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Abstract

Accessibility to text for machines i.e. for downstream tasks, has been improved greatly using main-
stream NLP tasks such as Machine Translation and Summarization. In this dissertation, however, we
delve into two lesser-explored research areas: Text Simplification (reducing the linguistic complexity
of text) and Conversation Disentanglement (extracting individual conversation threads from multi-party
dialogues).

We pursue text simplification by analyzing the claim of utilizing control tokens in input text to pro-
duce simplified versions with precise variations along key text attributes [1]. The effect of control tokens
on simplifications was isolated individually and in particular combinations through dedicated models.
We show that though control tokens can help mold the outputs closer to the target simplifications, they
often cause undesired interactions between control tokens and text attributes as well as within control
tokens. This sometimes results in outputs being trivial source text variants that adhere to the control
token constraints but do not furnish true simplifications. We offer methods to curb some of these trivial
outputs e.g. masking named-entities to shield them from unwanted replacements and to curb the extent
of data sparsity using pre-trained input embeddings. Our modifications produce fewer trivial outputs
and show better resilience to unseen contexts.

As part of our work in conversation disentanglement, we explore the most widely used expert-
annotated resource in the field: Ubuntu-IRC (IRC) dataset [2]. We question IRC’s utility for training
generalizable models for other domains which currently lack similar large-scale, high-quality datasets,
e.g., meeting transcripts & movie dialogues. We address this concern by analyzing IRC for poten-
tial sources of platform-based specificity. We find that using direct mentions (explicit references to a
message’s recipient) in IRC is one such instance of platform specificity that occurs abundantly in the
dataset. To measure its impact on model performance, we create Ubuntu-IRC-Hard – a variant of IRC
without direct mentions. We show that the performance of past approaches (and proposed baselines)
degrades significantly without direct mentions. An in-depth analysis of models is conducted using
qualitative metrics based on dialogue properties which reveal brittleness and variations among models
across properties. We introduce two methods that leverage these insights to alleviate this brittleness: (i)
A weighted-loss formulation to better represent less frequent sub-ranges of dialogue properties in the
data, and (ii) An informed-ensembling technique that determines a subset of models best suited for each
property sub-range. Both methods surpass SOTA [3] performance and score more consistently across
dialogue properties.
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Chapter 1

Introduction

1.1 Preamble

The amount of text available in the World on various platforms is increasing rapidly through books,
websites, social media apps, official documents, etc. However, not all text is equally easy to access,
specifically for machines to process and utilize for downstream tasks. Improving text accessibility
for machines spans across different axes e.g. translating text to a familiar language, distilling to a
manageable length, or simplifying to aid comprehension.

Simplification of any form of text involves identifying any relevant underlying structure and
making it apparent. For instance, for sentence level simplification, the underlying structure constitutes
the syntactic tree, detailing the different clauses in the sentence. Upon segmenting the sentence along
these clauses, the resultant chunks of text are more suited for interpretation. Alternatively, simplification
may also involve the elimination of noise. In sentence simplification, the use of elitist words or any
purposeful obfuscation act as noise and impedes comprehension. Therefore, for downstream tasks,
sentence level simplification often serves as a text regularization step.

Similarly, consider an online chatting platform like the Internet Relay Chat which records incoming
messages of a multi-party conversation in a linear fashion. Here, the complexity arises for a downstream
system, from the fact that multiple users are conversing with each other, wherein, a user may be actively
involved in multiple disjointed conversation threads. Without explicit information regarding which mes-
sages belong in a thread, or which user is being addressed in an utterance, crucial information may be
lost for any downstream discourse comprehension task. The underlying structure here of course is the
thread structure, which needs to be made apparent. Alternatively, from a simplification-as-denoising
perspective, such a multi-party conversation is posed as a noisy-room setting. In the process of com-
prehending each thread, messages and active users belonging to other threads act as noise, each thread
needs to be disentangled (conversation disentanglement).

Despite their differences, both sentence simplification and conversation disentanglement aim to
make a discourse more comprehensible. Text simplification aids sentence-level comprehension, while
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conversation disentanglement aids in isolating individual discourses in the first place. Both techniques
have the potential to make text more accessible for further processing or inference.

For instance, text simplification can be used to improve the performance of downstream NLP tasks,
such as machine translation and summarization. Similarly, conversation disentanglement can be applied
to improve the performance of discourse understanding systems. Therefore, through this thesis, we
record our contributions towards sentence simplification and conversation disentanglement, which can
make text better accessible to a plethora of tasks.

1.2 Scope of the Thesis

This section briefly describes the two tasks mentioned earlier and identifies important areas for fur-
ther research. We then outline the specific directions explored in this thesis and our contributions to
these areas.

1.2.1 Text Simplification

Text Simplification (or Sentence Simplification if specified) is the task of making text easier to com-
prehend i.e. improving its readability. This may be done by modifying various attributes of the text,
such as using simpler words (more generic terms in place of technical or domain-specific terms), break-
ing down extremely long sentences into smaller, more manageable chunks, and using more familiar
syntactic structures (e.g. omitting the use of highly nested constructions). These transformations can
make understanding text easier for young or second-language learners or people with cognitive impair-
ments. As simplification of text is closely associated with human familiarity with certain vocabulary
and writing styles and remains to be a fairly subjective task (i.e. no single text is the true simplified
form), the high-quality datasets for text simplification contain multiple simplified references for every
complex source text.

Text simplification has largely been modeled as a monolingual machine translation task, with
initial works making use of statistical machine translation [4] and later shifting to deep contextualized
Seq2Seq models. However, as many instances of simplification involve modifying only a few words in
the source text, the expected simplifications often closely resemble the source. This creates a significant
bias for most Seq2Seq models to trivially predict the complex source as the output. To address this,
the ACCESS model [1] proposes the use of control tokens to allow translation models to better encode
individual text transformations such as shortening of text, a certain degree of paraphrasing, and lowering
of the average lexical and syntactic complexity. Their method is shown to outperform past approaches
on the WikiLarge corpus. With this approach in mind, we enumerate a few directions of research worth
exploring:

1. Creating more large-scale aligned datasets, incorporating detailed information on the textual
transformations relevant to simplification e.g. lexical and syntactic complexity.

2



2. Analyzing and improving the control over fine-grained aspects of the simplified text produced.

3. Developing modeling techniques that represent sentence-level simplification better than the widely
used Seq2Seq models e.g. edit-based methods.

This thesis focuses on direction 2. We assess the ACCESS model [1] to better understand the role of
control tokens in tuning the simplifications produced. We identify points where the claimed effect of the
control tokens on their respective attributes breaks down and propose methods to curb this mismatch.

1.2.2 Conversation Disentanglement

Dialogue (or Conversation) Disentanglement, i.e. the partitioning of utterances in a multi-party
dialogue by their respective conversation threads, is a crucial sub-task for modeling end-to-end dialogue
systems as well as providing a better interface to chat-room conversations e.g. in WhatsApp groups.
However, the manually supervised data required for this task requires lengthy and granular reviews, with
utterances in a chat set apart by hundreds of potentially linked messages. Additionally, the task remains
subjective to a degree, with annotators often disagreeing upon exact thread partitions. Although there
have been efforts to extract thread partitioning without manual annotation, such as utilizing the reply
structure of platforms with built-in thread conventions e.g. Reddit, or artificially entangling single or
two-party conversations, these attempts fail to produce organic distributions.

The primary dataset for the scope of our thesis contributes significantly to this end. The Ubuntu-IRC
dataset [2] contains over 70,000 messages collected from the #Ubuntu channel from the Internet Relay
Chat, with each message annotated for their reply-to relation. With additional dialogue context for each
session (to avoid trivial thread initiations) and adjudicated annotations, the IRC dataset is presently the
only large-scale expert-annotated dataset for dialogue disentanglement.

Therefore, though it is necessary to develop high-quality data across domains other than IRC, it is
equally imperative to maximize the usability of the Ubuntu-IRC dataset for the analysis of dialogue
platforms and training & evaluating disentanglement models until an ample variety of datasets is made
available. Taking this into account, we provide a consolidated list of research directions worthy of
exploration for furthering our understanding and ability in conversation disentanglement:

1. Creating datasets of similar scale and quality for other conversational domains e.g. meeting tran-
scripts and movie dialogues.

2. Re-evaluating the feasibility of existing datasets for representing the task of chat disentanglement.

3. Making disentanglement modeling techniques robust across different kinds of multi-party con-
versations (within & across dialogue platforms).

4. Developing methods to leverage existing datasets to adapt to poorly represented or unseen dia-
logue domains.
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In this dissertation, we primarily pursue directions 2 and 3. We carry out an extensive analysis of the
primary dataset for Ubuntu-IRC along key dialogue properties (see Section 4.1) to identify platform-
specific features which may affect the performance of current modeling techniques significantly. We
also propose methods to (i) curb the poor representation of low-frequency sub-ranges of important
dialogue properties and (ii) optimally combine the capabilities of different disentanglement models
based on the relevant dialogue context.

1.3 Research Problems Addressed

In this thesis, we address the following computational research problems in order to progress toward
some of the objectives described in the above section.

T1 To determine the impact of control tokens on the characteristics of sentence simplifications and
gauge whether they hold the expected control over their respective attributes. The ACCESS
model [1] prepends control tokens to the input complex text to a Seq2Seq Transformer, where the
expected output is the simplified reference text. Each control token quantifies the variation in one
textual attribute between the complex and simple text. These include variation in sequence length,
paraphrasing of the original text, and change in lexical and syntactic complexity. To capture these
changes, the tokens encode respective proxies of these attributes. The intended purpose of these
tokens is to inform the model of these underlying transformations during simplification and later
tweak them as per the desired form of simplification. We aim to analyze the extent to which these
proxies represent and thereby help control the attributes of the text.

T2 To develop methods to improve the intended effect of control tokens on the output simplifications.
The reported scores by the ACCESS models indicate that the use of control tokens helps improve
performance over using a plain Transformer model. Despite this, the resultant effect of control
tokens on the text may not be along the intended attributes. We, therefore, aim to counteract
instances wherein the effect of the control tokens differs from the expected. We thus propose
methods such as NER masking (see Section 2.6.1) and using pre-trained embeddings (see Section
2.6.2) to tend to some of such cases.

T3 To analyze the distribution of each feature in key dialogue datasets towards model performance
and identify potential platform-specific features. Popular disentanglement datasets (like Ubuntu
IRC) offer meta information for each message, the sender username, and the message body. These
may be interface-integrated features like message timestamps or unofficial norms followed by the
community, such as adding an explicit mention of the intended recipient of a message at the
beginning of the message body (direct mention). In this thesis, we perform a detailed analysis of
all such features to identify trends among their independent as well as combined distributions.
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T4 To gauge the role of platform-specific features in the performance of past approaches toward
disentanglement. Platform-specific features may boost the performance of models along with
evaluation metrics. Still, they may impede the model from learning important patterns within the
message text as well as inter-user interactions. To understand how much recent disentanglement
approaches rely on one such feature, i.e., direct mentions in the Ubuntu-IRC dataset, we create a
variant without direct mentions and record the scores of several past methods on popular metrics.

T5 To devise a more representative evaluation method aimed at comparing model performance to-
ward disentanglement. Existing metrics for chat disentanglement are borrowed from the task of
group partitioning, wherein the group represents all the messages of a session, and each sub-group
(or partition) represents a distinct non-overlapping thread of messages. However, the metrics in
use regard all kinds of threads with the same weightage in the final scalar score. For datasets
with non-uniform distributions across dialogue properties, this hides the variation in model per-
formance across the ranges of each dialogue property. To this end, we propose an evaluation
strategy that compares the thread correctness (see 5.2.2) of models across the range of key dia-
logue properties.

T6 To identify methods to improve model performance along specific dialogue characteristics or com-
bine multiple models with varying capabilities for better overall performance. We find that dif-
ferent models (along architecture and training methodology) possess different capabilities across
dialogue properties. We offer methods to (1) Optimize model performance in cases where the dis-
parity is due to a disproportionate distribution of dialogue samples across the range of a dialogue
property and (2) Selectively apply the optimal model from a large pool of models, subject to the
required capabilities in a dialogue context. Past ensembling methods such as [5] aim to com-
bine models toward a similar goal but lack the ability to dynamically select the subset of models
deemed ideal for a particular instance.

1.4 Overview

This section describes some of the key observations from our investigations into both tasks. These
observations also help motivate subsequent attempts to address potential issues or leverage observed
patterns to improve modeling techniques.

1.4.1 Text Simplification

1.4.1.1 Poor Attribute Control

We train and compare four Transformer models, each equipped with a single control token, to assess
their individual effect on their corresponding attribute as well as other attributes. We find that tokens
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such as NbChars (for compression ratio) and LevSim (for the extent of paraphrasing) control their at-
tributes fairly well. However, other tokens i.e. WordRank (for lexical complexity) and DepTreeDepth
(for syntactic complexity), fail to represent their corresponding attributes as well as their proxy quanti-
ties.

We also find that a single control token can and often affects other attributes. For instance, lowering
the value for NbChars effect the Levenshtein similarity as well as the dependency tree depth of the text.
We later concluded this was so, as the model often produced outputs with trivial transformations applied
to the source text. E.g. The model produced outputs that were truncated versions of the source text. This
trivially conforms to a low-set compression ratio, Levenshtein similarity, and dependency depth.

Another interesting instance of poor attribute control leading to unwanted modification in the text
is the dropping of named entities. This helps trivially reduce the estimated lexical complexity of the
text, as the vocabulary word-rank was used as its proxy. High-rank proper nouns were replaced with
low-rank pronouns to reduce the average word-rank of the text while retaining other complex content
words.

1.4.1.2 Induced Data Sparsity

The training procedure prescribed with the ACCESS model requires the Transformer model to be
trained from scratch. Additionally, the vocabulary was updated with a large number of newly initialized
tokens pertaining to the entire range of the control tokens used in the text. Combining these two steps
induces heavy data sparsity i.e. there now exists a large number of randomly initialized token embed-
dings that need to be learned alongside learning the transformations for simplification, solely using the
dedicated aligned dataset.

1.4.2 Conversation Disentanglement

1.4.2.1 Lack of Generalizability

The Ubuntu-IRC dataset is currently the only large-scale expert-annotated resource for training and
evaluating complex disentanglement systems. Hence, in this thesis, we closely assess the utility of
Ubuntu-IRC in developing models applicable to domains beyond online chat forums like IRC, such as
meeting transcripts & movie dialogues.

We address this by analyzing the Ubuntu-IRC dataset along several dialogue properties to identify
potential sources of specificity. If left unchecked, these may hamper the generalizability of models
trained on this data. We find that direct mentions (i.e., explicit references to the recipient user at the
start of the message body) contribute to the specificity of IRC and occur in over 44% of messages in
IRC. These mentions are an informal norm within online forums like IRC but may not be organic to
other dialogue domains. Therefore, we create Ubuntu-IRC-Hard, a variant of the original IRC dataset
with all instances of direct mentions removed. We report the performance of several past methods and
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Figure 1.1: Example of direct-mentioning in IRC. usernames in bold are instances of direct-mentions,

pointing to the intended recipient of the message.

a strong set of proposed baselines on both dataset variants. We find that direct mentions significantly
contribute to the performance of existing approaches. Figure 1.2 shows this in the drop in performance
of the SOTA model [3] as the proportion of direct mentions in Ubuntu-IRC is reduced.

1.4.2.2 Model Brittleness

In Section 4.1, we define dialogue properties as the set of properties emerging from the conversation
in a chat forum where multiple dialogues, each with a varying number of participants, run simulta-
neously. Scores on existing thread-partitioning metrics do not always capture the variation in model
performance across different dialogue properties. We conduct an analysis of the models using quali-
tative metrics based on a few key dialogue properties to identify points of brittleness among models,
aiding our investigation into their generalizability.

Of these dialogue properties, we find that antecedent distance (message-distance between a message
and its reply-to parent) is often a failure point for most models. This is partly due to a poor representation
of longer antecedent distances in the IRC dataset.

1.4.2.3 Varying Capabilities

Additionally, we find that models show varied capabilities across most dialogue properties. Models
rated superior by current partitioning metrics do not always surpass other approaches for the entire range
of a dialogue property.

We attempt to increase model performance along longer antecedent distances by utilizing a weighted-
loss formulation to inversely scale the loss for instances with a lower representation in the data. This
provides a heightened weightage to examples with longer antecedent distances in the data, resulting
in a better model performance than the SOTA along longer distances. We leverage the variations in
model performances across a dialogue property by applying an informed-ensembling technique. From a
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Figure 1.2: Drop in SOTA model performance with a decreasing proportion of direct mentions

diverse pool of models, the ensemble dynamically samples a subset of models best suited for the specific
sub-range of the relevant dialogue property (instead of always using the entire pool).

1.5 Thesis Layout

C1 This is the introductory chapter, wherein we define the scope of the investigations and exper-
iments we conduct towards analyzing disentanglement datasets and improving both the perfor-
mance as well as the evaluation of models. We enlist the specific research problems addressed in
this thesis, the motivation behind them, and a quick summary of our approaches that will follow
in later chapters.

C2 In this chapter, we address the first area of research towards text accessibility i.e. text simpli-
fication. We discuss the scope and purpose of the task and provide a background into the past
modeling approaches used for simplification. We discuss the ACCESS model [1], which claims to
utilize control tokens to tune the simplifications produced along specific text transformations such
as text compression, amount of paraphrasing, and change in the lexical & syntactic complexity
of the source text. We analyze this claim by carrying out ablation studies and measure the effect
of the control tokens on their attributes, and show that this claim breaks down in several cases.
We conclude by offering some methods to tend to this gap, and improve the overall scores of the
SOTA model.

C3 Here, pivoting to the second area of research towards text accessibility, we begin by formalizing
the definition of dialogue disentanglement and the constraints within which the task will be
discussed. We then describe the datasets created for disentanglement, with emphasis on Ubuntu-
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IRC, the primary dataset in discussion for our thesis. This follows a record of the various modeling
techniques along varying features and evolving architectures. Here, we again focus on S4DD [3],
the current SOTA work in chat disentanglement using Ubuntu-IRC. Finally, we summarize the
popular evaluation metrics used by past work.

C4 In this chapter, we introduce the term dialogue properties, i.e., the properties of a multi-party
chat room that emerge by virtue of how dialogues between multiple speakers, spanning multiple
threads, are recorded in a linear fashion temporally. We list several such properties and go on to
discuss the distributions of some key dialogue properties in the context of the Ubuntu-IRC dataset.
We then delve deeper into the role of a commonly occurring feature of IRC i.e. direct mentions,
along a few dialogue properties. We conclude by motivating the need to investigate further the
impact of this platform-specific feature on the performance of past models.

C5 In this chapter, we pursue the investigation of the impact of direct mentions. We construct a
variant of Ubuntu-IRC with direct mentions removed (Ubuntu-IRC-Hard) and describe the steps
to reproduce the dataset in detail. As part of the experiments on this dataset, in addition to past
models, we propose a list of baseline models which capture each of the pivotal modules shown
to be of import in past approaches. We describe the implementation details for all training runs
as well as the evaluation methodologies applied. We record the performance of past and baseline
models and discuss their results along popular partitioning metrics as well as the newly proposed
qualitative metrics along key dialogue properties.

C6 This chapter proposes methods to leverage variations in model capability to improve overall
performance. We demonstrate using antecedent distance that using a soft weighted loss formula-
tion during training can help models capture poorly represented sub-ranges of a dialogue property
better (see 6.2). We also offer an informed ensembling method to dynamically select a subset of
models best suited for a given dialogue instance from a large pool of models. Using both methods,
we report improvement in scores over the SOTA model across partitioning metrics and the ranges
of several dialogue properties.

C7 We conclude this thesis by summarizing our analyses, subsequent experiments, and the resultant
insights. We also offer several directions in which this work can be further extended in the future.
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Chapter 2

Text Simplification

2.1 Introduction

Sentence Simplification aims to improve the readability of text by lowering its linguistic complexity
while preserving all the relevant information conveyed by the initial text. As part of our larger goal of
aiding the accessibility to text, simplification helps to regularize text along the axes of lexical distribution
and syntactic constructions. It helps break up large text into smaller, more manageable chunks. This
makes the text usable for downstream tasks by bringing the writing style, average sentence length, and
overall vocabulary closer to distributions more suited for other NLP tasks such as machine translation,
summarization, etc.

This chapter analyzes the present SOTA method used for sentence simplification. The model i.e.
ACCESS [1], comprises a Transformer model [6], which is trained on a dedicated sentence simplifica-
tion dataset along with control tokens prepended to the complex source sentences. These control tokens
are intended to encode transformations along specific textual properties such as length compression, the
extent of paraphrase, and lexical & syntactic complexity as attributes to gauge the transformations be-
tween complex and simple sentence pairs. The analysis is aimed at gauging the validity of the claim that
the proposed tokens, in fact, encode and thereby help control their respective attributes and to determine
any potential sources of errors in the simplified outputs.

Our analysis shows that though control tokens help improve the model’s overall performance, varying
their values does not always result in a corresponding effect on their respective attributes. In fact, the
model often produces outputs that manage to adhere to the specified control token constraints using a
trivial modification to the complex source text. This includes truncating the source text or replacing
named entities with pronouns. We also find that many of the target attributes are interrelated, therefore,
cannot be tweaked independently. Attempts to do so often result in incoherent outputs.

We finally discuss a few methods to address the pitfalls of the SOTA model [1]. First, we propose
masking all named-entities (NE) in the text (source and target) and saving a mapping for later use. The
NE masking protects low-frequency proper nouns from getting replaced or dropped to lower the lexical
complexity of the text and also helps optimize the vocabulary size. Second, we propose the idea of
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using pretrained embeddings or pretraining the Transformer model instead of training on the sentence
simplification data from scratch. This may help develop more representative token embeddings. It will
populate the vocabulary with a more rich distribution of complex and simple terms, which may aid in
generating outputs more dissimilar from the source and better suited to the desired control tokens. Our
code has been made publicly available. 1

2.2 Background

One prominent approach to sentence simplification is to frame it as a monolingual translation task.
This implies training MT architectures over complex-simple sentence pairs, either aligned manually
[7, 4] or automatically [8, 9] using large complex-simple repository pairs such as the English Wikipedia
and the Simple English Wikipedia.

Another approach to sentence simplification involves controlled text generation, where specific cri-
teria or constraints are imposed on the generated output. [10] developed a controlled text simplifica-
tion system that allowed users to specify the desired level of simplification, enabling the generation of
sentences that catered to individual needs. A similar work [11] aims to control attributes like length,
paraphrasing, lexical complexity, and style.

Controlled paraphrasing is another technique employed in sentence simplification. [12] proposed
a reinforcement learning-based approach for controlled sentence simplification paraphrasing, where a
user-specified simplification policy was learned to generate simplified paraphrases that aligned with user
preferences.

Sequence editing is a recently explored direction in sentence simplification research. For instance,
[13] proposed a sequence-editing framework for sentence simplification, utilizing an edit-action se-
quence generation model that predicted edit actions, such as deletion, insertion, and substitution, to
simplify complex sentences.

2.2.1 ACCESS: AudienCe-CEntric Sentence Simplification

A recent method to approach controlled text generation as sentence simplification involves using
control tokens for encoding the transformations between complex and simple text. The ACCESS model
by [1] is, at its core, a Transformer model [6]. Like past methods, simplification is treated as a mono-
lingual machine translation task. However, the input (complex) text to the model is first prepended with
a set of control tokens, each representing a specific property along which the text is to transform and
a floating-point number, which describes the extent to which the transformation is to take place. This
modification is shown to improve results beyond just using a Transformer model and achieves SOTA
performance.

1https://github.com/kvadityasrivatsa/gem_2021_simplification_task
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Similar approaches for controlling generated text have been explored in other domains: [14] uses
control tokens to estimate and control the amount of hallucination in generated text, [15] explored pre-
pending control tokens to the input text for summarization, providing control over the length of the
output, and customizing text generation for different sources.

2.3 Control Attributes

In this section, we discuss the control attributes (or control tokens) used by the SOTA method [1]
intended for allowing the model to learn relations between the source (complex) and target (simple)
texts along the properties encoded by each control token. During inference, these tokens are then set
to values that fetch a desired (simplified) paraphrase of the source sentence. Consider the following
example:

• Complex: "<NbChars 0.80> <LevSim 0.76> <WordRank 0.79> it is

particularly famous for the cultivation of kiwifruit."

• Simple: "It is mainly famous for the growing of kiwifruit ."

2.3.1 Text Length Compression

Compression in sequence length has been shown to be correlated with the simplicity and readability
of text [16]. Since compression as an operation directly involves deletion, controlling its extent plays a
crucial role in the extent of information preservation. We make use of the compression ratio (control
token: ‘NbChars’) between the character lengths of the simple and complex sentences to encode for
this attribute.

2.3.2 Paraphrasing

The extent of paraphrasing between complex and simple sentences ranges from a near replica of
the source sentence to a dissimilar and possibly simplified one. The measure used for this attribute is
Levenshtein similarity [17] (control token: ‘LevSim’) between the complex and simple sentences.

2.3.3 Lexical Complexity

For a young reader or a second language learner, complex words can substantially decrease the text’s
overall readability. The average word rank (control token: ‘WordRank’) of a sequence has been
shown to correlate with the lexical complexity of the sentence [18]. Therefore, similar to [1], we use the
average of the third-quartile of log ranks of the words in a sentence (except for stop-words and special
tokens) to encode for its lexical complexity.
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2.3.4 Syntactic Complexity

Complex syntactic structures and multiple nested clauses can decrease the readability of text, espe-
cially for people with reading disabilities. To partially account for this, we make use of the maximum
syntactic tree depth (control token: ‘DepTreeDepth’) of the sentence as a measure of its syntactic
complexity. We use SpaCy’s English dependency parser [19] to extract the depth. The deeper the
syntax tree of a sentence, the more likely it is that it involves highly nested clausal structures.

2.4 Experiments

In this section, we describe the experimental setup used to observe the performance of the control
tokens described above.

2.4.1 Models

For our initial experiments, we train the following models. Note that all models are architecturally
identical and are trained using the same parameters. They solely differ by the data variant used to train
them. This is so we can pinpoint the difference in the simplifications generated and the resultant score
pertaining to each variant. The models are grouped into the following broad categories:

1. Baseline: We train a single Transformer model (labeled T) without any control tokens as a base-
line reference. The input data consists of complex sentences, and the corresponding simple sen-
tences are regarded as the target sequences.

2. Individual Control Tokens: To gauge the impact of each control token individually, we train
four separate Transformer models with one control token each:

• T + ( NbChars / LevSim / WordRank / DepTreeDepth )

3. Combinations of Control Tokens: We also investigate the interactions of specific subsets of
control tokens using the following three models:

• T + NbChars + LevSim

• T + NbChars + LevSim + WordRank

• T + NbChars + LevSim + WordRank + DepTreeDepth (All)

2.4.2 Datasets

For training, we use the WikiLarge dataset [20], with 296,402 automatically aligned complex-simple
sentence pairs obtained from the English Wikipedia and Simple English Wikipedia. For validation
and testing, we use ASSET [7] and TurkCorpus [4]. Both datasets contain the same source (complex)
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sentences in their test (359 sentence pairs) and validation sets (2000 sentence pairs). The more recent
dataset i.e. ASSET provides ten human-annotated simplifications for each of the 2,359 source sentences,
whereas TurkCorpus provides eight.

Apart from lower-casing all three splits of the data, the data pairs of the trainset with token length
lower than three were removed, and sentence pairs with compression ratio (len(target)/len(source))
beyond the bounds [0.2, 1.5] were omitted.

2.4.3 Evaluation Metrics

Our model is evaluated on both BLEU [21] and SARI. SARI was introduced by [4] as a monolingual
metric which ”principally compares System output Against References and against the Input sentence.”
The metric is designed to take into account the precision and recall of 3 distinct token-level operations
between the source, targets, and prediction texts i.e. add, keep, and delete. For the following equations,
I denotes the set of n-grams in the input sequence, O in the output sequence, and R denotes the set of
reference sequences provided.

The precision and recall of the add operation are given by:

padd (n) =

∑
g∈O min

(
#g

(
O ∩ Ī

)
,#g (R)

)∑
g∈O #g

(
O ∩ Ī

) (2.1)

radd (n) =

∑
g∈O min

(
#g

(
O ∩ Ī

)
,#g (R)

)∑
g∈O #g

(
R ∩ Ī

) (2.2)

where, the binary value #g (·) informs whether the n-gram g has occurred in the input set, and:

#g

(
O ∩ Ī

)
= max (#g (O)−#g (I) , 0)

#g

(
R ∩ Ī

)
= max (#g (R)−#g (I) , 0)

(2.3)

The precision and recall of the keep operation are given by:

pkeep (n) =

∑
g∈I min

(
#g (I ∩O) ,#g

(
I ∩ Ŕ

))
∑

g∈I #g (I ∩O)
(2.4)

rkeep (n) =

∑
g∈I min

(
#g (I ∩O) ,#g

(
I ∩ Ŕ

))
∑

g∈I #g

(
I ∩ Ŕ

) (2.5)

where,

#g (I ∩O) = min (#g (O) ,#g (I) , 0)

#g

(
I ∩ Ŕ

)
= min (#g (I) ,#g (R) /r)

(2.6)

and the precision of the delete operation is given by:
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pdel (n) =

∑
g∈I min

(
#g

(
I ∩ Ō

)
,#g

(
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R
))

∑
g∈I #g

(
I ∩ Ō

) (2.7)

where,

#g

(
I ∩ Ō

)
= max (#g (I) ,#g (O) , 0)

#g

(
I ∩ ¯́

R
)
= max (#g (I) ,#g (R) /r, 0)

(2.8)

The metric omits the use of recall on the delete operation as over-deletion is more detrimental to the
overall readability of text than not removing tokens at all.

For each operation, the dataset-wide precision, recall, and f1-score are given as follows:

Poperation = 1
k

∑
n=[1,...,k] poperation (n)

Roperation = 1
k

∑
n=[1,...,k] roperation (n)

Foperation =
2×Poperation×Roperation

Poperation+Roperation

operation ∈ [del, keep, add]

(2.9)

The final SARI score is given by the arithmetic mean of the f1-scores of all three operations.

SARI =
Fadd + Fkeep + Fdelete

3
(2.10)

[1] points out that BLEU favors directly replicating the source sentence because of a high N-Gram
similarity between the source and target sentences in most sentence simplification datasets. Therefore
we only use SARI to rate and compare the models. We also make use of SARI to choose the best-
performing checkpoints on the validation sets of each of the tracks for evaluation on their respective test
sets.

2.4.4 Implementation Details

We implement all models using Facebook’s FairSequence toolkit [22]. The core model is the Trans-
former architecture [6] with six encoder and decoder layers, eight attention-heads in each encoder/
decoder module, a 300-dimensional hidden and input vector size, unlike the 512-dimensional model
used by [1], and 2048 dimensional fully-connected. We employ the Adam optimizer [23] (β1 = 0.9,
β2 = 0.999, ϵ = 10−8), with a learning rate of 10−4 and 4000 warm-up updates, while dropout is set
at 0.2. Each model was trained on 4 Nvidia GeForce GTX 1080 Ti GPUs with 64 GB of vRAM. The
training was carried out for 20 epochs and took roughly 11 hours for each model. During inference, we
set the control tokens to NbChars: 0.95, LevSim: 0.75, and WordRank: 0.75.
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ASSET TurkCorpus

Model Test Val Test Val

BLEU SARI BLEU SARI BLEU SARI BLEU SARI

T (Baseline) 71.384 33.949 75.947 33.297 74.284 34.529 78.487 34.729

T + NbChars 70.178 34.982 73.197 33.812 73.794 36.299 76.193 36.216

T + LevSim 69.828 35.372 73.476 34.928 73.099 35.040 75.361 35.208

T + WordRank 69.293 35.836 72.996 35.129 73.032 36.823 75.019 36.688

T + DepTreeDepth 70.835 34.751 74.230 34.823 73.902 34.779 77.511 34.930

T + NbChars + LevSim 69.083 36.003 73.004 36.103 72.974 37.392 74.329 37.222

T + NbChars + LevSim + WordRank 68.815 36.707 72.561 35.992 71.167 37.801 74.339 37.604

T + All 68.992 36.220 72.846 35.823 71.734 37.018 74.843 36.928

Table 2.1: SARI & BLEU scores on ASSET and TurkCorpus using baseline and control token models.

2.5 Results and Discussion

We report the scores of the baseline model (T) and control token based models on the test and
validation sets of the ASSET and TurkCorpus datasets against BLEU and SARI in Table 2.1.

• All single token models (T + NbChars/ LevSim/ WordRank/ DepTreeDepth) score better than
the T on SARI. On average, the individual boost in performance by control tokens is given by
WordRank > LevSim > NbChars > DepTreeDepth.

• Combining control tokens also improves the overall score in case of T + NbChars + LevSim & T
+ NbChars + LevSim + WordRank (TC+Pre+NER for short). However using all control tokens at
once seems to degrade SARI scores across evaluation splits.

• Note however, the scores for BLEU and SARI correlate negatively for all models. This demon-
strates how BLEU favors n-gram matching over token level operations, which leads to inflated
results for models which produce near replicas of the complex source text.

2.5.1 Quality of Token-to-Attribute Representation

Each control token defined in Section 2.3 is a proxy for a control attribute. Therefore, its is important
to observe the resultant relation between the change in the attributes corresponding to their tokens for
each model. Figure 2.2 plots the variation in relative extent of each attribute (attr in figure) against
the range of control tokens (param in figure) applied. Note that each row is obtained from the corre-
sponding single-token model.
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• The cases of direct attribute-to-token matching are seen in the diagonal cells of Figure 2.2. For
attributes Compression Ratio and Levenshtein Similarity, the resultant ratios concentrate around
the specified 0.5 and 0.75 values set by the respective control tokens i.e. NbChars and LevSim.
However, for Word-Rank ratio and Dependency Tree Depth, this relation does not hold strongly.
It is important to note that Word rank is the inverse normalized frequency of the vocabulary, and
dependency depth is determined using a separate parsing model, both of which are not made ex-
plicitly available to the model. In comparison, length compression and token level edit distance
are easily derivable quantities.

• It was observed that upon setting the length compression attribute to reduce the text length
(NbChars <= 0.7), the corresponding models often produced a truncated form of the source
text as a trivial output. An example of the same is as follows:

– Source: "<NbChars 0.6> Wind shear began to dramatically increase

and a weakening trend began by early September."

– Output: "Wind shear began to dramatically increase and a

weakening trend began. by early September."

The evidence of this can be seen through the cross-attention scores between the complex and
simple texts shown in Figure 2.1. Notice the hightened corresponding attention weights for the
NbChars and LevSim tokens near phrasal or clausal endings. This may be indicative of a higher
likelihood of truncating the source sentence at such positions. This form of trivial truncation
does effectively achieve the desired control token as well as token ratio, but does not improve the
readability of the text.

• In many models, in response to the lowering of the word-rank ratio, the outputs tend to replace
named entities with pronouns. Most named entities occur rarely compared to other content
words, therefore have a high word rank. Replacing them with pronouns drastically brings down
the average word rank of the text. Though not always an undesirable change, within the limited
context of single-sentence simplification, this leads to the dropping of important information. An
example of the same is as follows:

– Source: "<WordRank 0.5> Barack Hussein Obama II is an American

former politician..."

– Output: "He Barack Hussein Obama II is an American former

politician..."
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Figure 2.1: Cross-attention plots between complex and simple texts with weights for control-tokens.

2.5.2 Cross Token Influence

In Section 2.5.1, we analyzed the relation between the direct attribute-to-token relation in the model
outputs. However, an attribute of the output text can be affected by tokens other than the one designated
as its proxy. The non-diagonal cells in Figure 2.2 show this cross-token influence.

• Observe the first row in Figure 2.2 corresponding to the control token NbChars. Upon lowering
the target value of NbChars, not does the average compression ratio reduce, but the average leven-
shtein similarity and dependency tree depth (for NbChars = 0.5) also decrease. This is explained
by the shorter output sequence length (in some cases due to erroneous truncation), which also in-
creases the levenshtein distance with fewer tokens and reduces the dependency depth with fewer
clauses.

• Although the word-rank ratio remains largely unchanged when control tokens other than Wor-
dRank are varied, modifying the WordRank token leads to a significant drop in all other attribute
ratios.

In an ideal form of token level control, it is prefered that all control tokens can be varied indepen-
dently with corresponding effects on the text. But as demonstrated above, most control tokens are prox-
ies of attributes which are inter-dependent (compression ratio, levenshtein distance, and dependency
depth). This is seen by the high correlation between NbChars and LevSim (ρ = 0.83 ; p-value < 10−3)
& DepTreeDepth (ρ = 0.69 ; p-value < 10−3). This suggests that these tokens cannot be utilized
independently, and their individual ranges must be specified carefully to ensure non-trivial outputs.
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Figure 2.2: Affect of control tokens (params) on control attributes (attr). Plot lines with red and blue

colors denote models with control token values set to 0.5 and 0.75 respectively during inference.

2.6 Improving Token Control

In this section, we discuss a few approaches to address some of the pitfalls of the existing models.
We apply the following modifications to the best performing model from our initial experiments i.e. TC

(T + NbChars + LevSim + WordRank), followed by performance comparison as well as a qualitative
analysis of any potential improvements or flaws induced.
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2.6.1 Named-Entity Masking

As shown in Section 2.5.1, models equipped with the WordRank control token often drop the named-
entities of the source (complex) text in favor of function words like pronouns to meet the requirement
of bringing down the average word rank of the text.

To address this issue, we first make the assumption that for the sake of this task, named-entities in
the source text can either be retained in the output text or be dropped entirely, without the possibil-
ity of replacement. This allows us to replace individual named-entities with a more generic class of
representative tokens to largely isolate them from erroneous replacements.

We thus propose identifying and masking all named-entities in the source and target text for
the train set, and only the source during inference. During training, we employ an automatic mapping
between the named-entities of the source and target text, and provide them corresponding labels as
shown in the example below:

• Source: "Sergio P Arez Mendoza ( born January 26 , 1990 in

Guadalajara , Jalisco ) , also known as "Checo" P Arez , is a

Mexican racing driver ."

• NER Masked Source: "PERSON@1 ( born DATE@1 in GPE@1 ) , also known

as " PERSON@2 " , is a NORP@1 racing driver ."

We make use of the Ontonotes NER tagger [24] in the Flair toolkit [25]. We identify named entities
in the complex halves of all three of the data splits and replace them with one of 18 tags (obtained from
the NER tagger). NER replacement for simplification was previously explored by [20], but consists of
only 4 classes. The large number of tags allow for a fine division between different named-entity types,
permitting more granular contexts while vastly reducing the named-entity vocabulary. Note that while
computing the average word-rank of texts, masked tokens are ignored entirely.

The masked data is then used for training and subsequent generation on the test set. Any tags in
the simplified output are located in the saved NER-mapping and reverted back to the original token or
phrase. This step not only prevents proper nouns from getting replaced, but also greatly reduces the
model vocabulary, allowing for faster training.

2.6.2 Pre-Trained Embeddings

Note that all Transformer models discussed uptill now were trained from scratch with randomly ini-
tialized embeddings for all tokens in the complex and simple halves. It was also ensured that parameter
sharing between the encoder and decoder for the input embeddings is maintained, keeping in mind that
the monolingual task at hand can leverage shared vocabulary.

However, the number of sentences and the resultant vocabulary of the WikiLarge dataset is too
small to ensure well-representative input token embeddings while training for the task of simplification.
Additionally, there may be a large divide between the vocabularies of the complex and simple halves of
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ASSET TurkCorpus

Model Test Val Test Val

BLEU SARI BLEU SARI BLEU SARI BLEU SARI

TC 68.815 36.707 72.561 35.992 71.167 37.801 74.339 37.604

TC + Pretrained 62.488 38.845 71.536 37.700 63.861 38.139 73.627 38.196

TC + NER 59.215 39.380 70.433 37.985 58.985 38.996 72.181 38.375

TC + Pretrained + NER 59.324 39.551 70.202 38.897 59.586 39.777 68.622 38.231

Table 2.2: SARI & BLEU scores on ASSET and TurkCorpus using the TC (T + NbChars + LevSim +

WordRank) model, its Pretrained and NER variants, and the combined model wherein both Pretrained

embeddings and NER masking is applied to TC.

WikiLarge. Thus there is a need for pre-training the Transformer model or separately providing token
embeddings trained on a large corpus of text which contains a mix of complex and simple contexts
to allow the resultant embeddings to learn semantic similarities between related complex and simple
tokens to ensure better token replacement during simplification.

To address this, we use FastText’s pre-trained 300-dimensional embeddings [26] as input em-
beddings for subsequent models. The pre-training provides more-informed embeddings than randomly-
initialized vectors for further training, and also extends the unified vocabulary of the models.

2.6.3 Discussion

We apply the above proposed modifications onto the TC model separately i.e. TC + NER & TC + Pre

and together i.e. TC + Pre + NER. We report the score of all modified models along side TC on the test and
validation sets of ASSET and TurkCorpus against SARI and BLEU in Table 2.2.

• All three modified variants outperform TC on SARI across evaluation sets. Within the modified
set, TC + NER scores superior to TC + Pre, and their combined model i.e. TC + Pre + NER performs the
best. Again, notice the decreasing value of BLEU scores as SARI increases, indicating outputs
with a greater dissimilarity from the source sentence.

• TC + Pre + NER shows a better retention of named-entities from the source text than TC, as shown
in the first example below:

– Source: "orton and his wife were happy to have alanna marie orton

on july 12, 2008."

– TC: "orton and his wife, dorothy marie orton on july 12, 2007."
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– TC + Pre + NER: "orton and his wife supported alanna marie orton on

july 12, 2008."

Both the name "alanna" and the year "2008" are masked and thus retained in TC + Pre + NER,
whereas TC replaces tem with similar named-entities i.e. "dorothy" and "2007". Similarly,
consider the the second example:

– Source: "aracaju is the capital of the state."

– TC: "it is the capital city of the country ."

– TC + Pre + NER: "aracaju is the capital city of the country."

TC + Pre + NER retains the masked location "aracaju", however, TC replaces it with the pronoun
"it".

• We also identified cases where NER tagging led to errors in the ouput sequence. One such instance
is shown below:

– Source: "yoghurt or yogurt is a milk-based food made by bacterial

fermentation of milk."

– TC + Pre + NER: "yogurt is a type of food that is made by bacterial

fermentation of product@1."

Upon generating an incorrect named-entity label which cannot be found in the respective NE-
mapping for the sample, the label is not replaced with the intended named-entity.

• Similarly, although using pretrained emebddings improved the overall performance of the models,
it led to a few cases wherein undesired token replacements take place. As the vector representation
of antonyms is often very similar by virtue of a highly similar context in text, certain tokens in
the sample are replaced with their respective antonyms to conform to the specified control token.
The following is such an instance:

– Source: "entrance to tsinghua is very very difficult."

– TC + Pre + NER: "the entrance to tsinghua is very very simple."

2.7 Conclusion

In this chapter, we investigate the use of control tokens as means for using controlled text generation
for sentence simplification. For this, we focus on the model ACCESS [1], which uses control tokens
prepended to the complex source sentences to train a Transformer model to learn the transformations
between the complex source text and the simple target text along specific attributes. We analyze the
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claimed relation between each of the control tokens to their respective attributes and found that despite
an overall improvement in performance, control tokens do not really help generate simplifications with
the desired high-level attributes. We propose two methods to address the pitfalls of the SOTA model,
(i) masking named-entities before training and inference to prevent their unwanted replacement as well
as to optimize the vocabulary size for the task, and (ii) utilizing pretrained embeddings for the model
instead of training from scratch to avoid token sparsity. The proposed methods help improve SOTA
scores, better retain named entities, and produce more varied simplifications.

Further research towards curbing the data sparsity induced by the use of separate tokens for the
entire range of each control token is required. This may be fixed using a single scalar input to the
model for each control token, or to use pretrained or positional embeddings meant to better encode a
linear range of values. Using named-entities helped model performance, but also revealed cases where
incorrect NER or improper NE mapping leads to erroneous outputs. This can be resolved using a more
robust mapping technique instead of the naive method currently used. Additionally, as different datasets
(thereby different domains) may involve different styles of simplification, control tokens (or any other
token-level or model-level input) to encode for this variation can be incorporated.

Beyond the constraints of the experimentation in this thesis, this task can be perhaps performed with
better performance and lower sparsity with the use of newer, pretrained Seq2Seq models such as BART
[27].

NOTE: Optimizing sentence simplification methods contributes to our larger goal of improving text
accessibility. However, with the advent of recent large language models, having been trained on much
larger datasets with a significantly larger parameter count, many tasks such as sentence simplification
can now be performed with better control and correctness. However it is important to note that not all
NLP tasks equally benefit from these developments, and still require targeted efforts. One such task
is Conversation Disentanglement, the process of isolating individual conversational threads from a
dialogue comprising of multiple active participants at once. This is yet another task which helps make
text more accessible for further processing, therefore we explore the work done in this field in the
following chapters.
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Chapter 3

Conversation Disentanglement

3.1 Introduction

In this chapter, we provide a background into how conversation disentanglement is formally defined
by several past works as well as for the scope of this thesis. This is followed by a review of the evolution
of the various modeling techniques used to perform disentanglement over time and a detailed description
of the existing evaluation metrics utilized for the task.

3.2 Task Formulation

Until now, we have defined conversation disentanglement as extracting distinct threads from a multi-
party dialogue. However, it is necessary to formally define the task to better understand the modeling
techniques applied or the evaluation metrics used for disentanglement. For the scope of this thesis, we
formulate conversation disentanglement in the following manner:

1. Consider a dialogue session consisting of the ordered set of p messages M.

M = {m0,m1, ...mp} (3.1)

2. All messages are directed between a set of 1 <= q <= p unique users (multi-party) U.

U = {u0, u1, ..., uq} (3.2)

3. Each message is a tuple mi = {si, ci} consisting of the speaker si ∈ U of the message and the
respective text content ci.

4. Each message mj must have a parent (or antecedent) message mi(0 <= i <= j), in response to
which the message was posted. Messages with no semantic antecedent, such as dialogue starters
or singleton messages, are defined to be their own parents.
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5. With this constraint, each dialogue session can be viewed as a graph G = (M,L) with messages
as nodes and their respective child-to-parent message relations L as directed edges.

L = {(mi,mj)|0 <= i <= j <= p} (3.3)

6. This allows us to define a conversation or dialogue thread as a weakly-connected component
within the graph G. We thus define T = {t0, t1, ...mp} as the set of threads within M as unique
and distinct message partitions.

7. We thus formalize the task of conversation disentanglement as determining T from M.

8. The constraint L = {(mi,mj)|0 <= i <= j <= p} on message antecedents can become com-
putationally very expensive with large values of p. To tackle this, past methods [3] define a sliding
window W to restrict the message-distance between a parent-child message-pair to a maximum
of k for each child message mi.

W = {mi−k+1, ...,mi} (3.4)

All antecedent relations beyond this window are ignored and replaced with self-loops.

3.3 Datasets

3.3.1 Ubuntu IRC

Research in conversation disentanglement data has primarily focused on data from IRC sources.
Significant work in the same started with the use of the #Linux IRC channel data [28, 29, 30, 31] by
several works for training and evaluation [32, 33, 34]. Following the findings by [35] on the utility of the
#Ubuntu IRC channel, [36] released a large collection of heuristically extracted 930,000 disentangled
conversations sourced from the channel.

[2] showed that only 10.8% of the data extracted by [36] is correct, and subsequently sourced data
from #Ubuntu (and some from #Linux) to release the current largest publicly available & expert-
annotated dataset for disentanglement – Ubuntu-IRC. It consists of 77,563 messages annotated with
reply-to relations. The data is structured as 173 (Train: 153 (88.4%); Dev: 10 (5.8%); Test: 10 (5.8%))
individual multi-party dialogue sessions, most containing 500 contiguous annotated messages with an
additional context of 1,000 preceding messages to prevent trivial thread initiation at the beginning of
each chat session. Inter-annotator conflicts were also resolved with follow-up adjudications.
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Figure 3.1: Temaplate of Ubuntu-IRC Dataset. On the left, a single dialogue session is shown, with

1000 raw messages for prior context (grey) and 500 subsequent annotated messages (yellow). On the

right, the structure of each message is shown: (from left) Message Index, Timestamp, Sender-Username,

Message Body (containing an optional direct mention to the recipient username at the beginning).

3.3.2 Other Datasets

Disentanglement data has also been created with data from sources apart from IRC. Some are gen-
erated using the existing thread structure present on online platforms like Reddit [37, 38], Slack [39],
and Discord [40]. These record message antecedents or thread clusters and later drop this structure.
[2] points out that this artificial creation methodology is unlike natural conversations on the respective
platforms. Similarly, [41] created the Movie Dialogue dataset by artificially entangling dialogue threads
from movie transcripts. Finally, there are smaller datasets (about 7,000 messages) sourced from in-
stant messaging forums (structurally similar to IRC) like Gitter [42], which focus on discussions around
Angular, Ethereum, etc.

3.4 Past Modeling Techniques

Datasets like Ubuntu-IRC provide explicit & latent information (non-textual features) aside from
the raw message-body (textual features) in a conversation. The expert annotations in the dataset con-
tribute a pivotal explicit feature – reply-to relations, which are directed links from each message in a
multi-party session to the message(s) it is replying to. Additional non-textual features include message
timestamp, author profile (nature & frequency of past messages), direct mentions (an explicit reference
to the recipient user), running-thread length, and author density (number of unique authors in thread).
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1. Various modeling techniques have leveraged these textual & non-textual features in different
ways. Initial research uses these features as inputs to statistical classifiers for same-thread classi-
fication [28] or for measuring message-level similarity for subsequent clustering [30, 34].

2. Later approaches [2, 43] apply Feed-Forward layers, and Pointer Networks [44] to assist learn-
ing higher-order interactions between non-textual and textual features (sampled from pre-trained
word-embeddings, e.g., GloVe [45]). However, reported ablation scores show that their perfor-
mance largely depends on the non-textual features.

3. Recurrent layers like LSTMs [46] have also been used to better encode past message context in
early feature-based approaches like [33] as well as end-to-end systems like [41].

4. Finally, the advent of deep contextualized Language Models such as BERT [47] gave rise to
two lines of model approaches: Encoding dialogue-level features by fine-tuning LMs [38, 5] or
Training LMs on an array of self-supervised dialogue-based tasks and then targeting the shared-
knowledge for disentanglement (e.g., MPC-BERT [48]).

Figure 3.2: Architecture of the S4DD (SOTA) model

Recent research has incorporated structural features of conversations in addition to the dialogue-level
features: [38] trains a hierarchical Transformer with reply-to structure informed masking, DialBERT [5]
uses custom conversation-structure & tree-structure based loss functions, and architectures like DAG-
LSTMs [49] which are better suited to handle tree-structured data have also been utilized for better
encoding structural features [50].

The current SOTA model (S4DD1) by [3] on the Ubuntu-IRC dataset is a BERT-based antecedent
classifier, which uses an LSTM layer for encoding message context, speaker-specific masked-attention
to model speaker-profiles, and a GCN layer [51] to model reference relations like direct mentions.

1We name this model S4DD for the ease of reference throughout the thesis
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3.5 Existing Evaluation Metrics

Conversation Disentanglement is a partitioning task wherein messages in a dialogue session must be
partitioned by their respective threads. Therefore, many of the primary evaluation metrics for disentan-
glement are measures of distance between two possible clusterings (partitions). The following are the
descriptions of some of the metrics used widely in past works.

For all metrics described below, consider X as the true partitioning and Y as the predicted partition-
ing.

X = {X1, X2, ..., Xp} (3.5)

Y = {Y1, Y2, ..., Yq} (3.6)

Note that the total number of elements (messages in our context) remains the same.

n =
∑
i

|Xi| =
∑
j

|Yj | (3.7)

1. Variation of Information (VI): Similar to mutual information but follows the metrics condition
of the triangle inequality.

Let:

pi =
|Xi|
n

; qj =
|Yj |
n

; rij =
|Xi

⋂
Yj |

n
(3.8)

Then the variation of information between X and Y is given by:

V I (X;Y ) = −
∑
i,j

rij

[
log

(
rij
pi

)
+ log

(
rij
qj

)]
(3.9)

2. Adjusted Rand Index (ARI): Calculated along the probability of grouping, therefore uses the
number of correctly grouped pairs against all possible ways of pairing.

Let:

• a: Number of message pairs that are in the same thread in X and same thread in Y .

• b: Number of message pairs that are in different thread in X and different threads in Y .

• c: Number of message pairs that are in the same thread in X and different threads in Y .

• d: Number of message pairs that are in different threads in X and same thread in Y .

Then the Rand Index between X and Y is given by:

R =
a+ b

a+ b+ c+ d
=

a+ b(
n
2

) (3.10)

28



To obtain the Adjusted Rand Index, we must normalize the Rand Index (RI) by its expected and
max values.

ARI =
RI − E(RI)

max(RI)− E(RI)
(3.11)

where,

E(RI) =
2
∑

i
1
2

(
pi
2

)∑
j
1
2

(qj
2

)(
n
2

) (3.12)

max(RI) =
1

2

∑
i

1

2

(
pi
2

)
+
∑
j

1

2

(
qj
2

) (3.13)

3. Adjusted (Normalized) Mutual Information (AMI or NMI): AMI differs from mutual infor-
mation in that it is adjusted for the number of partitions in X and Y , without which, mutual
information is always greater for an increasing number of partitions.

NMI =
MI − E(MI)

max(MI)− E(MI)
(3.14)

where the mutual information is given by the KL-Divergence between the two groupings.

MI (X;Y ) = DKL

(
P(X,Y ) ∥ PX ⊗ PY

)
(3.15)

4. Exact Thread Matching (Ex): Unlike the above metrics, exact thread matching is not a parti-
tioning metric. It reports the correctness with which clusters in Y match completely with those in
X .

#match (X;Y ) = |Yj : Xi = Xi ∃i ∈ |X|| (3.16)

Ex P (X;Y ) =
#match (X;Y )

|Y |
(3.17)

Ex R (X;Y ) =
#match (X;Y )

|X|
(3.18)

Ex F1 =
2 · Ex P · Ex R

Ex P + Ex R
(3.19)

The correctness can be expressed both as Precision (Ex-P) and Recall (Ex-R), and their combined
F1-score (Ex-F1).
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Chapter 4

Dialogue Properties

4.1 Definition & Motivation

A dialogue (or thread) is a conversation between several participants wherein all individuals are
actively involved. Based on the platform or the context in which this dialogue takes place, certain
properties of the dialogue and its constituent utterances may vary. These variations are an effect of
the specific features or constraints of the platform. For instance, a person having to shout to converse
with another individual from afar is constrained along the properties of effort and clarity. The resultant
utterances in such a dialogue are typically brief in length (to reduce the effort in communicating) and
paced slowly and often segmented at syllable boundaries (to maximize the clarity of the message at
the receiver’s end). It is also rare for people to speak over each other in such contexts. We define
such properties, resultant from the platform-specific constraints and features, as dialogue properties.
These properties can be organized at the utterance level, such as formality, register, brevity, or at the
dialogue level, such as the number of active speakers in a time interval or the average number of distinct
conversation threads a speaker is involved in.

By virtue of how dialogues are temporally recorded in a chat forum like IRC, the resultant multi-party
conversation (MPC) can be posed as a noisy room setting. For each dialogue, interspersed messages &
users belonging to other dialogues in the chat room act as external noise that must be eliminated to
isolate each thread. As a result, characteristic dialogue properties of the chat room emerge, which can
reveal key aspects of the contained multi-party conversations.

4.2 Dialogue Properties of Ubuntu-IRC

In this section, we analyze the dialogue properties of the MPCs within the IRC dataset, which may
turn out to be specific artifacts of this medium of conversation, i.e., online chat rooms. Note that in
addition to dialogue messages, IRC contains system-messages, which include channel-level updates
such as a user joining or leaving the channel, changing their display username, etc. We ignore all
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system messages for subsequent data statistics, experiments, and results as the dataset defines their
reply-to relations as trivial self-references.

4.2.1 Thread Composition

A single thread (or conversation) is defined as a connected component within the reply-to structure
of a dialogue session. The thread composition of a dialogue forum can be insightful in understanding
its primary use case. The average thread in the train-split of Ubuntu-IRC consists of 6.46 messages
(σ=11.70; N=9,273), with 3,553 (38.3%) singleton-threads in the train set (containing only one mes-
sage) and 61.7% more-than-one-message threads that span over 3.5 minutes (σ=70.53; N=5,720) on
average and across 55.6 messages (σ=111.55; N=5,720) in the dialogue session.

A large number of singleton threads is probably explained by the #Ubuntu & #Linux channels
being primarily help channels, where new users often post queries that do not receive a reply. Addi-
tionally, the average thread contains 2.02 users (σ=1.45; N=9,273), but about 4,610 (49%) threads only
contain one user.

4.2.2 Message Length

The average (space-separated) word length of messages in IRC is 10.24 messages (σ=9.63; N=59,347),
with over 30% of messages containing less than five words. About 8% of messages are single-word
comments, often used to initiate or close threads or user-pair interactions, e.g., "hello", "thanks",
":)", indicating that emoticons are also used as meaningful units of conversation in IRC.

4.2.3 User Engagement

As mentioned before, the dataset contains messages from help channels, which cater to two broad
categories of users: One that primarily asks queries and the other that addresses them. These categories
can be roughly observed by the following distributions. Each session in IRC contains 50.43 unique users
(σ=20.77; N=153) on average within the annotated span of messages.

The average number of threads a user participates in, within a single session is 2.42 (σ=2.56;
N=7,716). However, over 51% (3,924) of this users participate in only one thread (likely users who
only post queries), with just 8.8% (686) of the users involved in more than five threads in a session
(likely users who regularly answer queries or are channel moderators).

4.2.4 Thread & User Density

In a multi-party chat room like IRC, users can initiate and participate in their respective thread(s)
independently of other running threads. This leads to a non-uniform thread density i.e., density of
concurrent threads. The train-split contains 17.05 (σ=8.84; N=59,374) parallel active threads on
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average in a dialogue window (W ) containing 50 contiguous messages (|W | = 50) and about 7.18 non-
singleton threads (σ=2.60; N=59,374). A non-uniform density of user participation is also observed
along with thread density. The distribution of the number of active users in a dialogue window
(|W | = 50) is shown in Figure 4.1, with a mean of 14.32 users (σ=3.67, N=59,374).

Figure 4.1: User Density i.e. number of active users in a dialogue window of length 50, in Ubuntu-IRC

4.2.5 User Activity

User activity for a given dialogue window W is defined by the number of constituent messages in
the window by the child-user (i.e., the author of the last message in the window). The average user
activity in IRC in a window of 50 messages (|W | = 50) is 5.64 (σ=4.77; N=59,347). Figure 4.2 shows
the proportion of dialogue windows across user activity.

Figure 4.2: User activity i.e. number of constituent messages in a window by the child-user (as the

speaker), in Ubuntu-IRC
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4.2.6 Antecedent Distance

Antecedent distance (d) refers to the number of messages between a message (child) and its reply-
to parent. The mean antecedent distance is 7.34 messages (σ=31.79; N=59,347), as shown in Figure 4.3
(marked by a green-dotted line). The data is dominated by self-referential (d=0: 24.8%) and previous-
message reference (d=1: 18.1%) cases, with 87% of parent messages lying at most ten messages away
from their respective children. This can lead to the inflated performance of trivial policy models, which
always predict the previous message as the antecedent, as shown in Table 4.1. Considering this distri-
bution, many past works restrict the antecedent-prediction task to a small window of recent messages.

Model VI ARI Ex-P Ex-R Ex-F1 1-1 NMI

Gold (|W|=50) 98.30 89.06 81.59 89.61 85.41 93.08 97.19

Agreement [2] 95.00 – – – 49.50 83.80 –

Previous [2] 66.20 – – – 0.00 23.70 –

Table 4.1: Scores obtained on Ubuntu-IRC [2] using gold labels (with a sliding window of last 50

messages), reported inter-annotator agreement, and trivial previous-message as parent policy.

Figure 4.3: Antecedent distance i.e. number of messages between a message (child) and its reply-to

parent, in Ubuntu-IRC

4.2.7 User Referencing

User referencing (or pointing) is the act of mentioning one or more of the users within the dialogue
session in a message. IRC contains an explicit form of referencing, i.e., direct mentions, which is
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used to specify a message’s recipient at the start of the message body as shown in Figure 1.1. Though an
informal practice, over 44% of IRC samples contain direct mentions. Another kind of user referencing is
soft-mentioning. Unlike direct mentions, these can occur within the message body as part of the natural
text. They don’t always point to the message’s recipient and may not point to users within the running
thread. Users include simplified or abbreviated versions of usernames within the text, making soft
mentions harder to detect using simple rule-based methods. The dataset contains 4,166 soft mentions
(exact username matches), of which 2,724 mentions (65.38%) point to the recipient user.

4.3 Role of Direct Mentions in IRC

Direct mentions occur in almost half the messages in the IRC data despite being an informal practice.
They inform of message recipients, making it easier to track user interactions. Therefore, it is important
to investigate where and why users choose to use (or omit) this feature while conversing. Thus, in the
following analysis, we attempt to understand the role of direct mentions in the IRC data along with some
key dialogue properties mentioned above.

4.3.1 Along Antecedent Distance

The likelihood of using direct mentions in messages from IRC across a range of antecedent distances
is reported in Figure 4.4. It shows a sharp increase in direct mention usage as the antecedent distance
increases from 0, with about 65% of child messages containing a direct mention and almost 80% of
either of the messages in a parent-child pair being directed.

As the distance between the parent and the child message increases in a dialogue session, it can
become more difficult for a user to ascertain their reply-to relation due to the increasing number of
unrelated messages (and thereby, users and threads) occurring between them.

A higher number of direct mentions as antecedent distance increases might play a role in alleviat-
ing this difficulty. Thus we expect a monotonic rise in the usage of direct mentions with increasing
antecedent distance. However, the likelihood decreases for longer distances.

We find that the average number of users in each thread decreases as the antecedent distance in-
creases. This reduces the need for explicit user-referencing and may also explain why the proportion of
direct mentions is lower for longer distances.

This explanation is supported by the strong and significant correlation (Spearman ρ = 0.59; p-value
< 0.001) between the average number of active users in a thread and the direct mention likelihood for
longer antecedent distances (> 5 messages).

4.3.2 Along User-Density & User-Activity

We consider the number of users in a dialogue window (|W | = 50) as a proxy for user density in
localized time-frames in a dialogue session. Figure 4.5 shows the percentage of directed messages in a
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Figure 4.4: Direct mentions along antecedent distance

window (|W | = 50) across an increasing number of unique users. We see that users add direct mentions
more often as the number of users increases in the message vicinity.

Figure 4.5: Direct mentions along dialogue density

Correspondingly, Figure 4.6 shows the percentage of directed messages in the window in such cases.
As the number of messages by the child user dominates a window, the average concurrent threads and
unique users in the window predictably decrease, reducing the need for explicit user-referencing.

Ubuntu-IRC is currently the only large-scale expert-annotated dataset for conversation disentangle-
ment, making it an important resource for training and evaluating methods within the IRC domain and
for domains such as meeting transcripts & movie dialogues that lack a similar large-scale high-quality
dataset.

This chapter shows that direct mentions occur abundantly in the IRC dataset and play a key role
along several dialogue properties. However, direct mentioning is primarily a forum-specific (though
informal) artifact of Internet Relay Chat and similar online chat forums.
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Figure 4.6: Direct mentions along user activity

We suspect this increases the specificity of the Ubuntu-IRC dataset, impeding its current role as the
generalized resource for research in disentanglement. To further investigate this specificity, we aim to
measure direct mentions’ impact on the overall performance of the models trained using Ubuntu-IRC.
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Chapter 5

Ubuntu-IRC Hard

5.1 Modifying Ubuntu-IRC

To compare the model performance on the IRC dataset against the absence of direct mentions, we
create a modified variant of IRC without direct mentions. Non-system messages in IRC consist of the
posting timestamp, the sender’s username (at the time), and the message body, as shown in the template
below:

"[timestamp] <username> message-body"

We define a direct mention in the message-body as a reference to a past user (using their exact latest
username), strictly at the beginning (first space-separated segment) of the message-body. Following are
the steps to reproduce our data with direct mentions removed:

1. Remove any special characters padding the first space-separated token in the message body if they
belong to the fixed set [.,;:?!].

2. Compare this isolated token against the usernames of the users that have posted any messages in
the corresponding session before the current message.

3. It is an instance of direct mention if an active user is found referenced. Accordingly, remove the
direct mention i.e. all characters of the first token from the message body (including any padded
special characters & white space).

We found a total of 29,190 direct mentions (44.03%) in Ubuntu-IRC (Train: 26,349 (44.39%); Dev:
931 (40.0%); Test: 1,910 (41.35%)). We have also described the estimated distribution of soft mentions
in IRC in Section 4.2.7. However, experimentation without soft mentions would require further inves-
tigation (beyond the scope of the current work) into possible placeholder strategies as simply deleting
them can hamper the flow of natural text. We release this modified variant of IRC as Ubuntu-IRC-Hard
(or IRC-Hard) publicly.
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5.2 Experiments

Conversation Disentanglement has often been formulated as a partitioning/clustering task, i.e. par-
titioning a given session into mutually exclusive threads. With message-level reply-to labels available
for IRC & IRC-Hard, we follow past works in segmenting the session into smaller dialogue windows of
contiguous messages (|W | = 50), wherein the parent(s) of the child message (i.e., last message of the
window) must be predicted. As there are only a few cases in Ubuntu-IRC with multiple antecedents of
a message (< 1%) [2], we limit the task to predicting a single parent (closest to the child message).

5.2.1 Baseline Models

We devise a set of baselines to better compare the contributions of modeling approaches sourced
from past works:

(1) BERT([CLS]) or BC: This model utilizes the [CLS] token representation of the message-pairs
(separated by [SEP] token) obtained from BERT (bert-base-uncased) [47] similar to [5]. This
is then passed through a linear classification layer (with output dimensionality equal to the prediction
window size (|W | = 50)) to predict the optimal antecedent.

Figure 5.1: Architecture of the BERT-CLS model
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+LSTM: Similar to a few past methods [33, 41], this model uses an LSTM for better context aware-
ness. The [CLS] token representation from BC is first passed through a single-layered LSTM before
applying the classification layer.

Figure 5.2: Architecture of the +LSTM model

+SMA: For better speaker-profile modeling, [3] use a speaker-masked-attention layer, allowing each
message to pay attention to only the messages by the same author (within the prediction window). This
model applies the attention layer in +LSTM just before the LSTM layer. In the +SMA pipeline shown
in Figure 5.3, messages m0 & m|W |−1 are by speaker UA and m1 & m|W |−2 by UB . In such a case,
messages m0 & m|W |−1 cannot attend to each other but can attend to others.

Figure 5.3: Architecture of the +SMA model
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+GCN: To better encode reference dependency (direct & soft mentions) [3] use a GCN layer that
accepts a graph of reference links between the messages in the prediction window. We apply this layer
parallel to the attention layer in +SMA and concatenate their outputs before passing them through the
subsequent LSTM layer.

Figure 5.4: Architecture of the +GCN model

BERT(Mean) or BM: Aside from baselines with specific modeling layers, this model uses the mean-
pooled output of the token-level representations from BERT instead of the [CLS] token representation
as in BC.

The output predictions from the classification layer are compared against the gold annotations using
a Cross-Entropy loss for all baseline models.

5.2.2 Evaluation Metrics

After antecedent-prediction for each message in a session, the connected components of the reply-to
relations between messages are evaluated as predicted threads against the gold-annotated threads. We
use the following partitioning metrics: Variation of Information (VI) [52] (1 − V I for higher scores
to indicate better alignment), Adjusted Rand Index (ARI) [53], One-to-One overlap (1-1) [28], and
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Normalized Mutual Information (NMI). We also use Precision (Ex-P), Recall (Ex-R), and F1-score
(F1) on the exact matching of threads.

We also conduct a qualitative evaluation of the models along several dialogue properties. For this, we
define a new metric – Thread Correctness (TC). Note that many of the dialogue properties mentioned
in the previous section are defined around the sliding-window formulation of antecedent classification
instead of the thread-centric view of conversations. This shift to a local context (window) requires a
metric which can be applied to such a context, where existing thread partitioning metrics cannot be
applied. Thread correctness measures whether the messages within a dialogue window are correctly
grouped with the child-message in the same thread. The metric reports the F1 score on this classification
for a given window size. Below is the formulation for TC:

P =
|m : T (m)pred = T (m)true = T (mC)true,m ∈ W |

|m : T (m)pred = T (mC)true,m ∈ W |
(5.1)

R =
|m : T (m)pred = T (m)true = T (mC)true,m ∈ W |

|m : T (m)true = T (mC)true,m ∈ W |
(5.2)

Thread Correctness =
2PR

P +R
(5.3)

where m is a message within the prediction window W . mC is the child (last) message in W .
T (m)true & T (m)pred respectively denote the actual and predicted thread to which m belongs. P

(precision) & R (recall) are combined to generate the F1-Score of TC.

5.2.3 Implementation Details

We train all past models on four initialization seeds (with their average scores reported), adhering to
their respective instructions for reproducibility. Baseline and experimental models were trained using
an AdamW optimizer [54]. Loss on the dev set was used to stop baseline model training with a patience
of 2 epochs. All experiments were performed using 2 Nvidia 1080Ti GPUs with 20GBs of memory.
Each training session for S4DD, baseline, & experimental models took about 26-29 hours to complete.
Input sequences were truncated (or padded) to 128 tokens, and the dialogue window W for antecedent
prediction was set to the last 50 messages (|W | = 50). Our baseline and experimental models were
implemented using PyTorch [55] and the Transformers library [56].

5.3 Results and Discussion

We report the scores of past and baseline models on both Ubuntu-IRC (IRC) and Ubuntu-IRC-Hard
(IRC-Hard) against partitioning metrics in Tables 5.1 and 5.2. A significant drop in performance for
all models is recorded on IRC-Hard compared to IRC across metrics. Figure 1.2 shows how S4DD’s
performance degrades gradually as the proportion of direct mentions decreases.
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• The feature-based feed-forward model (FF) by [2], shows a steep reduction (by 64.8%) in the ex-
act thread matching (Ex-F1). We observe that FF relies on the number of direct mentions between
message pairs as a feature. Removing direct mentions predictably makes this feature unusable,
partly explaining the drop. As the GCN layer in S4DD encodes soft mentions in addition to direct
mentions, it is slightly more resilient to dropping direct mentions in IRC-Hard (52.8% drop in
Ex-F1).

• The baseline models BC & BM also show a similar reduction in scores, although BM drops
further and scores worse than BC across VI, ARI, and 1-1. +LSTM, +SMA, and +GCN report
increasingly higher performance than BC for IRC. However, this gain is notably diminished upon
removing direct mentions (in IRC-Hard).

• The overall drop in VI for most models is much lower in comparison to other metrics. This is
explained by a large number of previous-message antecedents (20.65%) in IRC (and IRC-Hard).
Most models learn this distribution, resulting in an inflated VI e.g. a trivial system with previous
messages predicted as reply-to parents fetch a VI of 66.20.

5.3.1 Evaluation Along Dialogue Properties

Current partitioning metrics report model performance aggregated across all threads in the evaluation
set. This hides internal performance variations across different dialogue properties. To highlight these
variations, we report the TC (see Section 5.2.2) of S4DD and the baseline models across the ranges of
several dialogue properties in Figures 5.5, 5.6, 5.7, and 5.8 (wherein, solid lines and bars correspond to
models trained on IRC, and dotted lines and slashed bars denote the models trained on IRC-Hard).

• Figure 5.5 shows how the general model performance decreases as the antecedent distance in-
creases, where models trained on IRC-Hard perform consistently worse than on IRC for the dis-
tance range 0-30. However, S4DD and +GCN trained on IRC-Hard outperform some IRC models
beyond a distance of 30 messages. This is probably explained by a much lower proportion of
direct mentions in these ranges (for IRC-trained models to utilize), where the additional GCN
layer in S4DD & +GCN still allows leveraging soft mentions in lieu of direct mentions.

• A higher user density in a dialogue window warrants better user-referencing, leading to a higher
proportion of direct mentions, as shown in Figure 4.5. Figure 5.6 shows that models trained
on IRC-Hard perform significantly worse as user count increases. Models trained on IRC, in
comparison, perform more consistently across user counts.

• A higher user activity tends to occur in windows with fewer concurrent threads, therefore, re-
quires lesser user-referencing. Though models score similarly in windows saturated by child-
messages on both IRC & IRC-Hard, Figure 5.7 shows that models perform significantly worse on
IRC-Hard as the message count decreases.
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Group Model VI ARI Ex-P Ex-R Ex-F1 1-1 NMI

Past FF [2] 92.65 71.91 38.16 40.85 39.46 78.44 87.96

S4DD [3] (SOTA) 93.47 69.90 45.59 47.57 46.56 80.66 88.85

Baseline BC 91.52 62.88 32.98 39.64 36.00 75.14 84.98

BM 91.59 60.79 35.50 41.94 38.45 74.64 85.29

+LSTM 91.24 63.36 30.98 37.08 33.76 74.40 84.56

+SMA 92.74 67.08 41.13 44.50 42.75 77.70 87.54

+GCN 93.21 69.96 40.64 45.52 42.94 79.64 88.20

Weighted Loss p = 0.2 93.68 69.87 49.25 50.38 49.81 80.16 89.28

p = 0.4 93.54 70.08 44.52 47.83 46.12 80.50 88.88

p = 0.6 92.88 73.05 39.09 39.39 39.24 80.30 87.90

p = 0.8 93.84 75.93 43.06 46.04 44.50 82.38 89.40

Ensembling Voting (All Models) 93.25 69.43 45.39 49.10 47.17 79.80 88.41

IE(U-Count) 93.51 70.85 47.51 48.85 48.17 80.14 88.97

IE(M-Count) 93.60 70.93 46.78 48.34 47.55 80.68 89.10

IE(SM) 93.69 72.77 47.25 48.34 47.79 80.80 89.29

Table 5.1: Experimental results on Ubuntu-IRC [2]. Results in bold are the best-observed scores under

respective metrics for each dataset variant.
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Group Model VI ARI Ex-P Ex-R Ex-F1 1-1 NMI

Past FF [2] 83.57 45.65 13.66 14.08 13.87 59.34 73.20

S4DD [3] (SOTA) 86.15 53.90 21.03 23.02 21.98 65.70 76.42

Baseline BC 85.14 45.17 15.47 18.16 16.71 61.42 73.74

BM 83.73 44.75 13.16 16.62 14.69 59.64 70.72

+LSTM 83.97 42.25 12.09 16.11 13.82 60.18 70.83

+SMA 85.47 53.83 17.85 17.39 17.62 64.28 75.69

+GCN 86.10 53.75 16.21 18.16 17.13 66.06 75.93

Weighted Loss p = 0.2 86.87 55.56 19.95 22.25 21.04 67.42 77.34

p = 0.4 85.94 54.33 21.57 21.74 21.66 66.42 76.26

p = 0.6 86.34 53.71 21.11 21.48 21.29 66.68 76.79

p = 0.8 85.87 52.64 18.55 20.97 19.69 64.80 75.63

Ensembling Voting (All Models) 86.81 55.10 22.70 24.55 23.59 66.30 77.30

IE(U-Count) 86.77 56.01 21.69 23.02 22.33 66.60 77.46

IE(M-Count) 87.33 56.87 24.15 25.32 24.72 68.16 78.42

IE(SM) 86.97 56.58 22.47 22.76 22.62 66.90 77.93

Table 5.2: Experimental results on Ubuntu-IRC-Hard (See Chapter 5). Results in bold are the best-

observed scores under respective metrics for each dataset variant.
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• We also compare model performance on samples by whether the messages contain a soft-
mention in Figure 5.8. Without direct mentions, TC worsens significantly more in the absence
of soft mentions. Additionally, worse scores in cases without soft mentions for models other than
S4DD and +GCN (which contain dedicated reference modeling layers) show that BC, BM, &
+LSTM also leverage soft mentions (although to a smaller extent).

Figure 5.5: TC of past and baseline models along antecedent distance

Figure 5.6: TC of past and baseline models along user density
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Figure 5.7: TC of past and baseline models along user activity

Figure 5.8: TC of past and baseline models along soft mentioning
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Chapter 6

Dialogue Property Aware Modeling

6.1 Motivation

A key takeaway from the investigations in section 5.3.1 is that models can have varied capabilities for
different sub-ranges of dialogue properties. This chapter aims to leverage these variations for existing
SOTA methods to improve their performance and overall generalizability.

6.2 Property-Specific Modifications

Qualitative metrics can help identify specific property sub-ranges where generally good models per-
form poorly. This localized brittleness is partly due to a non-uniform representation of different property
sub-ranges in the data, e.g., longer antecedent distances are rare in IRC, and corresponding models re-
port a significant performance drop as distance increases (although not solely due to fewer representative
data instances).

We thus propose a weighted loss formulation to inversely scale the training loss for each data
instance according to the representative proportion of its context in the data along a dialogue property.
We experiment with this approach in the case of antecedent distance. The corresponding loss factor is
defined as follows:

βd =

∑|W |
k=0 |{m : Dant (m) = k;m ∈ Mtrain}|
|{m : Dant (m) = d;m ∈ Mtrain}|p

(6.1)

where m is a message from the train-split (Mtrain), Dant(m) denotes the message distance between
m and its antecedent message, and W is the prediction window with a fixed size (taken as 50). The
loss pertaining to each message in the prediction window is scaled by βd based on its distance (d) from
the child (last) message in W . However, note that a highly underrepresented distance will accordingly
receive an extremely large weight. This may negatively impact training, with a few individual examples
having over-amplified losses. To alleviate this issue, the loss factor is softened using a variable power
factor p (0 < p < 1), with lower values resulting in a relatively softer scaling factor than for p = 1.
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6.2.1 Discussion

We train four instances of S4DD on each dataset (IRC & IRC-Hard) using the weighted loss with the
following values of p – {0.2, 0.4, 0.6, 0.8} and report scores against partitioning metrics in Table 5.2.
For a qualitative perspective, Figure 6.1 reports TC along antecedent distance for all models alongside
another S4DD instance (without weighted loss) for each dataset.

• Among IRC models, p = 0.2 has the highest Ex-P, R, &F1, and p = 0.8 scores the highest across
all other metrics. Observing their TC along antecedent distance reveals that p = 0.2 (W 0.2)
scores similarly to S4DD for shorter distances and surpasses S4DD for distances roughly > 35

messages.

• A sharper scaling using p = 0.8 (W 0.8) surpasses S4DD performance after relatively shorter
distances i.e., 20 messages, although the scores decrease again for distances > 40.

• Among IRC-Hard models, p = 0.4 (W 0.4) and p = 0.6 (W 0.6) have the best Ex-F1 and
consistently score better than S4DD across all antecedent distances.

Figure 6.1: TC of SOTA and weighted loss models (shown as W x).

6.3 Controllable Context-Based Prediction

The variations observed in the models described in Section 5.3.1 suggest that it is unlikely that in
a diverse model pool, a single model outperforms the others across all contexts of a dialogue prop-
erty. This motivates the need to optimally control the ensemble prediction of a model pool based on
the relevant property sub-range. Existing ensembling methods for conversation disentanglement, e.g.,
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Figure 6.2: TC of SOTA, informed ensemble, and weighted loss models along user-density.

Model-AVG, Prob-AVG, and Vote-AVG by [5] and union, vote, and intersect by [2], use a fixed model
pool for all predictions independent of the relevant property sub-range.

We approach this issue by proposing an informed ensembling technique, which dynamically samples
a subset of models best suited for each context along a dialogue property. The model pool for our
experiment contains four instances of S4DD (each trained with a different seed initialization) and four
weighted loss models, i.e., p ∈ {0.2, 0.4, 0.6, 0.8} as in Section 6.2. The steps involved in the ensemble
are as follows:

1. Selecting a Suitable Dialogue Property: The informed-ensemble optimizes model selection
along a single dialogue property. For this method to be applicable during inference, dialogue
properties involving labeled information (e.g. actual antecedent distance) cannot be used. Thus
we use the following dialogue properties:

(a) U-Count: Number of users in a dialogue window (W )

(b) M-Count: Number of messages by the child-user of W

(c) SM: Whether the child-message contains a soft-mention

Each property is used to create an informed ensemble, labeled as IE(<dialogue property>).

2. Collecting a priori Model Performance: To select the best-suited models for a context, model
performances across all contexts in a dialogue property must be determined beforehand. Without
access to the test-set labels, we estimate this using the TC of all models for the three dialogue
properties on the dev-set of the dataset in use.
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3. Selecting Model Subset: For each message during inference, we only use the top 10% of the
best-scoring models for the relevant property sub-range.

4. Aggregating Predictions: Finally, the predictions of each model in the subset need to be com-
bined to produce a single prediction. We take a majority vote of the antecedents predicted by the
model subset and use the most voted-for candidate.

Figure 6.3: TC of SOTA, informed ensemble, and weighted loss models along user-activity.

Figure 6.4: TC of SOTA, informed ensemble models along soft-mentioning.
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6.3.1 Discussion

We evaluate the informed-ensembles on the IRC and IRC-Hard datasets. We also evaluate a standard
majority-vote ensemble i.e. Vote(All Models), using the entire model pool to compare against our
approach, which utilizes only a small subset of models for each instance. Performance on partitioning
metrics is reported in Table 5.2, and the TC along the constituent dialogue properties of each informed
ensemble is shown in Figures 6.2, 6.3, & 6.4. For reference, the minimum and maximum scores of all
weighted-loss models across the range of U-Count & M-Count, respectively, have been added to Figure
6.2 & 6.3 (W x in grey).

• We see that informed ensembles outperform all individual models (within the model pool) for
IRC-Hard and most models for IRC.

• They also report the best TC for most contexts along U-Count & M-Count. Figure 6.4 shows that
except for contexts supported by both direct and soft mentions, the ensembles also provide the
best TC in SM.

NOTE: Utilizing any ensemble formulation involves an overhead of training and inferring over mul-
tiple models for each classification instance. Though this is a heavy overhead, we use this method
primarily to demonstrate that leveraging the varying performance of different models can be helpful.
The eventual goal is to build a unified model with apt control elements which can dynamically furnish
the capabilities warranted for each dialogue context. However, up until such a model, such informed
ensembling or control methods are crucial.
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Chapter 7

Conclusions

In this thesis, we aim to improve accessibility to text by exploring two different NLP tasks, namely,
text simplification and conversation disentanglement. Simplification aims to improve the readability of
text at the sentence level, while disentanglement resolves individual conversation threads from a large
multi-party dialogue. Despite differing primary objectives, both tasks convert the original format of the
text into an easily comprehensible variant.

We explore text simplification in the context of a model [1], which claims to tune its simplifications
along certain textual transformations (such as sequence length compression and lexical & syntactic
complexity) using dedicated control tokens. We assess this claim by measuring the impact of each
control token on the output text. We find that although control tokens do help in generating more
accurate simplifications, thereby fetching higher scores on popular metrics, they do not always directly
affect their respective text attributes. In fact, they often result in the variation of unrelated attributes or
cause trivial outputs (such as the truncated version of the complex source), which adhere to the control
token constraints, but do not actually result in a simplified text.

We offer two methods to address some of the above concerns: (i) An named-entity (NE) masking
formulation which protects NEs from unwanted replacements and also optimizes the training vocabu-
lary, and (ii) Using pretrained weights for input tokens to curb data sparsity induced by the added control
token vocabulary and using randomly initialized weights. This sparsity, however, can be further reduced
by using a more continuous solution for specifying control configurations, such as a direct scalar input
to the model or at least using positional encodings for control tokens.

As part of our work on conversation disentanglement, we investigate dataset-specific features in the
Ubuntu-IRC dataset [2] and asses the generalizability of models trained on IRC. Specifically, we an-
alyze the distribution and role of direct mentions in the dataset and their resultant impact on past and
proposed baseline model performance. Our in-depth qualitative analysis of the models across several
key dialogue properties (such as message-antecedent distance, user density, & the presence of soft men-
tions) identifies points of brittleness across sub-ranges of these properties.

By leveraging the findings from the qualitative performance of all models, we provide two methods to
address localized brittleness: (i) A weighted-loss formulation to better represent less frequent property
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sub-ranges and (ii) An informed-ensembling technique to dynamically select the ideal subset of models
for each property sub-range.

Our methods outperform SOTA [3] performance on all current partitioning metrics and are more
resilient across property sub-ranges. Other sources of conversation data would exhibit significantly
different dialogue properties profiles. Informed ensembling across different dialogue properties should
result in a more robust performance in such datasets.

We analyze the impact of the availability of direct mentions on model performance as they are pre-
dominantly artifacts of IRC and similar online platforms, thus, increasing the specificity of the dataset.
A similar in-depth analysis spanning multiple features is necessary, though an investigation of this nature
requires high-quality disentanglement data from other domains as well, which is currently unavailable.

In our later experiments, we apply a weighted loss formulation to tackle the poor representation
of longer antecedent distances in IRC. Note that the scaling factor β can be defined using the data
distribution of any dialogue property, thereby allowing a better representation of low-frequency contexts
across properties.

We also show improvements in the overall model performance using an informed ensembling ap-
proach. However, it optimizes the model subset selection for only one dialogue property at a time. A
more nuanced formulation that accommodates several properties simultaneously needs to be explored.
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