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Abstract

For decades, process technology scaling has catered to ever increasing demands of high-speed inte-
grated circuits. Many applications, such as image and multimedia data processing, artificial intelligence,
machine learning etc., depend on these circuits to process huge swaths of data in real time. Be it in the
data centers, the cloud networks or the mobile devices, the computing efficiency of the circuits has
had to play catch-up with this ever-increasing demand. However, it has become abundantly clear in
recent years that cranking the technology knob isn’t a feasible solution to future needs of high-speed
computing.

Across the spectrum, data processing applications are endowed with resilience to acceptable levels
of errors in the underlying computations. These applications incorporate, what can only be called a
“forgiving” nature, into their algorithms without compromising with the end-user experience. And this
intrinsic robustness to errors can be leveraged even further by the design methodology of Approximate
Computing. It has now become an independent field that explores methods to reduce computation costs
by allowing minor degradation in intermediate computations. Several approximate arithmetic units
have been extensively studied and implemented with significant impacts on the system costs in terms of
power, area and speed.

Image processing algorithms with intrinsic robustness to errors can be approximated for significant
resource and energy savings while still meeting the end-user requirements. FPGA-based implemen-
tations can increase their suitability for real-time high-speed multimedia applications by leveraging
Approximate Computing. With high volume of pixel level computations, algorithms such as the Harris
Corner Detector (HCD) and Unsharp Making (USM), become targets for such approximation strategies.
In this thesis, we propose hardware implementations of these algorithms that rely on approximating the
intermediate multiplication operations using Dynamic Range Unbiased Multiplier (DRUM). With run-
time configurable bit-width control of DRUM instances, their quality of outputs is shown to depend on
the varying accuracy. We explore how the errors due to approximate operations propagate to the output.
Further,the experimental results from implementations on Virtex-7 and Zyng-7000 FPGA devices are
documented and an analytical approach based on quality metric comparisons with base implementation

is presented.

Keywords — Approximate Computing, DRUM Multiplier, Image Processing Benchmarks, Harris
Corner Detection, Unsharp Mask
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Chapter 1

Introduction

1.1 Approximate Computing

Concerns of energy efficiency are front and center in the design of computing systems. As more
and more aspects of our lives become computerized and connected, today’s designs continue to increase
their energy use. With the increase in computations, Approximate Computing has emerged as a novel
architecture that aims to address these energy utilization concerns. Many applications do not need
highly accurate computations to provide acceptable user experience. This acceptance of permissible
inaccuracy, results in significant energy and performance improvements. Applications in fields like
computer vision, media processing, artificial intelligence etc. already incorporate imprecision into their
design. The focus is shifted from accuracy of individual data elements to the aggregate effects of their

inaccuracies.

1.2 Need for Approximation

Traditional design architectures of real-time computer vision algorithms have failed to deliver on re-
ducing resource, power and area costs. With increasing demands for low-power and high-performance, a
shift from traditional accurate computing to approximate computing [7] was inevitable. A wide range of
applications such as interest point detection [8], image compression [14], image-guided navigation etc.
favour having their computations performed in an approximate or imprecise manner. This allowance of
permissible inaccuracy not only results in significant power and area savings but also provides accept-
able user experience. The focus is shifted from accuracy of individual data elements to the aggregate
effects of their inaccuracies.

This methodology, however, has its fair share of challenges. The central challenge being the ability
to provide a disciplined control on imprecision. Blanket approximation to the design, whereby ev-
ery multiplication or addition operation is approximated, produces huge output quality loss. Effective
approximation, on the other hand, requires careful estimation of error propagation and judicious appli-

cation of approximation to operations that result in tangible savings in resources. Quality specifications



need to be met as well. These require additional scrutiny of the output and re-execution of the approx-
imate design portions with refined programmable parameters. There is no shortage of applications that
allow such guided approximations while still providing acceptable results to the perceptually limited

humans. For our purposes we chose corner detection and unsharp masking.

1.3 Current Research on Harris Corner Detection and Unsharp Mask

Corner detection is one of the fundamental pre-processing steps in object detection, motion-tracking,
SLAM (simultaneous localization and mapping) [9], camera calibration [19] and image stitching [20].
With its strong robustness to noise and invariance to image transformations, Harris Corner Detection
(HCD) [5] has emerged as the most widely used algorithm for detecting sharp corners. It computes
the corner response for every pixel in the image, whereby a pixel is considered a corner if its response
is the local maxima and exceeds a given threshold. In comparative survey [21], HCD has achieved
the best performance among other feature detectors. Motivated by the need to refine the corner search
space, thresholding [18] has also garnered attention. Attempts have also been made at the hardware
implementation of HCD [2, 17, 4], aiming to reduce its computational complexity and resource utiliza-
tion while ensuring high throughput [1] and quality. Techniques to refine the corner search space using
thresholding [18] and to reduce power [10] based on data-path optimizations have also been explored.

On the other hand, Unsharp Masking (USM) finds widespread application in photography [11, 12]
and medical imaging [16]. In order to digitally improve the image quality, the algorithm emphasizes the
high frequency contents to enhance the edge and detail information in it. The comparative survey [3]
of different unsharp masking methods documents the shift from linear masking in order to reduce the
effects of noise and appearance of overshoot artefacts. Various adaptive approaches [22] have also been
suggested to reduce the noise sensitivity of the linear USM techniques.

All this constitutes a huge body of literature aimed at improving the algorithms in both the software
and hardware space. However, there has been little effort undertaken to investigate the aforementioned
challenges against the backdrop of approximate computing strategies. Harnessing the inherent paral-
lelism of HCD and USM, we demonstrate how the approximation at different pipeline stages affects
the corner response accuracy and the image sharpness respectively. We outline an approximation strat-
egy that ensures acceptable throughput-quality trade-off. We also propose modification in the original
response function of HCD algorithm which helps decide the threshold across images for robust corner
detection. While we only focused on HCD and USM algorithms in this work, the proposed strategies
can be applied to other computer vision algorithms (Gaussian pyramid, optical flow etc.).



1.4 Contributions of this Thesis and Related Work

In this thesis, we explore the application of an accuracy configurable approximate multiplier in
pipelined hardware implementations of image processing algorithms. To the best of our knowledge,
the hardware implementation of HCD using approximated multiplication has not been published be-
fore. Thus, the study reported in this dissertation constitutes a novel contribution.

A mathematical characterization of accuracy based on operational error propagation analysis is first
presented. To this end, the configurable input bit-width of the approximate multiplier is parameterized
for different operations and the resulting mean multiplication error along with the errors in the multiplier
inputs is used in the analysis of operations at different pipeline stages. The resulting equations provide
insights into the approximation to be introduced at each pipeline stage for achieving desired output
quality.

The approach to threshold selection is presented and compared across different images for the two
algorithms. We propose modification in the original response function of the HCD algorithm which
helps decide the threshold across images for robust corner detection. On the other hand, the Structural
Similarity Index (SSIM) is used to adaptively select the threshold for permissible output quality from
USM algorithm.

Application specific metrics are used to qualify the different accuracy implementations against the
base implementation of respective algorithms. Power, speed and resource utilization data has been
compiled to assess the comparative benefits of different accuracy setups. A comparative study with
other hardware implementations is performed to evaluate the proposed approximate architectures. The
baseline and proposed architectures were implemented using Bluespec SystemVerilog (BSV) and syn-
thesized on Zyng-7000 (xc7z045ffv900-2) and Xilinx Virtex-7 (xc7v585ttfg1157-2) FPGA devices us-
ing Xilinx Vivado 2018.3 ISE software. Comparisons of performance characteristics provide unique
insights into the applicability of the different configurations.

1.5 Thesis Organization

The outline of the remainder of the thesis is as follows. Chapter 2 summarizes the different image
processing algorithms to introduce notations and main concepts. The approximate multiplier of choice
is also discussed. Chapter 3 outlines the improved approximation strategy for HCD algorithm based on
operational error propagation analysis. The challenges faced during threshold selection and solutions
proposed for the same are discussed. It also presents simulation results compared to base hardware
implementation. Chapter 4 outlines the approximation strategy for USM algorithm using the same
operational error analysis. Approach to optimal threshold selection is discussed and comparative results

are presented. Chapter 5 concludes the thesis.



Chapter 2

Related Algorithms

2.1 Image Processing Algorithms

Given the ubiquitous application of image processing algorithms in the current world, they are our
prime targets for approximation in this thesis. Harris Corner Detection, Unsharp Masking etc. are some

of the algorithms conducive to approximation and will be discussed briefly in this chapter.

2.1.1 Harris Corner Detection Algorithm

In the domain of computer vision, a point qualifies as a corner if its gradient is largest in all direc-
tions. Visually this appears as a drastic change in brightness. This simple idea behind what constitutes
a corner was leveraged by Harris and Stephens [5], who improved upon the Moravec corner detector by
making it less sensitive to noise. The algorithm determines whether a small window around each pixel
p in an image contains a corner feature or not. This is accomplished by shifting each window by a small
amount and measuring the amount of change that occurs in the pixel values. The response value R is
computed for each pixel and if it exceeds a threshold value, the pixel is considered to be a corner. The

HCD algorithm is implemented as follows:

Step 1. Calculating the gradients I, I, :

oI

Ix =—=1I® KSobel:r
ox
oI
I, = i I ® Ksobely 2.1)

where I, and I, are the gradients of the image (/) at pixel (, y) in horizontal and vertical directions
respectively.

Step 2 . Calculating the products of the gradients :

Low = Lo Loy Ly = I Iy, Ly = Lo 1, 2.2)



Step 3 . These calculations are followed by Gaussian smoothing over window W to obtain matrix

M = Zx,yeW Lz Zw,yeW Loy = See Sey (2.3)
Zx,yEW Ly y Zx,yew Iy Szy  Syy
Step 4 . Once the matrix M is obtained, the response value R for each pixel is computed :
R = det(M) — k.tr(M)* (2.4)

where k is a constant whose value lies between 0.04 and 0.06.

Step 5 . Lastly, the corner measure R of each pixel is compared with a threshold T. The non-corners
get there R value replaced by 0 while the corner candidates retain their measure. The refined R is then
subjected to non-maximal suppression (NMS), which determines whether the center pixel’s R is the
local maxima among the 8-connected pixels. If true, the center pixel is deemed a corner. The HCD
pipeline, visualized as a directed acyclic graph (DAG) of computations, is illustrated in Fig. 2.1. The

output from one stage gets consumed by the subsequent stages in the pipeline.

1 0 -1
Ksobex=12 0 -2
0 -1
1 2 1
Ksobely=10 0 0
-1 -2 -1

1 1

KGauss= |1 1
1 1 1

Figure 2.1: DAG representation of the Harris Corner Detection (HCD) algorithm

The final R value obtained from the last stage is subjected to a threshold, followed by non-maximum

suppression. The quality of the detected corner candidates depends not only on the response function



computation but also on the threshold used to discern them. A high threshold will detect only very strong
corner candidates, while a low threshold will detect many false ones. Thus, finding the ideal threshold
becomes a trade-off between the number of undetected true corners and detected false corners. This
threshold varies from image to image. Fig. 2.2 shows corners detected for two grayscale test images of
256256 resolution.

Figure 2.2: Corner detection on house and block test images

2.1.2 Unsharp Masking Algorithm

The visual appearance of an image can be improved by sharpening the edges in the image. The
amount of unsharpness of its blurry duplicate becomes critical in determining the quality of the final
image. The blurred duplicate is subtracted away from the original to detect the presence of edges, cre-
ating the unsharp mask (effectively a high-pass filter). Computing a weighted sum of the image and its
blurred counterpart at pixels where both differ significantly in intensity, exaggerates the light and dark
edges of the transition. Contrast gets selectively increased along these edges resulting in a sharpened

image. The USM algorithm is implemented as follows :

Step 1 .The image is passed through Gaussian filters to produce blur across x-axis and y-axis direc-
tions.
Iyjura = Iorg @ Gaussian filter X
Lyiury = Iyiure @ Gaussian fliterY (2.5)

Step 2 . Then it is sharpened by taking weighted sum of the original and the resultant blurry image.

Isharp = Iorg'W + Iblury-W/ (26)

where W and W’ are scaling factors that control the level of sharpness to be introduced at later stage.



Step 3 . Finally, depending on whether the value of the mask is greater or less than the threshold,
the corresponding pixel from either the original input image or the sharpened image is chosen for the

output composite.

Imask = Iorg - Iblury (2-7)

Iorg, Imask < T'hreshold
Ifinal =

(2.8)
Isharps Imast. > Threshold

The USM pipeline, visualized as DAG, is illustrated in Fig. 2.3. The mask constitutes an interest
point descriptor. When compared with the threshold, it allows selection of pixels to be sharpened. This
makes threshold an important parameter in pruning such candidate pixels in order to avoid undesirable
artefacts. The algorithm was tested on images with the resolution of 1024 x 1024. Fig. 2.4 illustrates

the change from original image to the sharpened image.

Figure 2.4: From left to right : Original Image, Blurred Image, Image Mask, Sharpened Image



2.1.3 Lucas Kanade Algorithm

Motion estimation is the process of determining motion vectors that describe the transformation from
one image frame to the next. Motion estimation techniques are used in target tracking and monitoring.
The motion vectors may relate to the image or its pixels etc. whose projected motion is recovered
from intensity variation across frames. The Lucas—Kanade method is one such widely used differential
method for optical flow estimation. This method solves the basic optical flow equations for all the pix-
els in a neighbourhood by the least squares criterion. It assumes that the flow is small and essentially
constant in the local neighbourhood of the pixel under consideration and provides an estimate of its
movement in successive frames. By looking at changes in pixel intensity which can be obtained from

the intensity gradients of the image in that neighborhood, it makes a ”best guess” of its displacement.

Step 1 . Taking intensity gradients of the pixels in the observation window,
Lo (p1)Va + Ly(p1)Vy = —1e(p1)

L (p2)Ve + Iy(p2)vy = —1It(p2)

Ia:(pn)vx + Iy(pn)vy = _It(pn) (29)

here, p1, p2...p, are pixels inside the window under consideration and I, (py,), I, (pn), It(pn) are the
partial derivatives of the image I with respect to coordinates x, y and time t, evaluated at the pixel p,

and at the current time.

Step 2 . Reducing above equations to matrix form,

I (p1) Iy(pl) —Ii(p1)
Lo(p2)  Iy(p2) [V V} _ | —i(p2) (2.10)
x Yyl — :
Ix(pn) Iy(pn) - It(pn)
Ix,yvx,y = _It (211)

Step 3. Using least squares solution by giving more weight to the pixels that are closer to the central

pixel p,

Vo = (L, W) L WL 2.12)

here, W is the diagonal matrix containing weights for each pixel

Ve
Vy

1[ > wily(pn)? —ziwﬂapnﬂy(pn)] [— > wils (pa) It (pn)
D |- Zz wz‘[a:(pn)[y(pn) ZZ wifx(pn)Q - ; )



2
D= Zwilx(pnﬁ Zwin(an _ (Zwifw(pn)fy(pn)> (2.14)

Here V(= d,/d;) denotes the x component of pixel velocity and Vi (= d,/d;) denotes the y com-
ponent of pixel velocity. Solving for the two variables completes the optical flow problem. The Lucas-
Kanade method although linear in complexity, only works for small movements and fails when there is

large motion.

Figure 2.5: Optical flow vectors from Lucas Kanade Algorithm

2.1.4 Gaussian Pyramid Algorithm

The Gaussian pyramid is a recursive algorithm for creating a multi-resolution version of an image
until some stopping criteria are met. It consists of low-pass filtered, down-sampled images at successive
levels, where the base level is defined as the original image. Each element of the pyramid represents a
local average obtained by convolving the Gaussian kernel with the image from the previous level. Ap-
plied recursively, this algorithm generates a sequence of images, subsequent ones being smaller, lower
resolution versions of the earlier ones in the processing. Thus, the Gaussian pyramid contains local
averages at various scales. This feature of the pyramid has been leveraged for texture analysis and target

localization.

Keeping the Gaussian kernel same, at each step up level the image resolution is down-sampled by 2.

So if starting image size was 256 X 256 at level O in level 1 image size will be 128 X 128 and so on.
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Figure 2.6: Images from Gaussian Pyramid Algorithm

Let the original image be denoted by I,.,. The Gaussian pyramid is defined recursively as follows,

I()(.’L’, y) = Iorg

Li(z,y) = G.Li
Alternatively, the same result can be obtained by applying an equivalent Gaussian kernel W; directly
to the original image, followed by 1 down-sampling operations (D;), where | denotes the level number,
such that each Gj is the blur-and-downsample operator for level 1 and doubles in scale with each level.
Il(l’,y) = Dl-VVl~Iorg = Gl--[orgu (2.15)

where D; is the downsampling operator, W, is the Gaussian filter.



2.2 Multiplication operation in algorithms

The high number of multiplications involved in the image processing benchmarks discussed in the
previous section, makes them most amenable to usage of approximate multipliers. Algorithms involv-
ing convolutions scale up in computational complexity with the increase in the image or kernel size.
Introducing approximation in these operations leads to significant savings in power and area which will

be explored further in coming sections.

2.2.1 Dynamic Range Unbiased Multiplier

The DRUM proposed in [6] operates on n-bit operands and truncates them to & bits (k < n) from
the location of the leading one in both the operands. Assuming each operand has n bits, the design uses
two leading one detector (LOD) circuits to dynamically locate the most significant ‘1’ in each of the two
operands. For each operand, the location of the most significant ‘1’ is then used to select the following
k — 2 consecutive number of bits based on the required accuracy. Here, £ is a designer-defined value
which specifies the bandwidth used in the core accurate multiplier. If the leading one is detected at index
t, where 0 < t < n — 1, then we unbias the value of the remaining ¢t — k + 2 lower bits of the number by
placing ‘1’ at bit location ¢ — k 4 1 (the highest bit) and the remaining bits are set to zeros and truncated
leading to k-bits. If the leading ‘1’ is found within the least significant k bits of the operand, then the
least k bits are directly forwarded to the multiplier. These dynamically truncated k-bit operands are then

steered to the inputs of a kx k core multiplier (Wallace-tree).

Leading one at index t
Approximated |:>

D | e 0 T | e | o | o | e X X X

N bits
Truncated |::>

T e | e | e | e 1 0 0

Unbiasing

index
(t-k+1)

Truncated k bits

Figure 2.7: Truncation of operands to K-bits
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Finally, the 2k-bit result of this core multiplication is shifted to generate the final approximate result
of 2n bits. This bit-width reduction scheme reduces the size of the multiplier to be used while intro-
ducing error in the final multiplication result. The multiplier has been further qualified to handle signed
numbers by converting the signed operands to unsigned before forwarding them to the core multiplier.
The sign for the result is then calculated separately by the sign prediction logic and the output is negated
if necessary. The hardware design is composed of LOD blocks, encoders, multiplexers, barrel shifter

and a core multiplier, seen in the Fig. 2.8.

Operand 1 Operand 2
\\I'I n
Y Y

S
—
Q
[}

S

S
—
Q
[}

S

4
/  ENCODER % /  ENCODER %

log n .-/H\'-. log n
L d LY
-y N v

= =
2k

A

Figure 2.8: DRUM Multiplier

While there are a plethora of available approximate multipliers to choose from, DRUM was chosen
because of its easy scalability. The architecture also allows use of preferred designs for the core mul-
tiplier. While its routing logic grows with the input size, the arithmetic logic does not need to grow
to higher bandwidths to maintain computational accuracy, which reduces the increase in the area and

power costs, making the achieved benefits more substantial.
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Chapter 3

Approximation Methodology for Harris Corner Detection

From the baseline implementation of HCD, it can be observed that the bit-width increases due to
the operations involved at each pipeline stage. In addition, the high number of multiplications result in
increased computational complexity. Several previously reported attempts have aimed to optimize the
inter-stage bit-widths via truncation or rounding-off during run-time. However, none have reported the
use of an approximate multiplier. In this section, we aim to approximate HCD at the hardware level by
dynamically changing the precision of intermediate multiplier inputs using the DRUM multiplier. We
used fixed-point data type representation for the data produced and consumed at various stages of the

pipeline, fixing the integral and fractional bit-widths to 10 and 6 respectively.

3.1 Implementation of Pipelined HCD

The HCD algorithm requires two kernels to perform convolution with the image pixels. There is the
Horizontal Kernel X and Vertical Kernel Y:

(a) Convolution with X Kernel (b) Convolution with Y kernel

Figure 3.1: Convolution with image
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Image pixels from the test bench are sent to the main HCD module. Inside the HCD module a line
buffer stores the values of the image pixels. The size of the line buffer is set to 3*256. This makes sure
that the convolution with the kernels is stalled until atleast three rows of pixel data has been sent to the
module. Once the required data is available in the line buffer, the convolution starts operating on each
pixel. The data is fetched from the line buffer in tiles of size 3*3 and convolved with kernels X and Y.
The results of each convolution are further processed to compute the response function. The comparison
of the response function with the threshold records corner pixels with value 255 and non corner pixels
with value 0. This data is then sent to the output stream. The quality of corner detection depends on the
threshold selected to qualify the corner pixels. Upcoming section will discuss the process of threshold

selection in detail.

Window
e

122 106 188 167
131 120 175 207

138 135 199 204

183 171 208 199 251 0 0 0 163 273 235 0
162 244 207 184 208 168 213 307 187 299 183
162 246 163 239 238 222 171 220 394 0 231 0

T T

Figure 3.2: Pixels of an image processed using Line Buffer and Kernel Window

o

3.2 Proposed Approximation Strategy for HCD

The DAG from Fig. 2.1 makes use of both convolution and pointwise operations. The multiplications
in these computations are independently targeted for approximation by using DRUM of different bit-
width (k). Table 3.1 shows the computations at each stage of the DAG and the operations involved.

Operands Operation Stage Output
I, Koper Convolution I, 1,
I, 1, Pointwise Multiplication | Iz, Iy, Iy
Liws Ly, Iy, Kgauss Convolution Szzs Syys Szy
Szzs Syy» Szy Pointwise Multiplication R

Table 3.1: Operations involved at each stage of HCD

To obtain the response R for a pixel P (bit-width 8) requires close to 50 multiplication operations, 45
of which are for the convolution stages alone. This heavily skews the balance of inaccuracies resulting

from the two categorical operations towards the convolutions.
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3.3 Operational Error Propagation

Analyzing the different operations involved in the HCD algorithm, we derived the equations for
error in their outputs. In Table 3.2, errors resulting from inaccurate convolution (C) and pointwise
multiplication (M) are used to derive the error propagation from one HCD stage to the next. To this end

we applied the statistical error analysis for basic arithmetic operations and added the mean error due to

approximate DRUM multiplications on top.

Operation | Operands Error
C I, Kgoper AC:ZK ’KZ‘AIZ—FZK em
M I, 1, AM = I, AL, + I,.Al, +ep,
C—M 1,1, AM' = AC.(I + 1) + e,
M= C | L, Kjquss AC’:ZKQ AM’—i—ZKg em

Table 3.2: Error Propagation due to Approximated Operations

In addition to the operational analysis, error introduced by the DRUM multiplier was also considered.

Fig. 3.3 plots the mean multiplication error e,, as a function of DRUM bit-width k, constrained between

the maximum and minimum limits as discussed in [6].

09H

0.8

m
B

Mean Multiplication Error e

Figure 3.3: Mean Multiplication Error for different values of k

The trend shows an increase in e,, for bit-widths lower than 8, thereby hinting at output quality
degradation. This observation combined with the equations in Table 3.2, imply that error introduced
due to convolution (using k; bit-width DRUM) strongly impacts later stage pointwise multiplications
(using ks bit-width DRUM). As we go across the HCD pipeline, the transition from convolution to

multiplication occurs twice whereas the transition from multiplication to convolution occurs only once.

8 10
DRUM bit-width k
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Therefore, a high AC due to lower k1 will create an error compounding effect. On the other hand, lower
ko only produces an additive effect. Aggressively targeting convolutions can therefore become counter-
productive as bit-width & is drastically reduced. This called for moderation in bit-width reduction and
cemented our intuition of keeping k; higher than ks to prevent undesirable quality loss, the validity of
which is confirmed in the experimental results section.

The proposed approximation strategy is applied and results with varying accuracy profile across
different k1, ko combinations are obtained. It is observed that subjecting the inaccurate R to a pre-
determined empirical threshold (typically a large positive value) causes large number of false corner
candidates to pass on to the NMS stage, where pseudo corners and corner clusters manifest. This
threshold, which normally varies from image to image, is found to be inadequate for varying accuracy
results for the same image. Thus, requiring a revised approach to its selection.

3.3.1 Modified Response Function and Threshold Selection

When the response function obtained from approximated HCD setups was treated with a single
threshold (roughly estimated via trial and error), it resulted in large number of false corners as seen in
the figures of Table 3.3.

HCD(15,15) HCDG8,8)

Table 3.3: Corners with arbitrarily large threshold

This further becomes evident from the visualization of the response function values in Fig. 3.4.

600 T T T T T

400

Figure 3.4: Original Response Function of Objects Image from HCD(8,8)
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In the current work we propose a method based on further manipulation of the response function
R. We defer the comparison of R with the threshold and perform a stencil computation instead. The
R is subjected to weighted manipulation of its neighborhood values using a 3x3 stencil centered on the
current value. The corner values are given a weight -1 and the immediate neighbors are given the weight
1. This operation changes the R from equation (2.4) to the modified response function R, in equation
(3.1).

=

Figure 3.5: Pixel neighbours and corners

Ry =Ri+ > R(z,y)— > R@.y) (3.1)

z,yEN; ' y'eC;

where, R is the original response function value for a given pixel, R(x,y) are the response function
values for pixels at neighboring locations and R(z’,y’) are response function values of corner pixels.

Fig. 3.6 illustrates the change from original R to R ;.

-
© o
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o (=)
]

Response Function R

©
o
o

3500 b

3000 [

Modified Response Function RM

| || ‘ 1 ‘ ‘ 1 ‘l I‘
3.4 3.6
Pixel x10%

2500 1 ||| 1 | ‘ ‘1 " ‘IJ ’
2.6 2.8 3 3.2

Figure 3.6: Comparison between the I and R, for Block image from HCD(8,8)
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Where earlier the use of a coarsely determined threshold did not differentiate weak corners from
strong noisy points, the proposed kernel operation makes a marked difference in their R ;s values making
it much easier to nail down an optimum threshold value. Since this operation is performed using an
accurate multiplier, the error ARj; computes to equation (3.2) which doesn’t add any error on top of

what has already propagated to the R values used in equation (3.1).

ARy = [ (AR;)? (3.2)

7

The modified DAG with R, update can be seen in the Fig. 3.7.

Figure 3.7: DAG representation of modified HCD algorithm

There are clear advantages to our approach. Since the R is specific for a given image, the proposed
approach is able to adapt to different images. Due to effective thresholding of 25, values, the number

of corner clusters to be processed by non-maximum suppression is also drastically reduced.
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3.4 Experimental Results and Comparative Analysis

In this section, we will provide experimental results and performance evaluations for the proposed
HCD implementation. We use fixed-point data type representation for the data produced and consumed
at various stages of the pipeline, fixing the integral and fractional bit-widths to 10 and 6 respectively.
The inbuilt multiplier function available in the BSV environment is used for the baseline implementation
of original HCD algorithm. We examine the impact of changing the k1, k2 on the output of the proposed
implementation. We also evaluate the design in terms of resource, power and speed of operation. All

characteristics are reported post Place and Route.

3.4.1 Comparative works

For comparison purposes, we have selected two HCD implementations on the Avnet Zedboard de-
vice explored in [4] and [13].

[4] explores the Harris algorithm, eliminating the repeated corner features in a local area using a
binary feature window. Once a feature candidate is found, it then propagates in a binary feature window
which disregards any candidates that come later. Since the classical non-maximum suppression method
requires a window of Harris response scores, utilizing a binary window largely reduces the hardware

resources required.

[13], on the other hand, focuses on reducing the logic resource consumption of HCD algorithm by
performing fixed-point computations on optimal bit-width arguments. Additionally, the Harris response
of feature candidates is set to 255 and those that do not qualify are set to 0. Unlike the traditional non-
maximum suppression using a matrix of Harris response value, using 255 and O reduces logical resource
required and does not affect the performance of the algorithm. This implementation also allows setting

multiple thresholds in order to control the corner output.

The challenge of eliminating the repeated corners in a local pixel space, as discussed in [4], is
akin to the challenge faced in approximate HCD setup to refine the corner candidates using modified
response function. Making this modification a part of the pipeline ensures that our algorithm doesn’t
need any extra delay time. Additionally, our algorithm focuses on finding the optimal DRUM bit-
width for operands to meet the required accuracy, in contrast to the bit-width optimization of arguments

discussed in [13].
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3.4.2 Resource Utilization

The baseline and proposed HCD architectures were implemented using Bluespec SystemVerilog
(BSV) and synthesized on Zyng-7000 and Xilinx Virtex-7 FPGA devices using Xilinx Vivado 2018.3
ISE software. Table 3.4 presents resource costs for different HCD setups on the chosen devices. To
enhance the speed of our implementation, we used pipelined line buffers alongside the pipelined DRUM
instances and the associated routing logic. This contributed to increased Look-Up Table (LUT) and Flip
Flop (FF) utilization compared to the baseline. However, in contrast to the baseline and the approaches
in [4] and [13] for 640x480 images, our approximate design exhibits nil BRAM and DSP usage and

achieves a better throughput even at reduced accuracy as seen in the next section.

Device ki, ko LUTs FF BRAM | DSP

8.8 18.220 | 20.151 0 0

8,15 26.965 | 20.187 0 0

Viretx-7 10,10 | 24.910 | 19.090 0 0

15,8 27.463 | 19.476 0 0

xcTv585ttfg1157-2 15,15 36.105 | 19.514 0 0
Baseline | 5.078 | 2.165 0.755 | 4.127

8,8 34.612 | 22.576 0 0

8,15 41.877 | 23.351 0 0

Zynqg-7000 10,10 | 37.961 | 23.318 0 0

15,8 43,740 | 23.444 0 0

xc7z045tfv900-2 15,15 | 50.355 | 23.508 0 0
Baseline | 8.462 | 3.607 1.101 5.778

[41* 17.82 3.88 7.246 0
x¢c72020-c1g484-1 [47** 1.836 | 0.622 7.246 | 50.00
[13] 33.00 2.20 53.57 | 25.00

*without DSP. **with DSP.

Table 3.4: Percentage Resource Utilization for HCD on Virtex-7 and Zyng-7000

3.4.3 Power and Timing Analysis

To emulate real design behavior in a software environment, synthesis and implementation was further
qualified by performing simulation in the Xilinx Vivado tool. The SAIF (Switching Activity Interchange
Format) from the simulator was back-annotated into the Xilinx power analysis and optimization tools
for the power measurements and estimations. Table 3.5 below captures the power, maximum speed and
throughput figures for different HCD setups synthesized and implemented on Virtex-7 and Zyng-7000
boards.
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k1,ko Virtex-7 Zyng-7000
Power | Fa: | Throughput | Power | Fpa. | Throughput

8,8 1.344 211 46 1.094 209 46
8,15 1.608 203 42 1.511 205 45
10,10 1.430 209 44 1.132 206 45
15,8 1.802 204 42 1.418 203 44
15,15 2.145 200 41 1.966 200 43
Baseline 0.376 125 27 0.333 125 29
[41* 30
Comparative works [471** 44
[13] 47

Table 3.5: Power(W), Fa:(MHz) and Throughput (Megapizels/sec) for HCD on Virtex-7 and
ZYNQ-7000

As evident from the data, our proposed solution offers a significant speed boost compared to the base-
line implementation. Additionally, Fig. 3.8 shows that our approximate architecture rivals the through-

put performance from [4] and [13].

50
45
40
35
30
25
20
15
10

Figure 3.8: Throughput for HCD architectures on Virtex-7 and Zyng-7000

3.4.4 Output Quality Analysis

Evaluation of the proposed architecture is of paramount importance as the multiplier bit-width re-
duction affects the corner detection capability. The performance of different implementations on the
selected grayscale test images is shown in Fig. 3.9, where the output exported form the BSV testbench
has been plotted using MATLAB’s image processing toolbox. The MATLAB (R2021a version) results
indicate that the corner detection is increasingly impacted by the inaccuracy introduced.
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(a) Baseline (b)HCD(8,8) () HCD(8,15) (d)HCD(10,10) (e) HCD(15.8) (HHCD(15,15)

Figure 3.9: Corner Detection for House and Block image for baseline and approximate HCD implemen-
tations

The squares in the figure indicate corner features detected by the baseline and our proposed im-
plementation of varying accuracy. It can be observed that the approximate result does not follow the
baseline result with high fidelity. In fact, as predicted in Section III, with decreasing k1, ko increase in
false corners is observed. Also, we see more degradation in the quality of corners detected for lower
k1 setup. This can be confirmed by comparing results with complementary k1, ko setting. With highly
inaccurate convolutions accompanied by later stage error compounding, HCD(8,15) result in Fig. 3.9¢c
reports higher count of false corners compared to HCD(15,8) result in Fig. 3.9e. Therefore, it can be
rightfully expected that the performance will only get worse below bit-width 8. To verify this, we have
adopted the Accuracy (ACU) criteria from [15] to quantify the observed performance variation across

implementations.

Ny 4 Ny
g

ACU = 100 x % (3.3)

where IV, is the total number of corners detected by an HCD setup, [V, is the total number of corners
in the ground truth and N, is the total number of matched corners. Depending on the application
requirement, lower than permissible ACU may deem the proposed architecture unsuitable below its
corresponding bit-width. For the purpose of evaluating the AC'U figure, only strong corners were
considered as ground truth. Higher accuracy metric requires that matched corners should be detected
as close as possible to these ground truth corners. To this end, Euclidean distance between them was
computed and thresholded. If this distance crossed the threshold, the detected corner was not counted.
Fig. 3.10 presents the ACU figure for HCD setups where both k1 and ko were set to the same value.
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ACU %

Figure 3.10: Accuracy for implemented HCD(k1,k2), from k; = 7 plot line on the left to k; = 15 plot

line on the right

Looking at the different ACU plot lines, one can discern the bit-width range required to meet the
needs of an application using our proposed design. The low ACU measure quantifying the increase in
false corner detection, gives an idea about the expected degradation in performance at lower accuracy.

For HCD setups with DRUM bit-widths less than 9, the unusual distribution of corner points is found to

be of little use for feature identification.
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Chapter 4

Approximation Methodology for Unsharp Masking

In this section, we aim to approximate USM algorithm at the hardware level by dynamically changing
the precision of intermediate multiplier inputs using the DRUM multiplier. We used fixed-point data
type representation for the data produced and consumed at various stages of the pipeline, fixing the

integral and fractional bit-widths to 10 and 6 respectively.

4.1 Implementation of Pipelined USM

The USM algorithm can be visualized as a filter that amplifies the high-frequency components of
an input signal. The algorithm comprises of four pipelined stages and was tested on images with the
resolution of 1024 x 1024. The first two stages perform a Gaussian blur of the original input image
along the x and the y directions subsequently. The kernel for blurring the original image across x-axis

and y-axis directions can be seen below.

0.04 0.04 0.04
0.04 0.04 0.04
0.04 0.04 0.04

Figure 4.1: Kernel used for blurring along both X and Y axes

Image pixels from the test bench are sent to the main USM module. Inside the module a line buffer
stores the values of the image pixels. The size of the line buffer is set to 3*1024. This makes sure that
the blur operation with the kernel is stalled until atleast three rows of pixel data has been sent to the
module. Once the required data is available in the line buffer, it is fetched from the line buffer in tiles of
size 3*3 and convolved with the blur kernel. Once the blurred data I, starts coming, it is then used
to compute I4; ¢ and Igp4,p. The comparison of the I ¢ ¢ data with the threshold decides which pixels
would be substituted with their sharpened counterpart from Ip,,,,. The processed data is then sent to

the output stream.
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4.2 Proposed Approximation Strategy for USM

The DAG from Fig. 2.3 made use of both convolution and pointwise operations. The multiplications
in these computations are independently targeted for approximation by using DRUM of different bit-
widths : k1 for convolutions and k9 for pointwise multiplications. Table 4.1 shows the computations at

each stage of the DAG and the operations involved.

Operands Operation Stage Output
I, K jauss Convolution 1,
Iz, Kgauss Convolution I,

I, W, I, | Pointwise Multiplication and Subtraction Lyiry

Table 4.1: Operations involved at each stage of USM

To obtain the sharpened pixel for a pixel P requires close to 20 multiplication operations, 19 of which
are for the convolution stages alone. This again heavily skews the balance of inaccuracies resulting from

the two categorical operations towards the convolutions.

4.3 Operational Error Propagation

Analyzing the different operations involved in the USM algorithm, we derived the equations for
error in the sharpened output. The blurring operation was found to require convolution operations
and the subsequent stage of computing the weighted sum of the resultant blur was found to require
pointwise multiplications. In Table 4.2, errors resulting from inaccurate convolution (C) and pointwise
multiplication (M) are used to derive the error propagated to the final USM stage depending on I ¢-
threshold comparison. Thus, the USM setup also uses two DRUM instances with bit-widths k; and
kg.

Operation | Operands Error
C I7Kgauss AC:ZKg |KZ‘AIz+ZKg €m
C—-C I, K gauss AC’:ZKQ AC—FZKQ em
M I,W AM = |W|.AI + ey,
D 1,1, AD = \/(AM)? + (AC")?

Table 4.2: Error Propagation due to Approximated Operations in USM

To classify a pixel P for sharpening effect requires close to 20 multiplication operations, 19 of which
are for the convolution stages alone. This again heavily skews the balance of inaccuracies resulting

from the two categorical operations towards the convolutions. As we go across the USM pipeline, the
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transition from convolution to multiplication makes it evident that high values of AC and AC” due to
lower k1 create an error compounding effect at the /4 fy computation stage. This creates the possibility
of pixel mis-classification which can lead to overshoot artefacts or noise amplification. Once again we
arrived at the same conclusion, that of keeping k; higher than ks in order to prevent undesirable quality
loss in the sharpening effect, the validity of which is confirmed in the experimental results section.
This approximation strategy was applied and results with varying accuracy profile across different
k1, ko combinations were obtained. Just like HCD, USM output quality was found to depend on the
threshold value used for pixel classification. The approximations introduced due to varying DRUM bit-

widths make the threshold choice even more critical. The effect of different threshold values becomes

obvious from the “sharpened* images shared in the Fig. 4.2.

Figure 4.2: Sharpened outputs from USM(15,15) with different threshold values (A < B < C). From
left to right : Original, Sharp(A), Sharp(B), Sharp(C)

From these images it becomes clear that the threshold in USM cannot be arbitrarily chosen. An
extremely low or high value of threshold results in undesirable image deterioration. Therefore, threshold
is probably the most important control to get right. Recalling the equation 2.8, it becomes imperative
to find the optimum threshold value. In simple terms, the purpose of the threshold is to dictate how
different two pixels need to be for sharpening to be applied. It is rather pointless to sharpen each pixel
in the image. This calls for threshold adjustment where the user aims to find the balance between detail
and noise. A threshold low enough to sharpen the important details in the image, but high enough not
to sharpen any unwanted noise, somewhat like Sharp(B) from Fig. 4.2.
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4.3.1 Adaptive Threshold Selection

In search for the optimum threshold, the approximate USM setups were subjected to a range of
threshold values. To quantify the visual perception of resulting sharpening effect, Structural Similarity
Index (SSIM) metric for each of the “sharpened” outputs was computed with respect to the original
input image. This metric assesses the degradation of structural information in the sharpened image in
comparison with the original. This information is of interest to us as we wish to avoid degraded outputs

with “’sharpened” noise elements.

Threshold | SSIM | Threshold | SSIM
10 0.60 60 0.89
20 0.61 70 0.86
30 0.63 80 0.82
40 0.72 90 0.79
50 0.85 100 0.76

Table 4.3: SSIM variation with different thresholds for USM(10,10) setup

Threshold 10 Threshold 20 Threshold 30 Threshold 40 Threshold 50

Threshold 60 Threshold 70 Threshold 80 Threshold 90 Threshold 100

Table 4.4: Sharpened outputs from different threshold values

This SSIM data gives the user an idea about the permissible threshold range to be chosen for a given
image. In case an erroneously large or small threshold is chosen and the SSIM of the sharpened output is
found to be unacceptable, the threshold can be adapted to a more suitable value adhering to the required
performance standards.

From the data in table 4.3 and its visual representation in table 4.4, it becomes obvious that a thresh-
old in the range 50 < T < 70 offers the best chance at getting an aesthetically pleasing effect from
sharpening. The best thing about this approach is that it works well for USM setups with varying de-
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grees of approximation. The USM pipeline making use of the SSIM check for adaptive threshold update,
visualized as a directed acyclic graph (DAG) of computations, is illustrated in Fig. 4.3.

Figure 4.3: DAG representation of the Unsharp Mask (USM) algorithm for adaptive threshold selection

Seen in the figures below, is the varying degrees of sharpness produced by the USM setups (with
different DRUM bit-widths) when subjected to an optimum threshold value.

Figure 4.4: Sharpened outputs for man image. From left to right : USM(15,15), USM(15,8),
USM(10,10), USM(8,15), USM(8,8)

Figure 4.5: Sharpened outputs for airport image. From left to right : USM(15,15), USM(15,8),
USM(10,10), USM(8,15), USM(8,8)

Where earlier the use of a coarsely determined threshold led to overshoot artefacts, the proposed
SSIM based adaptive approach keeps these in check while adhering to output quality requirements. Fig.
4.4 and 4.5 shows the varying degrees of sharpness produced by the USM setups (with different DRUM
bit-widths) when subjected to an optimum threshold value. There are clear advantages to our approach.
The proposed approach is able to adapt to different images. Furthermore, due to effective thresholding

the characterization of pixels for sharpening effect is more robust.
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4.4 Experimental Results and Comparative Analysis

In this section, we will provide experimental results and performance evaluations for the proposed
USM implementation. We use fixed-point data type representation for the data produced and consumed
at various stages of the pipeline, fixing the integral and fractional bit-widths to 10 and 6 respectively.
The inbuilt multiplier function available in the BSV environment is used for the baseline implementation
of original USM algorithm. We examine the impact of changing the k1, ko on the output of the proposed
implementation. We also evaluate the design in terms of resource, power and speed of operation. All

characteristics are reported post Place and Route.

4.4.1 Resource Utilization

Table 4.5 presents resource costs for the baseline and proposed USM architectures on the Zyng-7000
and Xilinx Virtex-7 FPGA devices. To enhance the speed of our implementation, we used pipelined line
buffers alongside the pipelined DRUM instances and the associated routing logic. This contributed to
slight increase in LUT and FF utilization compared to the baseline. However, in contrast to the baseline
implementation, our approximate design exhibits nil DSP usage and achieves a better throughput even
at reduced accuracy. Thus, striking a good balance between performance and resource utilization.

Device ki,ko | LUTs | FF | BRAM | DSP
8,8 7.301 | 3.341 | 0.642 0
8,15 9.105 | 3.882 | 0.642 0
Zynq-7000 10,10 8712 | 3.782 | 0.642 0
xc7z045ffv900-2 15,8 9.230 | 3.985 | 0.642 0
15,15 10.133 | 4.085 | 0.642 0
Baseline | 1.555 | 0.798 | 0.642 1
8,8 5951 | 3.167 | 0.440 0
8,15 7.102 | 3.177 | 0.440 0
Viretx-7 10,10 6.106 | 3.162 | 0.440 0
xc7v585ttfg1157-2 15,8 7.132 | 3.189 | 0.440 0
15,15 7.374 | 3.194 | 0.440 0

Baseline | 0.933 | 0.479 | 0.440 | 0.714

Table 4.5: Percentage Resource Utilization for USM on Virtex-7 and Zyng-7000
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4.4.2 Power and Timing Analysis

Table 4.6 below captures the power and maximum speed figures for different USM setups syn-
thesized and implemented on Virtex-7 and Zyng-7000 boards. The SAIF file from the simulator was

back-annotated into the Xilinx power analysis and optimization tools for the power measurements and

estimations.
k1, ko Virtex-7 Zynq-7000
Power | Faz | Throughput | Power | Fia: | Throughput
8,8 0.450 261 47 0.498 265 59
8,15 0.630 253 41 0.612 255 55
10,10 0.556 257 43 0.503 261 56
15,8 0.651 250 39 0.607 250 52
15,15 0.762 250 39 0.715 250 51
Baseline | 0.279 125 27 0.235 125 36

Table 4.6: Power(W), Fina.(M Hz) and Throughput (Megapixels/sec) for USM on Virtex-7 and
ZYNQ-7000

4.4.3 Output Quality Analysis

In corner detection, we have a given number of ground truth corners for an image and approximate
HCD setups are qualified using ACU metric on the basis of matched true corners. But in USM, we do
not have such ground truth “sharpened” state against which we can qualify the approximate sharpened
outputs. This in turn made us focus on the sharpening of wrong pixel candidates. Inaccuracy in comput-
ing a pixel value from the sharpen stage resulted in mis-classification during the final stage of the USM

DAG when subjected to optimum threshold.

To quantify this, we relied on an error metric that is the percentage of pixels that were mis-classified.
For accuracy estimation in USM setups, this mis-classification index (MI) was evaluated with respect
to the output from golden setup using inbuilt multiplier function. All approximated USM outputs were

computed using the optimal threshold.
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Mis-classification Index %

As expected, the MI % turns out to be close to 0 for high fidelity outputs and increases gradually
with the bit-width reduction. Permissible MI of 30-40% allows the user to reduce the bit-width of the

DRUM to 8, thus reducing power and resource overhead while increasing the speed of operation.
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Figure 4.6: M1% for implemented USM(k1,k2)
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Chapter 5

Conclusions

In this thesis, we have presented an approximated pipelined FPGA architecture to implement HCD
and USM algorithms. The approximation has been realized using an approximate multiplier, with the

aim to achieve desired performance levels from highly accurate to tolerably inaccurate.

The derived mathematical relationships between the pipeline operations and their statistical errors
offered a robust analytical framework, independent of the application under consideration. As a result,
this analysis can be applied to other algorithms such as Lucas Kanade and Gaussian Pyramid, whose
equations 2.13 and 2.15 bear resemblance to the matrix computations for HCD (2.3).

The usage of DRUM offers easy scalability for higher input bit-widths. And the approximation
strategy can be changed by using a different core multiplier inside DRUM or targeting a different op-
eration (for instance, addition). The proposed approximate architecture utilized less than 50% of the
resources of the Xilinx Virtex-7 and Zynq-7000 FPGA platforms. The usage of pipelined line buffers
and pipelined DRUM instances contributed to increased LUT and FF utilization compared to the base-
line implementation. However, our approximate design achieved good balance with the improved speed

and throughput even at lower accuracy.

With a system clock of 200MHz and 250MHz at their most accurate setting, the approximate HCD
and USM designs offered increasing F,,,, with decreasing accuracy. Even at lower accuracy levels our
HCD design outperformed [4] in terms of throughput and matched the performance of [13]. The per-
formance was found to be sufficient for coarse object localization and tracking. When compared with
analogous accurate implementations of HCD on other FPGA devices, the BRAM and DSP usage of
our design was found to be the least. Similarly, the USM approximate design when compared with the
base implementation, reported nil DSP usage. The design outperformed the baseline implementation in

terms of speed and throughput with only slight increase in power.
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Thus, the proposed HCD and USM designs with certain accuracy configurations achieved the best
trade-off in accuracy, speed and power. Synthesis results show that the proposed implementation
achieves over 60% increase in maximum frequency compared to the base implementation. The HCD
and USM architectures were further qualified using application specific metrics such as the ACU and
MI respectively. The analytical results showed that these metrics can be instrumental in determining
the permissible bit-widths for the DRUM instances at different pipeline stages to achieve desired output

quality.
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