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Abstract

The exponential performance growth guaranteed by Moore’s law has started to taper in recent years.

At the same time, emerging applications like image processing demand heavy computational perfor-

mance. These factors inevitably lead to the emergence of domain-specific accelerators (DSA) to fill the

performance void left by conventional architectures. FPGAs are rapidly evolving towards becoming an

alternative to custom ASICs for designing DSAs because of their low power consumption and a higher

degree of parallelism. DSA design on FPGAs requires careful calibration of the FPGA compute and

memory resources towards achieving optimal throughput.

Hardware Descriptive Languages (HDL) like Verilog have been traditionally used to design FPGA

hardware. HDLs are not geared towards any domain, and the user has to put in much effort to describe

the hardware at the register transfer level. Domain Specific Languages (DSLs) and compilers have been

recently used to weave together handwritten HDLs templates targeting a specific domain. Recent ef-

forts have designed DSAs with image-processing DSLs targeting FPGAs. Image computations in the

DSL are lowered to pre-existing templates or lower-level languages like HLS-C. This approach requires

expensive FPGA re-flashing for every new workload. In contrast to this fixed-function hardware ap-

proach, overlays are gaining traction. Overlays are DSAs resembling a processor, which is synthesized

and flashed on the FPGA once but is flexible enough to process a broad class of computations through

soft reconfiguration. Image processing algorithms vary in size and shape, ranging from simple blur-

ring operations to complex pyramid systems. The primary challenge in designing an image-processing

overlay is maintaining flexibility in mapping different algorithms.

This thesis proposes a domain-specific language (DSL)-based compiler, Flowpix, for image process-

ing. Flowpix is capable of natively processing benchmarks and targeting FPGA implementation of these

benchmarks using overlay configurations. This thesis discusses how an application can be expressed us-

ing the Flowpix language, and how the compiler processes the application to generate control words that

enables the configuration of the hardware architecture. We also compare our results with the existing

state-of-the-art frameworks: Polymage, Halide, Xilinx, Darkroom, and Rigel.
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Chapter 1

Introduction

1.1 Motivation

The exponential performance growth guaranteed by Moore’s law has started to taper in recent years.

At the same time, emerging applications like image processing demand heavy computational perfor-

mance. These factors inevitably lead to the emergence of domain-specific accelerators (DSA) to fill

the performance void left by conventional architectures. Field Programmable Gate Arrays (FPGAs) are

rapidly evolving towards becoming an alternative to custom ASICs for designing DSAs because of their

low power consumption and a higher degree of parallelism. DSA design on FPGAs requires careful

calibration of the FPGA compute and memory resources towards achieving optimal throughput.

Traditionally, Hardware Descriptive Languages (HDLs) such as Verilog have been used to design

FPGA hardware. However, HDLs are not domain-specific, and users must expend significant effort

describing the hardware at the register transfer level. In contrast, Domain-Specific Languages (DSLs)

and compilers have recently been used to weave together handwritten HDL templates that target a spe-

cific domain. Efforts have been made to design DSAs with image-processing DSLs targeting FPGAs.

Image computations in the DSL are lowered to pre-existing templates or lower-level languages such as

High-Level Synthesis C (HLS-C). However, this approach necessitates expensive FPGA re-flashing for

each new workload.

Overlays are gaining traction as an alternative to this fixed-function hardware approach. Overlays

are DSAs that resemble a processor and are synthesized and flashed on the FPGA once, but are flexible

enough to process a broad range of computations through soft reconfiguration. Less work has been

reported in the context of image processing overlays, and designing an image-processing overlay poses

a primary challenge of maintaining flexibility in mapping different algorithms.

In this thesis, we present a compiler for DSL-based overlay accelerator called FlowPix for image

processing applications. The DSL programs are expressed as pipelines, with each stage represent-
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ing a computational step in the overall algorithm. We implemented 15 image-processing benchmarks

using FlowPix on a Virtex-7-690t FPGA, ranging from simple blur operations to complex pipelines

like Lucas-Kande optical flow. We compared FlowPix against existing DSL-to-FPGA frameworks like

Hetero-Halide[14] and Vitis-HLS[1]. FlowPix achieves an average frame rate of 170 FPS on HD frames

of 1920x1080 pixels in the implemented benchmarks.

1.2 Summary of Contributions

Chapter 3 of this thesis outlines the main contributions, which are summarized below:

• Firstly, we present a front-end domain-specific language (DSL) called Flowpix, built in Scala,

which enables the programmer to express complex image processing pipelines using a minimal

number of code lines.

• Secondly, we demonstrate that this DSL is capable of realizing the algorithm as a directed acyclic

graph (DAG), which can then be further broken down into multiple DAG clusters in accordance

with hardware architecture specifications. This thesis gives an overview of the architecture, but

does not dive deep in the hardware architecture details and arrangement.

• Thirdly, we propose a generic scheduler that determines the order of execution of these clusters

within specified constraints. We provide the proof of how these constraints are met in the given

order of execution of clusters.

• Lastly, we demonstrate the effectiveness of our framework by processing 15 image processing

benchmarks, including simple filters and complex pyramid systems. Our results are comparable

to, and in some cases better than, existing DSL-to-FPGA frameworks that generate fixed-function

hardware based on a front-end specification.

1.3 Thesis Organization

The thesis is further divided into the following chapters:

• Chapter 2 gives an introduction to image processing and its applications in various real-life ap-

plications. It then talks about Image processing pipelines, its advantages and the data flow model.

It will end by talking about various existing frameworks and pipelines in the image processing

area, and some of their usecases.
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• Chapter 3 introduces Flowpix, a front-end domain-specific language (DSL) for expressing image

processing pipelines. It describes the compiler that enables the language to represent any algo-

rithm as a directed acyclic graph (DAG), cluster it, match the latencies, and schedule the multiple

clusters in an order that satisfies specific constraints. Additionally, this chapter provides some

example algorithms to illustrate how the DSL processes it.

• Chapter 4 describes the experimental setup used for evaluating our design and presents the results

obtained from our analysis.

• Chapter 5 summarizes the major contributions of the thesis, discusses the key takeaways, and

outlines the future scope of the problem.

• Bibliography contains all the referenced papers used in this thesis.
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Chapter 2

Image Processing and Background on Existing Frameworks

This section introduces the concept of image processing pipelines and highlights the importance of

optimizing these pipelines for efficient performance. It further explores various existing image process-

ing frameworks, which play a crucial role in implementing these pipelines. By delving into the specifics

of these frameworks, we can gain a deeper understanding of their relevance and potential benefits.

2.1 Image Processing Pipelines

Image processing pipelines are a crucial component of modern image analysis, with applications

spanning computer vision, medical imaging, remote sensing, and more. These pipelines employ a

sequence of algorithms to extract useful information from digital images, encompassing four stages:

image acquisition, pre-processing, feature extraction, and classification. In the first stage, the digital

image is obtained from a camera or database, and pre-processing techniques are applied to improve

image quality. Feature extraction identifies specific characteristics of the image, such as edges, shapes,

colors, or textures, followed by the classification stage, which categorizes images based on their features.

The pipeline’s accuracy heavily depends on algorithm selection, parameter optimization, and application

order, and machine learning can be used to enhance performance.

An image processing pipeline comprises a directed acyclic graph (DAG) of stages, with each node

representing a computation stage that generates output pixels from input pixels. The DAG’s edges

represent producer-consumer relationships between stages, and each node can be a stencil or point-

wise computation stage, and other types of computation stages. Stencil stages perform operations, such

as convolution or max filters, on small pixel windows, while point-wise stages use input pixels from

multiple predecessor stages to compute each output pixel. The pipeline’s streaming data flow model is

amenable to FPGA implementation, and stages can be executed in parallel, subject to data availability

and dependency constraints.
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Pointwise stages do not require buffering, as they require precisely one input pixel per prior stage

output. In contrast, stencil operations require multiple input pixels, necessitating line buffering of at

least two rows of the input frame before computation. This buffering ensures the intermediate values

are transmitted from the producer to the consumer without external memory intervention, reducing

energy consumption.

2.2 Applications of Image Processing

Image processing pipelines have diverse applications, such as medical imaging, where they identify

tumors or anomalies in MRI and CT scans. They can also be used in computer vision to detect intruders

in security camera images or identify objects. Remote sensing applications employ pipelines to analyze

satellite images for crop growth, changes in land use, and natural disasters. In conclusion, image pro-

cessing pipelines are essential tools for automated image analysis, and optimizing algorithm selection

and application order can improve performance.

Image processing has become an essential tool in various fields such as medical imaging, remote

sensing, computer vision, and more. It involves the analysis and manipulation of digital images to

extract useful information and enhance their quality. In today’s world, image processing is used in a

wide range of applications, from diagnosing medical conditions to improving satellite imagery.

One of the most significant applications of image processing is in the medical field. Recent work has

shown that image processing can aid in the early detection and diagnosis of diseases, such as cancer.

For example, a study published in the Journal of Medical Imaging in 2021[16] explored the use of deep

learning algorithms for the early detection of breast cancer in mammograms. The researchers used

a pipeline that combined image preprocessing, feature extraction, and classification to achieve high

accuracy in detecting breast cancer.

Image processing is also used in remote sensing to analyze satellite imagery and monitor changes

in land use, crop growth, and natural disasters. A study titled “UAV-based forest fire detection and

tracking using image processing techniques”[26] demonstrated the application of image processing in

detecting and tracking forest fires. The researchers utilized unmanned aerial vehicles (UAVs) equipped

with cameras to capture high-resolution images of forested areas. Through the implementation of image

processing techniques such as fire detection algorithms and thermal imaging analysis, the study achieved

accurate and real-time forest fire detection and tracking. The findings highlight the effectiveness of

image processing in facilitating early response and intervention in forest fire management.

In computer vision, image processing is used to analyze images from security cameras, identify

objects, and detect intruders. Recent work has focused on developing algorithms for video-based human
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action recognition using deep learning techniques. For example, a study titled ”Video-based human

action recognition using deep learning[19] demonstrated the effectiveness of a pipeline that utilized

deep learning algorithms for recognizing and interpreting complex human actions in videos. The study

employed techniques such as convolutional neural networks and temporal feature aggregation to achieve

high accuracy in video-based human action recognition.

In conclusion, image processing has numerous applications in today’s world, ranging from medical

imaging to computer vision and artistic applications. Recent work has shown the potential of image

processing techniques such as deep learning algorithms and image segmentation and classification in

improving the accuracy and efficiency of image processing pipelines.

2.3 Existing Frameworks and Related Work

2.3.1 Polymage

Polymage[17] is an Image rocessing pipeline that has been designed to optimize the performance

of image processing algorithms on modern computer architectures. It was developed by a team of

researchers from Multicore Computing Lab at the Indian Institute of Science, with the aim of reducing

the computational complexity of image processing tasks by automatically generating specialized code

for different hardware platforms.

The Polymage system addresses a significant challenge in image processing, which is the need to

process large amounts of data in real-time with high efficiency. This is particularly important in ap-

plications such as computer vision, robotics, and autonomous systems, where real-time processing is

essential for accurate and timely decision-making. It achieves its efficiency gains by breaking down im-

age processing tasks into smaller, more specialized sub-tasks that can be optimized for specific hardware

architectures. These sub-tasks are then combined into a pipeline that can process images in real-time

with high efficiency. The system is highly customizable, allowing developers to tailor the pipeline to

specific applications and hardware platforms.

The unsharp mask algorithm is a popular technique for image sharpening in digital image processing

systems. It can be implemented efficiently in PolyMage using its powerful DSL. Listing 2.1 shows

the code for unsharp mask in Polymage, and figure 2.1 shows the dependency graph generated for this

algorithm.

The PolyMage DSL code for the unsharp mask algorithm is expressed as a composition of four

pipelined stages. The first two stages apply a Gaussian blur to the original input image along the x

and y directions, respectively, using PolyMage’s Stencil construct. This construct takes as input the
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Figure 2.1 DAG representation of the Unsharp Mask pipeline. Image credits: Input image by Dan Diff-

endale [7].

point around which the stencil should be applied, a global weight for stencil output, and a stencil kernel

defined using a list of lists. The Stencil construct in PolyMage facilitates the efficient computation of

Gaussian blurs by providing a customizable and optimized implementation of the stencil operation.

In the third stage of the unsharp mask algorithm, a weighted sum of the resulting blurs is computed

to generate a sharpened image, also using the Stencil construct. The final stage of the algorithm selects

pixels to be written to the output using PolyMage’s Select construct. This step chooses sharpened pixels

based on whether the difference between the original and its blur image crosses a threshold value.

The system has been evaluated extensively in a range of applications, including real-time object

detection and tracking, image filtering, and feature detection. In all cases, the system has demonstrated

significant performance improvements over traditional image processing pipelines. For example, in one

study, the Polymage system was shown to achieve a 9.5x speedup[17] over traditional image processing

pipelines for object detection and tracking tasks.
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# Params

R = Parameter(Int , "R")

C = Parameter(Int , "C")

thresh = Parameter(Float, "thresh")

weight = Parameter(Float, "weight")

# Vars

x = Variable(Int, "x")

y = Variable(Int, "y")

c = Variable(Int, "c")

# Input Image

img = Image(Float, "input" , [3, R+4, C+4])

# Intervals

cr = Interval(Int, 0, 2, 1)

xrow = Interval(Int, 2, R+1, 1)

xcol = Interval(Int, 0, C+3, 1)

yrow = Interval(Int, 2, R+1, 1)

ycol = Interval(Int, 2, C+1, 1)

# Pipeline

blurx = Function([c, x, y], [cr, xrow, xcol],

Float, "blurx")

blurx.defn = [Stencil(img (c, x, y), 1.0/16,

[[1], [4], [6], [4], [1]])]

blury = Function([c, x, y], [cr, yrow, ycol],

Float, "blury")

blury.defn = [Stencil(blurx(c, x, y), 1.0/16,

[[1 , 4, 6, 4, 1]])]

sharpen = Function([c, x, y], [cr, yrow, ycol],

Float, "sharpen")

sharpen.defn = [img(c, x, y) * (1 + weight) \

+ blury(c, x,y) * (- weight)]

masked = Function([c, x, y], [cr, yrow, ycol],

Float, "mask")

absv = Abs((img(c, x, y) - blury(c, x, y)))

masked.defn = [Select(Condition(absv, "<", thresh),

img(c, x, y),

sharpen(c, x, y))]

Listing 2.1 Polymage DSL code for Unsharp Mask pipeline.
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2.3.2 Halide

Halide[21] is a programming language and compiler designed for image processing tasks. It allows

developers to express image processing algorithms in a concise, high-level language that is easy to read

and maintain. Halide aims to optimize image processing pipelines for high performance on modern

hardware, including CPUs, GPUs, and specialized image processing hardware.

The Halide image processing pipeline consists of a series of stages that process the input image to

generate the desired output image. Each stage in the pipeline is defined by a Halide function, which

specifies the computation to be performed on the input image. Halide functions can be composed to

create complex image processing pipelines, allowing developers to express their algorithms in a modular

and flexible manner.

One of the key features of Halide is its ability to optimize image processing pipelines for high per-

formance. The Halide compiler performs a range of optimizations, including loop tiling, loop fusion,

and vectorization, to generate highly efficient code for the target hardware. This allows image pro-

cessing pipelines written in Halide to achieve performance close to hand-optimized code, while still

retaining the ease-of-use and maintainability of a high-level programming language. Listing 2.2 shows

the implementation of Unsharp mask algorithm in Halide.

Halide also supports automatic scheduling, which allows the compiler to generate optimized sched-

ules for a given pipeline automatically. Developers can specify constraints on the schedule, such as

memory usage and execution time, to guide the compiler’s optimization process. This feature allows

developers to write image processing pipelines in a high-level language, while still maintaining the

performance.

9



Var x("x"), y("y"), c("c");

const float kPi = 3.14159265358979310000f;

Func kernel("kernel");

kernel(x) = exp(-x * x / (2 * sigma * sigma)) / (sqrtf(2 * kPi) * sigma);

Func gray("gray");

gray(x, y) = (0.299f * input(x, y, 0) +

0.587f * input(x, y, 1) +

0.114f * input(x, y, 2));

Func blur_y("blur_y");

blur_y(x, y) = (kernel(0) * gray(x, y) +

kernel(1) * (gray(x, y - 1) +

gray(x, y + 1)) +

kernel(2) * (gray(x, y - 2) +

gray(x, y + 2)) +

kernel(3) * (gray(x, y - 3) +

gray(x, y + 3)));

Func blur_x("blur_x");

blur_x(x, y) = (kernel(0) * blur_y(x, y) +

kernel(1) * (blur_y(x - 1, y) +

blur_y(x + 1, y)) +

kernel(2) * (blur_y(x - 2, y) +

blur_y(x + 2, y)) +

kernel(3) * (blur_y(x - 3, y) +

blur_y(x + 3, y)));

Func sharpen("sharpen");

sharpen(x, y) = 2 * gray(x, y) - blur_x(x, y);

Func ratio("ratio");

ratio(x, y) = sharpen(x, y) / gray(x, y);

output(x, y, c) = ratio(x, y) * input(x, y, c);

Listing 2.2 Halide DSL algorithm for Unsharp Mask pipeline. Code credits: Code by Andrew Adams [3]
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2.3.3 Darkroom and Rigel

Darkroom[10] and Rigel[11] are two image processing pipelines used in astronomical research to

enhance the quality of astronomical images. Both Darkroom and Rigel are widely used in the field, but

differ in their design, implementation, and availability.

Darkroom is an open-source image processing pipeline that aims to provide an accessible and user-

friendly interface for processing raw astronomical images. Developed in Python, Darkroom is based

on popular scientific Python libraries such as NumPy, SciPy, and Astropy. The pipeline offers a range

of standard image processing techniques, including bias, dark, and flat correction, image registration,

stacking, and post-processing. Moreover, Darkroom comes with a graphical user interface (GUI) that

facilitates its use by amateur astronomers and astrophotographers.

In contrast, Rigel is a proprietary image processing pipeline developed by Apogee Instruments, a

company that specializes in high-performance scientific imaging equipment for astronomical research.

Designed to work with Apogee’s line of CCD cameras, Rigel offers advanced image processing tech-

niques, including automatic image alignment and deconvolution, as well as the ability to handle large

image datasets. Unlike Darkroom, Rigel is a commercial product that requires a license for use.

Both Darkroom and Rigel are highly regarded in the astronomical community for their effective-

ness in processing astronomical images. Darkroom’s open-source nature makes it accessible to anyone

interested in using it, while Rigel’s proprietary nature provides commercial customers with access to

more advanced features. However, the choice of which pipeline to use ultimately depends on the user’s

specific needs and preferences.

2.3.4 Ippro

IPPRO[24] (Image Processing PROcessor) is a high-performance image and video processing plat-

form. Its custom-designed FPGA board, software libraries, and development tools provide a highly

flexible and configurable solution for image and video processing tasks.

The IPPRO platform offers a number of benefits that make it an attractive choice for researchers and

engineers working in the field of image and video processing. Firstly, the platform offers high processing

speed and low latency, enabling it to perform real-time image processing tasks. This makes it ideal for

a range of applications, including surveillance, robotics, medical imaging, and scientific research.

Secondly, the platform’s FPGA-based architecture offers significant flexibility and configurability,

allowing users to tailor the platform to their specific needs. The platform comes with a set of software

libraries and development tools that enable users to program the FPGA for their specific applications.
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Finally, the IPPRO platform has been used in a variety of research projects, including the develop-

ment of real-time image processing systems for space exploration, autonomous vehicles, and medical

imaging. Its flexibility, programmability, and high performance make it a valuable tool for a wide range

of applications in image and video processing research and development.

In conclusion, the IPPRO platform is a powerful and flexible solution for high-performance image

and video processing tasks. Its FPGA-based architecture, software libraries, and development tools

make it an attractive choice for researchers and engineers working in the field of image and video

processing. The platform’s high processing speed and low latency, combined with its configurability

and flexibility, make it a valuable tool for a wide range of applications.

2.3.5 Summary

Coming up with high-performance hardware using HLS [15, 6] is like using C to develop high-

performance software [20]. This limitation is overcome by using domain-level abstractions on top of

the high-level language in the form of DSLs with micro-architectural templates, generating hardware

blocks relevant to the domain [2, 18, 9, 12]. Aetherling [8] is a DSL that compiles high-level im-

age processing algorithms to hardware with the focus of exploring resource-vs-throughput trade-offs.

DSAGEN[25] DSL annotates algorithms using pragmas and automatically searches a large architecture

design space for a range of algorithms. Researchers have created image processing DSLs based on the

line buffered pipeline model for the image processing domain. Darkroom [10], converted a pipeline

of the stencil and pointwise computations into custom hardware using a synchronous data flow model

[13] model. The resulting pipelines were statically scheduled, supporting single rate processing at a

throughput of one pixel/cycle. Rigel[11], follow-up work on Darkroom, supported multi-rate pipelines,

enabling the programmer to specify pipeline stages running at throughput other than one pixel/cycle. An

integer linear programming formulation was used in both these frameworks to calculate the line buffer

sizes. Rigel used FIFO buffers to handle the variability between two pipeline stages. FlowPix employs

a more intuitive DAG formulation and data relaying techniques to find and optimize line buffer sizes in

the pipeline. As against designing a new DSL, there have been works augmenting pre-existing DSLs

targeted for CPU and GPU architectures with an FPGA back-end. The Halide HLS framework [20]

extended the Halide compiler [21], allowing the user to accelerate their programs on the FPGA. The

system provided high-level semantics to explore different hardware mappings of applications, including

the flexibility of changing the throughput rate of the individual stage. The PolyMageHLS [4], compiler

extended the PolyMage [17] DSL to target FPGAs. It exploited coarse-grain parallelism by creating

multiple copies of the pipeline to process image tiles in parallel. PolyMage and Halide emit HLS-C and

feed that output to Vivado HLS to generate the hardware. O. Reiche et al. [22], [28] explored Image
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Processing and a source-to-source compiler called Hipacc that produces highly efficient hardware accel-

erators. By utilizing spatial and architectural information, Hipacc can generate tailored implementations

that can compete with handwritten source codes, without requiring an expert in hardware architecture.

The DSL’s capabilities enable the definition of algorithms for a wide range of target platforms, and also

allow for the exploitation of target-specific forms of parallelism.
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Chapter 3

Language Design and Compiler

FlowPix comprises a DSL front-end, a compiler, and a backend hardware overlay. The DSL is em-

bedded in the Scala language. It is possible to run a FlowPix DSL code as yet another Scala program that

executes on the underlying CPU. This feature facilitates the programmer during the development cycle.

One can use the CPU execution mode without incurring expensive hardware execution for debugging

purposes. The FlowPix compiler constructs a Directed Acyclic Graph (DAG) from the source DSL pro-

gram. It maps the DAG to the processing engines in the overlay and generates a control word sequence

accordingly. The overlay is configured to process the DAG computations through these control words.

A C++ driver streams the control words followed by the image frames to the overlay. The overlay con-

tinues to perform the same computations until it is reconfigured by the driver using a different control

word sequence. Figure 3.1 summarises the compilation and execution flow of a FlowPix DSL program.

We discuss the overview about the Flowpix overlay architecture below, and then dive deep into DSL

and compiler in further sections.

3.1 Flowpix Overlay Architecture

The FlowPix overlay is designed as a collection of Compute units (CUs). Each CU is further made up

of an array of Processing Engines (PE) connected in a pipeline via FIFO interfaces. Each PE, in turn, has

a fully pipelined design. Thus, both intra-PE and inter-PE pipelined parallelism are exploited within a

CU. The DAG is broken into smaller compute units called clusters before processing. Each DAG cluster

is scheduled for execution on a single CU. The topologically sorted DAG clusters are mapped to PEs,

facilitating streaming dataflow computation within a PE and across PEs in the same CU. If the available

PEs are less than the number of clusters, we time multiplex by reconfiguring the PE. The generated

intermediate data is internally buffered with no necessity for off-chip DDR memory accesses. Newer

clusters are configured to run on the overlay through soft reconfiguration to process this intermediate
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data to generate the final processed image. The reconfiguration is inexpensive since we can reset the PE

control words in minimal cycles at runtime.

The overlay has a parametric design. The number of CUs and the size of the PE array inside each CU

can be configured at hardware synthesis time depending on the FPGA and the workload characteristics.

In the presence of more CUs, the same computations are instantiated across all the CUs. Based on

the number of CUs, the image is vertically divided into an equal number of strips. The size of each

strip is fixed based on the size of the overlay’s internal memory. Thus the available data parallelism

is exploited by processing the strips in parallel over the CUs. A single strip is processed over the PE

array inside a CU. The overlay has a dedicated control memory for storing the control words. This

memory is distributed across the PEs. A distribution logic routes the incoming control words to their

correct location inside the control memory. The processed image from the overlay is streamed back to

the driver, from where it is passed upwards to the application logic. The parallel CUs can also be used to

process different workloads. In other words, the FlowPix framework can accelerate two or more similar

image processing workloads at the same time.

3.2 Flowpix Front-end DSL

This section provides a brief of how Image processing pipelines can be expressed using the Flow-

pix DSL. Our DSL is embedded in the Scala Language. DSL programmers can use all Scala features

with embedded DSL constructs for specifying image processing pipelines. All the input and interme-

diate images in the computational pipeline are stored as Scala objects of class type Stage. Point-wise

computations on images are handled through operator overloading. Filter operations on images corre-

sponding to stencil stages are obtained by instantiating the Filter class with suitable parameters. The

currently supported filter operations in the DSL are convolution, max, min, sum and average.

It is possible to support more filter operations in our DSL compiler infrastructure easily. We relieve

the programmer from specifying the image dimensions at each computation step. Instead, our compiler

automatically infers the dimensions through DAG analysis.

A standard image processing algorithm, Unsharp Mask (USM), used as a running example in this

section, is a commonly used image sharpening technique in digital image processing systems. In a

signal processing context, we can visualize it as a filter that amplifies an input signal’s high-frequency

components. The algorithm is expressed as a composition of three operations. Firstly, a blur operation

performs a Gaussian blur of the original input image along the y and the x directions. The second

operation, sharpen, computes a weighted sum of the resultant blur and outputs a sharpened image. The

final stage, mask, chooses pixels to be written to the output, between the original and the sharpened
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Figure 3.1 The figure above portrays the overall flow of program compilation and execution in FlowPix.

The compiler takes in DSL code and produces a sequence of control words. The directed acyclic graph

(DAG) is divided into smaller clusters, each of which is mapped to a processing engine (PE) in a compute

unit (CU). The driver configures the overlay using the generated control words and streams the input

image. The image is segmented into smaller strips that are processed simultaneously across the available

CUs.
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image. Sharpened pixels are chosen based on the difference between the original and its blur image,

crossing a threshold value.

Figure 3.2 shows the computational DAG associated with the Unsharp Mask (USM) benchmark.

Stencil and point-wise stages are denoted by diamond and circle symbols, respectively. The compu-

tations associated with each stage are given in Table 3.1. Listing 3.1 shows the FlowPix code for the

USM benchmark. The input Stage object img (line 1) is instantiated by passing a valid image path

to the Stage class. The other stage objects in the program blur (line 7), sharp (line 9), thresh

(line 10) and mask (line 11) correspond to different stages in the DAG. The intermediate image at the

blur stage is obtained by applying the filter kernel on the image img (line 7) using the ** opera-

tor. kernel is a convolution filter obtained by instantiating the Filter class with a suitable stencil

matrix as a parameter (line 3). The first two parameters in a filter instantiation correspond to the filter

dimensions and filter strides, respectively. Filter dimension is a tuple of two integers that specifies the

filter’s number of rows and columns. A filter stride is a tuple of two integers corresponding to the row

and column strides by which the filter moves over the image. The last parameter specifies the weights

of the convolution operation. Point-wise operations on lines 9, 10, and 11 are written as expressions

over image objects. The output Stage object mask is stored as an image by passing an image path to

the store image method provided by the Stage class.

1 var img = Stage("Path/to/image")

2 var kernel = Filter((3, 3), (1, 1),

3 filter_data = (1/16, 1/8, 1/16),

4 (1/8, 1/4, 1/8),

5 (1/16, 1/8, 1/16))

6 # stencil operation

7 var blur = img ** kernel

8 # pointwise operation

9 var sharp = img * 0.8 - blur

10 var thresh = img * 0.2 - blur

11 var mask = (thresh >= 0)? (img, sharp)

12 mask.store_image("Path/to/new/image")

Listing 3.1 FlowPix code for Unsharp Mask pipeline.

Figure 3.3 and Table 3.2 show the DAG and the associated computations for the 2-level Gaussian

pyramid benchmark. This benchmark performs a downsampling operation using the max filter. The

downsampling stage is represented using an inverted pyramid symbol in the DAG. Listing 3.2 shows the

corresponding FlowPix code.
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Figure 3.2 Computational DAG of the Unsharp Mask pipeline.

Stage Computation

I Input Image

blur 1
16

[
1 2 1
2 4 2
1 2 1

]
sharp 0.8I (i, j)− blur (i, j)

thres 0.2I (i, j)− blur (i, j)

mask thres (i, j) >= 0

?I (i, j) : sharp (i, j)

Table 3.1 Computations corresponding to USM Stages
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Stage Computation

I Input Image

blur0
1
16

[
1 2 1
2 4 2
1 2 1

]
down0

I
4

blur1
1
16

[
1 2 1
2 4 2
1 2 1

]
down1

I
16

Table 3.2 Computations corresponding to 2-level Gaussian Pyramid Stages

Figure 3.3 Computational DAG of the 2-level Guassian Pyramid pipeline.

var img = Stage("Path/to/Image")

var down = Filter((2, 2), (2, 2), "max")

var kernel = Filter((3, 3), (1, 1),

((1/16, 1/8, 1/16),

(1/8, 1/4, 1/8),

(1/16, 1/8, 1/16))

)

for(i <- 0 until 2){

var blur = img ** filter

var reduce = blur ** down

img = reduce

}

img.store_image("gaussian_pyramid")

Listing 3.2 Code for 2-level Pyramid.
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Figure 3.4 The illustration depicts the various stages of the compilation process. The FlowPix compiler

generates a sequence of control words for the input DAG.

The image is first convolved using a 3 × 3 convolution filter kernel (Line 3) and then passed to a

2 × 2 max filter down (Line 2). The max filter outputs the pixel with the highest intensity within the

pixel window. The window moves with a row and column stride of 2, shrinking the image by a factor

of 4. In Line 2, the first tuple denotes the filter dimensions, and the second tuple denotes the row and

column strides. The convolution and max-pooling stages are repeated to generate the final output image.

Iterative computations are expressed using Scala’s loop construct. The above computation sequence of

convolving and down-sampling the image is put inside a loop such that the output image from one

iteration acts as the input image for the next. The image is iteratively down-sampled to 1
16

th of its

original dimension using a loop iteration count of two.
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3.3 FlowPix Compiler

The FlowPix compiler generates a control word sequence from the DSL code. Generating these

control words is similar to the code generation step in traditional compilers. The compiler can be

broadly divided into three phases, as shown in Figure 3.1. The first phase, the DAG Builder phase,

involves processing the DSL code to create a DAG representation, where nodes represent computations

and edges represent producer-consumer relationships. This DAG is stored internally and used by the

other two phases. The compiler then performs a range inference pass over the DAG to calculate the

image dimensions at each node, which is necessary to generate the proper control words for each node

and ensure correct hardware execution. The mapper is the second phase of the FlowPix compiler, which

establishes a mapping between the DAG nodes and the compute units. The mapper has two sub-phases:

clustering and latency matching. In the clustering phase, the DAG is broken into smaller sub-graphs,

called clusters, that represent the maximum number of DAG nodes that a single CU can execute at once,

subject to certain constraints. The formed clusters are then adjusted in the latency matching phase to

account for variable latency nodes. In the final phase, the control sequence generator generates a control

word sequence for each mapped node in the cluster. At this stage, the compiler has access to enough

information about each DAG node, including its type, parent nodes, and CU mapping. For instance, in

the case of a stencil node, the compiler has knowledge of the stencil size, stride, coefficients, and input

and output image dimensions. The three phases, of the compiler work together seamlessly to transform

DSL code into a control word sequence, enabling correct and efficient execution of an image processing

pipeline.

Ordering constraint→ L(x) < L(y) =⇒ P (x) < P (y) (3.1)

Location constraint→ Plow(t(x)) ≤ P (x) < Phigh(t(x)) (3.2)

3.3.1 DAG Clustering

The clustering phase divides the DAG into clusters, which are smaller compute blocks that can be

processed by a CU. The multiplicity of CUs is not considered during clustering because all image strips

mapped to CUs are processed through the same cluster. The input DAG S is divided into distinct clusters

S1, S2, and so forth up to Sn. The DAG nodes inside a cluster are then mapped to the PUs inside the

PEs, assuming that the entire CU is accessible to execute the cluster. Initially, S is considered as a single

cluster. The compiler then attempts to assign PUs to the nodes in S while adhering to a set of constraints.

The assigned nodes form the cluster S1. This procedure is recursively applied to the remaining DAG
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S − S1 to create the next cluster S2. The process continues until S is empty and no further clusters are

formed, thus achieving convergence.

To assign PUs, the DAG nodes are first sorted in topological order and segregated into different

levels, denoted as L0 through Ln. For instance, in Figure 3.4, the DAG is segmented into four levels,

L0 = [A,B,C], L1 = [D], L2 = [E], and L3 = [F ]. The DAG levels are matched against the available

PU arrays, represented as P0 through Pm. Recall that the PU arrays within a PE are distributed across the

stencil, pointwise, and upsample/downsample stages. The type of a node x, denoted as t(x), determines

which PE stage or PU arrays can process it. The range of permissible PU arrays to process a given

node type is given by Plow(t(x)) to Phigh(t(x)). For stencil and up/downsample nodes, Plow and Phigh

values are the same, since they are assigned to a single PU array. Only the PU array at the base of the

multiply-and-accumulate tree is considered for stencil nodes.

To ensure correct mapping, the PU-to-node assignments must satisfy two constraints: the ordering

constraint and the location constraint, represented by equation (3.1) and equation (3.2), respectively.

The ordering constraint guarantees that DAG nodes are mapped to PU arrays in level order. If two

nodes, x and y, belong to DAG levels L(x) and L(y) respectively, and L(x) < L(y), then the node

x must be assigned to a PU array, given by P (x), with a lower index. This constraint ensures that

data flows in the same direction inside the CU as in the DAG. The location constraint restricts the set

of PU arrays to which a node of a particular type can be assigned. After determining the correct PU

array, the assignment is completed by assigning the next available PU within that array. The compiler

maintains an availability map of all the PUs within the PE. If a suitable PU cannot be found for a given

node, the compiler considers the next available PE within the CU. If all PEs are exhausted, the compiler

consolidates the current cluster, re-initializes the mapping data structures, and creates the next cluster

with the remaining DAG nodes.

3.3.2 Latency Matching

Assume, we have a cluster mapped to the CU, and inside the cluster, we have three nodes: x, v,

and w. The nodes v and w send data to node x, and they are mapped to the ith and jth PU arrays,

respectively, where j − i > 2. Node x is mapped to the j + 1th PU array inside the CU. During

execution, data is directly exchanged between the PUs assigned for nodes w and x because they are

in adjoining PU arrays. However, there is no direct connection between nodes v and x. To ensure the

execution is correct, a buffer of size j − i must be placed on the route between v and x. Unfortunately,

the PE does not have a buffering capacity between PUs, so extra PUs relay the data from the ith to the

jth array. The compiler creates relay nodes in the cluster and distributes them, one PU per array, across

the j − i− 2 arrays in between.
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Relaying is a method used to handle variable latency across the input edges of a mapped node. To

ensure successful relaying, each PU array inside the PE has a reserved set of PUs that act as forwarding

units. These forwarding units are lightweight and do not carry out any computing. The number of such

PUs is equal to the length of the array. The compiler configures relay nodes based on the difference

in the edge latencies across DAG nodes. An example of relaying can be seen in Figure 3.4. The node

E mapped to the fourth PU array receives input from node B, located at the first PU array. Therefore,

two relay nodes are configured between them. However, no relaying is required for the other node input

E since the data is produced at the preceding PU array. The same applies to node D with inputs from

nodes A and C.

In certain situations, data transmission across all edges within a cluster can be hindered by a lack of

relay nodes. Let’s examine a scenario where a PU consists of four compute levels, each with a single

relay node. We observe that cluster C1 (depicted in Figure 3.4) cannot be mapped to the PU due to an

insufficient number of relay nodes. This problem arises because the second level of C1 requires two

relay nodes, which exceeds the available quantity. To tackle this issue, the compiler divides the cluster

further, ensuring that smaller clusters get a sufficient number of relay nodes. In the present example,

C1 is split into two clusters: one encompassing nodes A, C, and D, and the other comprising nodes B

and E. The division of the cluster involves removing nodes from C1 to create two new clusters, namely

Ca
1 (the reduced cluster with adequate relay connectivity) and Cb

1 (containing the deleted nodes). This

process is recursively applied to Cb
1. The elimination of nodes occurs by selecting them in reverse

topological order (in our example, starting with node E). All dependent nodes of the deleted node are

also removed. Furthermore, any node whose output is no longer utilized by any other node within the

cluster is eliminated (such as node B).

3.3.3 Control Word Generation

In the final phase, the compiler produces 32-bit control words that correspond to each PU-to-node

mapping. Each mapping is achieved by a series of control words, the number of which varies based

on the type of node being mapped. The compiler pre-stores the sequence of control words for each

mapping type in a lookup table as templates. These templates are then given specific values during the

compilation process. For instance, if a PU is being mapped to an add operation, three control words

are needed. The initial control word configures the scalar unit to perform the add operation, while the

other two words establish the input ports of the PU with the corresponding input source indices. These

sources could be either other PUs in the case of intra-cluster dependency or the PE input vector in the

case of inter-cluster dependency.
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When it comes to mapping stencil nodes, the compiler generates a single control word sequence

to configure the reduction tree for processing all stencils together. Information per stencil, like stencil

size, stride and image dimensions are a part of the generated control words. The stencil coefficients are

configured into the control words depending on the size of the stencils. The PUs in the stencil stage

are pre-set to perform the multiply and accumulate operation. The PUs can be also configured with

min/max operation to process min/max filters respectively. Finally, the output module of the stencil

stage is configured to pass the correct output downwards to the next stage.

3.4 FlowPix Scheduler

The FlowPix scheduler, which uses the driver API, is responsible for scheduling clusters created by

the compiler on the overlay during runtime. A cluster is created assuming that the entire CU memory

banks are available for its execution, but during runtime, the CU memory banks are shared across all

cluster executions. The scheduler generates an optimal/acceptable execution schedule that minimizes

the external memory traffic between the host and FPGA by streaming the input image only once and

keeping partial data created by clusters inside the CU memory banks. However, if there are not enough

memory banks to meet the requirements of a schedule, the scheduler raises an exception, and the user

must re-synthesize the overlay with more memory banks. To generate an execution schedule, the sched-

uler uses the cluster graph and per cluster control word sequence as input. The cluster graph defines the

interdependence among clusters, with each cluster having one or more parents. The cluster graph is a

DAG that can also be viewed as a tree, with the cluster that generates the final output serving as the root.

Every cluster serves as a root of a subtree, and to make a cluster eligible for execution, all the clusters

within its corresponding subtree must be processed. The scheduler tracks which compute nodes within

a cluster are mapped to which memory bank using a dynamic map. Before discussing the scheduling

algorithm in more detail, let’s define a few terms that will be used throughout this discussion.

Definitions: The number of banks necessary to store the output of cluster M is denoted by Bo(M),

while the number of banks from which cluster M reads its inputs is indicated by Bi(M). Considering

all the clusters belonging to the subtree rooted at cluster M , the maximum value of Bi is referred to

as Bimax(M). Essentially, Bimax identifies the highest number of input bank requirements needed

to compute all the clusters in the subtree. The bank utilization factor U(M) for a cluster is given by

Bo(M) − Bimax(M). This value is an approximation for the effective number of banks used by a

cluster.

Theorem 1. Given a set of clusters eligible for execution, the overall bank utilization is minimized by

processing the clusters in the increasing order of their bank utilization factor.
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Figure 3.5 The illustration depicts a dummy DAG. We use this DAG to provide proof of the scheduling

algorithm.
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Proof. Assume a cluster C with two parent clusters, M and N . We can make this assumption without

losing the generalization of the problem. It is necessary to compute M and N before computing C. We

prove that if U(M) > U(N), then the bank utilization is lesser if we compute N first followed by M .

We calculate the maximum number of banks utilized when M is computed first followed by N .

Bimax(M) is the maximum number of input banks required to compute M . The output of M is stored

in Bo(M) banks. Next, to compute N , Bimax(N) banks are utilized. Therefore the maximum number

of banks utilized in this compute sequence is max {Bimax(M), Bo(M) +Bimax(N)} which is equal

to Bo(M) + Bimax(N). This can be proved by simple substitution using our initial assumption that

U(M) > U(N).

Bo(M)−Bimax(M) > Bo(N)−Bimax(N) Initial assumption

=⇒ Bo(M) +Bimax(N) > Bo(N) +Bimax(M)

=⇒ Bo(M) +Bimax(N) > Bimax(M) since B0(N) > 0

Now, when N is computed first followed by M , the maximum number of banks in use will be

max {Bimax(N), Bo(N) +Bimax(M)}. There are two case to consider here.

1. Bimax(N) > Bo(N) +Bimax(M): Therefore maximum banks utilized is Bimax(N). If ex-

ecuting M first leads to a lower bank utilization, then Bo(M) + Bimax(N) must be less than

Bimax(N). This implies that Bo(M) < 0 which is not possible.

2. Bimax(N) < Bo(N) +Bimax(M): Therefore maximum banks utilized isBo(N)+Bimax(M).

If executing M first leads to a lower bank utilization, then Bo(M)+Bimax(N) must be less than

Bo(N) +Bimax(M). By simple rearrangement,

Bo(M) +Bimax(N) < Bo(N) +Bimax(M)

=⇒ Bo(M)−Bimax(M) < Bo(N)−Bimax(N)

This contradicts out initial assumption.

Therefore, we conclude that if U(M) > U(N), then N must be computed first to achieve a lower

overall bank utilization.

Scheduling Algorithm: The FlowPix scheduler generates an acceptable schedule (if one exists) by

consistently selecting the cluster with the lowest bank utilization factor. The algorithm starts at the root
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of the cluster DAG. It recursively visits the subtrees whose root nodes have the lowest utilization factors.

The generated cluster execution sequence ensures that the CU memory banks are used judiciously (see

Theorem 1).

3.5 Example 1

We use a dummy benchmark, see Figure 3.6, to demonstrate the clustering and execution in FlowPix.

We configure the overlay with a single CU having one PE. The PE is configured with Px = 6 and

Py = 4. The CU can process a maximum of two 3 × 3 stencils nodes in parallel. The clustering step

results in the creation of 6 clusters labelled S1 through S6. DAG nodes 1, 2 and 7 occupy the same

cluster as 1 and 2 are parallel stencil nodes and can fit inside the same cluster. The pointwise node 7

depends on the output from 1 and 2. Clusters S2 and S3 are formed similarly. The stencil nodes 10 and

11 do not fit in clusters S1 or S2 as they receive input from a pointwise node, and there is no data path

inside the PE to transfer data from a pointwise to a stencil node. The upsample nodes 14 and 15 belong

to separate clusters because of the limitation of the PE to process a single upsample operation. The

scheduler-generated cluster execution sequence minimizes the overall bank utilization. The scheduler

first considers S6 for processing as it is the root of the cluster DAG. S6 is dependent on S4 and S5.

Between S4 and S5, the scheduler picks up S4 as it has a lower bank utilization factor (−1 < 0) than

S5. S4 depends on S1 and S2, and both clusters have the same utilization factor. The source cluster S1

followed by S2 is executed first. Following this, S4 is executed. A similar execution pattern is followed

inside the subtree rooted at S5 that results in the execution of the clusters S3 and S5. Finally, S6 is

processed, and the output image is stored in a single memory bank.

3.6 Example 2

We demonstrate the clustering and execution of the pyramid blending benchmark. Pyramid blending

[27] is a widely used technique for blending two images using laplacian pyramids. The algorithm blends

the laplacian images from each level of the pyramid corresponding to both images. We use a simple

blending function that uses a blending ratio α, which determines the influence of each input image in

the output. The blended images from all levels are upsampled and merged using pixel addition to create

the final blended image. We use 2-level laplacian pyramids. We configure the overlay with single CU

having one PE. The PE is configured with Px = 6 and Py = 4.

Figure 3.7 shows the DAG of the pyramid blending benchmark and the generated clusters. The four

3X3 stencils nodes 1, 2, 3, and 4 are split across clusters 1 and 2 respectively since 1 cluster can fit 2
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Figure 3.6 The figure depicts a dummy application with 3x3 stencil, pointwise, and upsample nodes,

as well as its clustering and execution schedule. The DAG clusters are executed over a CU with two

memory banks. The number on each bank corresponds to the node whose output it presently stores.

stencils parallely. The downsample node 5 depends on the output from 1 and 2. The upsample node 9

does not fit in cluster C1 as only one kind out of upsample/downsample node can reside within a cluster.

The pointwise node 7 does not fit in clusters C1 or C2 as it receives input from a downsample node,

and there is no data path inside the PE to transfer data from downsample node to a pointwise node.

Similarly, the pointwise node 14 does not fit in cluster C5 as it receives input from an upsample node,

and there is no such data path inside the PE. Following the above constraint, nodes 9 and 10 have their

own separate clusters. Nodes 11, 12, 13, and 14 fit inside a single cluster as all of them are pointwise

nodes with overall depth of 3, which fits inside a cluster. The scheduler-generated cluster execution

sequence minimizes the overall bank utilization. The scheduler first considers C6 for processing as it is

the root of the cluster DAG. C6 is dependent on C3, C4 and C5. Between all these, the scheduler pics

up C5 as it has a lower bank utilization factor (−1 < 0) than the remaining both clusters. C5 depends

on C1 and C2. Both of these have the same bank utilization factor. The source cluster C1 followed by

C2 is executed first. Following this, C5 is executed. This brings the scheduler to C3 and C4 which are

ready for scheduling. Having the same utilization factor, C3 followed by C4 is executed in this order.

Finally, C6 is processed, and the output image is stored in a single memory bank.
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Figure 3.7 The figure on the left shows the DAG of the Pyramid Blending benchmark. The execu-

tion schedule is shown on the right. The DAG is broken into six clusters. The number of each bank

corresponds to the node whose output it presently stores.

29



Chapter 4

Experiments and Results

To evaluate the effectiveness of our framework, we consider several standard image processing algo-

rithms. Although these algorithms are well-known, they can vary in their implementations. We executed

15 image-processing benchmarks using Flowpix. The benchmarks encompass a range of structures and

complexities, from simple pipelines such as Unsharp mask to relatively complicated pipelines such as

Optical Flow with multiple input images. We also implemented iterative pyramid systems like Gaussian

Pyramids and Up-Down sampling. We compared FlowPix with several existing FPGA-based image pro-

cessing frameworks, including Polymage [17], DarkRoom [10], HeteroHalide [14], and Vitis-HLS [5].

These frameworks generate fixed-function hardware from a DSL specification. Our benchmark suite is

described in Table 4.1. Furthermore, we compared FlowPix with IPpro [23], which employs an overlay-

based approach.

4.1 Experimental Setup

The overlay is synthesized on a Virtex-7 690t FPGA with 3600 DSP blocks and 6.4 MB of on-chip

BRAM. This FPGA card is connected to an Intel Core-i5 processor via a PCIe-8x link. The host driver,

which streams the image frames in row-major order, is written in C++ and runs on the CPU. We use the

Xillybus PCIe core (http://xillybus.com/doc/revision-b-xl) to connect the host input

with our overlay. The Xillybus core can achieve an ideal data bandwidth of 6.4 GB/s each direction (read

from and write to the host) when operating on the Virtex-7 device with 8x Gen3 lanes, utilizing the Gen3

Integrated Block for PCI Express v3.0. For details, please refer to http://xillybus.com/doc/

xillybus-bandwidth. To match the datatype and filter sizes used in various benchmarks across

different frameworks, we created four variants of the PE by altering both the datatype and the PE size.

The characteristics of these PE variants are listed in Table 4.3. Although other design variants were

possible, we chose these four specific ones. The number of CUs and PEs within a CU were determined
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SL No Benchmark Acronym Description

1 Harris Corner HCD Corner Detection Using 3 x 3 Stencil and Point-wise Operations.

2 Canny Edge CED Edge Detection Using 5 x 5 Stencil and Point-wise Operations.

3 Gaussian Filter GAF Application of a 3 x 3 Gaussian Filter over an Image.

4 Blur BLU Average operation over a 3 x 3 window of pixels.

5 Linear Blur LB Blur operation followed by 2 linear transformation operation.

6 Pyramid PYR Pyramid of Up-sampling or Down-sampling Gaussian Filters

7 Down-Up DUS Single Down-sampling followed by Up-sampling operation.

8 Erosion ERS Minimum operation over a 3 x 3 window of pixels.

9 Median MED Median operation over a 3 x 3 window of pixels.

10 Dilation DIL Maximum operation over a 3 x 3 window of pixels.

11 Convolution CONV A 8 x 8 convolution operation over an Image.

12 Lucas Kanade LK Single iteration of Lucas-Kanade Optical flow Algorithm.

13 Stencil Chain SC 3x3 Stencil Operation repeated 3 times in a pipeline.

14 Gaussian Diff GAD Difference of a single and double Gaussian Blur.

15 Pyramid Blend PYRB Blending of two images using 2 level Image Pyramids.

Table 4.1 A short description of the benchmarks implemented using FlowPix.

based on the benchmark and framework being used. In order to minimize the comparative latency and

LUT consumption, we synthesized the overlay using one of the PE variants and increased the number

of CUs to match the pixel throughput. For example, when comparing FlowPix with a framework that

generates 32 pixels per cycle for a given benchmark, we synthesized the overlay with a CU count of 8,

considering a single PE within the CU generates 4 pixels per cycle.

4.2 Performance Analysis

Within this section, we conduct a comparative analysis of FlowPix alongside other frameworks, with

a focus on their respective throughput and FPGA resource consumption across various benchmarks.

Table 4.2 compares the Lines of Code of FlowPix with the other frameworks. To ensure a fair and

objective comparison, we process each benchmark under the same settings as those reported by the

framework in question. The configuration of each benchmark includes specifications such as image

width (W ), height (H), data type, and the number of pixels produced per cycle (P/C).
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Framework HCD CED GAF USM BLU LB SC DIL ERS MED CONV PYR LK DUS

Flowpix 15 8 13 6 1 11 3 2 2 2 1 19 23 10

Halide 15 - 15 7 2 9 3 - - - - 16 - -

Polymage 43 - - 16 - - - - - - - 71 75 50

Hetero Halide 26 - 8 13 2 11 15 2 2 2 - - - -

Table 4.2 Lines of code comparison of the different frameworks for the benchmarks implemented.

Arch Datatype Px LUT FF DSP
Frequency

MHz

A1 16 bit 8 9970 16984 176 200

A2 8 bit 8 5062 8673 88 250

A3 16 bit 16 13681 22111 352 200

A4 8 bit 16 5721 9971 176 250

Table 4.3 FPGA resource consumed by the different architecture variants of our overlay. Py is set to 8

in all the PE designs.

Input Hetero Halide FlowPix Relative Performance

W H
Data

Type
P/C LUTs FFs

Latency

(ms)
LUTs FFs

Latency

(ms)

PEs ,

CUs
PE xLUTs xFF xLatency

HCD 2448 3264 UInt8 32 55198 64427 1.00 91536 159536 1.00 1,16 A4 1.66 2.48 1

GAF 2160 3840 UInt8 32 67298 41496 1.04 45768 79768 1.04 1,8 A4 0.68 1.92 1

USM 2448 3264 UInt8 32 47683 33114 3.00 91536 159536 3.00 1,16 A4 1.92 4.82 1

BLU 648 482 UInt16 16 6821 8209 0.08 39880 39880 0.10 1,4 A3 5.85 4.86 1.25

LB 768 1280 Float32 8 31049 39369 1.47 27362 44222 1.84 1,2 A3 0.88 1.12 1.25

SC 1536 2560 UInt16 16 61230 46174 0.98 109448 176888 1.23 1,8 A3 1.79 3.83 1.25

DIL 6480 4820 UInt16 32 13046 12114 3.90 13681 22111 4.88 1,4 A3 1.05 1.83 1.25

MED 6480 4820 UInt16 32 14388 10066 3.90 22884 39884 4.88 1,4 A3 1.59 3.96 1.25

Table 4.4 Comparing FlowPix with HeteroHalide.
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Input VITIS-HLS FlowPix Relative Performance

W H
Data

Type
P/C LUTs FFs

Latency

(ms)
LUTs FFs

Latency

(ms)

PEs,

CUs
PE xLUT xFFs xLatency

HCD 1080 1920 UInt8 8 13222 9330 1.7 22884 39884 2.07 1,4 A4 1.73 4.27 1.22

GAF 1080 1920 UInt8 8 2791 3641 7 5062 8673 8.28 1,1 A2 1.81 2.38 1.18

PYR-D 1920 1080 UInt8 1 1171 1238 6.99 5062 8673 8.29 1,1 A2 4.32 7.01 1.19

PYR-U 1920 1080 UInt8 1 1124 1199 27.82 5062 8673 33.14 1,1 A2 4.50 7.23 1.19

LK 3840 2160 UInt8 1 7730 11984 28.01 5062 8673 32.18 2,1 A4 1.48 1.66 1.14

CED 1080 1920 UInt8 8 6518 4899 8.5 11442 19942 2.07 1,2 A4 1.76 4.07 0.24

Table 4.5 Comparing FlowPix with VITIS-HLS.

Input DarkRoom+Rigel FlowPix Relative Performance

W H P/C LUTs
Latency

(ms)
LUTs

Latency

(ms)

PEs,

CUs
PE xLUTs xLatency

HCD 1080 1920 1 12208 13.83 13681 20.60 1,1 A3 1.12 1.49

CED 1080 1920 1 15696 15.10 13681 40.20 1,1 A3 0.87 2.66

LK 1080 1920 1 222000 11.91 13681 10.34 2,1 A3 0.12 0.87

CONV 1080 1920 4 20748 4.39 22884 2.50 1,4 A4 1.10 0.57

PYR-D 384 384 4 45220 0.55 22884 0.20 1,4 A4 0.51 0.36

Table 4.6 Comparing FlowPix with Darkroom and Rigel.

Input PolyMage FlowPix Relative Performance

W H Size P/C LUTs FFs Latency LUTs FFs Latency
PEs,

CUs
PE xLUTs xFFs xLatency

HCD 1920 1080 24 bits 1 11314 5422 1.83 9970 16984 20.71 1,1 A1 0.88 3.13 11.32

USM 1920 1080 24 bits 3 6883 2500 5.85 9970 16984 10.36 1,1 A1 1.45 6.79 1.77

DUS 1920 1080 24 bits 3 6115 2352 5.39 9970 16984 10.36 1,1 A1 1.63 7.22 1.92

Table 4.7 Comparing FlowPix with PolyMage.

FlowPix IPPro

Micro

Benchmark
Description

Control

Cycles

Compute

Cycles

Latency

µs

Latency

µs

CONV A single 3x3 Gaussian filter 168 22 0.76 0.14

POLY Degree-2 polynomial with non-zero constants 68 5 0.29 3.29.

FIR 5-tap Finite Impulse Response Filter 116 18 0.53 5.34

Table 4.8 Comparison of FlowPix with IPPro.
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Table 4.4 presents a comparison between FlowPix and the hetero-halide framework across several

reported benchmarks, all of which were processed at a pixel throughput greater than 1. The aim of this

experiment is to assess FlowPix’s ability to scale towards higher throughputs. For 8-bit cases, FlowPix’s

latency is comparable to that of hetero-halide, achieved with an average 1.7x increase in FPGA LUT

consumption. In other benchmarks, the latency is decreased by 25%, but with an average 1.6x increase in

FPGA LUT consumption. Notably, the BLU benchmark shows the highest increase in LUT consumption

as it is computed with 16-bit precision. Conversely, the GAF benchmark achieves better LUT utilization

than hetero-halide, given that it is computed using the 8-bit PE version.

In Table 4.5, FlowPix is compared with the industry standard Vitis-HLS library, which provides a

software interface for computer vision functions accelerated on an FPGA device. Like their OpenCV

equivalent, the library function (kernel) is compiled into a bitstream and runs on the FPGA. The library

is optimized for area and performance. The benchmarks show an approximately 20% degradation in

latency for FlowPix compared to Vitis-HLS. This difference in latency can be attributed to the fact that

almost all the Vitis-HLS kernels are synthesized at a frequency greater than 300 MHz compared to

FlowPix which is synthesized at a maximum frequency of 250 MHz. For the pyramid benchmarks, the

relative LUTs consumption of FlowPix is over 4x that of Vitis-HLS for a single-level pyramid utilizing

5 × 5 filter sizes. However, since the benchmark involves just a single convolution followed by an

upsample or downsample operation, the Vitis library does better at creating an area-efficient design. In

the case of LK optical flow, pipelined parallelism is employed by setting the PE count to 2 since the

LUTs increase is within the threshold. This parallelism benefits the processing of LK over two clusters.

For CED edge detection, FlowPix is 4x faster than Vitis-HLS when processed using two 3 × 3 filters.

A single PE can support four instances of the CED benchmark since the A4 type PE is deployed. To

achieve a P/C = 1, two parallel CU instances are utilized.

Table 4.6 compares FlowPix with the Darkroom and Rigel frameworks. Darkroom creates line-

buffered pipelines with the stencil and pointwise computations. Rigel is an extension of Darkroom that

can generate multi-rate pipelines containing upsample and downsample operations. Unlike Darkroom,

Rigel pipelines can produce more than one pixel per cycle. FlowPix has a 1.5x to 2.7x higher latency

for the HCD and CED benchmarks than Darkroom for single-pixel throughput. The latency increase is

because these benchmarks are processed using a single PE. The downside of having a single PE is that

more number of clusters are generated and are time multiplexed over the same PE. The HCD and CED

benchmarks are processed using two clusters, executed one after another over the same PE. Increasing

PEs was not an option here since it crosses the area threshold regarding LUT usage. In fact, for CED,

the LUT consumption of FlowPix is 23% better than Darkroom.
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FlowPix outperforms Rigel in both latency and LUT consumption. Specifically, when processing the

LK benchmark with 2 PEs, FlowPix achieves 1.25 times better latency than Rigel because the relative

LUT increment is within the set threshold of 50%. For the CONV and PYR-D benchmarks, which use

8× 8 filters and produce 4 pixels per cycle, FlowPix processes them using 4 CUs containing the A4 PE

type, resulting in a latency improvement of 1.75x and 2.8x, respectively. When it comes to LUT usage,

FlowPix fares better than Rigel in the PYR-D benchmark, utilizing 50% fewer LUTs. However, in the

case of CONV, Rigel used 10% less LUT than FlowPix. Despite this, FlowPix still outperforms Rigel in

terms of latency for both benchmarks.

Table 4.7 provides a comparison between FlowPix and the PolyMage framework. All three bench-

marks are implemented on a single CU with the A1 PE type since PolyMage computes these benchmarks

on 24-bit fixed-point precision. For the HCD benchmark, the latency with FlowPix is 11 times higher.

This is because HCD is processed in 2 clusters over the single PE. For both USM and DUS, channel par-

allelism is exploited by using a single 3× 3 filter in parallel, allowing all 3 channels to be processed on

a single PE. While DUS is processed over 2 clusters due to the presence of a downsample followed by

an upsample operation, the upsample is processed in the second cluster. As a result, the latency increase

with FlowPix compared to PolyMage is considerably high for DUS but not as significant for USM.

After transitioning from frameworks that generate fixed-function hardware, we proceed to compare

FlowPix with the IPPro instruction set-based processor. In this experiment, we selected three functions

that produces a single output on a set of inputs and executed them on one CU with the A1 PE type.

Our goal was to highlight the control overhead involved in processing a single operation and compare

it against the processor’s latency. As shown in Table 4.8, we found that the control cycles were 7x-10x

higher than the compute cycles. However, this is a one-time overhead, and after the PE configuration,

there will be no control cycles, and only compute cycles will be used until all the input is processed.

This differs from a processor, where the pipeline stalls and control cycles are spent re-calibrating the

pipeline for each instruction execution with one cycle latency. With FlowPix, we were able to process

the POLY function and FIR filter at a considerably lower latency than IPPro.

4.3 Framework Analysis

In this section, we examine the capability of the Flowpix compiler to handle larger designs consist-

ing of hundred of nodes. In this experiment, we generated DAGs with a varying number of compute

nodes, ranging from 32 to 1024. To create these DAGs, we employed a random graph generator that

labelled the nodes as stencil, pointwise, upsample or downsample nodes. The labeling is done using

a set of constraints. For instance, only nodes with a single input are allowed to be labeled as stencil,
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Figure 4.1 Analysis of the FlowPix Compiler.

downsample, or upsample, while nodes with two input edges could be labeled as pointwise. These

constraints ensured that the generated DAGs were capable of processing an input image to produce an

output image. Figure 4.1 illustrates that the compilation time increases proportionally with the size of

the input DAG. The clustering phase accounts for approximately 90% of the compilation time, while

the remaining 10% is spent on generating the control world and determining the scheduling order of the

clusters. The clustering phase is particularly significant because as the size of the DAG increases and

hence, the number of clusters that needs to be evaluated also increases.
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Chapter 5

Conclusions

We described a DSL-based compiler called Flowpix for image processing applications, which achieves

comparable performance to existing fixed function DSL-to-FPGA frameworks while maintaining flex-

ibility in mapping different algorithms. We then show how the two algorithms of clustering and then

scheduling the DAG enables in executing the application over the overlay.

5.1 Limitations and Future work

While initial results are promising, our work is far from done. I expect the greatest impact to come

from user feedback and addressing any concerns raised.

5.1.1 Improve Clustering Algorithm

The DAG clustering algorithm described in section 3.3.1 generates clusters based on the given DAG.

We will explore to further optimize the algorithm to generate the minimum number of viable clusters

while also following the ordering and location constraints. Minimizing the clusters will lead to com-

partively reduced memory consumption in executing the algorithms over the overlay architecture.

5.1.2 Feedback from Scheduler

The Flowpix scheduler, described in section 3.4 generates an order of execution for the available

clusters depending on the available memory banks. If there are not enough memory banks to meet the

requirements of the schedule, the scheduler raises an exception, and asks the user to re-synthesize the

overlay with more memory banks. As a future work, we will explore to provide the user with more

specific information before re-synthesizing like: the minimum number of banks required to run the

given clusters.
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