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Abstract

Given a premise, the aim of Natural Language Inference is to identify a hypothesis as Entailed,
Refuted, or Neutral. To do such classification, a model must acquire the ability to reason over the
premise. While entailment tasks have been extensively studied with unstructured text as the premise,
there is an increasing demand for learning to reason over semi-structured and organised data formats
such as tables, knowledge graphs, databases, and combinations thereof. Structured data forms differ
from unstructured text in the way they capture information and relationships – not just via language, but
also through position and structure. Particularly, tables capture the connections between cells, which
represent isolated distinct entities. Tabular data is organised so that items of the same kind are grouped
together in rows, columns, or both. Consequently, it is straightforward to infer rankings, trends, unique
items, and aggregate values from tabular data. These sorts of reasoning are specific to structured data
formats, which makes inference on tables a difficult task requiring separate effort from inference on plain
text.

Creating challenging tabular inference data for supervision is necessary for mastering complex
reasoning. Prior research in this sector has predominantly employed two data generating methodologies.
The first technique is human annotation. This results in data that is inventive, fluent, and linguistically
diverse. However, human annotation is costly and time-consuming, making it difficult to scale. The
second form of data production is through synthetic means, where the data is generated using a defined
set of rules or context-free grammar. This system is easily scalable in terms of both time and cost, but it
lacks originality. Its results are predictable and adhere to predetermined patterns and fixed vocabulary.

This research presents a framework for semi-automatically "recasting" existing tabular data in order
to mitigate the drawbacks of both of the aforementioned data generation techniques. Existing data is
perturbed, modified, and augmented through recasting to conform to the specifications of a given target
task, which is Tabular Inference in this case. This framework is used to construct tabular NLI instances
from five datasets that were originally designed for tasks such as table-to-text generation, tabular question
answering, and tabular semantic parsing.

To demonstrate the utility and quality of these datasets, this thesis explains how recasted data may
be utilised as evaluation benchmarks and augmentation data to improve performance on tabular NLI
tasks such as TabFact. In addition, this work evaluates the efficacy of models trained on recasted data in
the zero-shot setting and examines performance trends across different types of recasted datasets. This
thesis concludes with a discussion of the limitations and potential future paths of this field of study.
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Chapter 1

Introduction

One of the most extensively researched problems in Natural Language Processing is that of Natural
Language Inference (NLI). Given a premise, NLI is the task of classifying a hypothesis as Entailed,
Refuted or Neutral. In the NLI setting, a premise could be anything from a sentence, to a paragraph,
to a document or a collection of documents. Premises could also contain non-textual information, such
as images, tables, forms and diagrams. A hypothesis is typically a statement. The task of NLI is to
determine whether the hypothesis can be reasonably inferred from the premise. If the hypothesis can be
logically deduced solely from the information available in the premise, without any external knowledge
source, it is labeled an Entailment. Similarly, a false statement is labeled a Contradiction. A statement
that cannot be deemed True or False solely on the basis of the hypothesis is labeled Neutral. Several
large scale datasets such as SNLI [4], MultiNLI [80], and SQuAD [61] explore NLI with unstructured
text as the premise. Table 1.1 shows an example of NLI on unstructured text. To perform NLI, a model
needs to have a thorough compositional understanding of a sentence.

In this thesis, I focus on the task of NLI on tables. Tables are a form of semi-structured data that
come with their own set of challenges when it comes to inference. I aim to push the results on an
existing tabular NLI task i.e. TabFact [8] through the addition of high-quality large-scale pre-training
data. Although TabFact is the downstream task I wish to solve, this thesis focuses on the generation and
validation process of the augmentation data. The improved accuracy results on TabFact further verify
the utility and quality of the generated data. This chapter introduces the target task, and elaborates on
the motivation to solve it through a "Recasting" setting.

1



# Premise Hypothesis Label

1 A man inspects the uniform of a fig-

ure in some East Asian country.

The man is sleeping. Contradiction

2 An older and younger man smiling. Two men are smiling and laughing

at the cats playing on the floor.

Neutral

3 A soccer game with multiple males

playing.

Some men are playing a sport. Entailment

Table 1.1: Example of Natural Language Inference (taken from https://microsoft.github.io/

nlp-recipes/examples/entailment/)

1.1 Inference on Semi-structured Data

While inference on unstructured text is commonly researched, structured data forms (e.g. tables,
knowledge-graphs and databases) pose a different set of problems. Structured data has the ability to
capture relationships between entities through means other than language. For example, tables capture
links between cells through their relative positions. In Table 1.2, two cells in a row give information
about the same record event, and two cells in a column give the same metric for different records.

For NLI on unstructured text, a model must understand the concepts of presupposition, meronymy,
holonymy, hypernymy and hyponymy. For example, in example #3 of Table 1.1, a model must understand
that "soccer" is a "game" ("soccer" is a hyponym of "game"). Similarly, the model must also understand
that in example #1, the action of "inspecting" presupposes the man to be awake.

In contrast to unstructured text, tabular data opens the doors to reasoning of much more complex types.
Tabular data differs from unstructured text in the way that it can capture information and relationships in
a succinct manner through underlying structure [26]. On tables, we can reason about ranking, counting,
and aggregation. Table 1.2 gives examples of different kinds of entailments derived from the premise.
Since understanding tables requires understanding positional structure, traditional language models do
not suffice for this task. Approaches along the line of converting tables to paragraphs using templates
and applying language models on them have shown limited success. Traditional NLI models also have
limited capability to solve complex reasoning types such as counting and aggregation.

Creating challenging large scale supervision data is hence vital for research in tabular reasoning.
In recent years, several NLI tasks have been introduced, which use tables as the premise e.g. tabular
inference (TNLI) datasets such as TabFact [8], InfoTabS [26] and shared tasks like SemEval 2021 Task
9 [77] and FEVEROUS [3].

2
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Men’s Athletics World Records

Event Perf Speed(mph) Athlete Nat Date

100 m 9.58 23.35 Usain Bolt JAM 16 Aug 2009

200 m 19.19 23.31 Usain Bolt JAM 20 Aug 2009

400 m 43.03 20.79 Wayde van Niekerk RSA 14 Aug 2016

800 m 1:40.91 17.734 David Rudisha KEN 9 Aug 2012

1000 m 2:11.96 16.952 Noah Ngeny KEN 5 Sep 1999

1500 m 3:26.00 16.288 Hicham El Guerrouj MAR 14 Jul 1998

Hypothesis Reasoning

Wayde van Niekerk’s 400m record is the most recently set record Superlative

Usain Bolt’s speed was faster in the 200m event than in the 100m event Comparison

4 out of a total of 6 records mentioned in the table were set after 2000 Counting

The record setting athletes hold 4 distinct nationalities Uniqueness

The average speed of all athletes combined is 19.7 mph Aggregation

Table 1.2: Table taken from https://en.wikipedia.org/wiki/List_of_world_records_in_

athletics

In this thesis, I work on the TabFact [8] dataset. It is a large-scale dataset based on open-domain
Wikipedia tables. The human-annotated hypotheses range from simple to complex, depending upon the
kind of reasoning they cover. 3 expands on these distributions.

1.2 Motivation

Broadly, there are two distinct approaches to the generation of supervision data. One way is through
the use of human annotation, and another is through the use of templates or context-free grammar. I
examine the pros and cons of both approaches, and then I suggest a middle ground that makes use of the
benefits of both approaches while mitigating the drawbacks to a significant degree. I present the reasons
why I believe that this path is the best one, including the several advantages it offers, particularly with
regard to tables.

3
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Context free grammar rules

<statement> → <expr> <compare> <expr>

<expr> → <select> when <where> | <select>

<select> → <column> | the <aggr> of <column> | the count

<where> → <column> <compare> <value> | <where> and <where>

<aggr> → first | last | lowest | greatest | sum | average | range

<compare> → is | is greater than | is less than

<value> → <string> | <number>

Operation Reference result

first the value in given column with the lowest row index.

last the value in given column with the highest row index.

greatest the value in given column with the highest numeric value.

lowest the value in given column with the lowest numeric value.

sum The sum of all the numeric values in given column.

average The average of all the numeric values in given column.

range The difference between greatest and lowest in given column.

Table 1.3: Context free grammar for hypothesis generation from tables. Tables are expected to be

vertically oriented with the top row containing headers and each column containing entities of the same

type. Taken from Eisenschlos et al. [19]

1.2.1 Data Generation Methods

Human annotation has been long used for creating datasets of superior quality. Annotators are given
guidelines for creating data for a specific task at hand. For Tabular NLI, the task would be to produce a
hypothesis, given a table. Human written hypotheses would be fluent and creative, since every annotator
would think differently, and phrase their annotations distinctly. The hypotheses are likely to be coherent
sentences with adequate linguistic diversity - both structural and lexical. Linguistic diversity ensures
that the model does not overfit to learn only certain keywords or grammatical structures.

Despite the advantages, the costly and time-taking nature of human annotation makes it a tedious task
and asks for alternate data generation methods to be explored. Human written data is hard to scale, which
is why it cannot always be used to create large scale datasets. Furthermore, Gururangan et al. [29] and
Geva et al. [22] show that many human-annotated datasets for NLI contain annotation biases or artifacts.
This allows NLI models to learn spurious patterns [48], which enables models to predict the right label

4



Example Table

Party Votes(thou) Seats

Party A 650 120

Party B 570 89

Party C TBA 89

Party D 575 95

Total 1235 298

Example Procedure

Source data point (Q/A):

Question: How many seats did Party B win?

Answer: 89yrecast
y

Entailment: Party B won 89 seats.

Contradiction: Party B won 120 seats.

Table 1.4: Example of Tabular Data Recasting from a Question Answering source dataset

for the wrong reasons, sometimes even with noisy, incorrect or incomplete input [54]. Recently, Gupta
et al. [27] revealed that tabular inference datasets also suffer from comparable challenges. Furthermore,
Geva et al. [22], Parmar et al. [50] show that annotators introduce their own bias during annotation.
For example, Gupta et al. [27] demonstrates that annotators only generate hypothesis sentences from
keys having numerical values, implying that some keys are either over or underutilized. For reasons
mentioned above, we require millions of data points to understand tabular data.

On the other hand, we have automatic generation methods to create data. These use templates or
context free grammars to create sentences. Data created through these methods is extremely easy to
scale, and is both time and cost effective. One can control the distribution of the data as well. For
example, one can control the ratio of labels - Entailment, Neutral and Contradiction. One can also
control the ratio of hypotheses produced with different types of reasoning. Data produced is also free of
human bias such as over-use or under-use of certain keys in the table. An example of producing table
NLI data through context free grammar is shown in Table 1.3.

Data created through such methods is often referred to as "Synthetic Data". This is due to the lack
of human involvement in it. Synthetic data, despite its scalability, is not as diverse and creative as
human annotated data. Its vocabulary and compositional power is limited to those mentioned in the
templates or context free grammar. In a way, we trade off quality for quantity when we move from
human annotated data to synthetic data. In my project, I aim to answer the following question : Can we
generate challenging supervision data that is as scalable as synthetic data and yet contains human-like
fluency and linguistic diversity?

1.2.2 Data Recasting

In this work, I attempt to answer the above question through the lens of data recasting. Data recasting
refers to transforming data intended for one task into data intended for another distinct task. In my
research, I choose human-annotated source datasets meant for non-NLI tasks and transform them to NLI

5



data i.e. hypotheses and their appropriate labels. Data recasting is a "middle route" between human
annotation and synthetic generation that exploits the advantages of both, while canceling out their
disadvantages. Recasted data, or data created through recasting maintains linguistic diversity owing to
the human involvement in the creation of source datasets. Since the transformation process is largely
automated, recasting strategies are easy to scale. Recasting available data allows us to cut annotation
time and cost. Since the source data is not originally intended for NLI, it eliminates the task-specific
biases introduced by annotators. The resultant data checks both requirements - quality and quantity.

Although data recasting has been around for a long time, for example, QA2D [14] and SciTail
[36] effectively recast question answering data for inference (NLI), no earlier study has applied it to
semi-structured data.

Therefore, I propose a semi-automatic framework for tabular data recasting. Using this framework,
I generate large-scale tabular NLI data by recasting existing datasets intended for non NLI tasks such
as Table2Text generation (T2TG), Tabular Question Answering (TQA), and Semantic Parsing on Tables
(SPT). Table 1.4 shows an example of tabular data recasting.

1.3 Viability of Recasting for Table NLI

In this work, I use recasting to create augmentation data for a specific downstream task i.e. TabFact.
To be able to show its effectiveness as augmentation data, the recasting process needs to generate data
which is similar (in domain, writing style and composition) to the target dataset.

How do we know that a "Recasting Framework" will be able to meet these requirements? While
it is almost impossible to find readily available data that matches your target task description, domain
and writing style, it is much more probable to find datasets that are sourced from the same domains
but perform different tasks. This is the phenomenon that a recasting framework exploits - it uses such
similarly sourced datasets to generate data for particular target tasks. In the case of tabular NLI, the
semi-structured nature of the premise facilitates the transformation process even more. In our particular
case, the target task i.e. TabFact uses Wikipedia tables as the premise, and I find that several tabular-based
datasets also source tables from Wikipedia. The TabFact datatset also lists the kind of reasoning it uses
for its NLI hypotheses, and I identify that tasks such as Question Answering and Semantic Parsing build
over similar kinds of reasoning as well. I find datasets that fall into this intersection of requirements, and
apply the recasting framework on them to generate NLI data (chapter 4 covers these datasets in detail).

Recasting has been previously investigated for unstructured text. As established in the beginning of
this chapter, structured data representations such as tables vary from plain text in various ways. Let’s
explore a basic example for understanding how new data can be created for Table NLI. Suppose I have
a table and a hypothesis statement, and I wish to alter this statement to generate other assertions. Every
statement consists of elements that are directly taken from the table and portions that connect these bits
of information using grammatical rules. Table 1.5 illustrates instances of hypotheses and the extent
to which their components are obtained from the table. To edit any of these claims, it is necessary to
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Example Table

Party Votes(thou) Seats

Party A 650 120

Party B 570 89

Party C TBA 89

Party D 575 95

Total 1235 298

Example Hypotheses

#1 Party B won 89 out of a total of 298 available seats .

#2 Party A managed to secure more votes than Party D .

a a Entities coming directly from the table, directly affecting

the truth value of the statement.

a a Entities stemming from the table, used for sentence composition.

Unhighlighted parts of the statement are purely grammatical.

Table 1.5: Example of entities derived directly, indirectly and independent of the table

understand which entities impact their truth value. These are the entities which originate straight from
the table. For instance, altering 89 to 99 in hypothesis #1 would render the assertion incorrect. This
demonstrates that in order to change or disrupt hypotheses, it is necessary to be able to draw alignments
between table cells and tokens in the provided hypothesis statement. Here, the arranged form of tabular
data facilitates the Recasting procedure.

1.3.1 Advantages of semi-structured data

Tables are arranged in rows and columns, which capture relationships between cells. Moreover, table
cells define a clear boundary for a standalone independent piece of information. These defined table
entries facilitate the task of drawing alignments between relevant table cells and given hypotheses. If
both the premise and hypothesis were plain text, any n-gram in the premise could be aligned to any
n-gram in the hypothesis. But since we know exactly what constitutes an entity based on the table cell
boundaries, we only have to do a 1-way lookup, i.e. match cell contents with n-grams in the statements.

Moreover, in tables, entries of the same type (same part of speech type, named entity type, domain
etc) are clubbed under a common column header. This allows us to easily identify a group of candidates
which are interchangeable in a sentence without disrupting its coherence. This is incredibly beneficial
when modifying source data by substituting entities. For example, if we aim to create a contradiction
out of Hypothesis #1 by changing Party B , we would know exactly which column to look at for finding
contradicting values (Party A, Party D etc).

Furthermore, since data is organized, it is possible to find the data type for each column. Frequently,
the column header also indicates the data type (e.g. Name, Organization, Year etc). When forming new
statements from templates, data type information helps in identifying which operations can be applied
to which entities. For example, aggregations are possible only for numeric data, while counting can be
done for all kinds of data - one can count the number of rows containing a particular string, number, date
or alphanumeric sequence.
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Task Source Datasets

Table to Text Generation ToTTo [49]

Table Question Answering WikiTableQuestions [51], FeTaQA [44]

Semantic Parsing on Tables Squall [68], WikiSQL [92]

Table 1.6: Source datasets used for creating tabular NLI data

1.4 Contributions

In this work, I propose a semi-automatic framework for tabular data recasting. Using this framework,
I generate large-scale tabular NLI data by recasting existing datasets intended for non NLI tasks such
as Table2Text generation (T2TG), Tabular Question Answering (TQA), and Semantic Parsing on Tables
(SPT). This recasting strategy is a middle road technique that allows us to benefit from both synthetic
and human-annotated data generation approaches. It allows us to minimise annotation time and expense
while maintaining linguistic variance and creativity via human involvement from the original source
dataset.

The recasted data can be used for both evaluation and augmentation purposes for tabular inference
tasks. I choose TabFact [8] as the downstream task to report accuracies. TabFact [8] is a benchmark
Tabular inference dataset with binary labels - Entail and Refute. Models pre-trained on the recasted
data show an improvement of 17% from the TabFact baseline [8] and 1.1% from Eisenschlos et al.
[19], a synthetic data augmentation baseline. Additionally, I train models only on recasted data, without
fine-tuning on TabFact. Since these models are NLI models in themselves, I report their zero-shot
accuracies. I observe a best accuracy of 71.1% on TabFact validation set, which is 5% percent higher
than the supervised baseline accuracy reported by Chen et al. [8]. The main contributions in this work
are the following:

1. I propose a semi-automatic framework to generate tabular NLI data from other non-NLI tasks such
as Table2Text generation (T2TG), Tabular Question Answering (TQA), and Semantic Parsing on
Tables (SPT).

2. I build five large-scale, diversified, human-alike, and complex tabular NLI datasets sourced from
datasets as shown in Table 1.6.

3. I present the usage of recasted data as TNLI model evaluation benchmarks. I present a detailed
analysis of how existing models perform on different reasoning categories and on counterfactual
data.

4. I present zero shot accuracies of NLI models trained on recasted data and tested on the TabFact test
set. I compare and analyse performance of models trained on data derived from different source
tasks. I also anaylse the correlation between dataset size and downstream performance.
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5. I demonstrate the use of recasted data for augmentation, and show improvements in accuracies for
fine-tuned models on the TabFact task. I report the accuracies for simple and complex splits of
the test set, and analyse the trends.

1.5 Organization of Thesis

This thesis is organized into 5 chapters. After this introductory chapter, Chapter 2 talks about prior
work done in the field of Natural Language Inference and in topics like pre-training, multi-task learning
and inference on semi-structured data. After discussing the background of the problem, I explain the
crux of my work, the Recasting Framework, in Chapter 3. This chapter derives the prerequisites required
for data recasting in the tabular data setting, and outlines a generic step-by-step method to recast data.
Chapter 4 applies this data recasting strategy on 5 datasets, as listed in Table 1.6. The sections explains the
unique challenges of each dataset in detail, and explains why and how each dataset fits into the recasting
pipeline. I also reason for my choice of source datasets. Chapter 3 and 4 detail the experimental setting,
report results and perform a deep analysis on the datasets. I perform experiments to answer 3 distinct
research questions. Chapter 4 provides an ablation study for the models trained on recasted datasets.
Chapter 5 concludes my work and talks about future directions which are outside the scope of this thesis.
I discuss the major takeaways from my work.
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Chapter 2

Related Work

2.1 Natural Language Inference

Natural language inference, also known as textual entailment, is a text understanding task that has
been investigated extensively and features multiple datasets of varying sizes. The practise of recognising
entailment dates back a long way in NLP [12]. Several thousands of human-annotated entailment pairs
were associated with the annual PASCAL RTE challenges (Dagan et al. 11, among other references).
The SNLI dataset was created by Bowman et al. 4 and is the first large-scale entailment dataset to employ
image captions as premises. On the other hand, the MultiNLI dataset was created by Williams et al. 80
and incorporates premises from a variety of other domains. The SQuAD question answering data [61]
and the Winograd Schema Challenge data [39] were converted into inference tasks in order to create the
QNLI dataset and the WNLI dataset, respectively. These datasets offer a fresh perspective as a result,
similar to the recasting I do as part of this research. More recently, SciTail [36] and Adversarial NLI [47]
have focused on building adversarial datasets; the former uses information retrieval to select adversarial
premises, while the latter uses iterative annotation cycles to confuse models. Both of these approaches
use information retrieval to select adversarial premises. This is similar to the "counterfactual" data I
discuss in this research.

In recent times, difficult new datasets that place an emphasis on complex reasoning have been
released. The challenge presented by Qin et al. 58 is to identify the most reasonable inferences that may
be drawn from observations (abductive reasoning). A significant amount of work concerning various
types of reasonings has been published over the entirety of NLP. Common sense reasoning [70], temporal
reasoning [94], numerical reasoning (Ravichander et al. 63; Wallace et al. 75), and multi-hop reasoning
[35] are just a few of the types of reasoning that have attracted a lot of attention from researchers.

2.2 Inference on Semi-Structured Data.

Recent developments have allowed the text to text framework to accommodate structured data in
the form of knowledge graphs [74], tables [26]), and images [69]. One such illustration is provided by
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the comprehensive TABFACT dataset [8]. Typically BERT-based models, which operate on flattened
versions of table and employ textual templates to make the tables look like natural language perform
exceptionally well in this task.

InfoTabs [26], another tabular inference dataset, explores inference on Wikipedia InfoBoxes. These
are tables containing <key,value> type artifacts, which are different from database-like tables contain-
ing multiple rows and multiple columns. WikiTableQuestions [52], WikiQAA [1], FinQA [10] and
HybridQA [6] perform question answering on tables. Some involve short form question-answering,
which requires identifying the answer cells from tables, while some are domain specific or involve long
form question answering, which require a model to not just identify relevant cells but also generate
answer statements. ToTTo [49], Yoran et al. [88], LogicNLG [7] and Logic2Text [9] explore logical text
generation on tables. Most of these datasets derive tables from Wikipedia.

Early work on structured data modeling classify tables into structural categories and embed tabular
data into a vector space [24, 72, 15]. Recent work like TAPAS [30], TAPAS-Row-Col-Rank [18],
TaBERT [86], TABBIE [31], Tables with SAT [90], TabGCN [56] and RCI [25] use more sophisticated
methods of encoding tabular data. TAPAS [30] encodes row/column index and order via specialized
embeddings and pre-trains a MASK-LM model on co-occurring Wikipedia text and tables. Yang & Zhu
[84] decomposes NLI statements into subproblems to enhance inference on TabFact.

As discussed before, inference on tables includes numeric and logical reasoning. Numeric reasoning
in Natural Language processing has been recognized as an important part in entailment models [65]
and reading comprehension [62]. In tables, since data is structured and ranked, numeric reasoning
becomes a natural part of tabular entailment. Wallace et al. 75 studied the capacity of different models
on understanding numerical operations and showed that BERT-based models still have headroom. This
motivates the use of the data augmentation approaches to improve numerical reasoning in our model.
My research builds on this claim, and leads to similar conclusions.

2.3 Data Augmentation

Generating cheap and scalable data for the purpose of training and evaluation has given rise to the
use of augmentation techniques. Synthetic data generation for augmentation for unstructured text is
explored in Alberti et al. [2], Lewis et al. [40], Wu et al. [81], Leonandya et al. [38], and for Tabular
NLI is shown in Geva et al. [23], Eisenschlos et al. [19]. Salvatore et al. [64] and Dong & Smith [18]
generate synthetic data for evaluation purposes.

Closer to our work, Sellam et al. [66] use perturbations of Wikipedia sentences for intermediate
pre-training for BLEURT(a metric for text generation) and Xiong et al. [82] replace entities in Wikipedia
by others with the same type for a MASK-LM model objective. This is similar to the Counterfactual
data generation I discuss in this research. I take advantage of other rows in the table to produce plausible
negatives, and also replace dates and numbers. Kaushik et al. [33], Gardner et al. [20] show that
providing counterfactual data, especially “minimal pairs” of examples (examples that differ only slightly
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but have opposite labels) can help to improve generalization in models. Müller et al. [43] demonstrate
that adding counterfactual hypotheses enhances model performance on the TabFact dataset.

It has been demonstrated that synthetic data can enhance learning in NLP tasks [2, 40, 81, 38], and
Tabular NLI in specific [23, 19]. Additionally, Salvatore et al. [64] and Dong & Smith [18] generate
synthetic data for evaluation purposes. Salvatore et al. 64 employ synthetic data generated from logical
forms to evaluate the performance of textual entailment models (e.g., BERT). Geiger et al. 21 employ
synthetic data to construct fair assessment sets for natural language inference. Geva et al. 23 demonstrate
the significance of incorporating numerical reasoning via generated data into the model in order to solve
reading comprehension challenges. They propose different templates for generating synthetic numerical
examples. Eisenschlos et al. 19 employs a strategy that is better suited for tables and to the entailment
task, and is arguably simpler, using a context free grammar.

2.4 Data Recasting

Data generation through recasting has been previously explored for NLI on unstructured data. White
et al. [79] use semantic classification data as their source. Multee [73] and SciTail [36] recast Question
Answering data for entailment tasks. Demszky et al. [14] proposes a framework to recast QA data for
NLI for unstructured text. Poliak et al. [55] presents a collection of recasted datasets originating from
seven distinct tasks. For tabular text, Dong & Smith [18] present an effort to re-use text generation data
for evaluation.

2.5 Parsing Tabular Data

Using an encoder-decoder strategy, most semantic parsing models are taught to create gold logical
forms (Jia & Liang 32; Dong & Lapata 17). Typically, models are trained with weak supervision in the
form of denotations to reduce the cost of gathering full logical forms. These are utilised to direct the
search for appropriate logical forms.

Other publications have proposed end-to-end differentiable models that are trained under inadequate
supervision, but do not generate logical forms directly. Neelakantan et al. 45 offered a sophisticated model
that successively predicts symbolic operations across explicitly predefined table segments, whereas Yin
et al. 87 proposed a similar model where the symbolic operations themselves are learned during training.
Their model cannot predict aggregations over table cells.

Finally, pre-training approaches with varied training aims have been developed, including language
modeling (Dai & Le 13; Peters et al. 53; Radford & Narasimhan 59) and masked language modeling
(Dai & Le 13; Peters et al. 53); (Kenton & Toutanova 34; Lample & Conneau 37). These techniques
significantly improve the performance of natural language processing models (Peters et al. 53). Tan &
Bansal 71 and Lu et al. 42 are two recent publications that expand BERT for visual question answering by
pre-training across text-image pairs while masking different picture regions. Chen et al. 8 experimented
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with converting tables into natural language such that they can be processed by a pre-trained BERT
model.

2.6 Table Pre-training

Existing works explore pre-training through several tasks such as Mask Column Prediction in TaBERT
[86], Multi-choice Cloze at the Cell Level in TUTA [78], Structure Grounding [16] and SQL execution
[41]. My work is closely related to Eisenschlos et al. [19], which uses two pre-training tasks over
Synthetic and Counterfactual data to drastically improve accuracies on downstream tasks. Pre-training
data is either synthesized using templates [19], mined from co-occurring tables and NL sentence contexts
[86, 30], or directly taken from human-annotated table-NLI datasets [16, 89]. In this study, I employ
pre-training data that has been automatically scaled from existing non-NLI data.

This work is particularly based on TAPAS (for Table Parser) [43], which is a weakly supervised
question-answering model that reasons over tables without constructing logical forms. TAPAS predicts
a minimum programme by identifying a selection of table cells and a potential aggregation operation
to be carried out on top of them. Therefore, TAPAS is able to learn operations from natural language
without the requirement for formalisation. This is accomplished by expanding the BERT architecture
[34] with new embeddings that capture tabular structure and two classification layers for picking cells
and predicting a related aggregation operator.

Eisenschlos et al. 19 present a pre-training strategy for TAPAS that is essential to its performance
on the final job. They extend BERT’s masked language model aim to structured data and pre-train the
model using millions of tables and relevant Wikipedia text segments. During pre-training, the model
masks some tokens from the text segment and the table, with the goal of predicting the original token
based on the textual and tabular context.

They propose an end-to-end recipe for differentiable training that enables TAPAS to train with
minimal monitoring. For situations involving the selection of only a subset of table cells, they explicitly
train the model to identify the gold subset. For situations involving aggregation, the denotation does
not reveal the relevant cells or the aggregation procedure. Given the existing model, we compute an
anticipated soft scalar result across all aggregation operators and train the model using a regression loss
against the gold denotation.

In comparison to previous attempts to reason over tables without generating logical forms, TAPAS
achieves higher accuracy and has several advantages: its architecture is simpler as it consists of a single
encoder with no auto-regressive decoding; it benefits from pre-training; it handles more question types,
including those involving aggregation.
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Chapter 3

Data Recasting Framework

This chapter intends to build an understanding of what the problem setting is, and explain the proposed
solution for it. It begins by introducing the target task I wish to solve and the base NLI model I build
upon. This helps us follow the model pipeline and understand where the resultant augmentation data is
supposed to fit in. After this, I go on to propose a framework that transforms non-NLI tabular data into
tabular NLI augmentation data.

I describe a generic semi-automatic framework for recasting tabular data for the Table NLI task. By
recasting, I mean changing data intended for one job into a format that meets the needs of another task. I
begin with analysing the initial facts we require, and identifying them as elements that are either required
or desirable. I show why these aspects are exhaustive for the work of recasting and how certain we can
be in the truth value of the modified statement, i.e., how confidently we can refer to a resultant perturbed
statement as an Entailment or Contradiction.

This chapter also outlines the challenges and unknowns that affect the framework. I analyse the
challenges of identifying table orientations, determining replaceable and irreplaceable table cells and
partially matching token-pairs between the tables and the hypothesis.

3.1 Problem Setting

3.1.1 Downstream Task

I utilize TabFact [8], a benchmark Table NLI dataset, as the end task to report results. TabFact is a
binary classification task (with labels: Entail, Refute) on Wikipedia derived tables. I use the standard
train and test splits in our experiments, and report the official accuracy metric. An example from the
TabFact dataset is shown in Figure Figure 3.1.

TabFact gives simple and complex tags to each data sample in the train and test set, referring to
statements derived from single and multiple rows respectively. Complex statements encompass a range
of aggregation functions applied over multiple rows of table data. These are the kind of functions which
are unique to inference on tabular data when compared to plain text. Figure 3.2 shows the different kinds
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Figure 3.1: Examples from the TABFACT dataset. The top table contains the semi-structured knowledge

facts with caption “United...” . The left and right boxes below provide several entailed and refuted

statements. The error parts are highlighted with red font

of complex operations that are included in the TabFact dataset. I report and analyze our results on simple
and complex test data separately.

Figure 3.2: Basic statistics of the data collected from the simple/complex channel and the division of

Train/Val/Test Split in the dataset, where "Len" denotes the averaged sentence length.

3.1.2 Model

In all experiments, I start with the Table NLI model developed by Eisenschlos et al. [19] as the
synthetic data augmentation baseline (referred to as TAPAS + Table-NLI model from here on).

15



This model architecture is derived from BERT and adds additional embeddings to encode the table
structure, following the approach of Herzig et al. 30. The statement and table in a pair are tokenized
into word pieces and concatenated using the standard [CLS] and [SEP] tokens in between. The table is
flattened row by row and no additional separator is added between the cells or rows.

Six types of learnable input embeddings are added together. Token embeddings, position embeddings
and segment embeddings are analogous to the ones used in standard BERT. Additionally, this model
follows Herzig et al. 30 and uses column and row embeddings which encode the two dimensional
position of the cell that the token corresponds to and rank embeddings for numeric columns that encode
the numeric rank of the cell with respect to the column. This provides a simple way for the model to
know how a row is ranked according to a specific column. Bi-directional self-attention mechanism in
transformers is unaware of order, which motivates the usage of positional and segment embeddings for
text in BERT, and generalizes naturally to column and row embeddings when processing tables, in the
2-dimensional case.

This base model is intermediately pre-trained on automatic rule-based synthetic NLI data to recognize
entailment. In this thesis, I follow Eisenschlos et al. 19 to add more pre-training steps. These additional
pre-training steps are used to expose the model to large amounts of Table NLI data instances which are
not part of TabFact. This large scale augmentation data for pre-training is what I aim to create through
the recasting framework. The output for the recasting framework must be Table NLI data instances, each
consisting of a table (premise) and several entailments and/or contradictions (hypotheses) derived from
it. The following sections in this chapter explain this framework in detail.

3.2 Prerequisites for Data Recasting

Before I talk about the input for this data recasting framework, I will talk about the resultant output
we aim to create. The goal is to create a Table NLI data instance, which consists of

1. A table, which is the premise

2. Some entailments, i.e. true claims based on the table

3. Some contradictions, i.e. false statements based on the table
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Original Table (OG)

Party Name Votes(thou) Seats Won

Party A 650 120

Party B 570 89

Party C final count TBA 89

Total 1235 298

Example #1

Base EntailmentOG (given to us as prerequisite) Party A won 120 out of 298 seats.

New EntailmentOG (substitute entities) Party B won 89 out of 298 seats.

**Note that 298, the total value, should remain untouched.

ParaphraseOG (add linguistic diversity) Out of a total of 298 available seats, Party B won 89

ContradictionOG (replace entities) Party A Party B won 120 out of 298 seats

Example #2

Base EntailmentOG (given to us as prerequisite) Party A won the most seats.

New EntailmentOG (evaluate ranks and substitute) Party B won the second most seats.

ParaphraseOG (add linguistic diversity) Party B secured the second largest number of seats

ContradictionOG (substitute with antonyms) Party A Party B won the most seats.

Party A won the most least seats.

Table 3.1: Pipeline for generating recasted NLI data. I first create entailments and contradictions

from the given base annotation. Apart from the generic process, these two examples show how I deal

with superlatives, which entities are irreplaceable and demonstrate creation of contradictions through

antonyms.

To be able to generate these, the first and foremost prerequisite is a Table. I choose table based tasks
as our source, so the source datasets readily meet this need. In addition to the table, I require at least one
reference statement that validates the table. This is a prerequisite because I need the structure of this
reference statement (henceforth referred to as the Base Entailment) to generate further entailments and
contradictions. I could alternatively create templates and use their structure to create hypotheses, but
those would lead to synthetic data, having limited creativity and versatility. Sourcing structures from
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human written sentences adds linguistic diversity and creativity to the resultant dataset. This is one of
the major advantages of recasting.

This Base Entailment can be readily available in some datasets. For example, in a generation dataset,
the "generated" statements will be Entailments to the table in themselves. In contrast, for Question
Answering datasets, I will need to somehow extract a Base Entailment from the given question and its
answer. This is explored in further chapters.

Once I have the Base Entailment, the constraints for producing contradictions are rather lax. Falsifying
any part of the Base Entailment that is linked to the table creates contradictions. One way of creating
contradictions is to negate parts of the statement by adding tokens like "not", "never" and "no". Niven
& Kao [48] demonstrate that such modifications encourage the model to learn patterns based on word
distributions, and negations are easily correlated with contradictions without the model needing to
understand the premise. A similar argument can be made for replacing entities with out-of-table values.
Suppose we replace 120 in "Party A won 120 out of 298" with 30 to get "Party A won 30 out
of 298". The model can easily recognize that a value like 30 , which does not occur in the table at
all, is unlikely to belong to entailments. The model hence learns spurious patterns which allows it to
classify correctly for the wrong reasons. Hence I aim to create contradictions that have similar word
distributions as entailments. One way of doing this is to use values from the table itself to contradict
existing statements.

In contrast, to create an entailment, every portion of the perturbed statement must hold true for the
entire statement to constitute an entailment. This means that we must be able to verify every portion
of the statement. To do this, we must first know "all" the portions of the statement that affect its truth
value. Since the truth value of the statement depends only on the table (definition of an entailment is
that one should be able to verify it on the basis of the premise alone), we can safely assume that parts
of the statement that affect its truth value are those which come from the table. This means that all
entities originating from the table (henceforth referred to as relevant entities) must be found in the Base
Entailment. Then and only then can we know with certainty how perturbations affect the truth value of
a given assertion.

Alignments between a table and a Base Entailment are not always apparent, as demonstrated in
Table 3.1. In the example "Party A won the most seats, the alignment between most and the greatest
number of seats must be determined. Although I can employ automatic matching techniques between
the Base Entailment and the table to extract relevant entities, I cannot be certain of detecting all of
them unless they are explicitly provided. Therefore, I must be able to extract the following from source
datasets as pre-requisites:

1. A table i.e. the Premise

2. A reference statement i.e. the Base Entailment - one statement that is true on basis of the table
alone

3. Relevant entities i.e. entities or values that come directly or indirectly from the table cells
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4. Alignments of relevant table cells with with the reference statement

Once the prerequisites are met, new NLI instances can be formed by perturbing existing data in two
ways: (a) by perturbing the hypothesis and (b) by perturbing the table, i.e. the premise. In the former
option, I look at ways of creating new entailments by replacing entities with other candidates in such
a way that resultant statement remains true. Since I find alignments between table cells and tokens
in the statement, I also keep track of which table cells I use for value substitution. This ensures that
our resultant data contains relevant cell information, which can be utilized for supervision. Previous
works explore two-step pipelines for table NLI, first identifying the relevant table information and then
performing classification with the trimmed premise. Subtask B of SemEval-2021 task 9 [77] requires
identification of relevant cells given a tabular premise and hypothesis. Gupta et al. [28] argue about
models needing to be "right for the right reason". They demonstrate that models often learn spurious
correlations and patterns among hypotheses that allow them to classify correctly even with incomplete
or noisy premise. It is hence better to not just learn to classify for labels but also learn to extract evidence
as an intermediate step. Relevant cell information that I gather in the recasting process can be used for
such tasks.

3.3 Perturbing the Hypothesis

In this section, I describe ways to modify the Base Entailment by substituting relevant entities with
other potential candidates. I presume that the tables are vertically aligned, which means that the top row
contains headers and each column contains entities of the same kind. For simplicity of understanding, I
refer to table cells using the coordinate system. A table cell with row coordinate X and column coordinate
Y is represented as 𝐶XY. A relevant entity in the hypothesis is that which represents some information
from the table i.e. an entity which is directly derived from one or more table cells. A potential candidate
for a relevant entity coming from table cell 𝐶XY having coordinates [𝑟𝑜𝑤𝑋, 𝑐𝑜𝑙𝑢𝑚𝑛𝑌 ] can be any other
non-null entity from the same column i.e. 𝐶ZY |𝑍 ≠ 𝑋,𝐶ZY ≠ 𝐶XY.

3.3.1 Creating Entailments

In vertically oriented tables, tables cells in the same row are parts of the same "record". In Table 3.2,
our given hypothesis contains relevant entities from 2 different rows. To create entailments, we replace all
the relevant entities coming from one or more rows in the given Base Entailment with potential candidates.
Potential candidates for each entity are shown in Table 3.2. Two or more relevant entities coming from
table cells in the same row, say 𝐶XA, 𝐶XB, must be substituted with potential candidates from column
𝐴 and 𝐵 respectively, such that their row coordinate is equivalent i.e. 𝐶XA, 𝐶XB → 𝐶ZA, 𝐶ZB | 𝑍 ≠ 𝑋

(refer Table 3.1). In the example, I cannot replace Usain Bolt with David Rudisha and 100m with 400m.
Even though David Rudisha is a valid potential candidate for replacing Usain Bolt and 400m is a valid
potential candidate for replacing 100m. I must replace both entities Usain Bolt, 100m simultaneously,
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either with David Rudisha, 800m or Wayde van Niekerk, 400m. Since the other pair of relevant entities
Noah Ngeny, 1000m come from a different row than Usain Bolt, 100m, they should be treated separately.
Note that Noah Ngeny and 1000m will also be replaced as a pair, since they originate from the same
table row and represent a common record. I must also ensure that I do not end up replacing both Usain
Bolt, 100m and Noah Ngeny, 1000m with a common potential candidate such as Wayde van Niekerk,
400m. Another important aspect to note is that entities originating from "aggregate rows" (such as the
Total row in Table 3.1) or "headers" must be left intact, because replacing them would affect the logic of
the statement. Table 3.1 shows an example of this.

3.3.2 Creating Contradictions

To create contradictions, I substitute one or more relevant entities from the Base Entailment with
alternative candidates. Substituting even one relevant entity with contradicting values should falsify the
whole statement. In Table 3.2, consider the Base Entailment - "Usain Bolt holds the record in the 100m
event". Suppose I replace one entity (Usain Bolt) with a potential candidate (Noah Ngeny). I get "Noah
Ngen holds the record in the 100m event". This statement is a contradiction. I can choose to replace
both relevant entities i.e. Usain Bolt, 100m but I will have to ensure that they’re not from the same
row, which would result in an entailment. Replacing one entity at a time creates contradictions which
are minimally differing from their entailment counterparts. Such minimally differing pairs of statements
which have opposing labels force the model to learn the relationship between the table and the sentence
instead of learning spurious techniques to classify the hypotheses.

However, even while following the above rule, I observe that the ensuing statement may be an
entailment by accident. In Table 3.2, consider the Base Entailment - "Usain Bolt holds the record in
the 100m event". Suppose I replace only one key entity (100m) with a potential candidate (200m)
to arrive at "Usain Bolt holds the record in the 100m 200m event". The resultant statement remains
an entailment. To prevent this from occurring, the non-replaced entities must be compared. Assume
𝐶XA, 𝐶XB represent the relevant entities in the Base Entailment. If I replace 𝐶XA → 𝐶ZA then we must
guarantee that 𝐶XB ≠ 𝐶ZB to avoid unintentional entailments.

Another conclusion that we can draw from the above rule is that statements containing only one
relevant entity can be problematic while creating entailments, because we don’t have a supporting entity
for it to contradict. For example, consider a simple Base Entailment on Table 3.2 - "David Rushida has
a world record in his name". No matter what I replace David Rushida with, I will get an entailment,
because there’s no other entity to contradict. As soon as I change the Base Entailment to "David Rushida
has the 800m world record in his name", I can easily replace entities to create contradictions. For this
reason, I abstain from creating contradictions through substitution for statements have 1 relevant entity.
I instead use other techniques as listed below.

Wherever possible, I generate contradictions by substituting antonyms for words in the Base Entail-
ment. This is particularly helpful for scenarios involving superlatives and comparatives. In Table 3.1,
Example #2 shows a contradiction being created by replacing "most" with "least". I query NLTK Word-
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Net for antonyms and check that the Part of Speech of the antonyms matches that of the original token
to maintain coherence in the statement.

Several entailments also have relevant entities which are not directly present in the table, for example
results from operations such as counting or aggregation. For example, in Table 3.2, I can have a Base
Entailment such as "The athletes on the chart come from 4 distinct nationalities". I replace these numbers
with randomly selected numbers in the range of <given number - 10> to <given number + 10>. I abstain
taking this route for numbers directly originating from the table to prevent the model from associating
out-of-table entities with contradictions. Since both the original and replacement entity in cases of
aggregation and counting cannot directly be found in the table, the model cannot get biased to learn
spurious relations.

3.3.3 Creating Hypotheses from skeletons

Some source datasets give extensive metadata information about the tabular entities. For example,
database-like datasets give information about the data type of entries in each column - string, date, integer,
float etc. It is hence possible to identify not just relevant entities but also their data types. I attempt to
extract templates from given statements by pulling out entitiy values and any domain or table specific
words. For example, suppose I have metadata information for Table 3.2. I know that "Nationality"
column has a data type of "text". I can reduce the Base Enatilment "There are 4 distinct nationalities
listed on the chart" to "There are <distinct-count-COL1-text> distinct <COL1-text-NAME-plural> listed
on the chart". I could now use this skeleton to form sentences from Table 3.1. I could say that since
"Party" is a textual column, "There are 3 distinct parties on the chart" is an entailment.

Such skeletons or templates allow me to re-use structures for not just creating statements for a given
table, but for any table that satisfies the data-type requirements. This makes it a powerful tool, because
instead of writing a fixed set of templates, I can now extract thousands of them from human-written
annotations. I have discussed this in detail in chapter 4, where I take dataset specific examples to show
how skeletons can be extracted from particular datasets.

Note that there are several restrictions to creating skeletons. Sentences may contain several tokens
which are not directly derived from the table, but are not generalised enough to be used everywhere. For
example, "Party A won 120 seats" cannot be stripped down to "COL1-text-value won COL2-num-value
COL2-num-plural> because "won" is not a general verb that can be used everywhere. To ensure that
I only create skeletons which are completely generalisable across domains and tables, I lemmatize the
non-functional words in all the skeletons, count their frequencies, and remove the skeletons containing
less frequent lemmas. I also perform a degree of manual filtering of the frequency dictionary to ensure
no domain specific words end up in the skeletons.
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Men’s Athletics World Records

Event Perf Speed(mph) Athlete Nationality Date

100 m 9.58 23.35 Usain Bolt Jamaica 16 Aug 2009

200 m 19.19 23.31 Usain Bolt Jamaica 20 Aug 2009

400 m 43.03 20.79 Wayde van Niekerk South Africa 14 Aug 2016

800 m 1:40.91 17.734 David Rudisha Kenya 9 Aug 2012

1000 m 2:11.96 16.952 Noah Ngeny Kenya 5 Sep 1999

1500 m 3:26.00 16.288 Hicham El Guerrouj Morocco 14 Jul 1998

Base entailment :

Usain Bolt holds the record for 100m and Noah Ngeny for 1000m .

Potential candidates for Usain Bolt : Wayde van Niekerk, David Rudisha, Hicham El Guerrouj, Noah Ngeny

Potential candidates for 100m : 200m, 400m, 800m, 1000m, 1500m

Potential candidates for Noah Ngeny (Usain Bolt, Wayde van Niekerk, David Rudisha, Hicham El Guerrouj

Potential candidates for 1000m : 100m, 200m, 400m, 800m, 1500m

Potential candidates for (Usain Bolt, 100m) and (Noah Ngeny, 1000m) :

(Usain Bolt, 200m), (Wayde van Niekerk, 400m), (David Rudisha, 800m), (Hicham El Guerrouj, 1500m)

New entailments :

Hicham El Guerrouj holds the record for 1500m and Wayde van Niekerk for 400m .

Usain Bolt holds the record for 200m and David Rudisha for 800m .

Table 3.2: Example of perturbing the base entailment to create new entailments. Table taken from

https://en.wikipedia.org/wiki/List_of_world_records_in_athletics
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3.4 Perturbing the Table (Premise)

In this subsection, instead of modifying the Base Entailment, I swap two or more table cells to
modify the premise instead of the hypotheses. Similar to Kaushik et al. [33] and Gardner et al. [20], I
build example pairs with minimal differences but opposing inference labels in order to improve model
generalisation. These modified tables no longer reflect the real world information. Hence, I refer
to them as Counterfactual. The addition of counterfactual data increases the model’s robustness by
preventing it from learning spurious correlations between label and hypothesis/premise. Minimally
varying counterfactual data also ensures that the model is not biased and preferably grounds on primary
evidence, as opposed to depending blindly on its pre-trained knowledge. Similar findings were made by
Müller et al. [43] for TabFact.

3.4.1 Creating Counterfactual Tables (CF)

I consider a contradiction C1 formed by replacing the relevant cell 𝐶XA → 𝐶ZA in the original table
(as described in Table 3.3). To create a counterfactual table, I swap cells 𝐶XA ↔ 𝐶ZA such that C1
becomes an entailment to the modified table, and the original Base Entailment becomes a contradiction
to it. Based on this, I generate further hypotheses, as illustrated in Table 3.3. Note that in Table 3.3,
ContradictionCF is an EntailmentOG to the original table, but EntailmentCF is a ContradictionOG to it.

3.4.2 Hypothesis Paraphrasing (HP)

Dagan et al. [12] demonstrates that data paraphrasing increases lexical and structural diversity, thus
boosting model performance on unstructured NLI. In accordance with Dagan et al. [12], I paraphrase
our data because the hypotheses derived from Base Entailments have similar structures. For producing
paraphrases, I employ the publicly available T5 Model [60] trained on the Google PAWS dataset [91]. I
produce the top five paraphrases and then select at random from among them.
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Original Table (OG)

Party Name Votes(thou) Seats Won

Party A 650 120

Party B 570 89

Party C final count TBA 89

Total 1235 298

Counterfactual Table (CF - after cells swaps)

Party Name Votes(thou) Seats Won

Party A Party B 650 120

Party B Party A 570 89

Party C final count TBA 89

Total 1235 298

Base EntailmentOG Party A won 120 out of 298 seats. Party A won the most seats.

New EntailmentOG Party B won 89 out of 298 seats. Party B won the second most seats.

ParaphraseOG Out of a total of 298 available seats, Party B secured the second largest

Party B won 89. number of seats.

ContradictionOG Party A Party B won 120 out of 298 Party A Party B won the most seats.

seats. Party A won the most least seats.

We swap Party A and Party B to create a counterfactual table. The contradictions

mentioned above become the new base annotations (AnnotationCT)

Base EntailmentCF Party B won 120 out of 298 seats. Party B won the most seats.

New EntailmentCF Party A won 89 out of 298 seats. Party A won the second most seats.

ParaphraseCF 89 of the 298 available seats were Party A won next to the maximum

secured by Party A number of seats.

ContradictionCF Party B Party A won 120 out of 298 Party B Party A won the most seats.

seats. Party B won the most least seats.

Table 3.3: Pipeline for generating counterfactual data taking a contradiction to be the new base annotation.

subscriptOG represents the “Original” table and subscriptCF represents the “Counterfactual” table. Note

that in this example, ContradictionCF is an EntailmentOG to the original table, but EntailmentCF is a

ContradictionOG to it.
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3.5 Addressing Tabular Recasting Constraints

While this framework provides a generic way of transforming data for TNLI, implementations of it for
different datasets bring many challenges to surface. Some challenges are beyond the scope of this work
and are counted as limitations. Some challenges are vital to solve, and I address them in the following
ways.

3.5.1 Table Orientation.

In the framework described in chapter 3, I have detailed the steps assuming that the tables are vertically
aligned. This means that I assume tables to have headers in the top row and have consistent data types
in each column. While studying source datasets, I observed several horizontally aligned tables (with the
first column containing headers). These would give wrong results if the framework is applied to them.
It is hence crucial to identify the alignment of tables.

Figure 3.3: Example of a horizontally oriented table and its flipped version.

To deal with this, as a preliminary processing step, I employ heuristics to automatically recognise
such tables and subsequently flip them. I mainly use two heuristics for this task. First, assuming that
all tables are vertically aligned, I extract their top rows. I create a dictionary of the all header terms
like "Name", "Location", "Date", "Nationality" etc occurring in these rows and count their frequencies.
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I then choose the top 200 most frequently occurring header terms and look for these terms in the first
column of every table. If a table is horizontally aligned, it would have column titles/headers in its first
column, which are likely to match with the common header list.

The second heuristic I apply is to check for consistency in data types (numeric, alpha, etc.) across
rows rather than columns. I classify the data in each table cell into 4 categories - numeric, alpha,
alphanumeric and dates. If the data types seem to both be consistent across rows and inconsistent along
columns, the table to likely to be horizontally aligned. Once identified by either heuristic, I flip the table
by 90 degrees as shown in the Figure 3.3.

3.5.2 Partial Matching.

I observe that some datasets provide relevant cell information, but do not provide their explicit
alignments with the Base Entailment. To fulfill the prerequisites required for recasting, I attempt to
match every relevant cell with n-grams in the Base Entailment. If exact string matches are found, I end
the search there. However, in many cases, I observe that the statement need not mention the entire table
cell entity. This triggers the need for partial matching. Of particular interest is the sample row shown
in Table 3.4 that contains names, numbers, locations and dates that are not exact, but partial matches to
n-grams in the Base Entailment. People are often referred to from their last name. Similarly, full dates
need not be mentioned in cases where year or month is sufficient for the purpose of the statement. Same
goes for location - full location may not be mentioned if just the city or country suffices. I attempt to
match substrings only in such particular cases, and ensure that the partial substring matches found are
not functional words like articles or determiners. I also search for cardinal versions (first, second, third)
of ordinals (one, two, three) and numerical values (1,2,3).

3.5.3 Irreplaceable Entities.

I observe that not all relevant entities are replaceable by potential candidates. Table 3.3 presents
an example of a table with a Total row. Relevant entity 298 cannot be replaced while creating New
EntailmentOG because it is an aggregate entity whose substitution will disrupt the truth value of the
statement.

Similar observation is made while swapping table cells to create counterfactual tables. Suppose
I swap the aggregate cell 298 with 120 . The resultant table would be logically flawed since the
"Seats" column won’t add up to its Total. To prevent this, aggregate rows and header cells are marked as
non-replaceable entities.
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US presidential inaugurations (A table row)

President # 44

Name Barack Obama

Inauguration Date January 20, 2009

Location West Front, United States Capitol

Base Entailment :

Obama’s inauguration as the forty fourth president took place at the US Capitol in 2009 .

Partial Match Case Type

44 → forty fourth Ordinal to Cardinal matching

Barack Obama → Obama Full name to First name/ Last name

January 20, 2009 → 2009 Full date to day/month/year

West Front, United States Capitol → US Capitol Full location to city/state/country

United States → US Location Abbreviations to full forms

Table 3.4: An example of cases requiring partial matching.
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Chapter 4

Recasting in Practice

4.1 Source Datasets

Using the framework outlined in Chapter 3, I recast five datasets meant for tasks such as Table-to-
Text generation, Table Question Answering and Table Semantic Parsing. These datasets are listed in
Table 4.1. I choose these tabular tasks because they all perform inference on tables in some manner.
Question Answering requires understanding of tables to locate and synthesise the answer. Table-to-Text
generation requires creating a descriptive sentence, which would need the model to learn entities in the
table and their relations with each other to form a coherent description. Table semantic parsing is the task
of converting a given question to its logical form, similar to an SQL query. This would again, require a
model to correlate not just textual and tabular cell entries, but also the operations being applied on them.

4.1.1 Choice of Datasets

While the technique of data recasting allows us to utilise data from other datasets, we have to note that
this data is likely to have tables sourced from different places, and have different distribution of themes,
writing styles and domains than that of the target TabFact test set tables by fuzzy-matching the Table
Titles and Source URLs. This ensures that the test data is not accidentally seen by the model, therefore
preventing data leakage. There is bound to be some element of domain transfer when different datasets
are brought together. To minimise this, I choose datasets that utilise open-domain Wikipedia tables,
which is comparable to TabFact. In datasets where distribution of categories and themes is given, I ensure
that there are significant overlaps. In addition, these datasets and TabFact share reasoning kinds such
as counting, minimum/maximum, ranking, superlatives, comparatives, and uniqueness, among others.
Some of these datasets contain examples that are shared, but because the derivation procedure for NLI
data is unique for each task type, generated statements are also different and regarded as individual
instances. I summarize the statistics of the datasets in Table 4.1.
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Source Dataset Task

WikiTableQuestions [51] Short Form Table Question Answering

FeTaQA [44] Long Form Table Question Answering

Squall [68] Tabular Semantic Parsing

WikiSQL [92] Tabular Semantic Parsing (SQL queries)

ToTTo [49] Table-to-Text generation

Table 4.1: Source datasets used for creating tabular NLI data

Dataset Entailments Contradictions Total

QA-TNLI 32k 77k 109k

WikiSQL-TNLI 300k 385k 685k

Squall-TNLI 105k 93k 198k

ToTTo-TNLI 493k 357k 850k

Table 4.2: Statistics for various recasted datasets. QA-TNLI combines recasted data from both FeTaQA

and WikiTableQuestions. Test splits are created by randomly sampling 10% samples from each dataset.

4.2 Recasting Table2Text Generation datasets

Given a table and a set of highlighted cells, the Table2Text generation task is to create a description
derived from the highlighted cells. I presume this description to be the Base Entailment given that
it is true based on the table. In this case, the highlighted cells become the relevant entities. An
example is shown in Table 3.3, where Base Entailment OG is a description generated from OG Table’s
highlighted cells .

4.2.1 Recasting ToTTo

ToTTo [49] is a large scale table2text generation dataset. It has over 120k training samples on
open-domain Wikipedia tables. ToTTo does not ask annotators to create sentences, it rather searches
the Wikipedia page (from where the table was sourced) for sentences containing one or more table
cell entities. ToTTo authors then ask annotators to clean these statements, fix issues such as anaphora
resolution and grammar, and eliminate any information that cannot be inferred directly from the table.
The annotators also mark the highlighted cells. ToTTo states its data quality as "clean".

The advantage of having data that is not directly annotator "generated" but rather annotator "revised"
is that it eliminates biases that annotators introduce to a large extent. ToTTo picks sentences from
Wikipedia articles. These are freely written articles by humans. Sentences are hence more natural,
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Figure 4.1: An example from the ToTTo dataset, taken from [49].

as compared to task-specific sentences that an annotator might create if asked to generate statements.
These sentences are close to the text we might find in the real world, hence making them significant in
terms of real life application of the model trained on them.

I treat the human-revised description as the Base Entailment. Since I explicitly know the relevant
cells, I make entailments and contradictions through substitution with potential candidates wherever
possible. I also create counterfactual tables. I keep the ratio of entailments:contradictions roughly
around 1:1. I maintain the train-test split given in the original dataset, i.e. statements derived from
ToTTo training samples make up the training set of the recasted data.

4.3 Recasting Table Question Answering datasets

Table Question Answering is the task where given a table and a question based on the table, one is
expected to predict or generate the answer. Answers could be short i.e. one word or one phrase. Answers
could also be long-form, i.e. a sentence or a couple of sentences.

Given a question-answering dataset, we know that the information described by the question and its
answer is true on the basis of the table. If we can combine the question and answer into a statement,
such a statement would entail the table.

4.3.1 Recasting FeTaQA

FeTaQA [44] is a Table Question Answering dataset that was born out of the need for QA datasets to
explore complex reasoning. Most existing table question answering datasets prior to FeTaQA contained
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Figure 4.2: An example from the FeTaQA dataset, taken from [44].

abundant factual questions that primarily evaluate the query and schema comprehension capability of a
system, but they failed to include questions that require complex reasoning and integration of information
due to the constraint of the associated short-form answers. To address these issues and to demonstrate the
full challenge of table question answering, FeTaQA, a long-form Question Answering dataset over tables
was introduced. It has 10K Wikipedia-based <table, question, free-form answer, supporting table cells>
pairs. FeTaQA yields a more challenging table question answering setting because it requires generating
free-form text answers after retrieval, inference, and integration of multiple discontinuous facts from a
structured knowledge source. Unlike datasets of generative QA over text in which answers are prevalent
with copies of short text spans from the source, answers in the FeTaQA dataset are human-generated
explanations involving entities and their high-level relations.

Since FeTaQA provides long-form answers which are statements in themselves, I treat them as
entailments. Supporting cell information is given as well, which is helpful for creating contradictions
and more entailments by substitution. Even though FeTaQA is a small scale dataset, its training samples
are hand-picked to represent complex reasoning, which aligns well with our goal.

I am also able to create counterfactual data from FeTaQA data. Dataset statistics are mentioned in
Table 4.2.
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Example of FeTaQA Recasting
Ques: What was the total number of seats? Long answer: There were 298 seats in total.y replace 298 with 89

y
Entailment: There were 298 seats in total.

Contradiction: There were 89 seats in total.

4.3.2 Recasting WikiTableQuestions

WikiTableQuestions [51] is a dataset of 22,033 complex questions on Wikipedia tables, which is made
publicly available. It focuses on two important aspects of semantic parsing for question answering, which
are the breadth of the knowledge source and the depth of logical compositionality. While most existing
work prior to WikiTableQuestions traded off one aspect for another, this dataset was meant for learning
to answer complex questions on semi-structured tables using question-answer pairs as supervision. The
central challenge here arises from two compounding factors: the broader domain results in an open-
ended set of relations, and the deeper compositionality results in a combinatorial explosion in the space
of logical forms.

WikiTableQuestions dataset gives <table, question and short-form answer> pairs. Unlike FeTaQA, I
cannot directly use these for entailments, but instead, I need to combine the question and short answer
to create a logical statement. I explore two ways of doing this - the rule based approach and the neural
approach.

Figure 4.3: An example from the WikiTableQuestions dataset, taken from [51].
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4.3.3 Converting Question-Answer pairs to Statements

Previous research [14] captures the syntactic transformations required to convert a Question Answer
pair to a descriptive statement. It is useful for most wh- questions, which makes up a significant portion
of our target dataset. I form sentences using the rules derived from this syntactic transformation. While
the rules are able to form meaningful statements from some <question, answer> pairs, many input pairs
do not fit into the template patterns. I explore the use of neural models to deal with this issue, and to
form more fluent and creative statements from questions.

Syntactic transformation for converting a Question-Answer pair to a descriptive sentence
Ques: Where does Jim go to buy groceries? Short answer: Trader Joe’s

Where does Jim goes to buy groceries? remove do-support
Where Jim goes where to buy groceries? reverse wh-movement
Jim goes where to buy groceries ? delete question words and mark
Jim goes Farmer Joe’s to buy groceries . plug in the answer
Jim goes to Trader Joe’s to buy groceries. insert preposition

For the neural approach, I use a T5 based pre-trained model developed by Chen et al. [5] to convert
{𝑄𝑢𝑒𝑠𝑡𝑖𝑜𝑛, 𝐴𝑛𝑠𝑤𝑒𝑟} → 𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 (refer Table 1.4). I presume this generated statement to be our Base
Entailment. Unless the short-form answer is an aggregate value, it is likely to be an entity from the table.
Since it is the "answer" to a question, it is also definitely a relevant entity. I search for full or partial
matches between the answer and table cells as well as n-grams in the question. I create contradictions
on the basis of any relevant entities found. Note that since all relevant entities are not explicitly given,
I do not attempt to create new entailments. Since contradictions can be formed by falsifying any one
relevant entity, I allow their creation if matches for relevant entities are found.

Example of WikiTableQuestions Recasting
Ques: What was the total number of seats? Short answer: 298y combine 298 with the question

y
Base statement: There were 298 seats in total.y combine 298 with the question

y
Entailment: There were 298 seats in total. Contradiction: There were 89 seats in total.

4.4 Recasting Semantic Parsing datasets

The task of semantic parsing is to parse a given question to its logical form. Since tables are database-
like structured data types, questions can be reduced to SQL-like logical queries, which can be executed
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on tables to evaluate answers. In table semantic parsing datasets, we are given a table, a question and its
corresponding logical or sql query.

To gather the prerequisites for recasting, I first create databases out of the given csv/json table. I then
convert (if required), the given logical form to an executable SQL statement. I execute the statement to
get an answer for the corresponding question. Now, similar to Question-Answering datasets, I combine
the <Question,Short Answer> pair to create a statement, which is our Base Entailment. Since SQL
statements have clear distinction between keywords and values, I can assume the values to be the relevant
entities coming from the table. Consider the example "How many females in the chart are over 50 years
in age?" and its SQL form:

SELECT count(name) FROM table WHERE age > 50 and gender = ’female’

I can clearly point out that "name", "age" and "gender" are column headers in this table, and "female",
"50 years" are values. I then match the column names and values with the question. If a match is found,
I can replace these entities with other potential candidates. The advantage I have with SQL queries is
that I can parallelly replace values in questions and SQL queries, and then execute the new query to get
an answer. Subsequently, I can combine the updated question and answer to create a new entailment.
Since I am executing a logical-form query in the process of creating a new entailment, I can be confident
of the label.

I note that it is also interesting to be able to change column names in the SQL query and question
parallelly. One thing to be careful about is that I can’t just change a column name, I will have to change
its corresponding value as well. Applying this to the above given example, it could become -

SELECT count(name) FROM table WHERE height > 5 and gender = ’female’

Even though I can find both column name "age" and value "50" in the natural language question
"How many females in the chart are over 50 years in age?", it would not make sense to replace them
with "height" and "5" respectively ("How many females in the chart are over 5 years in height?"). If,
suppose, the values were "50 years" and "5 feet" in the table, then the changed sentence would make
sense ("How many females in the chart are over 5 feet in height?"). It is, hence, a little tricky to get
column-name-changes right.

Our solution for this is to create skeletons as mentioned in chapter 3. Skeletons are completely
generalizable statements, because I remove domain-specific words and manually filter them to keep the
generic ones.

4.4.1 Recasting WikiSQL

A significant amount of the world’s knowledge is stored in relational databases. However, the ability
for users to retrieve facts from a database is limited due to a lack of understanding of query languages
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Figure 4.4: An example from the WikiSQL dataset, taken from [92].

such as SQL. WikiSQL [92] is a dataset of 80654 hand-annotated examples of questions and SQL queries
distributed across 24241 tables from Wikipedia.

To augment the <SQL query, textual question> pair, I parallelly replace values in an SQL query and
its corresponding question. I execute the new query, and combine the answer with the perturbed question
to create a new entailment.

Example of WikiSQL Recasting

Ques: Which party won 120 seats? SQL: Select party from T where seats = 120y execute SQL and create statement
y

Executed answer: Party A Base Entailment: Party A won 120 seats.y replace 120 with 89
y

Ques’: Which party won 89 seats? SQL’: Select party from T where seats = 89y execute SQL’ and create statement
y

Executed answer: [Party B, Party C] Entailment’: Party B won 89 seats. Party C won 89 seats.

Note that when executing a query, the answer can be a single entity or a list of multiple entities. If I
have a list of entities satisfying the query, any of these entities can be used to create entailments, while
none of these entities should be used to create contradictions (I find other potential candidates from the
answer column). Consider the OG table given in Table 3.3.

4.4.2 Recasting Squall

Large-scale semantic parsing datasets annotated with logical forms have enabled major advances in
supervised approaches. Squall [68] was introduced to explore the utility of fine-grained, lexical-level
richer supervision. It is a dataset that enriches 11,276 English-language questions from WikiTableQues-
tions [51] with manually created SQL equivalents plus alignments between SQL and question fragments.
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Squall provides token level alignment between not just values and entities, but also aligns SQL keywords
with natural language.

Figure 4.5: An example from the Squall dataset, taken from [68].

I augment Squall similarly to WikiSQL. Furthermore, table metadata enables us to identify column
kinds and, in some circumstances, reduce SQL queries and questions to skeletons. These skeletons may
subsequently be used to generate hypotheses on additional tables that meet the column type specifications
of the skeleton in question. Consider the example from Table 3.3 with columns Party (text) and Seats
(numeric).

Since Squall gives alignments between SQL keywords and natural language as well, skeletons
are richer and almost form a grammar for SQL <-> natural language conversion. For example, the
"difference" function in SQL i.e. (A-B) is aligned often with "the difference between A and B".

Example of Squall Recasting
Q: Which party has the maximum seats?

SQL: select party from T where seats=max(seats)yextract skeleton
y

Q’: Which C1text has the maximum C2num?

SQL’: select C1text from T where C2num=max(C2num)

This can now be used on another table, suppose one about countries and their populations to ask
"Which country has the maximum population?".
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4.5 Evaluation and Analysis

In this section I look at evaluating the data I have generated through the recasting framework. I first
evaluate the quality and validity of the data through human evaluation. This verifies that the data is
indeed coherent and logical. I then run experiments by using this data for pre-training on the downstream
TabFact task and present my findings.

4.5.1 Human Evaluation of Recasted Datasets

I create the above 5 datasets with some assumptions in mind, covering as many edge cases as I can.
However, it is important to also validate our methods with human evaluation. For this purpose, I asked
five annotators to annotate fifty samples from each dataset on two fronts:

• Inference label: I ask each annotator to label each sample as entail, refute or neutral. Neutral
samples can either be those which can’t be derived from the table, or those which don’t make
sense. This label helps us in identifying how accurate my assumptions are, and how logically
correct the generated data is. Some noise is expected, and deemed important for neural models as
well, but I should not be creating logically incorrect data.

• Coherence score: I ask each annotator to score each sample on a scale of 1 to 3 based on its
semantic coherence and grammatical correctness, 1 being incoherent and 3 being coherent with
minor or no grammatical issues. A score of 2 is given to statements whose meaning can be
understood, but the structure or grammar is incorrect in more than one place. Since I claim that
our generated data is human-derived, it is important to validate that the fluency and grammar is
indeed maintained throughout the data generation process.

I ensure that each sample is annotated by at least 3 annotators, so that a majority can be reached.
To consolidate results for human evaluation, I compare our generated label with the majority annotated
inference label, and if no majority was reached, I consider the sample inconclusive. For Coherence
score of each statement, I calculate the average of the three or more annotators annotating that particular
sample. I then average out the scores per dataset.

Analysis. Results are summarized in Table 4.3. I observe high label match scores for our datasets,
with QA-TNLI at 90%, Squall-TNLI at 87% and WikiSQL-TNLI at 84%. ToTTo-TNLI is slightly behind
at 78%, which is largely due to samples marked as “neutral” or samples where no majority was reached.
I also observe a consistently above average coherence score, largely between 2.5 and 3. This implies that
most of our data is logical, coherent, and grammatical. Since the sources of our data are human-written
(Wikipedia text/human annotations), I expect our generated sentences to be fluent and semantically
correct.
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Dataset % Label Match Coherence Score

QA-TNLI 90% 2.68

Squall-TNLI 87% 2.54

WikiSQL-TNLI 84% 2.55

ToTTo-TNLI 78% 2.46

Table 4.3: Results for human evaluation of our generated data. Please note that the verification labels are

considered to be matched only if annotators have reached a majority and it matches our generated label.

4.5.2 Experiments on Recasted Datasets

In this section, I examine the relevance of the recasted data across various settings. First, I explain
the experimental setup – mainly the pre-training step where augmentation data is introduced. Once
I establish that, I present the results in three categories, each aiming to answer one of the following
research questions:

1. RQ1: How challenging is recasted data as a Table-NLI benchmark? I partition the recasted
datasets in train and test sets, and evaluate some pre-trained NLI models on recasted test sets.

2. RQ2: How effective are models trained on recasted data in a zero shot setting? I train Table NLI
models only on recasted data and test them on the TabFact simple and complex test sets.

3. RQ3: How beneficial is recasted data for Table NLI data augmentation? I use recasted data for
pre-training NLI models and fine-tune them on TabFact. I present the improvements observed
from the base model.

4.5.2.1 Experimental Setup

As described in Chapter 3, I begin with the base model developed by Eisenschlos et al. 19. This
BERT-based model uses synthetic data for an intermediate pre-training task before it is exposed to the
target dataset’s training data.

While BERT models for text have been scrutinized and optimized for how to best pre-train and
represent textual data, the same attention has not been applied to tabular data, limiting the effectiveness
in this setting. The TAPAS-TNLI model [19] addresses these shortcomings using intermediate task
pretraining [57], creating efficient data representations, and applying these improvements to the tabular
entailment task.

Eisenschlos et al. 19 introduces two intermediate pre-training tasks, which are learned from a trained
MASK-LM model, one based on synthetic and the other on counterfactual statements. The first one
generates a sentence by sampling from a set of logical expressions that filter, combine and compare the
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information on the table, which is required in table entailment. The second one corrupts sentences about
tables appearing on Wikipedia by swapping entities for plausible alternatives.

Following this approach, I introduce pre-training tasks consisting of our recasted datasets. I treat each
dataset as a different pre-training task, since each recasted dataset has different features, and I observe
the benefits that each dataset brings to the downstream task.

4.5.2.2 Recasted Data as Evaluation Benchmark

I randomly sample small subsets (typically 10% of the data) from each dataset, including counter-
factual tables, to create test sets. I ensure that the test set tables do not overlap with TabFact tables
through fuzzy-matching of table URLs and table Titles. I evaluate the publicly available TAPAS-TNLI
model [19] fine-tuned on TabFact on the randomly sampled test sets, as shown in Table 4.4. I find that
even though TabFact contains both simple and complex training data, the model gives a best accuracy
of 68.6%, more than 12 points behind its accuracy on the TabFact set.

Test Set Model

Base Large

QA-TNLI 56.1 58.0

WikiSQL-TNLI 66.8 68.6

Squall-TNLI 53.7 55.1

ToTTo-TNLI 64.9 65.6

Table 4.4: Accuracies for base and large TAPAS-TNLI model trained on TabFact and tested on recasted datasets

Analysis. The TAPAS-TNLI model performs best on WikiSQL-TNLI data, showing either that
WikiSQL is most comparable to TabFact (in terms of domain, reasoning, and writing) or that WikiSQL
is relatively trivial to address. Squall-TNLI is the hardest, as expected, as Squall was designed specifically
to include questions that execute complex SQL logic. QA-NLI and ToTTo-NLI lie in-between, showing
that they have some similarities with TabFact, but also incorporate complementary reasoning instances.

4.5.2.3 Recasted Data Models in Zero Shot setting

Once I pre-train our model on recasted TNLI data, it is in principle already a table NLI model. Since
I create a versatile and large scale dataset, I look at the zero-shot accuracy of our models on the TabFact
test set before fine-tuning, as shown in Table 4.5. Our best model gives 83.5% accuracy on the simple
test set before fine-tuning. Its performance is 6.0% percent ahead of Table-BERT, a supervised baseline.
Our best model also outperforms TAPAS-Row-Col-Rank [18], which is a model trained on synthetic
NLI data, by 7% in the zero-shot setting.
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Model TabFact Test Set

Testsimple Testcomplex Testfull

Table-BERTsupervised 79.1 58.2 65.1

LPA Rankingsupervised 78.7 58.5 65.3

Tapas-RC-Rankzero-shot 76.4 57.0 63.3

QA-TNLI 83.5 64.9 71.1

WikiSQL-TNLI 79.0 57.7 64.9

Squall-TNLI 82.0 62.6 69.1

ToTTo-TNLI 80.3 59.6 66.7

Combined-TNLI 83.0 62.9 69.7

Table 4.5: Zero-shot accuracies for models trained on recasted data and tested on TabFact simple, complex and

full dev set. Table-BERT and LPA Ranking are supervised baselines taken from TabFact [8]. [18] gives the

zero-shot accuracy of TAPAS-Row-Col-Rank on TabFact.

Analysis. QA-TNLI achieves the best zero-shot performance of 71.1%. I speculate that joining
two datasets (FeTaQA and WikiTableQuestions) helps the model learn a variety of linguistic structures
and reasoning. This is closely followed by Combined-TNLI, a model trained on the mixture of all the
datasets. I speculate that the model’s training may have been negatively impacted by integrating too many
distinct data kinds. Squall-NLI noticeably gives 62.6% accuracy on the complex test set, indicating its
utility for learning complex reasoning. The zero-shot accuracy of TabFact trained models on Squall-NLI
(i.e. Table Table 4.4) and that of Squall-NLI trained model on TabFact (55.1% vs 69.1%) clearly show
that Squall-NLI is a superior dataset in terms of complexity of reasoning. ToTTo-TNLI performs fairly
well on simple data (80.3%) but is not well equipped to handle complex examples. This is due to the
“descriptive” nature of generation data, which includes limited inferential assertions.

4.5.2.4 Recasted Data for Augmentation

Since TabFact is a binary classification task with Entail and Refute labels, our recasting data can also
be used for the purpose of augmentation in this case. I pre-train the model with our recasted data, similar
to Eisenschlos et al. [19] (refer section 3.1.2), before final fine-tuning on the TabFact dataset. Table 4.6
shows the performance after data augmentation. Our best model outperforms the Table-BERT and LPA
Ranking baselines [8] by 17 points, and Eisenschlos et al. [19] by 1.1 points.

Analysis. Following the zero-shot results (Table 4.5), QA-TNLI performs well as expected in
the fine-tuned setting. I speculate that ToTTo-TNLI outperforms QA-TNLI due to their dataset size
disparity (nearly 8x more, refer Table 4.2). The fact that WikiSQL-TNLI achieved the highest accuracy
with TabFact-trained models (Table 4.4) and the lowest zero-shot accuracy (Table 4.5) on TabFact
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Model Dev Testfull Testsimple Testcomplex Testsmall

Table-BERT-Horizontal[8] 66.1 65.1 79.1 58.2 68.1

LPA-Ranking [8] 65.1 65.3 78.7 58.5 68.9

Logical-Fact-Checker [93] 71.8 71.7 85.4 65.1 74.3

HeterTFV [67] 72.5 72.3 85.9 65.7 74.2

Structure-Aware TF [90] 73.3 73.2 85.5 67.2 -

ProgVGAT [85] 74.9 74.4 88.3 67.6 76.2

TableFormer [83] 82.0 81.6 93.3 75.9 84.6

TAPAS+Salience [76] 82.7 82.1 93.3 76.7 84.3

TAPAS + CF + Syn [19] 81.0 81.0 92.3 75.6 83.9

QA-TNLI (Question Answering) 81.4 81.8 92.6 76.4 84.0

WikiSQL-TNLI (Semantic Parsing) 78.3 78.6 91.2 72.4 80.9

Squall-TNLI (Semantic Parsing) 80.6 80.5 91.9 74.9 82.3

ToTTo-TNLI (Table2Text Generation) 81.9 82.1 93.7 76.4 85.4

Combined-TNLI 81.0 80.5 92.0 74.8 83.7

Human - - - - - 92.1

Table 4.6: Accuracies on TabFact, including the Human Performance. Table-BERT-Horizontal and LPA-Ranking

(w/ discriminator) are baselines taken from TabFact [8]. CF means CounterFactual data, TF means TansFormers,

LPA means Latent Program Algorithm. ToTTo-TNLI, QA-TNLI (WikiTQ + FeTaQA), WikiSQL - TNLI and

Squall - TNLI are table NLI models pre-trained on CF + Synthetic data [19] followed by respective re-casted

datasets. Combined - TNLI is a model trained on all of the data, starting with CF + Synthetic data and then mixing

data from recasted datasets in equal rates.

indicates that the data is relatively non-complex. Squall-TNLI does not improve model performance
after augmention despite its remarkable zero-shot performance (Table 4.4). I suspect that this is because
the domains and types of underlying logic (a.k.a. reasoning types) are quite distinct. I also combine all
datasets (in equal rates) to train a composite TNLI model. Its accuracies are not at par with our best
model. There can be several reasons behind this, one being that our mixing strategy isn’t optimal. I
could, for example, train for one dataset at a time and then slowly go on to the next, instead of mixing
all datasets at each stage in equal proportions. This can be further investigated in the future. Another
possibility is that the datasets include distinct types of data, such that merging them all has a detrimental
effect.
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4.5.3 Combinations

In an effort to see if data volume is directly proportional to model performance, I combined all
datasets to train a model. I mixed samples from all datasets in equal parts for each training epoch.

The intuition was that mixing such different data might not be extremely beneficial, especially since
the distribution of categories, aggregation types, language etc is vastly different across datasets. The
results reflect the same. However, I do note that I mixed the two Question Answering datasets, which
yielded positive results. Perhaps this is because there is some commonality in the type of the data these
datasets comprise.
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Chapter 5

Conclusion, Limitations and Future Work

In this work I introduced a semi-automatic framework for recasting tabular data. I made the case
for choosing the recasting route due to its cost effectiveness, scalability and ability to retain human-like
diversity in the resultant data. I proposed a framework to recast existing tabular datasets for the task
of Natural Language Inference. I then leveraged this framework to generate NLI data for five existing
tabular datasets. In addition, I demonstrated that the recasted datasets could be utilized as evaluation
benchmarks as well as for data augmentation to enhance performance on the Tabular NLI task presented
by TabFact [8]. I also showed its utility as an evaluation benchmark and as training data in a zero-shot
setting.

5.1 Limitations

This work on recasting tabular data yields some interesting outcomes. However, I note that there
are some limitations to this direction of work, which are inevitably introduced in the process. These
limitations pave the way for future work, as well as show room for improvement and further investigation.

1. Source datasets are designed for tasks different than the target. While our methodology assures that
recasted data retains the strengths and positive qualities of its original source, I have observed that
some of these traits may not necessarily coincide with the targeted task. For instance, generation
tasks provide “descriptions”, therefore the annotated data is descriptive in nature, but it is unlikely
to contain complicated reasoning involving common sense and table-specific knowledge. In
addition, any faults in the original data (e.g. bias issue) may get transferred to the recasted version.

2. Although the domains of source and target tasks can be comparable (in our example, open-domain
Wikipedia tables), their distributions of categories, themes, and so on are likely to vary. When
we train models using recasted augmentation data, we unintentionally introduce a domain transfer
challenge. As a result, the final model’s performance is influenced to some extent by domain
alignment.
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3. Tables are semi-structured data representations that differ not just in domains and writing style,
but also in structure. For example, InfoTabS [46] is a collection of Infoboxes, which are tables
that describe a single entity (person, organisation, location). These are very different from the
database-style tables that we use in our research. Tables can also be chronological, nested, or
segmented which makes them more challenging. While we can employ our current heuristics to
identify such tables, our current recasting strategy is prone to failure with tables that do not have
database-like structures.

4. Annotated data sometimes relies on common sense and implicit knowledge that is not explicitly
mentioned in the premise. Such data instances might be difficult to interpret automatically,
making them challenging to recast. For example, in Table 5.1, to compare "Gold" with "Silver",
the association of "Silver medal" with 2𝑛𝑑 place and "Gold medal" with 1𝑠𝑡 place must be known.
This implicit common-sense like knowledge makes this example hard to recast.

Micheal Phelps - 100m Butterfly

Venue Year Medal

Olympics, Beijing 2008 Gold

Olympics, London 2012 Gold

Olympics, Rio 2016 Silver

Label: Entailment

H: Micheal Phelps ranked better in 2012

than in 2016 for the 100m Butterfly event.

Table 5.1: An example table and an entailment derived from the same.

5. Our work on data recasting is done only on English language data. However, our proposed
framework is easily extensible to other languages, high resource and low resource alike. Since we
depend on identifying and aligning entities (between premise and hypothesis), morphologically
analytic languages are easier to work with. Highly agglutinative languages may require additional
efforts such as morph-analysis.

5.2 Future Work

My work explores a unidirectional framework for recasting data from X to Tabular NLI. A natural
extension to this line of work would be to investigate the other way around, to see if NLI data can be
used for tasks such as Question Answering, Generation and Semantic Parsing. To exhaustively cover the
benefits of recasting in a tabular setting, such investigation is the most evident next step. The foundation
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for the problem has already been laid and similar domain datasets from different research tasks have
already been established.

Future work in this direction can also lead to an interesting parallel dataset being formed for multiple
tabular tasks. I have already produced parallel data for two tasks at a time (NLI and x), but it would be
highly beneficial to have parallel data in more than 2 tasks. This would entail that we can train models
which are consistent over all tasks. For example, a model will learn that if a question Q has an answer
A then the statement combining Q and A is an entailment and vice versa. Models can also be trained to
perform intermediate tasks when training for a target task and use the outputs from the "intermediate"
tasks to boost their confidence. For example, if the model can predict the answer A to the question Q in
an intermediate task, its confidence in ruling statement S as an entailment in the downstream NLI task
would be much higher. Having parallel data can create opportunities for such models.

A different direction of work can focus on improving the data augmentation setting of my work. This
work describes a framework to produce large scale data, but all data may not always be useful data. There
is ample scope in investigating methods of choosing samples for augmentation and training, which can
significantly improve results. It would also help make a more challenging and comprehensive test set.

Along similar lines, there is also scope for investigating how combinations of recasted datasets
influence model performance. I did perform some experiments with combinations of datasets, but there
are several different training methods that can be used when mixing data from different sources. The
ratio and order in which each kind of data is shown to the model can make a difference. This line of
work can be investigated independently of recasting as well.

In conclusion, my work explores the themes of data recasting, data augmentation, tabular inference
and model pre-training. This work, along with its limitations and scope for future work, is an important
advancement in the field of tabular reasoning, which is a fairly new and data-scarce domain.
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