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ABSTRACT 

Climate classification plays a significant role in the development of building codes and standards. 

It guides the design of building envelope and systems by considering their location’s climate 

conditions. ASHRAE standard 169, as well as established climate classification systems such as 

Köppen and Trewartha, employ meteorological parameters like temperature, humidity, solar 

radiation, and precipitation for such classifications. However, the above approaches often fall short 

in acknowledging the relation between climatic conditions and the energy consumption of 

buildings, a critical consideration for comprehensive energy efficiency assessments. 

This research employs clustering techniques to group cities into different climate zones based on 

the number of similar days. Two days are considered similar when the absolute difference between 

their meteorological parameters falls within a specified threshold range. A similarity matrix for the 

given set of cities is created using three key meteorological parameters: mean daily temperature, 

mean daily relative humidity, and mean daily solar radiation. This matrix, indicating the number of 

similar days between each pair of cities based on these meteorological characteristics, is used to 

cluster cities into distinct climate zones. 

To assess the quality of clustering, the simulated annual energy consumption of a standard building 

model for each city is used. The analysis focuses on three annual energy parameters: sensible 

cooling, latent cooling, and heating. The quality of the clustering is evaluated using the silhouette 

score method, which uses annual energy consumption data. The silhouette score method considers 

both inter- and intra-cluster distances, with the best value being 1, the worst -1, and values near 0 

indicating overlapping clusters. 

The application of the proposed methodology to 786 U.S. cities' meteorological datasets has shown 

that the clustering, evaluated using silhouette score, computed across a set of threshold values (7 

°C for daily mean temperature, 45 % for daily mean relative humidity, and 35 Wh/m² for daily 

mean solar radiation), has given a better clustering over the prevalent ASHRAE Standard 169 

classification. The clustering achieves a better score (0.113) than ASHRAE Standard 169 (0.054). 
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1 INTRODUCTION 

 Background 

Climate classification categorizes regions based on their long-term weather patterns and 

meteorological conditions, providing insights into typical temperature, humidity, precipitation, 

and seasonal variations. It is essential for optimizing urban planning, agriculture, energy 

efficiency, disaster preparedness, and environmental conservation by tailoring strategies to 

specific climatic conditions. In building design, it is useful because similar climates often require 

similar strategies to achieve energy efficiency and thermal comfort. 

Climatic classification introduced by Wladimir Köppen in 1990s was based on vegetation studies 

and in later improvements included precipitation and air temperature. Köppen initially 

categorized global climates into five vegetation zones. Subsequently, Rudolf Geiger undertook 

revisions to Köppen's world map leading to Köppen-Geiger classification world map [1]. 

Another important climate classification method is presented in ASHRAE Standard 169 [2]. 

Conceived in 2004 through surface observations, the collaboration between ASHRAE and the 

Department of Energy in the United States resulted in the development of climate zone maps at 

the Pacific Northwest National Laboratory (PNNL), integral to the formulation of building 

codes. It was included in the 2004 Supplement to the International Energy Conservation Code 

(IECC) and later incorporated into ASHRAE Standard 90.1. 

The IECC climate zone map serves to categorize the United States into eight distinct 

temperature-oriented climate zones. Further granularity is achieved by subdividing these zones 

into three moisture regimes, designated as A, B, and C. Consequently, the IECC climate zone 

map facilitates a classification system, offering up to 24 potential climate designations as shown 

in Figure 1-1. These climate zone definitions, aligned with IECC and ASHRAE standards, 

promote consistent regional building codes for energy-efficient and sustainable construction [2]. 
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Figure 1-1: ASHRAE Standard 169 climate zone definitions [2] 

 

In the scope of building energy efficiency, climate zoning finds application in three distinct 

categories: performance-based requirements, prescriptive-based requirements, and passive 

design guidelines. Prescriptive methods involve specific thermal attributes related to building 

envelope components, offering simplicity in execution and potential energy savings. 

Performance-based techniques consider overall building metrics, fostering versatility and 

improvement in energy-saving initiatives. Passive design guidelines leverage natural resources 
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to reduce energy consumption, focusing on building geometry, orientation, envelope features, 

and passive heating/cooling approaches [3]. 

 Motivation 

Initially most of the climate classifications were not developed on building energy efficiency 

standpoint. Most well-known climate classifications like Köppen were related to vegetation 

cover and later improved including patterns of seasonal precipitation and temperature. 

Subsequently, many classifications were developed for agriculture and other specific domains 

[3]. Currently the most popular criteria used for climate classification for building energy 

efficiency is based on ASHRAE Standard 169 which considers Heating Degree Days (HDD) 

and Cooling Degree Days (CDD) along with annual precipitation and annual mean temperature. 

Current climate classifications do not consider relative humidity and solar radiation which have 

a significant impact on building energy consumption. Relative Humidity and Solar Radiation 

play an important role in thermal comfort, thereby effecting the building energy consumption 

patterns and is important to consider them for classifying the climates. Relative Humidity is 

considered as a main factor that affects latent cooling energy consumption of a building. Solar 

radiation is another important meteorological parameter influencing climate classification for 

building energy efficiency. The amount of solar radiation that reaches a location depends on 

factors such as latitude and local weather conditions. Variation in solar radiation can increase or 

decrease the energy consumption in buildings. 

Despite the widespread usage of climate classifications, there isn’t a consensus regarding the 

optimal method for implementing climate zones within the context of building energy efficiency 

programs. Climate classification for building energy efficiency poses challenges due to a mix of 

numerous independent factors [4]. 

 Aim and research question 

The aim of this research is to use clustering technique to cluster a set of cities based on similar 

days to explore under-addressed link between climate classification and building energy 

consumption.  

The proposed methodology is applied to weather dataset of U.S. cities. A range of threshold 

values were employed for critical meteorological parameters (daily mean temperature, daily 



 

 

 

13 

mean relative humidity, and daily mean solar radiation) to gauge the method's robustness across 

varying climatic conditions. The comparative analysis with the established ASHRAE Standard 

169 classification serves as a benchmark, revealing performance of the clustering methodology. 

 Approach for clustering  

The method developed in this research is clustering using similar days. Unlike traditional climate 

classification approaches, which primarily rely on meteorological parameters such as 

temperature, humidity, and solar radiation, the proposed method centres on the identification of 

similar days between cities. The key parameters considered for this analysis include mean daily 

temperature, mean daily relative humidity, and mean daily solar radiation. 

 

The work in the thesis involves the following steps: 

Data Preparation: Meteorological data for each city, encompassing mean daily temperature, 

mean daily relative humidity, and mean daily solar radiation, is collected. 

Similarity Calculation: A matrix is constructed to quantify the frequency of similar 

meteorological conditions between pairs of cities. Similarity is based on the identified 

parameters. 

Agglomerative Hierarchical Clustering: A matrix is used as input for agglomerative 

hierarchical clustering, a technique that systematically groups cities based on their similarities. 

This results in the formation of distinct climatic zones. 

Scoring Mechanism: A scoring mechanism is developed to evaluate the quality of the 

clustering. This mechanism assesses the uniformity of energy consumption distribution within 

each identified climatic zone. 

Application to U.S cities: The developed methodology is applied to diverse U.S. cities' 

meteorological datasets, and scores are computed for various threshold values of critical 

meteorological parameters. 

Comparison with ASHRAE 169: The performance of the proposed method is benchmarked 

against the widely adopted ASHRAE 169 classification. 
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 Organization of thesis  

The thesis is organized into six chapters.  

Chapter 1 gives an overview of the research. Issues and research questions relevant to the 

research are identified. 

Chapter 2 provides a literature survey to identify current methods and the gaps that have been 

identified.  

Chapter 3 proposes a methodology for climate classification  

Chapter 4 is about employing the proposed methodology for US cities 

Chapter 5 is regarding Results and Discussion.  

Chapter 6 consists of Conclusion.  
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2 Literature Review 

 

The construction sector plays a vital role in meeting climate objectives as it ranks as the second-

largest consumer of electricity. To enhance energy efficiency in buildings, many countries have 

enforced mandatory regulations. These building energy regulations hinge on climate zones, and 

accurately classifying a city into the appropriate climate zone is crucial. In their work, Franciso 

Jose et al. [5] established a connection between climate zoning and its application to the energy 

performance of Spanish buildings. Over the past few years, several methods have been proposed 

for climate classification that can be applied in programs aimed at enhancing building energy 

efficiency. The Köppen-Geiger climate classification system [1] is the most widely adopted and 

referenced model globally for delineating climate zones. The Köppen climate classification 

categorizes climates into five primary groups, each further divided based on seasonal 

precipitation and temperature patterns. However, it's worth noting that this classification does 

not consider certain weather elements such as winds, precipitation intensity, amount of 

cloudiness, and daily temperature extremes. 

Briggs R. S. et al. [6, 7] used Heating Degree Days (HDD) and Cooling Degree Days (CDD) 

based approach for classification. ASHRAE [2] has come up with a climate classification system 

which classifies localities into climate zones based on temperature and precipitation basis. The 

thermal climate zone of a locality can range from 0-8. The moisture climate zone can be Marine, 

Dry or Humid. Monjur Mourshed [8] has shown the importance of degree days that is used in 

ASHRAE classification. 

There are many other classification approaches proposed such as Bansal and Minke [9] who have 

developed climate classification for India using mean monthly temperature and humidity values. 

Mayank B. et al. [10] have shown the classification of Indian cities using ASHRAE Standard 

169 and compared with Bansal and Minke’s classification. ORNL researchers [11] used similar 

methods for reimaging climate zones of the US. Cao Jingfu et al. [12] have considered cooling 

energy consumption to provide an efficient climate index for China. Zscheischler et al. [13] 

showed the value of unsupervised clustering for climate classifications. Hudson et al. [14] have 

provided climate classification for Columbia k-means clustering with multivariate climate data. 

Sathiaraj et al. [15] used k-means, DBSCAN, and BIRCH techniques for climate classification. 
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It was reported that DBSCAN shows less accuracy and effectiveness when applied for climate 

classification purposes. 

Xiong Jie et al. [16] used hierarchical climate zoning for China. Shin M et al. [17] have suggested 

using enthalpy based CDD instead of conventional CDD value that is based on outdoor dry-bulb 

temperatures that neglect the influence of latent heat on the total energy consumption. Giovanni 

Pernigatto [18] provided a classification of European cities using cluster analysis. Walsh A et al. 

[19] reported that most of the current classifications are oversimplified and not fit for building 

energy efficiency programs. One out of six areas analyzed was mis-classified while using 

ASHRAE classification criteria [20]. 

It is noticed among all the different methodologies, there isn’t any significance of building 

energy consumption taken into consideration when classifying, apart from the climate-derived 

parameters like dry-bulb temperature, humidity, precipitation data, HDD, CDD etc, when one of 

the objectives is proposing building energy regulations. A building situated in a location within 

a climate zone should have a similar thermal energy consumption in comparison with another 

building in another location within the same climate zone. The hypothesis idea for the proposed 

methodology, where the spread in thermal energy consumption of buildings within a climate 

zone should be minimized and differ from other zones. 

This study aims to develop a methodology to classify climate using hierarchical clustering 

method based on the number of similar days between cities. The upcoming sections will outline 

the methodology, followed by the data analysis for cities in United States, the presentation of 

results and ensuing discussion, finally the conclusion. 
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3 Methodology  

 

 Overview 

The idea of this study is mainly divided into three main stages: preparation of data, clustering 

and scoring. 

In the first step, weather files (EPW format) are taken for the cities of the selected region. EPW 

files are historical weather files used in climate analysis of cities and for use in simulation 

purposes. From all the weather files in the selection region. mean daily temperature, mean daily 

relative humidity, and mean daily solar radiation data is calculated which will be used in step 

two. A building model was built to perform energy simulations for all the weather files available. 

In step two, the daily mean data of all the cities are used to identify the number of similar days 

between each city based on the maximum bipartite matching considering different threshold 

values. 

The similar days method considers daily data, allowing for a fine-grained analysis of climate 

patterns compared to traditional classification methods that often rely on monthly or annual 

averages. 

Agglomerative hierarchical clustering [21] is used for climate clustering based on the number of 

similar days present between the cities for all the threshold values as shown in Figure 3-1. 

In step three, the clustering is evaluated using Silhouette score method where the score ranges 

from -1 to +1. The building thermal load and the clustering labels for all the cities are taken as 

input for this method. Based on the score achieved by each threshold value, the clusters with the 

highest score were selected for further analysis. Also, the scores of clusters that were selected 

are compared with the scores achieved by the ASHRAE Standard 169 method. Details of the 

applied methods are presented in the following sections. 
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Figure 3-1: Methodology for Climate Classification 

 

 Climate classification parameters 

3.2.1 Weather files 

This methodology necessitates the utilization of Typical Meteorological Year (TMY) [22] data 

sourced from diverse geographical locations to conduct a rigorous analysis. The dataset 

encompasses essential meteorological parameters, including but not limited to dry bulb 

temperature, dew point temperature, solar radiation, relative humidity and wind speed. After data 

acquisition, the focus sharpens on the extraction of daily mean dry-bulb temperature, daily mean 

relative humidity and daily mean solar radiation from the TMY files. These refined metrics serve 
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as the basis for computing ‘similar’ days between two cities. The quantification of similar days 

establishes a metric defining the ‘closeness’ between any pair of cities, a pivotal parameter 

employed in the subsequent clustering approach. 

3.2.1.1 Typical meteorological year (TMY) 

The inception of Typical Meteorological Year (TMY) data files traces back to a period when 

computing resources were constrained, characterized by slower processing speeds and limited 

memory capacities compared to contemporary standards. These files originated from the long-

term data within the National Solar Radiation Database (NSRDB) and were specifically designed 

to facilitate the analysis of building performance. During this era, users sought a condensed 1-

year dataset that could effectively replicate the outcomes derived from utilizing the extensive 

30-year data available in the NSRDB. 

Crucially, the decision to focus on a 1-year dataset arose from the recognition that certain 

meteorological parameters wielded a more significant influence on building performance than 

incident solar radiation alone. Thus, the TMY datasets were crafted to encapsulate the “typical” 

meteorological data present in the NSRDB. Beyond just addressing computational constraints, 

these datasets emerged as valuable representations of the meteorological conditions crucial for 

understanding and simulating diverse building performance scenarios. 

Each TMY data file represents a comprehensive year of data, constructed from 12 months 

selectively chosen as the most typical from the years constituting the NSRDB. The original files, 

developed by Sandia National Laboratory, employed a method where a typical month was 

chosen based on nine daily indices. Theses indices encompass the maximum, minimum and 

mean dry bulb and dew point temperatures, as well as the maximum and mean wind velocity and 

the total Global Horizontal Irradiance (GHI). This meticulous selection process ensured that the 

resulting TMY datasets not only addressed computational limitations but also remained faithful 

to the essential meteorological characteristics influencing building performance. Through the 

strategic use of daily indices, these datasets offer a condensed, yet representative snapshot of the 

meteorological nuances embedded in the broader NSRDB proving invaluable for a range of 

applications in building design, energy management and climate impact assessment. 
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3.2.1.2 Typical meteorological year 2 (TMY 2) 

The TMY2s are datasets of hourly values of solar radiation and meteorological elements for a 1-

year period. TMY2 files were created from the 1961-1990 NSRDB, in which 93% of the values 

were modeled. For TMY2 data files, the DNI was added to the weighting indices. This improved 

the comparison of annual average DNI in TMY file to long-term average DNI in the NSRDB 

files by an approximate factor of 2. The weighting for wind speed was reduced and the criteria 

for persistence were altered slightly in TMY2 and later TMY3 data files. For TMY2 files, the 

months from May 1982 through December 1984 were excluded from the analysis because the 

aerosols from the eruption of El Chichon in Mexico differed significantly from typical values 

[22]. 

3.2.1.3 Typical meteorological year 3 (TMY 3) 

The TMY3s are datasets of hourly values of solar radiation and meteorological elements for a 1-

year period. TMY3 data files were created from 1991-2005 NSRDB data and 1961-1990 

NSRDB data if they existed for that location. For TMY3 files, the months from June 1991 to 

December 1994 were excluded because the aerosols from the eruption of Mount Pinatubo in the 

Philippines were atypical. As a result of the exclusion, 83% of TMY3 files were derived using 

11.5 years of data. 

Note that for the TMY2 and TMY3 datasets, half of the weight was placed on solar irradiance 

values and the other half on meteorological parameters. 

Their intended use is for computer simulations of solar energy conversion systems and building 

systems to facilitate performance comparisons of different system types, configurations and 

locations because they typically represent rather typical than extreme conditions. They are not 

suited for designing systems to meet the worst-case conditions occurring at a location [22]. 

3.2.2 Building model 

To calculate the thermal load characteristics of office buildings across the study area, a building 

model was first developed based on the relative building envelope present across the study area. 

Thermal load simulation for the model can be performed by any simulation software or tool such 

as EnergyPlus [23], IES-VE [24] and eQUEST [25] or any tool that provides hourly outputs 

based on weather files. Sensible cooling, latent cooling, and heating energy are calculated using 
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simulation and used for the calculation of score, considering similar internal load, and load 

generated using similar occupancy. 

3.2.2.1 EnergyPlus 

EnergyPlus software is used for the building modeling and simulation. EnergyPlus™ is a whole 

building energy simulation program developed US Department of Energy to model energy 

consumption-for heating, cooling, ventilation, lighting and plug, and process loads. EnergyPlus 

is a console-based program that reads input and writes output to text files. EnergyPlus uses the 

conduction transfer function module for the calculation of conduction through walls. Figure 3-2 

shows the modules and managers used in EnergyPlus. 

 

 

Figure 3-2: EnergyPlus simulation engine [23] 

 

 Method for clustering 

As the classification labels were not known prior, the unsupervised machine learning technique 

is used for the classification of climates. Unsupervised machine learning algorithms discover 

hidden patterns or data groupings from the given dataset. In this context, the agglomerative 

hierarchical clustering (AHC) algorithm was utilized. AHC is a connectivity-based algorithm 

that groups data points together based on their proximity or closeness to one another.  
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3.3.1 Agglomerative Hierarchical Clustering 

The algorithmic process commences by treating each location as an autonomous cluster, 

establishing an initial state of individualized clusters. Subsequent iterations involve the 

combining of clusters that exhibit marginal distinctions in climate conditions, thereby forming 

distinct clusters. The merging criterion in this proposed method predicates that the cities with 

the highest count of similar days are conjoined to create a cohesive cluster. This process iterates 

until specific termination criteria are met, signaling the conclusion of cluster merging. The 

linkage criteria determinates the metric used for the merge strategy as shown in Figure 3-3: 

Ward linkage minimizes the sum of squared differences within all clusters. It is a variance 

minimizing approach 

Maximum or complete linkage minimizes the maximum distance between observations of pair 

of clusters. 

Average linkage minimizes the average of the distance between all the observations of pairs of 

clusters. 

Single linkage minimizes the distance between the closest observations of pairs of clusters. 
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Figure 3-3: Different linkage strategies [30] 

 

The procedural workflow of this Agglomerative Hierarchical Clustering (AHC) algorithm is 

visually represented in Figure 3-4. Hierarchical cluster analysis, as elucidated in reference [21], 

generates a distinctive array of nested clusters through sequential pairing based on pre-defined 

criteria. Illustrated in the form of a dendrogram as shown in Figure 3-5. Since the idea is to 

reduce the variance between cities in a cluster when classifying into climate zones, ‘Ward’ 

linkage criteria is used. 

Given the necessity in the proposed method to ascertain similar days between two cities with a 

focus on unique matching and maximizing such matches, the methodological approach 

incorporates the utilization of maximum bipartite matching. This technique ensures a meticulous 

and efficient matching process, aligning with the overarching objective of discerning and 

optimizing the similarity between the climatic profiles of distinct cities. 
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Figure 3-4: AHC algorithm-based clustering process 

 

 

Figure 3-5: Hierarchical clustering dendrogram [21] 
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3.3.2 Maximum bipartite matching 

Bipartite matching, as delineated in reference [26], entails the selection of a set of edges in a 

graph in such a way that no two edges within that set share an endpoint. The quest for maximum 

matching involves determining the highest count of such edges. In the context of the proposed 

method, a threshold value is assigned to each variable, a pivotal step in identifying the number 

of similar days. The intricacies of this process are encapsulated in the visual presentation 

provided in Figure 3-6, outlining the systematic steps involved in calculating similarity between 

cities utilizing maximum bipartite matching. 

To elucidate, consider a concise example featuring five weather files denoted from “a” to “e”. 

Each file encompasses data for 5 days pertaining to two weather variables, designated as “V1” 

and “V2”, as expounded in Table 3-1. The determination of the maximum count of similar days 

between all cities involves setting specific thresholds for “V1” and “V2”, established at 5 and 

50, respectively. The ensuring outcomes are organized in a square matrix with dimensions n x n 

where, in this instance, n = 5. 

Upon executing the maximum bipartite matching, the resulting matrix assumes a 5x5 format 

exemplified in Table 3-2. When comparing a weather file (WF) to itself, all days inherently 

match. For instance, a comparison of “a” with “b” reveals that only 2 days meet the prescribed 

threshold for similarity. Similarity, the comparison of “d” with “e” yields 4 days that satisfy the 

threshold for similarity, as elucidated in Figure 3-7. 

This resultant matrix serves as input for subsequent Agglomerative Hierarchical Clustering 

(AHC). In this illustrative scenario, the number of clusters is predefined as three (k = 3). 

Executing the AHC process yields generates labels for the five cities: [2 1 0 0 0]. This labelling 

scheme signifies that weather files “c”, “d” and “e” form a cluster, which “a” and “b” belong to 

distinct clusters. The systematic application of these methodologies provides a robust framework 

for discerning and categorizing climatic similarities among cities. 
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Table 3-1: Sample values from Weather file 

 

 

 

Figure 3-6: Flowchart depicting the process of generating a matrix indicating the count of 

similar days between cities 

 

 

 B1 B2 B3 

A1 0.1 0.2 0.3 

A2 … .. . 

A3 … .. . 
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Figure 3-7: Bipartite matching 

 

 

Table 3-2: Matrix of number of similar days between sample cities 

 WF “a” WF “b” WF “c” WF “d” WF “e” 

WF “a” 5 2 0 0 0 

WF “b” 2 5 0 0 0 

WF “c” 0 0 5 4 4 

WF “d” 0 0 4 5 4 

WF “e” 0 0 4 4 5 

 

 Validation method 

Given the inherent variability in the number of cities or sites within each cluster, a silhouette 

score method is employed to evaluate the clustering. 

3.4.1 Silhouette score 

Silhouette score [30] is a metric used to evaluate how good clustering results are in data 

clustering. This score is calculated by measuring each data point’s similarity to the cluster it 

belongs to and how different it is from other clusters. 
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s(i) = b(i) – a(i)/max{a(i), b(i)} 

 

                                  where, 

                                                    i = No of Iteration 

                                                   a () – Mean intra-cluster distance 

                                                   b () – Mean nearest-cluster distance 

                                                   s () – Silhouette score 

 

A higher Silhouette score indicates more consistent and better clustering results, while a low 

score may indicate that data points are assigned to incorrect clusters or that the clustering 

algorithm is not suitable for the data. 
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4 Analysis of Climate Classification of USA 

 

The methodology described in Chapter 3 has been implemented on 786 USA cities. The 

ASHRAE Standard 169 is referred for the climate classification of the USA as shown in Figure 

4-1. The EPW files for the USA were extracted from EnergyPlus weather data source. These 

weather files are in typical meteorological year format and arranged by the World 

Meteorological Organization. For the analysis, the daily mean dry-bulb temperature, daily mean 

relative humidity, and daily mean solar radiation were extracted from the weather files for each 

city. These variables serve as inputs for the analysis. Figure 4-2 displays the geographic 

distribution of cities across the USA, representing their respective climate zones, which have 

been considered for the analysis. 

 

 

Figure 4-1: United States climate zone map based on ASHRAE-169 [2] 
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Figure 4-2: Number of cities in ASHRAE Standard 169 classification zones for USA  

 

 Preparation of Data 

4.1.1 Weather data files 

4.1.1.1 Extraction of weather data files 

The required weather data EPW files were extracted from EnergyPlus website using a Python 

script [27]. The EPW files were in TMY, TMY2 and TMY3 formats. The relevant code is 

provided in Appendix A. 

4.1.1.2 Converting data to required format 

After extracting the EPW files, using a Python script [27], the files were read individually and 

the required daily mean dry-bulb temperature, daily mean relative humidity and daily mean 

global horizontal radiation were extracted in a .CSV format file. The relevant code is provided 

in Appendix B. 
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4.1.2 Building model 

The EnergyPlus software was utilized to conduct building energy simulations. A typical core-

perimeter (4 perimeter zones and a core zone) zone office building with 400 m2 floor area was 

prepared and used for the simulations. The developed model of the building is shown in Figure 

4-3. The simulations were performed for all 786 weather files in the USA. From the simulation 

data, the energy consumption details are extracted i.e., daily latent cooling energy, daily sensible 

cooling energy, and daily heating energy into a .CSV format file as shown in Appendix B. 

 

 

Figure 4-3: EnergyPlus model [31] 

 

Table 4-1: Building model parameters 

S No. Parameter Unit Value 

1 Building Type   Office 

2 Schedule   9 am to 6 pm 

3 Occupancy m2/person  10 

4 Window-to-Wall Ratio   40% 

5 Number of Floors    1 

6 Floor Area  m2 400 

 

 Clustering of cities of USA 

Daily values of the three parameters are utilized to calculate the ‘similar’ days between the cities, 

based on the maximum bipartite matching as per the flow diagram shown in Figure 3. Scipy 

module [28] in Python was used for maximum bipartite matching. For the considered cities in 

the USA, the output matrix for similar days is of dimension 786 x 786. Various sets of threshold 
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values were considered for calculating the number of similar days and some of the threshold 

values are listed in Table 4-2. Pandas module in Python was used for data analysis [29]. Then 

the clustering analysis was performed for all the cities and divided the cities into 16 zones (Same 

as total zones of USA by ASHRAE Standard 169) and the cities were labeled with numbers 

ranging from 0 to 15 as seen in Appendix C. Figure 4-4 shows the weather data clusters with the 

proposed method. Figure 8 shows the frequency of cities in ASHRAE Standard 169 classification 

zones for the USA. Sk-learn module in Python was used for agglomerative clustering [30]. 

 

 

Figure 4-4: Weather data clusters with proposed method 

 

 Calculation of score 

The score was calculated for both ASHRAE zones and zones generated with the proposed 

approach based on number of similar days for different threshold values. The silhouette score 

method is used to evaluate the clustering upon all the threshold combinations as shown in Table 

4-2. The calculation of silhouette score, Sk-learn module [30] in Python is used as shown in 

Appendix D. Table 4-2 has been arranged in descending order based on the scores, as a higher 

score indicates a better clustering. 
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Table 4-2: Threshold combinations and scores 

Threshold combinations 

[DBT (ºC), RH (%), GHR (Wh/sqm)] 

Scores 

7, 45, 35 0.113 

6, 45, 35 0.103 

5, 45, 35 0.091 

8, 45, 35 0.066 

ASHRAE 0.054 

4, 40, 30 0.047 

9, 40, 35 0.035 
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5 Results and Discussion 

 Results 

The findings demonstrate that the proposed method, utilizing the number of similar days and 

scoring techniques, achieves higher score compared to ASHRAE Standard 169. Upon examining 

Table 4-2, it is evident that the best clustering is achieved when employing threshold values of 

7 °C for the daily mean dry-bulb temperature, 45% for the daily mean relative humidity, and 35 

Wh/m2 for the daily mean global horizontal radiation. Figure 5-1 and 5-2 shows the spread of 

sensible cooling and total cooling respectively for ASHRAE Standard 169 classification. Figure 

5-3 and 5-4 shows the spread of sensible cooling, total cooling and heating for the proposed 

classification. 

 

 

Figure 5-1: ASHRAE climate zones and spread for sensible cooling 

 

It can be observed from Figures 5-1 and 5-2 that although Climate zone (CZ) 1 to 8 represents 

extreme hot to arctic, the mean cooling energy values are not in decreasing order. The climate 

zones 3C, 4C, and 5C of ASHRAE Standard 169 represent warm marine, mixed marine and cool 

marine respectively are not in order.  

The zones identified using unsupervised clustering are shown in Figure 5-3 and 5-4. Zone 13 is 

having highest cooling energy consumption can be referred to as an extreme hot climate and 
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Zone 0 can be an arctic zone. Upon looking at the distribution of cities in ASHRAE zones and 

the selected cluster classification based on the proposed method, more than 50% overlap was 

observed between the two. But a significant number of cities are distributed uniquely in the new 

classified zones. 

 

 

Figure 5-2: ASHRAE climate zones and spread for total cooling 

 

 

Figure 5-3: Spread with proposed clustering– sensible cooling and total cooling 
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Figure 5-4: Spread with proposed clustering– heating 

 

 Limitations 

The study relied on the availability of weather data for the selected U.S. cities. Limitations in 

data coverage and quality may influence the results. The choice of thresholds was based on 

careful consideration, but they may not be universally applicable to all regions or building types. 

The study did not explicitly account for potential climate change effects, which may alter long-

term climate patterns and impact building design considerations. 
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6 CONCLUSION 

This study introduces a new approach for climate classification of diverse cities by utilizing the 

number of similar days and evaluating quality of clustering based on building energy 

consumption. The method identifies the climate zoning among various combinations using 

different threshold values. Unsupervised learning was employed, utilizing mean daily weather 

data, to discover similarities between cities. The clustering was then scored based on building 

energy consumption, calculated through simulation tools. Silhouette scores was utilized to check 

the quality of clustering. A higher score indicates a better clustering in this context. 

 

To test the proposed method, available weather files from the USA were employed. The climate 

zones of the USA were divided into 16 clusters using the developed method outlined in this 

research. Silhouette scores were computed for different combinations of threshold values to 

obtain improved zoning. The classification method proposed in this study exhibits a better score 

of 0.113, as compared to the ASHRAE Standard 169 classification score of 0.054. Furthermore, 

the method developed in this thesis has the potential to be applied to other countries as it operates 

by identifying similarities among weather data. 
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APPENDIX A: EXTRACTION OF WEATHER DATA FILES 
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APPENDIX B: CONVERTING DATA TO REQUIRED FORMAT 

 

 

  



 

 

 

43 

APPENDIX C: CLUSTERING ALGORITHM 
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