression level for each method. We use the test set from the
VoxCeleb [33] for benchmarking all the approaches. Please note that the BPP is calculated based on
512× 512 as the final resolution for all the methods.

3https://github.com/WIKI2020/FacePose_pytorch/
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Figure 3.3 We calculate the change of FID with reducing compression, i.e., increasing BPP. We find

that the FID score achieved by our network can only be achieved at a far lower level of compression for

both H.264 and H.265.

3.4.2 Quantitative Results

We report quantitative scores in Table 3.1. For H.264 and H.265, we use the Constant Rate Factor
(CRF) = 51 to generate the results at the least BPP possible. As we can see, even at the maximum
compression levels of H.264 and H.265, our approach achieves less than 1

3 rd the BPP while generating
visually appealing results. We also plot the variation of FID with changing BPP for H.264 and H.265
in Figure 3.3. We find that the FID achieved by our approach is only achievable at 5× more BPP for
H.265 and 10× more BPP for H.264. We also achieve a much lower BPP than the original FOMM and
Face-Vid2Vid [56] but can maintain quality. Finally, we stack up different modules from our approach
one by one and then compare the results achieved in each combination. As observed in Table 3.1, adding
each module in our approach reduced BPP while maintaining the quantitative metrics at a similar level.

3.4.3 Qualitative Results

We show multiple qualitative comparisons in Figure 3.4. As we can see, our method generates
sharper results when compared to the prevalent compression techniques. Furthermore, we also ran our
pipeline on real video calls publicly available on YouTube. These videos are far longer than the ones
present in the test set. Figure 3.5 shows the impact of the adaptive pivot frame selection module and
generates better outputs than the ones generated without using it.
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H.264 H.265 Ours

Figure 3.4 We compare our results with H.264 and H.265. Our method generates far sharper images

with much less data.

Method BPP↓ PSNR↑ SSIM↑ FID↓

FOMM [44] 0.029 26.81 0.79 26.81

Face-vid2vid [56] 0.016 24.37 0.80 25.19

H.264 [57] 0.0057 30.25 0.78 67.54

H.265 [3] 0.0039 30.74 0.80 48.20

keypoint Only (Ours) 0.0097 24.48 0.78 20.58

keypoint + Frame Interpolation (Ours) 0.0048 24.21 0.78 23.03

keypoint + Frame Interpolation + SR (Ours) 0.0012 26.73 0.81 27.81

Table 3.1 We compare our method with other state-of-the-art architectures as well as widely used tech-

niques like H.264 and H.265. We observe our method to consistently have decent visual quality at much

lower BPP.

3.5 Ablation Studies

We perform several ablation studies to understand the effectiveness of different hyperparameters we
choose to achieve the best performance. We keep the pivot frame constant for all the experiments if not
mentioned otherwise.

While we train our network to interpolate a single frame at a time, it can be easily used to interpolate
more than one frame during inference by using the generated frames as input. We interpolate 2 frames
and 3 frames at a time and report the scores in Table 3.2. As we see, interpolating more number of frames
improves the BPP significantly but also leads to some loss in performance. However, the performance
still remains within usable range and thus can be explored in cases where even more compression is
required.

We also vary the k × k patch size used for training the super resolution network. We super resolve
the output 2 times using different sized patches and report our findings in Table 3.3.
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Figure 3.5 We use a lengthy real-world video call and mark frames for various time stamps (frame

numbers in this case). Our goal is to understand the effect of the adaptive frame selector. In the above

example, we select newer pivot frames at T10 and T30 owing to major head pose changes. This allows

our network to continue generating sharp results.

#Int. frames BPP↓ PSNR↑ SSIM↑ FID↓

0 0.0024 29.28 0.83 9.10

1 0.0012 28.49 0.82 12.42

2 0.0008 28.23 0.81 12.77

3 0.0006 27.73 0.79 12.92

Table 3.2 We vary the number of frames that are interpolated and report the scores achieved.

We select different thresholding parameters for our frame selection algorithm. We report the scores
in Table 3.4. Using adaptive frame selection increases BPP due to the transfer of multiple pivot frames.
We calculate the metrics using different thresholds for all the γ variables and dbg. On an average, at our
default setting of γ > 15◦ and dbg > 0.05, we find a pivot frame change every 10 seconds. The shift is
much less common on the bigger thresholds.

3.6 Conclusion

In this work, we propose to use the high-level semantics of a talking head video to create extreme
compression schemes which can revolutionize video calling. Our work uses compact keypoints to trans-
mit information about the talking head in each video frame. We also propose a frame interpolation
network followed by super-resolution to arbitrary resolutions. Finally, a pivot frame selection algorithm
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Patch Size PSNR↑ SSIM↑ FID↓

128× 128 27.37 0.81 19.12

64× 64 27.47 0.80 20.16

32× 32 26.18 0.79 20.89

16× 16 25.34 0.78 21.17

Table 3.3 We vary the size of the patches taken by our SR network and report the scores in this table.

Method BPP↓ PSNR↑ SSIM↑ FID↓

dbg > 0.05 0.0029 27.37 0.81 19.12

dbg > 0.06 0.0021 25.93 0.77 20.74

dbg > 0.07 0.0016 24.72 0.73 23.17

γ > 15◦ 0.0049 25.28 0.75 22.46

γ > 30◦ 0.0031 24.02 0.71 26.63

γ > 45◦ 0.0018 23.76 0.70 26.93

Table 3.4 We select different thresholds for our adoptive frame selection algorithm. Please note that γ

here represents thresholds for all the three γ-values.

is used for long video calls helping our compression technique continue generating high-quality videos.
In the future, we believe solving other aspects like ensuring its application on edge devices will be a
prospective task.
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Chapter 4

Conclusions

In this thesis, we explore the idea of face reenactment and talking head generation. We proposed
an audio-visual face reenactment network that creates high-quality talking heads. We demonstrated the
effectiveness of using audio-conditioned features to create better lip-sync and mouth movement. We
also show the effectiveness of using face priors in the form of face mesh and segmentation mask to
improve keypoint detection. Using a novel identity-aware generator helps reduce flickers and artifacts
from the generated video. Our network performs better than the current state-of-the-art methods in
terms of qualitative and quantitative comparison. We further explore the practical applications of our
work, specifically video calling. We proposed a carefully designed pipeline with frame-interpolation,
patch-based super resolution network and an adaptive frame selector network. The proposed pipeline
gives promising results by achieving comparable visual quality like H.265 and H.265 while using 5x
less bandwidth.

Our work opens a lot of practical applications and future research directions. It can be extended to
a full-body reenactment, where the action of a single source image of a person can be modeled using a
full-body driving video. This further leads to creating visual storytelling for not only faces but for the full
body. Hence, making it possible to create an entire movie without any additional expensive vfx studio.
One other interesting direction to work on is introducing temporal consistency in the generation process.
Instead of creating one-to-one motion model using two images, the temporal information of a video can
be used to model the motion better. The current work has a limitation in manually manipulating certain
aspects of the face, like modifying emotions. Combining the current work with the editing capabilities
of diffusion models can also be promising.

Our work has some shortcomings, especially in modeling the motion of non-face regions, such as
the torso. It also fails to model the motion of accessories like a hat and generally treats them as a
background. There are also some limitations in generating talking heads of animated characters which
do not closely resemble human face structures. We believe future work can solve these problems and
make the pipeline more robust.

30



We understand that there is a possibility of misusing the research to create fake news and identity
theft. We strictly urge that users should follow ethical guidelines and use a watermark for every gener-
ated video, clearly showing that it is reenacted.
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