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Abstract

Music processing is a fascinating and intricate phenomenon that has garnered significant
research interest in recent years. Understanding how the human brain represents various music
features is crucial for unraveling the mysteries of music perception and cognition. In this study,
our objective was to investigate neural representations of music using functional magnetic reso-
nance imaging (fMRI) to analyze the blood-oxygen-level-dependent (BOLD) signal activations
in selected regions of interest (ROIs) during a continuous listening task.

Additionally, we aimed to compare these neural activations with the hidden layer activations
of a specific class of deep neural networks (DNNs). These DNNs, known as self-supervised
models, have shown promise in capturing intricate patterns and encoding complex information.
By utilizing representational similarity analysis (RSA), we aimed to explore the similarities and
correlations between the neural representations of music features in the human brain and the
hidden layers of the DNN encoder.

Our findings revealed a correlation between the low-level music feature encoding observed
in two important brain regions, namely the Superior Temporal Gyrus (STG) and Heschl’s
gyrus (HG), and the hidden layers of the DNN encoder. This correlation provides evidence for
the effectiveness of self-supervised DNNs as a reliable architecture for studying the domain of
music processing. Importantly, this finding is particularly significant due to the limitations of
naturalistic listening conditions in prior research studies.

By bridging the gap between the neuroscientific investigation of music processing and the
computational power of self-supervised DNNs, our study contributes to the growing body of
research aiming to uncover the underlying mechanisms of music perception and representation.
The implications of this research extend beyond the field of music, as the insights gained
from studying music processing can potentially shed light on broader topics such as auditory
cognition, neural encoding of complex stimuli, and the applications of deep learning in cognitive
neuroscience.

Keywords: music processing, neural representations, functional magnetic resonance imag-
ing (fMRI), blood-oxygen-level-dependent (BOLD) signal, deep neural networks (DNNs), self-
supervised models, representational similarity analysis (RSA), Superior Temporal Gyrus (STG),
Heschl’s gyrus (HG), naturalistic listening conditions, music perception, auditory cognition,

computational neuroscience.
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Chapter 1

Introduction

1.1 Motivation

The study of music perception has traditionally relied on behavioral experiments and subjec-
tive assessments (Peretz & Zatorre, 2003 ) [49]. While these approaches have provided valuable
insights, they often fall short in capturing the intricate and implicit representations of music in
the human brain. Recent advancements in neuroimaging techniques, such as functional mag-
netic resonance imaging (fMRI), have opened up new possibilities for investigating the neural
correlates of music perception (Zatorre & McGill, 2005) [63]. By examining the neural activity
patterns associated with music processing, we can uncover the underlying representations and
mechanisms at a more detailed level.

Understanding the neural basis of music perception and representation is crucial for gaining
insights into how the brain encodes and processes musical information (Janata, 2009) [27].
By leveraging the power of deep learning techniques, such as variational autoencoders (VAEs),
we can develop computational models that capture the implicit representations of music in
the human brain (Herremans et al., 2017) [?] . These models have demonstrated remarkable
capabilities in capturing complex patterns and generating meaningful representations from high-
dimensional data (Knigam & Welling, 2013) [35]

Connecting the branches of neuroscience and machine learning presents both opportunities
and challenges. While some progress has been made in exploring the neural correlates of music
perception using fMRI, the current research has its limitations. Most studies have utilized have
followed a block-based experimental design (Kuhl et al., 2013) [35]. One major limitation in
recent study(Guculu et al., 2017) [22] used task-optimized Deep Neural networks classifiers
with neuroimaging to interpret music processing in human brain using short music clips of
6 seconds. In this study, we aim to push the boundaries of music neuroscience research by
addressing these challenges. By employing fMRI in naturalistic conditions and incorporating
advanced machine learning techniques, we seek to capture the complexity of music processing

in the human brain in a more ecologically valid manner. Our goal is to explore the uncharted



territories of music perception and representation, leveraging the latest advancements in ma-

chine learning to uncover new insights and refine our understanding of how the brain processes

and represents music . This study aims to bridge the gap between neuroscience and machine

learning, contributing to both fields while enhancing our understanding of music perception

1.2

Research Objectives

Our research was aimed at following objectives:

1.3

Identify the best performing computational model from the different class of autoencoders

via a music classification task.

Investigate the neural representations of music features by examining fMRI activations
and comparing them with hidden layer activations of the selected unsupervised deep neural
network, specifically variational autoencoders (VAEs) using Representational Similarity
Analysis(RSA).

Unlike the prevailing experimental designs that rely on short music clips and a block-
design approach, our approach utilizes natural stimuli, specifically real music clips of
longer durations. Additionally, we capture fMRI data continuously throughout the entire
song. By doing so, we can extract features based on natural music listening conditions,

which enable a more accurate depiction of how music is processed in the brain.

Gain insights into the correspondence between DNN representations and fMRI responses
to better understand the neural processing and representation of music in the human

brain.

Key Contributions

. Adoption of an unsupervised learning approach: The research highlights the use of unsu-

pervised deep neural networks, specifically variational autoencoders (VAEs), for modeling
the complex learning representation of music. This approach overcomes the limitations

of task-optimized DNNs and captures the intricate nature of music processing [22].

. Investigation of neural representations: The study delves into the neural representations

of music features by analyzing fMRI activations in selected brain regions and comparing
them with hidden layer activations of VAEs. This analysis allows for a comprehensive
exploration of the correspondence between learned representations and neural activations

in response to music.



3. Broadening the hypothesis space: Unlike previous studies that focused on hand-designed
features, this research utilizes complex and dynamic natural stimuli, specifically real music
clips. By extracting features derived from VAE representations, the study broadens the
hypothesis space and captures a probabilistic and generative representation of how music,

as a complex stimulus, is processed in the human brain.

These key contributions contribute to a better understanding of music perception and rep-

resentation in the human brain and pave the way for future studies in the field.

1.4 Thesis Roadmap

The thesis is constructed in the following way

e Chapter 2 deals with the background of Musical cognition, Neuroimaging & Represen-
tational similarity analysis, Computational Modeling and mathematical basis of special

class of autoencoders called variational autoencoders(VAE)

e Chapter 3 deals with a study to identify the best-performing computational model in
terms of class of deep learning autoencoder- Long Short-tem Memory based(LSTMs) v/s
(VAE) based. This is achieved in a classification task experimentation of eight different

computational models trained on diverse music dataset.

e Chapter 4 of this thesis focuses on the main study, which aims to investigate how music
is processed in the human brain. This investigation involves modeling implicit music
representations using functional magnetic resonance imaging (fMRI) and a specific class of
deep learning autoencoder as identified in earlier experimentation. The chapter describes
the implementation of Representational Similarity Analysis technique to examine the

correlations of brain activations with autoencoder hidden layers

e Chapter 5 concludes with summary, limitations and future prospects of the studies.



Chapter 2

Background

2.1 Introduction

Music processing is a captivating and intricate phenomenon that has garnered significant
research interest in recent years [38]. In this master’s thesis, our focus is on exploring the
neural representations of music features using functional magnetic resonance imaging (fMRI)
activations in selected regions of interest during a continuous music listening task. We also aim
to compare these activations with the hidden layer activations of a unique class of deep neural
networks (DNNs). To achieve this, we employ representational similarity analysis (RSA) to
investigate the correlation between low-level music feature encoding in the human brain regions,
such as the Superior Temporal Gyrus (STG) and Heschl’s gyrus (HG), and the hidden layers

of unsupervised deep neural networks, particularly variational autoencoders (VAEs).

The theoretical framework underlying music perception and representation in the human
brain has been extensively studied. Various investigations have employed deep learning tech-
niques for music processing [52, 37, 34, 18, 41] , including the use of RSA to examine neural
representations [10, 53, 62, 55]. RSA has proven applicable in studying music perception as it
enables comparisons between neural responses and representations derived from computational
models [10]. By adopting unsupervised learning approaches, such as VAEs, we aim to justify
their usage in modeling the music learning representation, highlighting their advantages over
task-optimized DNNs (Gémez-Herrero, German & Peeters, 2021) [21]

Our study places a significant emphasis on the use of unsupervised learning, particularly
VAEs. Unlike supervised task-optimized DNNs that are trained for specific tasks, VAEs oper-
ate based on unsupervised learning principles, allowing them to capture the underlying structure
and patterns in the data without the need for explicit labels [13]. This makes VAEs particu-
larly well-suited for modeling complex and high-dimensional data, such as music features. By
leveraging the latent representations learned by VAEs, we can explore the neural correlates of

music processing in a more flexible and comprehensive manner [32].



In previous studies, the majority of research on functional auditory cortical representations
has focused on hand-designed low-level and high-level features, which may introduce biases and
limitations. However, in our investigation, we depart from this approach by utilizing complex
and dynamic natural stimuli, specifically real music clips. The features extracted from these
music clips are derived from the representations learned within a data-driven and unsupervised
VAE. This approach allows us to broaden the hypothesis space and capture a more accurate
representation of how complex stimuli, such as music, are processed in the brain.

Moreover, the utilization of DNNs, particularly VAEs, for probing neural representations has
demonstrated remarkable success in visual neuroscience [62]. By extending this line of research
to the domain of music, we aim to shed light on how the human brain responds to musical stim-
uli. The hierarchical structure of VAEs, with their encoder and decoder components, enables
the exploration of representations at different levels of abstraction. Through the comparison
of DNN representations and fMRI responses to the same sensory stimuli, we can gain valuable
insights into the neural processing of music and its underlying representations.

In conclusion, this master’s thesis investigates the neural representations of music features by
analyzing fMRI activations and comparing them with hidden layer activations of unsupervised
VAEs. By adopting an unsupervised learning approach, we aim to overcome the limitations of
task-optimized DNNs and capture the intricate nature of music processing. The use of VAEs
allows us to model the complex learning representation of music and explore the correspondence
between the learned representations and neural activations. This research contributes to the
understanding of music perception and representation in the human brain, paving the way for
future studies in the field.

2.2 Music Processing in the Auditory Pathways of the Human

Brain

The processing of music in the human brain is a fascinating and complex phenomenon that
has garnered significant research interest in recent years. The auditory pathways in the brain
play a crucial role in perceiving and understanding music, unraveling the mysteries of music

perception and cognition [50].

2.2.1 Auditory Pathways and Music Perception

The auditory pathways in the human brain consist of a hierarchical network of structures
involved in processing auditory information. The primary auditory cortex, located in the su-
perior temporal gyrus (STG), serves as the initial processing stage for incoming sound signals.

From there, information is transmitted to higher-level auditory areas, such as the secondary



auditory cortex, frontal cortex, and limbic system, which are responsible for more complex

auditory processing, including music perception [45].

2.2.2 System Neuroscience and the Study of Music Processing

The study of music processing in the auditory pathways falls within the domain of systems
neuroscience, which aims to understand the brain’s organization and functioning at the system
level. Systems neuroscience investigates how different brain regions interact and contribute to

specific cognitive functions, such as music perception and processing [36].

2.3 Computational Modeling and Music Processing

Computational modeling provides a powerful tool for studying complex cognitive processes,
such as music processing, in the human brain. By developing computational models that simu-
late the underlying neural mechanisms involved in music perception, researchers can investigate

hypotheses and generate predictions about how the brain processes and represents music.

2.3.1 Scope and Significance of Studying Music Processing

Despite significant advancements in understanding music processing, many questions remain
unanswered. The field of music neuroscience presents a vast and exciting frontier for further ex-
ploration. By studying music processing using computational modeling approaches, researchers
can bridge the gap between neuroscience and computer science, uncovering the underlying
mechanisms of music perception and representation. Moreover, insights gained from studying
music processing can extend beyond the field of music itself, shedding light on broader topics
such as auditory cognition, neural encoding of complex stimuli, and the applications of deep

learning in cognitive neuroscience.

2.4 Introduction to Neuroimaging

Neuroimaging has revolutionized the field of neuroscience by providing powerful tools to
investigate the inner workings of the human brain. Through non-invasive imaging techniques,
researchers can observe and analyze brain activity, structure, and connectivity, offering unprece-
dented insights into cognitive processes, neurological disorders, and the mechanisms underlying
human behavior.

Neuroimaging encompasses a wide range of methodologies, including magnetic resonance
imaging (MRI), functional magnetic resonance imaging (fMRI), positron emission tomography

(PET), electroencephalography (EEG), and magnetoencephalography (MEG). Each technique



offers unique advantages and captures different aspects of brain activity, allowing researchers
to examine the brain at various spatial and temporal scales.

One of the most widely used neuroimaging techniques is functional magnetic resonance
imaging (fMRI), which measures changes in blood oxygenation levels to infer neural activity
[40]. By detecting regional blood flow, fMRI provides a detailed map of brain regions that are
active during specific tasks or in resting state conditions [4]. This information helps researchers
understand brain networks, functional connectivity, and how different regions collaborate to
perform complex cognitive functions [7]..

The use of neuroimaging has significantly advanced our understanding of various cognitive
processes, such as perception, attention, memory, language, and decision-making. Moreover,
it has shed light on the neural mechanisms underlying neurological and psychiatric disorders,
including Alzheimer’s disease, schizophrenia, depression, and autism spectrum disorders. Neu-
roimaging studies have revealed structural and functional alterations in these disorders, con-
tributing to the development of new diagnostic tools and treatment strategies.

Importantly, neuroimaging techniques have enabled researchers to investigate the brain in
vivo, allowing for longitudinal studies and the examination of developmental changes across the
lifespan. By tracking brain development from infancy to adulthood, researchers can uncover
critical periods of neural plasticity, elucidate the impact of environmental factors on brain
structure and function, and gain insights into the underlying mechanisms of neurodevelopmental
disorders.

Furthermore, neuroimaging has fostered interdisciplinary collaborations between neuroscience,
psychology, biology, medicine, and computer science. The integration of advanced data analysis
techniques, such as machine learning and network analysis, has enhanced our ability to extract
meaningful information from complex brain data and develop predictive models.

In conclusion, neuroimaging techniques have revolutionized the field of neuroscience by pro-
viding a window into the inner workings of the human brain. With their non-invasive nature,
high spatial and temporal resolution, and ability to capture brain activity in vivo, these tech-
niques have opened new avenues for understanding brain function, unraveling the mysteries
of cognition and behavior, and advancing the diagnosis and treatment of neurological disor-
ders. As technology continues to advance, neuroimaging holds immense promise for further

discoveries that will deepen our understanding of the complex organ that is the human brain.

2.4.1 Functional Magnetic Resonance Imaging (fMRI) in Music Cognition

In the realm of music cognition, functional magnetic resonance imaging (fMRI) has gained
significant prominence as a popular choice among researchers. This introduction highlights
the rationale behind the widespread use of fMRI in studying music cognition and its unique

advantages in this domain.



fMRI, a non-invasive imaging technique, provides valuable insights into the neural mecha-
nisms underlying music processing [50]. By measuring changes in blood oxygenation levels,
fMRI allows researchers to investigate brain regions and networks involved in various aspects of
music perception, cognition, and performance [59]. Its popularity in music cognition research

stems from several compelling reasons.

One crucial aspect is the exceptional spatial resolution of fMRI, enabling researchers to
identify the specific brain regions engaged during music processing. With its millimeter-scale
precision, fMRI helps localize neural activity associated with perceiving pitch, rhythm, tim-
bre, and emotional responses to music. This spatial specificity is invaluable in unraveling the

intricate neural architecture underlying music cognition [59, 58].

Additionally, the non-invasive nature of fMRI makes it an ethical and safe method for study-
ing the neural processes involved in music cognition. Researchers can explore the musical ex-
periences of individuals, including professional musicians and non-musicians, without the need
for surgical procedures or exposure to harmful radiation. This accessibility allows for a com-

prehensive investigation of music perception and cognition across diverse populations [59].

fMRI’s ability to capture neural activity in real-time contributes to its significance in music
cognition research. By observing dynamic changes in brain activity, researchers can study the
temporal unfolding of musical processes, such as melody processing, rhythm perception, and
emotional responses to music. This temporal resolution provides a deeper understanding of

how music engages and influences the brain over time [59].

The versatility of fMRI further enhances its utility in music cognition research. It can be
integrated with various experimental paradigms, such as listening tasks, music performance,
improvisation, and synchronization studies, allowing researchers to investigate different aspects
of music cognition [59, 58]. By combining fMRI with behavioral measures, music theorists,
psychologists, and neuroscientists can unravel the complex interplay between musical structure,

emotion, and cognitive processes [59].

However, it is important to acknowledge the limitations of the traditional block-based design
used in many fMRI experiments in music cognition [47]. This design involves presenting short
music stimuli in discrete blocks, which may not fully capture the continuous and dynamic
nature of music [64]. Music is often experienced as a continuous flow, and the block-based
design may not capture the temporal nuances and structural complexity of music processing
[39]. This limitation has led to calls for more naturalistic paradigms that simulate real-world

music listening experiences, challenging the constraints imposed by block-based designs [28] [2].

Despite the challenges and potential inaccuracies associated with more naturalistic paradigms,
pushing the boundaries of traditional fMRI designs is worth considering. By incorporating more
ecologically valid and continuous tasks, researchers can explore a wider range of possibilities

and gain a deeper understanding of music processing in the brain. These advancements may



come with their own set of technical and analytical challenges, but they offer opportunities for
uncovering new insights into music cognition [59, 58].

In conclusion, fMRI has emerged as a popular and valuable tool in the study of music
cognition. Its non-invasiveness, exceptional spatial and temporal resolution, and versatility
make it an ideal choice for investigating the neural underpinnings of music perception, cognition,
and performance [50, 59]. By shedding light on the intricate processes involved in music
processing, fMRI contributes to our understanding of the profound impact of music on the
human brain. As music cognition research continues to progress, it is important to explore
alternative paradigms that challenge the limitations of traditional block-based designs and

pave the way for more ecologically valid investigations using fMRI [2].

2.5 Understanding Musical Cognition with Deep Learning

Deep learning has emerged as a powerful and versatile approach in the field of artificial intel-
ligence, revolutionizing various domains such as computer vision, natural language processing,
and robotics [37]. Autoencoders, a type of neural network architecture, have proven to be valu-
able tools in deep learning research [23]. Autoencoders aim to learn efficient representations of
input data by reconstructing it from a compressed latent space, making them useful for tasks
such as dimensionality reduction, data denoising, and anomaly detection.

In the context of the research at hand, autoencoders offer a promising avenue for analyzing
and understanding musical cognition [57]. Music cognition involves studying how the human
brain perceives, processes, and responds to music [48]. Autoencoders can extract meaningful
representations from musical data, revealing intricate patterns, musical motifs, and relationships
between musical elements.

Autoencoders have practical applications in music analysis tasks, including music generation,
recommendation, and style transfer [11]. By training autoencoders on large musical datasets,
researchers can learn compact representations that capture the essence of musical compositions.
These representations can be used to generate new musical pieces, recommend music based on
user preferences, or transform music from one style to another while preserving its fundamental
structure [25].

Additionally, autoencoders can help uncover hidden factors and latent variables in music [25].
By encoding musical data into a low-dimensional latent space, autoencoders reveal underlying
musical concepts and dimensions. This insight enhances our understanding of how different
musical elements contribute to the overall perception and emotional response to music [5].
Such information has significant implications for music composition, cognitive psychology, and
the development of intelligent music systems [5].

In conclusion, deep learning and autoencoders provide exciting opportunities for exploring

the intricacies of musical cognition [5]. By leveraging their ability to learn expressive repre-



q(z]x) p(x|z)

e -> 1 (x) 7 - - Hg(2) =X
75(x) Zg(2)
€~ N(0,I)
Encoder z=e oty Decoder
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sentations from raw musical data, researchers can analyze, generate, and understand music at
a deeper level [5]. Deep learning techniques, including autoencoders, contribute to unlocking
new frontiers in music research and enhancing our understanding of the complex relationship

between the human brain and music.

2.5.1 Auto Encoding

Autoencoders (AEs) are a neural network architecture used mainly to compress data or
perform dimensionality reduction. They consist of two neural networks: an encoder f4(x) that
encodes the original data z into a latent space z, and a decoder gy(z) that reconstructs the
data from the latent space. The encoder is parameterized by the weights ¢, and the decoder is
parameterized by 6. The overall structure is illustrated in Figure 2.1.

To optimize the neural network, the typical approach is to calculate the L2 norm of the
difference between the original data = and the reconstructed data & = g(f(z)). This is achieved
by evaluating the loss function as the squared Euclidean distance: Loss = ||z — #||3. Common
optimization techniques such as Gradient Descent (e.g., SGD, ADAM, etc.) are then used to
update the weights of the neural network. Once the weights have been optimized, the outputs
of the encoder and decoder become fixed: for a given input z, the encoder will consistently
produce the same latent representation z = f(z), and the decoder will consistently generate
the same reconstructed data xz = g(z).

In the music domain, Long Short Term Memory(LSTM)-based autoencoders demonstrate
effectiveness for several reasons supported by prior research. Firstly, LSTMs excel at cap-
turing long-term dependencies in sequential data, a critical aspect in music where melodies,
rhythms, and structures span extensive time frames [24]. Secondly, by integrating LSTMs
into the autoencoder framework, hierarchical representations of music data are learned. Lower
layers capture local patterns, while higher layers encapsulate more abstract musical features
[8]. Lastly, LSTM-based autoencoders can generate coherent and expressive music sequences

that encapsulate the stylistic elements of the input data. Through precise reconstruction of
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input data during training, the acquired latent space facilitates the generation of new music
compositions with characteristics akin to the training data [17].

It might seem intuitive to use this framework for generating new music by sampling random
points in the latent space z and passing them through the decoder [51]. However, this approach
often yields suboptimal results. The reason behind this is that the optimization process of
autoencoders focuses solely on reconstructing the actual data, disregarding the organization
and structure of the latent space [51]. Consequently, the latent space can become disorganized
and fail to provide meaningful representations for music generation [14, 51].

To address this limitation, Variational Autoencoders (VAEs) introduce probabilistic mod-
eling to the latent space [51]. Rather than directly encoding music into a deterministic latent
representation, VAEs map the music into a distribution over the latent space. This allows for
the generation of new music by sampling from the latent distribution and decoding the samples
through the decoder network [51]. By modeling the latent space as a probability distribution,
VAESs enable the exploration and interpolation of different music styles and structures, leading
to more diverse and realistic music generations [14, 51]. This probabilistic nature of VAEs
provides a clear advantage over traditional autoencoders, such as LSTM-based autoencoders,
which lack explicit modeling of uncertainty in the latent space [31]. Consequently, VAEs tend
to produce more diverse and realistic music samples, making them a superior choice for tasks

requiring generative modeling and latent music structures in the music domain [14].

2.5.2 Variational Autoencoder : Architecture, Functioning, and Mathemat-

ical Basis

Variational Autoencoders (VAEs) are a type of generative model that learns to encode high-
dimensional data into a lower-dimensional latent space, allowing for the generation of new data
samples [31]. VAEs are composed of two main components: an encoder network and a decoder
network. The encoder network maps the input data to the latent space, while the decoder
network reconstructs the original data from the latent space.

The architecture of a VAE typically consists of multiple layers of neural networks. The
encoder network takes the input data and gradually reduces its dimensionality, mapping it
to the mean and variance parameters of the latent space distribution. The decoder network,
on the other hand, takes samples from the latent space and reconstructs the original data by
upsampling it to the original dimensionality.

The encoder network often employs convolutional or fully connected layers to capture and
abstract the features of the input data. These layers gradually reduce the dimensionality of
the data, resulting in a bottleneck layer that represents the latent space. The decoder network
then uses upsampling or deconvolutional layers to reconstruct the original data from the latent

space representation.
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To train a VAE, a combination of a reconstruction loss and a regularization term is used. The
reconstruction loss measures the similarity between the original data and the reconstructed data,
encouraging the VAE to capture the essential features of the input data. The regularization
term, typically the Kullback-Leibler (KL) divergence, encourages the latent space distribution
to resemble a predefined prior distribution, often a multivariate Gaussian.

During the training process, the VAE aims to minimize the sum of the reconstruction loss and
the regularization term. This is achieved through gradient-based optimization methods such
as stochastic gradient descent. By iteratively adjusting the weights of the encoder and decoder
networks, the VAE learns to encode the data into a meaningful latent space and generate new
data samples by sampling from the latent distribution.

The mathematical basis of VAEs relies on variational inference, which approximates the
true posterior distribution of the latent variables given the observed data. VAEs introduce
an inference model (encoder) and a generative model (decoder) to jointly approximate the
posterior distribution. The inference model learns to encode the data into a latent space
distribution, while the generative model learns to decode the latent samples back into the data
space. The training objective of VAEs involves maximizing the evidence lower bound (ELBO),
which decomposes the log-likelihood of the data into a reconstruction term and a regularization
term. By maximizing the ELBO, the VAE learns to capture the essential features of the data
and generate new samples from the learned latent space distribution.

In summary, VAEs provide a powerful framework for learning meaningful representations
of high-dimensional data and generating new samples. By leveraging the encoder-decoder ar-
chitecture and variational inference, VAEs enable the exploration and interpolation of data
in a structured latent space. In the context of music processing, VAEs offer valuable tools
for analyzing and generating music, facilitating research in music cognition, composition, and

intelligent music systems.

2.6 RSA for Studying fMRI with Computational Models

The examination of neural representations using functional magnetic resonance imaging
(fMRI) has provided valuable insights into how the human brain processes various stimuli, in-
cluding music [10, 53]. To further our understanding of music perception and representation, it
is essential to employ advanced analytical techniques that enable comparisons between neural
responses and representations derived from computational models. One such technique is Rep-
resentational Similarity Analysis (RSA), which has proven to be applicable in studying music
perception and has demonstrated success in other domains such as visual neuroscience [62, 55].

RSA allows for the quantification of the similarity between neural response patterns and rep-
resentations obtained from computational models. By comparing the neural responses recorded

during fMRI experiments with the representations learned by computational models, researchers
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can gain valuable insights into the underlying mechanisms of information processing in the brain.
This approach has been employed in several studies to investigate the correspondence between
brain activations and representations derived from deep neural networks (DNNs) in various
domains [10, 53, 62, 55].

One important advantage of RSA is that it enables a flexible exploration of neural represen-
tations. It does not rely on predefined regions of interest or handcrafted features but instead
allows for a data-driven examination of the similarity structure in the neural response patterns.
This makes RSA particularly well-suited for studying complex and high-dimensional stimuli
such as music [10, 53].

In the context of this thesis, we aim to utilize RSA to investigate the neural representa-
tions of music features. Specifically, we focus on examining the blood-oxygen-level-dependent
(BOLD) signal fMRI activations in selected regions of interest during a continuous listening
task. Additionally, we seek to compare these activations with the hidden layer activations of
deep neural networks, particularly variational autoencoders (VAEs), which have shown promise
in capturing the underlying structure of complex data [62, 55].

The application of RSA in the study of music perception and representation has been sup-
ported by previous research. For example, Chen, Penhune, and Zatorre (2008) employed RSA
to investigate the brain network involved in auditory-motor synchronization during rhythmic
tasks [?]. Santoro, Daudet, and Sandler (2014) utilized RSA to examine the rhythmic pattern-
ing in auditory cortical responses [53]. These studies demonstrate the applicability of RSA in
understanding music-related neural processing.

Moreover, RSA has been widely used in visual neuroscience to explore the correspondence
between DNN representations and neural responses. Yamins et al. (2014) and Seibert et al.
(2016) utilized RSA to predict neural responses in higher visual cortex based on hierarchical
models [62, 55]. These studies highlight the success of RSA in uncovering the hierarchical
structure of representations in the brain.

In conclusion, RSA provides a powerful tool for studying fMRI data in conjunction with
computational models. By employing this technique, we aim to uncover the neural represen-
tations of music features and examine their similarity to the representations learned by VAEs.
This research contributes to our understanding of music perception and representation in the

human brain and opens avenues for further investigations in the field.
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Chapter 3

Training and Evaluation of Autoencoders

3.1 Introduction

This chapter presents the method of selecting the best computational model from a diverse
set of autoencoders. This is achieved by training and evaluating eight autoencoder models,
including four Long Short Term Memory (LSTM)-based autoencoders and four variational
autoencoder (VAE) models. These models are trained on four different custom datasets: Bol-
lywood, Western Instrumental, Indian Devotional, and the GTZAN dataset. The goal of this
study was to investigate the effectiveness of these autoencoders in preserving music structure
and their impact on music classification accuracy using a vanilla Convolutional Neural Network
(CNN) based classifier. We discuss the training procedure, evaluation metrics, and the results
obtained from the classification experiments and explain the basis of the computational model

identified for our core study.

The selection and evaluation of autoencoder models can be supported by previous works in
the field of machine learning (Hinton Salakhutdinov, 2006 [23]). The use of Long Short-Term
Memory (LSTM) in autoencoders has been proposed by (Graves, 2013) [19]), offering an im-
proved capability to capture temporal dependencies in sequential data. Additionally, recent
studies, such as 'Brains on Beats’ by Guglii et al. (2016 [22]), have highlighted limitations in
supervised deep learning models based on AlexNet architecture for modeling music processing.
These limitations suggest the potential for alternative approaches, such as LSTM-based au-
toencoders and variational autoencoders (VAEs), to better capture the complexities of music
cognition. LSTM-based autoencoders can effectively model sequential music data, capturing
long-term dependencies and structural patterns (Roberts et al., 2018 [51]). Furthermore, VAEs
have shown promise in preserving music structure and generating coherent music sequences
(Roberts et al., 2018 [51]). The probabilistic nature of VAEs enables them to capture uncer-
tainty in music data, making them a powerful tool for understanding music cognition (Kingma
Welling, 2013 [31]). Therefore, both LSTM-based autoencoders and VAEs emerge as poten-
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tially good choices for evaluating the efficacy of a deep learning model in the study of music

cognition.

3.2 Method and Material

3.2.1 Model Architecture overview

To capture the musical characteristics of the different genres, we designed four LSTM-based
autoencoder architectures and four VAE-based autoencoder architectures. Each autoencoder
architecture was specifically tailored to the characteristics of the respective dataset. We provide
a detailed description of the architectures and discuss the rationale behind their selection.
Additionally, we describe the pre-processing of the custom datasets, ensuring diversity and
high-quality samples.

The LSTM-based autoencoder architecture consists of three layers of 1-dimensional con-
volutions followed by an encoder LSTM layer and an asymmetric decoder LSTM layer. The
convolutions capture local patterns in the input sequence, while the encoder LSTM layer en-
codes the information into a fixed-length latent representation. The asymmetric decoder LSTM
layer reconstructs the input sequence in an asymmetric manner. This architecture combines
convolutional and LSTM layers to capture both local and long-term dependencies in the music
features.

The VAE (Variational Autoencoder) architecture comprises an encoder network, a latent
space, and a decoder network. The encoder network takes the input data and maps it to a latent
space representation. The latent space serves as a compressed representation of the input data.
The decoder network takes a sample from the latent space and reconstructs the original input
data. The VAE is trained to minimize the reconstruction loss while simultaneously regularizing
the latent space using a KL divergence term. This architecture allows for the generation of new
data samples by sampling from the latent space. The VAE enables the learning of meaningful
representations and provides a probabilistic framework for data generation and reconstruction.

Figure 3.1 illustrates the architecture of a VAE Encoder with layer wise dimensions. It is

inspired by Alexnet architecture with following modifications:

e The number of convolutional kernels was halved compared to AlexNet.

e The convolutional and pooling kernels, as well as the strides, were flattened. This trans-
formation involved changing an n x n kernel to an n? x 1 kernel and an m x m stride to

an m?2 x 1 stride.

o Local response normalization, as used in AlexNet, was replaced with batch normalization
[26].
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Figure 3.1 VAE Encoder Architecture illustrating the hdden layer dimensions

o Rectified linear units (ReLUs) commonly used in AlexNet were replaced with parametric

softplus units with initial parameters o = 0.2 and § = 0.5 [16].

¢ Softmax units employed in AlexNet were substituted with sigmoid units.

For training, we utilized the Adam optimizer with learning rate o = 0.0002, decay rates
B1 = 0.5 and B2 = 0.999, and a small epsilon value € = 1 x 1078 [30]. Additionally, a mini-batch
size of 36 was employed during training [30]. The model was trained using Keras [12], with the
final model selected based on the epoch in which the validation performance peaked.

It’s important to note that the artificial neurons in the convolutional layers performed lo-
cal filtering of their inputs through 1D convolutions, followed by non-linear transformations,
resulting in temporal representations per stimulus. These representations were subsequently
processed by averaging them over time. In contrast, the artificial neurons in the fully-connected
layers conducted global filtering of their inputs via dot product operations, followed by non-

linear transformations, and returned scalar representations per stimulus.

3.2.2 Datasets

In order to incorporate a wide range of diverse and complex stimuli, we carefully curated
three musical datasets consisting of real musical clips. Additionally, we included the GTZAN
Western music dataset [60] as a fourth dataset. The GTZAN dataset comprises 1000 music
excerpts, each lasting 30 seconds and categorized into 10 different genres, with 100 examples in
each genre. These genres encompass blues, classical, country, disco, hip-hop, jazz, metal, pop,
reggae, and rock.

To ensure consistency and maximize the number of data samples available for training and

testing, we further divided the music clips into 10-second excerpts. This resulted in obtaining
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Table 3.1 Datasets

Dataset Name Samples Genres, Styles

Multi language,Mixed instruments
Bollywood N=1500, duration=20 secs

Varied genres including pop, rock, classical, instrumental

Indian Devotional N=500, duration=60 secs Indian Instrumental, Lyrical- Punjabi and Hindi, Sufi

Western Instrumental | N=1500, duration=20 secs | All genres including Classical, Rock, Hip-hop, Blues, Jazz

10 genres including blues, classical, country,
GTZAN N=1000, duration=30 secs

Vdisco, hip-hop, jazz, metal, pop, reggae, and rock

a total of 3000 samples for each of the four datasets, maintaining a uniform number of data

samples across all datasets. Table 3.1 summarize the datasets.

3.2.3 Feature Extraction

For feature extraction, we utilized the log melspectrogram, which is a representation of
audio signals in the frequency domain. The mel spectrogram captures the distribution of
energy across different frequency bands. We experimented with various mel bins and found
that using 96 mel bins provided the most representative results for capturing music features.
The input feature was the log mel spectrogram, which enhances the perceptual relevance of the
mel spectrogram. We used a window size of 100 ms and a hop size of 50 ms, which determines
the temporal resolution of the spectrogram. These settings allowed us to accurately capture
the temporal dynamics of the music signals and extract meaningful features for further analysis

and processing

3.2.4 Method

The autoencoder models were trained using the respective datasets to learn compressed
representations of the music features. The figure 3.2 illustrates the pipeline for this experimen-
tation.

We utilized a combination of objective functions, such as mean squared error (MSE) loss
and Kullback-Leibler (KL) divergence, to optimize the training process. After training, we
reconstructed the original music stimuli using the trained autoencoders.

To assess the impact of the autoencoders on music classification, we employed a vanilla
CNN classifier as the baseline model to evaluate the efficacy of our different autoencoders and
therefore help us select the autoencoder which can most reliably reconstruct the input stimuli.
The selection basis of the autoencoder architecture assured that the underlying structure of
the best performing model is the one where music stimuli is learnt relatively better than any
other models. The vanilla CNN classifier was trained on a custom mixed dataset and it was

ensured that this dataset is not seen by any of the autoencoder during their training phase.
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The dataset comprised of 10 secs music excerpts representing songs from all the 4 datasets. The
dataset used for training and validation had in total 2000 songs with duration of each song as
10 secs. The test set contained 1000 samples representative of all datasets and unseen by any
autoencoder.

To ensure robustness in training and validating the Autoencoder (AE), we implemented a 5-
fold cross-validation strategy, dividing the data into training and validation sets. This approach
introduces a level of randomness that is averaged across the folds, exemplified by how samples
from different time segments may be allocated to either set. While song excerpts may display
some similarity, they are not identical; however, this slight variation is inconsequential, partic-
ularly given the potential randomness introduced by cross-validation and the non-continuous
nature of the excerpts. For the test dataset, it encompasses samples not only from the GTZAN
dataset but also from mixed datasets. While there may be instances of samples from the same
song in the test dataset, they originate from different excerpts. Moreover, the dataset includes
a majority of samples from a custom dataset unseen by the GTZAN-based AE. Consequently,
the impact of having excerpts from the same song in the test dataset is minimized by the in-
clusion of various other unseen samples. Given that the primary objective of training the AE
is to learn representations of a predominant dataset, rather than optimizing for discrimination

or classification efficiency, the implications of the dataset split are not significant.

3.3 Results

The overall results of the various autoencoders are shown in Table 3.2 . For the best per-
forming GTZAN-trained VAE, we also manually inspected limited reconstructed samples as
illustrated in figure 3.4. The reconstructed samples are highly smooth versions of the origi-
nal mel spectrogram and give an indication that while it is not able to fully reconstruct the
spectrogram, it is able to reliably learn the energy gradients albeit quite smooth.

In general, the accuracy of classification for reconstructed stimuli shows a decrease, notably
with instances of Indian music being misclassified as Western. The average accuracies in some
instances are below chance level as shown in Table 3.2. The confusion matrix for GTZAN based
AEFE as shown in figure 3.3 illustrates the accuracies for Indian and Western music. As seen in
the confusion matrix, the accuracy for western music is far greater (62.5%) than Indian music
identification(42%) with average accuracy close to 52%. Several factors could contribute to
this observed discrepancy. Firstly, the intricate nuances inherent in Indian music might require
more intricate model architectures and a larger dataset volume to achieve precise classification.
Moreover, the pervasive influence of Western music on Indian musical traditions, particularly
notable in Bollywood songs characterized by Western musical elements, might also influence
mis-classifications. However, given our primary focus on developing a straightforward generative

self-supervised model for fMRI analysis, we chose to limit our investigation of this phenomenon.
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Table 3.2 Average Classification Accuracies on reconstructred stimuli; Trained on custom

datasets and tested on an unseen data by any model using our baseline CNN classifier.

Training Dataset | LSTM based Autoencoder | Variational Autoencoder
Bollywood Music 0.32 0.42
Western Custom 0.37 0.46
GTZAN 0.42 0.52
Indian Devotional 0.45 0.47

Nevertheless, this discovery presents an intriguing avenue for further exploration, potentially
warranting a separate dedicated study.

The results revealed that the VAE-based autoencoders retained the structure of the music
stimuli more effectively compared to the LSTM-based autoencoders. Furthermore, the autoen-
coder trained on the GTZAN dataset showed the highest classification accuracy of 52% when
using the reconstructed music stimuli. This indicates that the GTZAN-trained autoencoder

was successful in preserving relevant features for music classification.

3.4 Conclusion

In this chapter, we trained eight autoencoder models on four different custom datasets and
evaluated their impact on music classification accuracy. The VAE-based autoencoders demon-
strated better preservation of music structure compared to the LSTM-based autoencoders.
Additionally, the autoencoder trained on the GTZAN dataset yielded the highest classification
accuracy when using the reconstructed music stimuli. These findings highlight the potential
of autoencoders, particularly VAE-based architectures, for preserving musical features and im-
proving music classification accuracy. It is therefore the selection of our computational model

to perform the core study.
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Chapter 4

Modelling the implicit music representation in brain using

DNN

4.1 Introduction

In this study, we aimed to investigate the potential of unsupervised deep neural networks,
specifically the variational auto-encoder (VAE), to learn latent music representations and ex-
amine brain activity patterns in a continuous music listening task. Our hypothesis is that
generative computational models with a probabilistic basis, such as VAE, are better suited for
capturing the complexity of neural anatomy. Previous studies by Schaefer et al. [54] and
Goémez-Herrero et al. [21] have shown that using probabilistic generative models allowed for
a more accurate and comprehensive understanding of brain networks and music processing.
To examine the correspondence between the computational model activity patterns and fMRI
patterns, we utilized Representation Similarity Analysis (RSA), a method previously employed
in similar studies [33], albeit in the visual modality. In addition, owing to the differences
in the way musicians and non-musicians perceive and process music [1, 46], we also examine

differences in musicians and non-musicians.

4.2 Materials and Method

4.2.1 Dataset

In this study, we used the GTZAN Western music dataset [60] which contains 1000 music
excerpts, each lasting 30 seconds and divided into 10 different categories with 100 examples in
each. The genres include blues, classical, country, disco, hip-hop, jazz, metal, pop, reggae, and
rock. To process the audio data, we employed log mel-spectrograms to emulate the frequency
representation of human auditory perception [42, 61]. Specifically, we set the window length

to 100 ms and the hop size to 50 ms, and utilized 96 mel frequency bins based on established
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heuristics in the literature [?]. This resulted in the creation of input feature maps which were
subsequently used in the DNN model.

For the brain data, we utilized the dataset previously used [1, 44, 9], which included fMRI
recordings from 20 musicians and 18 non-musicians while they were engaged in a continuous
listening task. The task involved listening to three 8-minute long musical stimuli, namely,
"Stream of Consciousness” by Dream Theater [15], "Adios Nonino” by Astor Piazzolla [3],
and "Rite of Spring” by Stravinsky [56]. The two participant groups were matched for gender,
age distribution, cognitive abilities, and socioeconomic status to ensure comparability.

Participants’ brain responses were acquired while listening to the music delivered via MR-
compatible insert earphones while keeping their eyes open. Thirty-three oblique slices (FoV:
192mm x 192 mm, 64 x 64 matrix, interslice skip = Omm) were acquired every 2 sec, with
echo time = 32ms and voxel size = 2 x 2 x 2 mm3 using a single-shot gradient echo-planar
imaging (EPI) sequence, providing whole-brain coverage for each participant. The data was
preprocessed in the same manner as previous studies, using identical steps including preprocess-
ing in Matlab using SPM8 and VBM5. Normalization to MNI segmented tissue template was
carried out. After regressing the components related to head movement, spline interpolation

and temporal smoothing were applied.

4.2.2 Method

We used the best performing encoder architecture in a classification task based on our earlier
study. The selected computational model is a 5-layer convolutional neural network (CNN)
derived from the AlexNet architecture [34] , implemented as a variational autoencoder (VAE),
to emulate the encoding of neural responses to music stimuli. The hidden layer activations of

the DNN encoder were obtained after presenting the three test stimuli.

We applied Representation Similarity Analysis (RSA) [33] to compare the representational
structures of the DNN model layers with those of the response patterns in selected Regions of
Interest (ROI). In RSA, neural or model representations are quantified as n x n representational
dissimilarity matrices (RDMs), with elements representing the dissimilarity between pairs of
stimuli. Comparing the overlap between model and neural RDMs can reveal how well a model
explains response patterns in a particular brain region. To investigate this, we created one target
RDM for each group (averaged across musician and non-musician subjects) and five candidate
RDMs corresponding to each DNN encoder layer. We then correlated the upper triangular
parts of the target RDM with the candidate RDMs for each group, using Spearman correlation
[43]. Benjamin Hochberg correction [6] was applied to correct for multiple comparisons. We
restricted our analysis to the primary auditory cortex region, specifically STG and HG. Figure
4.1 illustrates the method and transformations applied. Figure 4.2 provides another schematic
to illustrate the RSA process.

24



450 seconds of Stimulus 1 10

secs
«—>
W “ U u 10
L | sec:
10
secs
10
T ses
-

GTZAN VAE Encoder § layers

2
200  F2waw B, 64
% N A 0 < 64
NN e
oins 9EI % lg z O A \ L}
Tmesteps —_— 2 4

96
bins
200
timesteps 200 Flattened
fimesteps 78200
o of () Hidden Layer Activation Matrices- After each encoder layer. hidden layer activation
ins| e .54‘ el matrices are obtained. These activation matrices are then flattened to represent the

(A) Windowing of Test Stimulus: The test stimulus is divided into 10-
second excerpis with an overlapping window of 8 seconds. This results in
atotal of 226 music excerpts, each lasting 10 saconds, which will be
referred to as input samples throughout the study

68X230 Region of Interest

230 - Timesteps.
« — »

(T 1

LT 1]

65 voxels

(B) Input Feature Space: The input feature space
consists of 226 log mel spectrograms of the test
stimulus. Each log mel specirogram corresponds to a
10-second excerpt, which is further divided into 200

timesteps 226 hidden layer activation
matrices from frstayer

226 input samples that make up the test stimulus

226 flatiened hidden layer activation

S
- 200 200 —
200 timesteps= 10 secs fimesteps timesteps |
s [T 1 N N Y I 0o
(D) Flattening of Hidden Layer Activation Matrices: This figure illustrates the process of :
flattening the activation matrix of the first layer. Similarly, for each of the other hidden layers
the corresponding activation outputs are flatiened to obtain 226 activation matrices, which
collectively represent the entire test stmulus,
226 windowed samples 226 fattenea frl voe!
I\ reaings marices for a ROI
r Al
68X5 (1-5) 68X5 (2-6) 68X5 (226-230)
5 timesteps S tmesteps S timesteps
S 655 [[—
68 voxels 68 voxels i1 {esvores |
-

(E) Pre-processing of IMRI Voxel Readings: The fMRI voxel readings of & specific region
of interest (RQI) in the human brain are pre-processed for the test stimulus. The same
windowing approach, vith an 8-second window (equivalent fo 4 TRs), is applied o obtain
226 flatiened matrices, each representing & 10-second duration (equivalent to 5 TRs).

Figure 4.1 Schematic of pipeline to extract and process inputs and outputs for RSA

25



fMRI Data gk | M GTZAN VAE Encoder
L - w U O L
\\\\\\;\\\;\\‘ ri b ’4%‘ *I% 4‘7@ B A
il Sl | & 8
\\\\\ o m Aepresentation msswmuavrtl; Matrix of DMN Layers
« "-[ ppepeees | R R & W &
T " :5’%"’" .rs&"’? .rs’}"’g rﬁm" javer s

Averaged across subjects for a AOI

(A) MRI readings (C) RDMs of each DNM layer for a specilic test stimulus. For ex- Plazzolla . The hidden layer

activations are flattened to calculate the first level HOM across all timpaints

gt |

§e oz

—

-
-
0
-
-
-
“i

an

(B) Representation Dissimiiarity Matrix of 2 fmri readings of a selected ROI

Socand

Tt
A Snuder Layers

(D) Second level RSM 1o map Brain A0 with DNN layer. Values in the cells are Spearman Correlation Goefficient between IMAI AOI and
DNN Layers corrected for multiple comparison errors and e > 0.05

Figure 4.2 Schematic to illustrate the RSA

4.3 Results

The results of the RSA analysis indicate that the superior temporal gyrus (STG) brain region
displayed correlation with the five VAE encoder layers for both musician and non-musician
groups. This is consistent with the known auditory processing mechanisms of the brain [29, 20].
The Heschl’s gyrus (HG) also exhibited significant correlations with the first and fifth DNN
layers, with lower but still significant correlation values observed in the second, third, and fourth
hidden layers (p < 0.001) [20].

We conducted an exploratory analysis of brain regions that showed significant correlations
with early or later DNN layers. Refer Figure 4.3 for non-musician group, Figure 4.4 for musicians

group, and Figure 4.5 for a combined view, we found the following:

o Supplementary Motor Area (SMA) showed more correlations for the Stravinsky stimulus

across musicians and non-musicians for all DNN layers.

o This was in contrast to the other two music stimuli, which showed very low correlations
with the SMA.

For the Piazzolla stimulus,

o Superior frontal gyrus orbital part (L) showed higher correlations for both musicians and

non-musicians compared to the other two stimulus types.
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Correation of selected RO with DNN layers using RSA for non musician group

Figure 4.3 Representational Similarity Matrix obtained using RSA- Correlation of Brain se-

lected ROI and VAE Encoder layer activations for non musician group

o The correlation is highest for the superior frontal gyrus (L) with the first layer for both
musicians and non-musicians. However, the superior frontal gyrus (L) shows high corre-

lations with the second, third, and fourth DNN encoder layers in the case of musicians.

e This is in contrast to non-musicians, where the correlation gradient gradually fades with
increasing layer. This indicates a possible difference in the way that musicians and non-

musicians process Piazzolla’s music.

Overall, the patterns of correlations across musicians and non-musicians did not show any
aberrations, except for a diminished correlation gradient in Piazzolla for musicians. The results
of the RSA analysis suggest that the STG and HG are involved in the processing of music,
regardless of musical training. This is consistent with previous research that has shown these

regions to be involved in auditory processing [29, 20].
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Chapter 5

Conclusion and Future Work

In this study, we investigated the brain encodings of music latent representations using a
variational autoencoder (VAE) architecture. Our findings suggest that the VAE architecture,
specifically the DNN encoder layers, can provide a powerful computational model for explaining
the brain encodings of music latent representations. Our findings support the involvement of
primary auditory cortex regions such as STG, Heschl’s gyrus in processing musical stimuli. Our
study lays the groundwork for further research in developing computational models inspired by

human cognition to better understand music processing.

5.1 Discussion

Our study has several implications for future research. First, our findings suggest that the
VAE architecture can be used to develop more sophisticated computational models of music
processing. These models could be used to investigate the neural basis of music perception,
cognition, and production. Second, our findings suggest that the DNN encoder layers of the VAE
architecture can be used to identify the brain regions that are involved in processing different
aspects of music. This information could be used to develop new diagnostic tools for identifying
and treating music-related disorders. The finding that the SMA showed more correlations
for Stravinsky stimulus across musicians and non-musicians suggests that this region may be
involved in processing this type of music. Stravinsky’s music is often described as complex and
challenging, so it is possible that the SMA is involved in processing this type of music.

The finding that the superior frontal gyrus orbital part (L) showed higher correlations for
Piazzolla for both musicians and non-musicians suggests that this region may be involved in
processing this type of music. Piazzolla’s music is often described as emotional and expressive,
so it is possible that the superior frontal gyrus orbital part (L) is involved in processing these
aspects of the music.

The overall results of the RSA analysis suggest that the brain regions involved in processing

music are similar for musicians and non-musicians. However, there are some differences in the
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way that these regions are activated by different types of music. These findings provide insights

into the neural basis of music perception and processing

5.2 Limitations

e Currently the group analysis methodology has averaged the fmri activations for muscians
and non-musicians respectively. While this may be a good approximation for non musi-
cians, for musicians this can result in losing out some important information and therefore

a more elaborate and dilligent procedure may be employed.

5.3 Future Work
There are several directions for future research that could build on the findings of this study.

o First, we could use searchlight analysis to further explore the brain regions involved in pro-
cessing music latent representations. Searchlight analysis would allow us to identify brain
regions that are consistently active during the processing of music latent representations,

even when the specific musical stimuli vary.

e We could use graph neural networks to discover the functional connectivity of the brain
regions involved in processing music latent representations. This would allow us to in-
vestigate how different brain regions interact with each other during the processing of

music.

e Based on exploratory analysis findings for extended regions of interest in brain, it suggests
that the SMA may play a role in processing Stravinsky stimulus, and that this effect is
independent of musical training. We could conduct a deeper study to understand the
impact of type of stimulus on musician and non-musician brains. This would allow us to
investigate whether there are any distinctions in the brain regions that are involved in
processing music latent representations, depending on whether the listener is a musician
or not. Fourth, we could extend this study to other cultural settings with an appropriate
design choice of stimulus. This would allow us to investigate whether there are any

cultural differences in the brain encodings of music latent representations.

Finally, with the advent of music transformer, we could study more sophisticated compu-
tational models and further build on generative models. This would allow us to develop even

more powerful computational models of music processing.
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