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Abstract

The evolution of RPS/RPSSL can be studied from multiple perspectives. Once the rate reac-
tions pertaining to birth, death, predation, and other activities including migration and mutation
are drawn for the system, the simulation of the system can be done through multiple stochas-
tic techniques like the stochastic lattice simulation or the Gillespie simulation. In this thesis,
we study system evolution using two techniques. In a small-scale system with mutation, we
study the extinction of a system under the lens of First-Passage formulation. We formulate a
First-Passage Problem to derive the exact analytical solutions for extinction state and extinction
time. We then verify the agreement between our First-passage solutions, Gillespie solutions,
and mean-field theory. The first-passage solutions provide us a deeper look towards species
extinction compared to stochastic simulations. Our findings suggest first-extinction time and
state distribution in a system with mutation follows intriguing behaviour which promotes co-
existence. There also exists a depression in the state space post which mutation extends the
first-extinction time. Moreover, a system devoid of mutation exhibits a discernible inclina-
tion towards probabilities that lean in the direction of an endangered state space. However,
the formulation of a first-passage problem is computationally very expensive and stochastic
simulations become redundant for multiple initial conditions with same system parameters.
Hence, we move towards a more complex problem of understanding and forecasting a sys-
tem’s evolution through Machine Learning. To provide the system with tractable information,
we move to lattice-based simulation where we draw actions during each timestep using the
Gillespie method. We also tackle a more intricate problem of migration, through which the
spatio-temporal visualizations create spiral patterns in a system. Using Machine Learning we
expedite the tasks of extinction prediction and system evolution by generating lattices using
machine learning - which were computationally expensive using simulations and first-passage
problems.
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Chapter 1

Introduction

1.1 Preliminary Works

The fundamental importance of coexistence within ecosystems cannot be overstated when
it comes to bolstering the equilibrium of populations. In the intricate web of life, an ecosystem
that experiences the extinction of species poses a substantial threat to its constituent organisms,
creating disruptions that imperil biodiversity and the overarching stability of the entire ecolog-
ical framework. In the tangible reality of our world, it becomes imperative to construct models
of ecosystems to unravel the potential external influencers that can be introduced to fortify the
system’s equilibrium. Modeling an ecosystem is an exceedingly intricate endeavor, given the
vast diversity of species and their interactions with one another. Within the tapestry of eco-
logical dynamics, a multitude of intra- and inter-species relationships manifest, each playing
a unique role in sustaining the ecosystem’s vitality. Consequently, it is of paramount signifi-
cance to meticulously investigate and seek to replicate these multifaceted interactions within
an ecosystem, with the ultimate goal of comprehending their collective contributions to the
overall stability and robustness of the ecosystem.

In the field of physics, theoretical investigations, primarily adopting an evolutionary game
perspective, have ventured in various directions to comprehend the natural phenomenon of
studying existence across multiple competing species with limited resources [1, 2]. The rock-
paper-scissors (RPS) model (as shown in Figure 1.1), particularly from the perspective of evo-
lutionary game theory, has been widely studied to understand this natural process of biodiver-
sity maintenance through interspecific cyclic competition. This model can be represented using
multiple formalisms like Lotka-Volterra and May-Leonard systems [3–5]. The Lotka-Volterra
formalism introduces a two-species model with the following rules: (1) There exists a prey and
predator. (2) the prey dies through inherent death or predation by prey. (3) the predator die
through inherent death, and their birth is positively affected by the rate at which they predate.
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In the May-Lennard formalism, three-species models were introduced (A,B, and C), where
phenomenons like predation could be cyclic (A predates B, B predates C, and C predates A);
as shown in Figure 1.1. Such cyclic models demonstrate that all species have a fair chance to
survive due to the cyclic dominance of predator-prey interactions. The RPS model has been
applied to various biological examples, including the morph prevalence of three-morph mat-
ing systems in side-blotched lizards, the cyclic dominance of Pacific salmon, and microbial
domains. [6–8].
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Figure 1.1 A simple RPS model with various phenomenon. We define three species A,B, and
C, and define some select phenomenon (migration, predation, reproduction). For each of these
phenomenon, we show their effects on a lattice.
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Figure 1.1 provides insight into the various phenomenon that occur in a classic RPS sys-
tem, where we denote the species by identifiers A, B, C. Each species undergoes a birth even
(where the species multiplies), and a death event (where the species ceases to exist). More
complex interactions like cyclic mutations, migrations, and predations can also take place in a
system. Various works have analyzed such complex phenomenon through the help of a lattice.
The analysis has been done both through the passage of time (temporal) in a defined lattice
(space), termed as spatio-temporal evolution [9–14]. We explain a selection of such processes
and phenomenon which have helped improve the realism of such system to that of real-world
phenomenon in line with Figure 1.1 and Equation 1.1. 1 - Birth All the works referenced in the
context of evolution specify birth as a phenomenon for species proliferation. 2- Death Many
formalisms including [3, 15, 16] introduce death as a part of their formalism. The site at which
species was present earlier, becomes vacant. 3 - Predation Competitive interactions exist in
ecological systems where predators prey on species for nutrition and survival [17,18]. Various
works have introduced competitive interactions in species through the eyes of cyclic preda-
tions [19, 20]. In cyclic predation, the species A can predate B, B can predate C can predate
A as referenced in Equation 1.1. 4 - Mutation is an extremely important natural phenomenon
which can cause crucial changes to a species on the genomic level [21]. These events have been
extensively studied in cyclic RPS models [10, 22]. Through small mutation rates, species have
been allowed to transform into another species, as a form of mutation, and their population
dynamics have been extensively studied and concluded to promote co-existence [10, 12, 22].
5 - Migration/Mobility. Just like species are allowed to move-across their assigned site, em-
ulating this phenomenon in simulations can provide improved realism [13, 23–25]. In such
systems, a species is allowed to exchange its position with a neighbor as shown in Figure 1.1.
Migration (also termed as mobility), has been found to impact the chances of long-term sur-
vival of the species [26–28] and can even in some cases lead to the vanishing of all biodiversity
and leading to the extinction of other species. These studies have also shown the formation
of Turing spirals on lattices caused due to species migration [9, 29–31]. 6 - Misc. Further
attempts were introduced apart from the above phenomenon to bridge the gap between real-
world systems and simulated systems. For example, to emulate the elevated uncertainty of
real-world systems, Reichenbach et al. propose addition of noise to RPS systems [32]. To ad-
dress crucial problem of population shrink due to major evironmental phenomenon, epidemics,
etc., Bhattacharya et al. spike the death rate across species for a brief period, providing further
scope of agreement to real-world phenomenon [33]. Often techniques like the Monte Carlo
Simulations [16, 34, 35], or Gillespie Simulations [36] are used to introduce stochasticity into
ecological modeling. These simulations can be generalized roughly through a common algo-
rithm: introducing a rate of occurence to each of the above phenomenon, and sampling an
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action at a given timestep taking into account the rates, we can effectively model the evolution
of a system. An insight of these phenomenon in the form of rate equations has been provided
in Equation 1.1 and Figure 1.1.

AV −→ AA BV −→ BB CV −→ CC (Birth)

AB −→ AV BC −→ BV CA −→ CV (Predation)

A −→ V B −→ V C −→ V (Death)

A −→ B B −→ C C −→ A (Mutation)

AB −→ BA AC −→ CA AV −→ V A (Migration)

BA −→ AB BC −→ CB BV −→ V B (Migration)

CA −→ AC CB −→ BC CV −→ V C (Migration)

(1.1)

In our thesis we will study on the role of mutation and migration in cyclically dominant
eco-systems. At first we start with mutation. Mutation is a gradual process of incremental
variation encompassing random changes in phenotypes. Researchers have abstracted this in a
broader sense to encompass target mutations and birth of mutant species [10, 37]. Extinction
and Survival analysis in ecological networks have been performed through the lens of multi-
layer networks and dispersal topologies to provide robust understanding of species persistence
in complex networks [38, 39]. In a different context, exact solutions using first-passage ex-
tinction have been first attempted recently for an ecosystem extinction model by Barendgert et
al. [40], inspired by Taylor and Karlin [41], Anderson and Kurtz [42] and Wilkinson [43]. In
our thesis, we perform two formulations of the first-passage problem to obtain the first-passage
probability and first-passage time for systems with and without mutation. In order to formulate
these problems, we first define our state space. A single state in our state space is of the form
(N1, N2, .., Nk) where k is the number of species and Niϵ[0, ω] where the carrying capacity, ω
is the maximum number of species our defined ecosystem can survive attributing to the limited
resources crucial to survival in the system. First-passage probability for a state of interest S
represents the probability at which systems with initial states S ′ ̸= S first encounters state S

during evolution. The first-passage time problem is the time taken for a system to reach this
state S. These problems are formulated through using the adjoint of the Kolmogorov forward
operator. We define the our state space, the rates at which transformations from one state Si

to the other state Sj can occur. Finally, we define the terminal state S for which we want to
obtain first-passage probability and time from other states S ′ ̸= S. We obtain exact solutions of
species extinction using first-passage problems and show their correlation with Gillespie simu-
lations for minimal modeling where single species persists. This scheme of studying extinction
is certainly a potential host of investigating the effect of mutation. Our primary objective is to
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understand the various mechanisms and conditions under which mutations foster co-existence.
These effects of mutation have been extensively studied in Chapter 2.

In our thesis (apart from the investigation of mutation), we have also investigated the role
of migration/mobility in three species model. In last two decades, researchers have studied the
formation of several patterns in presence of migration (see the rate equation 1.1, Figure 1.3). It
has been established that, a dying species can survive in presence of suitable migration [9]. On
the other hand, high strength of diffusion may also jeopardize the entire state [9, 44]. Trying
to capture the essence of physical systems through machine learning is an emerging endeavour
with many related works. While stochastic simulations capture the patterns created through
various phenomenon effectively, for larger lattices (> 100 ∗ 100), they are time-consuming
as verifying conclusive results from long-term behaviour for multiple initial conditions occurs
only after 4000-5000 iterations. Moreover, two different simulations with same parameters can
have drastically different results, and hence, it is important to abstract an overall distribution
for each rate interval. In this context, we search for ML tools capable of learning forecasting
and event distribution across various system configurations.

CNNs and their variants have been extremely instrumental for applications including im-
age and video recognition, image classification, image segmentation, etc [45–47]; inspired by
cortical neurons which respond to stimuli only from their receptive field. Pooling multiple
such receptive fields can be crucial to understanding the global impact caused by the stimuli
and understand the overlap of various receptive fields. This is emulated in Convolutional Neu-
ral Networks through convolution operation, pooling, normalization, etc. From innovations
like LeNet, ResNet, U-Nets, and Transformers, CNNs can now not only classify images but
also produce high quality maps which can aid in various tasks including edge detection, depth
estimation, etc [48–50]. This paper introduces a novel deep learning architecture, namely
PeRCNN [51], for modeling and discovery of nonlinear spatio-temporal dynamical systems
based on sparse and noisy data. In another paper, the authors propose a novel architechture,
SciNet [52], that can be used to recover physical variables from experimental data in vari-
ous physical toy settings. This paper [53], presented a data-driven method for discovering
inter-pretable, low-dimensional dynamical models and their associated coordinates from high-
dimensional data. We take the inspiration of all the above works to emulate and abstract a
distribution which can effectively predict long-term behaviour of RPS systems with migration.

1.2 Thesis Scope

Our thesis aims at understanding RPS systems through the lens of First Passage Formula-
tion, ODE, and, Machine Learning.
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1.2.1 Mutation through the eyes of First Passage Formulation

Mutation is an extremely important phenomenon which promotes diversity and co-existence
in ecosystems [22, 54]. It is important to understand in-depth, the exact nuances of mutation,
and more importantly, how mutation promotes co-existence. It is impossible to do an in-depth
analysis through simulations as they do not provide us the effect of mutation on our state space.
It is important to understand under which state spaces is the first extinction event imminent,
and for each state space when does the first extinction even occur. This helps us from the mul-
tiple perspectives including development of conservation strategies, maintaining co-existence,
etc. Hence, upon studying a system without mutations, and comparing it with a system in
which mutation is present can help us understand the underlying effects of mutation and how
it promotes co-existence. It is evident from Barendgert et al. that first-passage problems can
be used to study the first extinction events of a system accurately [40]. First passage formu-
lation of systems, as explained earlier provide more insights into the state space by deriving
exact extinction probabilities and times for each state S to reach another state S ′. Hence, it is
only imperative to construct a first passage formulation of our system to derive exact analyt-
ical solutions to extinction states in the system to understand the mechanisms through which
mutations prevents/delays our system from reaching extinction states. In the first part of our
thesis Chapter 2, we aim to visualize a five-species system, with and without mutations and
understand extinction with the exact solutions from the first passage probability and extinction
models. By constructing first-passage formulations, we are able to show that an ecosystem
with mutation promotes coexistence compared to an ecosystem without mutation. We also
study through these first passage formulations how mutation prevents species extinction when
extinction is imminent in a system. We construct infinitesimal matrix generators and obtain
probabilities for absorption states. We explore symmetric probabilities among similar absorb-
ing states when cyclic interactions exist. Gillespie simulations have been executed over long
and short time scales. Mutation is shown to promote coexistence and diversity of the popu-
lation even after a first extinction event. We also find symmetry in extinction events across
different species. The extinction probability and times we obtain are symmetric across any
permutation of (N1, N2, N3, N4, N5) which verifies the correctness of our first-passage prob-
lems as each phenomenon we define is cyclic in nature. The extinction times obtained were
using first passage formulation and we notice that it is not in all cases that mutation moves a
population away from an extinction event when compared to the formulation where mutation
is absent. There is a spike in population in minimal models when mutation is present. Finally,
we show that our Gillespie simulations and First-passage formulation are in good agreement
with each other with highly positive correlation scores. We also construct ODEs and simulate

6



them and show that our simulations and in extension, our first-passage problems follow similar
patterns to that of ODEs.

1.2.2 Migration through the eyes of Machine Learning

A species undergoing Migration / Mobility in a system shifts to a neighboring point in the
lattice. When we study the spatio-temporal evolution of a system with migration, we find that
such a system evolves with spiral patterns as described in Figure 2. These intricate spiral pat-
terns are only visible in large-scale lattices for select rates of migration and such stable spirals
act as a guard to the species residing inside them. Upon increasing the rates of migration,
these spirals become more distorted and unstable. In the longer term, spirals vanish and extinc-
tion occurs. Migration rates which result in stable spirals foster co-existence of a system. To
better understand the distribution of extinction events in such lattices, first-passage problems
are not a viable option. While the solutions to the first-passage problems provides us insights
into the system’s absorbing states, it provides us little information about a systems evolution
into its transient state. Moreover, formulation of LU decomposition for the first-passage prob-
lem is computationally inefficient. A sparse 105 ∗ 105 can only model rates for a total of 50
species at maximum if we consider a five-species system. Hence, it is almost impossible to
decompose such matrices with increasing complexities (and reducing sparseness) for larger
systems where the intricate patterns created by migration is visible. Hence, we try to reduce
the redundancy of simulations, but also provide a similar formulation to first-passage prob-
lems using Machine Learning. We prefer a stochastic lattice simulation for this task to provide
rich input to our models. We aim to study the established patterns occurring in such a lattice
when density preserving mutation (migration) is used in a system. Migration in lattice-based
system causes spirals to occur. With increasing migration, in later stages of a stochastic simu-
lation, extinction occurs. It is evident from Mobila et al. that forecasting of events can occur
with the existing prior by implicitly estimating system parameters and translating them into
spatio-temporal feedback [23]. Hence, using spatio-temporal dynamics at an earlier timestep
as a prior and understanding its effect on long-term behaviour, can result in long-term system
behaviour prediction for posterior data, hence optimizing the prediction timeline by reducing
simulation time steps. Machine Learning can be crucial to optimizing this rate-limiting step,
and providing us a rich higher-dimensional latent space for multitudes of system parameters
from which observations can be drawn from. However, employing Machine Learning for RPS
systems is extremely challenging as we must deal with the stochastic nature of our simulation
data, simulating the spatio-temporal dynamics of the system, and bringing two elements: pre-
diction of a system parameter, along with time-based forecasting fast-forwarded into the future
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for the specific system parameter under a single roof. The first task to emulate the stochastic
nature of our data can be solved by employing Dropouts during training and testing for better
generalization and variability. The second complexity of spatio-temporal dynamics simulation
can be solved by employing CNN-based image generation techniques. Finally, bringing multi-
ple elements under a single prediction loop can be solved by employing ensemble based inputs
to provide prior knowledge to our model about earlier system evolution which can be crucial
to predict long-term behaviour. A schematic diagram of our tasks have been summarized in
Figure 1.2.

1.3 Thesis Overview

The current chapter provides an introduction to RPS/RPSSL cyclic systems. We define the
scope of our thesis, the challenges we will be facing, and the complexities involved in our
work.

In Chapter 2, we present the theory and results of our Gillespie Simulations, First Passage
Solutions, and ODE results, and compare the agreement between them. Concluding the chap-
ter, we discuss the limitations of our work, and move towards Machine Learning.

In Chapter 3, we define the theory and tasks we perform through Machine Learning and
present our results. We perform experiments to compare the stochastic lattice simulations to
our Machine Learning results. We discuss how Machine Learning overcomes the limitations
of both simulations and first-passage problems.

In Chapter 4, we conclude our thesis by summarizing our tasks and results. We provide
further scope for our thesis.
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Figure 1.2 (a). Initially, we define our rate equations, determine the rate constants and simulate
the system using the Monte Carlo Method. Post this, we capture the data for spatio-temporal
evolution for each Monte Carlo step. (b) and (c). Once we define and simulate the system, we
capture the long-term nature of the system using lattices for varying rates and initial conditions.
In (b), given lattices during earlier time steps of the simulation, we ask the CNN if the system
goes to extinction in long-term. In (c), given a lattice of a system at a timestep t, we ask the
CNN to generate the system at timestep t+ dt after few steps of evolution.
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Figure 1.3 Lattice-based for various migration rates (Mr) and Monte Carlo time stamps (T ). It
can be observed that the spiral formation time increases and post a larger migration rate, spirals
stop forming. Spirals are clearly visible for Mr = 1 and 8 post which they become less visible
and more spread out.
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Chapter 2

Mutation and species co-existence

2.1 Gillespie Simulations

For the first section of our tasks, we model a five-species ecosystem as a stochastic process
and evolve the system during each time step by updating the ecosystem’s population in every
time step following Gillespie algorithm. Since ecological systems are typically complex and
composed of numerous interacting species; a five-species model is likely to provide a more
realistic representation of the ecological dynamics within a particular ecosystem than a three-
species model. Moreover, we put our first-passage formulation into test by opening further
stochastic systems and verifying its comparison to Gillespie simulations. Throughout the first
section of our modelling, the minimal model has been used following Barendgert et al. [40]
The species of the model have corresponding rates of heterocidal predation (αp, βp, γp, θp) as
shown in Eq. 2.1. The homicidal competition may be thought of as death mechanism, where
one member of a species competes with the another member of the same species. They also
have birth rates for each species: ra, rb, rc, rd, re, and mutation rates denoted by αm, βm, γm, θm

respectively (all shown in Eq. 2.1). The rates are normalized by the carrying capacity of our
system barring the overflow of population given the limited resources in our ecosystem repre-
sented by ω. Our predation strategy and the mutation strategy are cyclic, and the following rate
equations cover our processes. The rate equations have been provided in Equation 1 and we
have summarised the process in Figure 2.1.
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Ai −→ 2Ai (with rate ri Birthing)

Ai + Ai+1 −→ Ai+1 (with rate
αp

ω
:Heterocidal Predation)

Ai + Ai+2 −→ Ai+2 (with rate
βp

ω
:Heterocidal Predation)

Ai + Ai+3 −→ Ai+3 (with rate
γp
ω

:Heterocidal Predation)

Ai + Ai+4 −→ Ai+4 (with rate
θp
ω

:Heterocidal Predation)

2Ai −→ Ai with rate
2

ω
:Homocidal Predation)

Ai −→ Ai+1 (with rate
αm

ω
:Mutation)

Ai −→ Ai+2 (with rate
βm

ω
:Mutation)

Ai −→ Ai+3 (with rate
γm
ω

:Mutation)

Ai −→ Ai+4 (with rate
θm
ω

:Mutation)

(2.1)

The Gillespie algorithm at instant t updates the state as follows:

St = S0 +
k∑
0

akYK

∫ t

0

λk((Sn)dn) (2.2)

We first define states. A state S represents the population count (N1, N2, N3, N4, N5) of the
five-species ecosystem. The states are uniquely indexed for a time t in the Gillespie simulation.
We represent ak as a set of unitary actions for each rate equation mentioned in Eq. 2.1. For
example, the vector associated with an increase in species 1 and a decrease in species 2 can
be represented as (1,−1, 0, 0, 0). If these vectors correspond to the transition occurring in
the above rate equation, they belong to our set of unitary actions. The propensity function
(λk), represents the intensity of the independent unit Poisson process Yk for an action ak. The
propensity functions (λk) depend on the current state of the population. Birthing and Mutation
events are first order; hence, the propensity function associated with them is represented by
∇ × Ni, where ∇ represents the rate associated with the process. Similarly, predation is a
second-order process; hence, the propensity function associated with it is represented by ∇×
Ni × Nj . Mutation is a first-order process, and the propensity is represented by ∇ × Ni. We
run the Gillespie algorithm as follows: we define a set of atomic actions, the rates associated
with them, and the state changes corresponding to the atomic actions. For a given time t, we
calculate the propensity functions and the next reaction time δt ∼ exp(

∑
k λk) which depicts
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the minimum of the set of exponentially distributed random variables λk. We then determine
the best course of action which occurs at t + δt by normalizing the propensities and obtaining
the action corresponding to the maximum updated propensity. We then obtain the new state of
the system by multiplying and adding the associated stoichiometric change for the action ak to
the original system to obtain the new state of the system. We run the Gillespie algorithm for
the following system of rate equations long-term. We generalize the effects of mutation from
the Gillespie Simulations and analyze first-time extinction events specifically.

Homocidal Competition

Heterocidal Competition

Homocidal Competition

Heterocidal Competition

Birth

Mutation

Mutation

A1 A2 A3

A4A5A6

Homocidal 
Competition

Mutation

Birth

Heterocidal 
Competition

Mutation

(a) (b)

(5)

(1)

(2)

(4) (3)

(c)

Figure 2.1 Schematic summary of the rate equations. Colors in the circle represent the species
they belong to. (a) All possible species networks and interaction networks among them. (b)
Examples of birth, mutation, and competition. (c) Evolution of a small scale system with
various events occurring in discrete timesteps. (A1, A2, .., A6) represent unique indexing for
each of the actions / atomic processes in the system.

2.2 First Passage Problem

While our Gillespie simulation helps us understanding the long-term behavior, we aim to
study the immediate dynamics of our extinction. The timing of extinctions helps us understand
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and prevent the collapse of an ecosystem. To model the extinction event, we construct an
infinitesimal matrix generator L where each entry Lij in the generator matrix corresponds to
the transition rate from state Si to Sj . We follow the minimal model of Barendregt et al.
[40], to obtain a distinct stationary distribution for which extinction events (as the state S =

(0, 0, 0, 0, 0)) becomes inaccessible. An index in the matrix corresponding to the change of
species count singularly in N1, has a change in value of ±1. Similarly, a change of species
count singularly in N2 corresponds to a change in the index by ±ω. A change in N3, N4, N5

are represented by a change in the index by ±ω2, ±ω3, and ±ω4 respectively. For example,
an increase of species N1 would be represented by the entry Li,i+1 in the transition matrix. An
increase in a single species of N2, a decrease in a single species N3 at the same instant would
be represented by Li,i+(1+ω)−(1+ω)2 . The following set of elements in the transition matrix
represents birthing in species.

Li,i+1 = r1N1, Li,i+(1+ω) = r2N2, Li,(1+ω)2 = r3N3,

Li,i+(1+ω)3 = r4N4, Li,i+(1+ω)4 = r5N5.
(2.3)

On the other hand, death in species is represented by

Li,i−1 =
(N1 × (N1− 1))

ω
+

αp

ω
N1N2 +

βp

ω
N1N3 +

γp
ω
N1N4 +

θp
ω
N1N5.

Li,i−(1+ω) =
θp
ω
N2N1 +

(N2 × (N2 − 1))

ω
+

αp

ω
N2N3 +

βp

ω
N2N4 +

γp
ω
N2N5.

Li,i−(1+ω)2 =
γp
ω
N3N1 +

θp
ω
N3N2 +

(N3 × (N3 − 1))

ω
+

αp

ω
N3N4 +

βp

ω
N3N5.

Li,i−(1+ω)3 =
βp

ω
N4N1 +

γp
ω
N4N2 +

θp
ω
N4N3 +

(N4 × (N4 − 1))

ω
+

αp

ω
N4N5.

Li,i−(1+ω)4 =
αp

ω
N5N1 +

βp

ω
N5N2 +

γp
ω
N5N3 +

θp
ω
N5N4 +

(N5 × (N5− 1))

ω
.

(2.4)

Each of the above elements representing death has twofold mechanism: homocidal death (rep-
resented by Ni×(Ni−1)

ω
and heterocidal death through predation. The following set of elements
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represents the occurrences of mutation in species:

Li,i−1+(1+ω) =
αm

ω
N1, Li,i−1+(1+ω)2 =

βm

ω
N1,

Li,i−1+(1+ω)3 =
γm
ω

N1, Li,i−1+(1+ω)4 =
θm
ω
N1

Li,i−(1+ω)+1 =
θm
ω
N2, Li,i−(1+ω)+(1+ω)2 =

αm

ω
N2,

Li,i−(1+ω)+(1+ω)3 =
βm

ω
N2, Li,i−(1+ω)+(1+ω)4 =

θm
ω
N2

Li,i−(1+ω)2+1 =
γm
ω

N3, Li,i−(1+ω)2+(1+ω) =
θm
ω
N3,

Li,i−(1+ω)2+(1+ω)3 =
αm

ω
N3, Li,i−(1+ω)2+(1+ω)4 =

βm

ω
N3

Li,i−(1+ω)3+1 =
βm

ω
N4, Li,i−(1+ω)3+(1+ω) =

γm
ω

N4,

Li,i−(1+ω)3+(1+ω)2 =
θm
ω
N4, Li,i−(1+ω)3+(1+ω)4 =

αm

ω
N4

Li,i−(1+ω)4+1 =
αm

ω
N5, Li,i−(1+ω)4+(1+ω) =

βm

ω
N5,

Li,i−(1+ω)4+(1+ω)3 =
γm
ω

N5, Li,i−(1+ω)4+(1+ω)4 =
θm
ω
N5.

(2.5)

Since we are studying the first passage extinction events, the elements corresponding to a
state Si where at least one species is extinct (absorbing state) are

Li,j = 0 (2.6)

The identity positions in the matrix generator with non-absorbing states are given as follows:

Li,i = −
∑
j

Li,j (non-absorbing state) (2.7)

For an absorbing state, the identity positions are given by

Li,i = 1 (absorbing state) (2.8)

The first passage problem is formulated as [40]

Lτ = eS (2.9)
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S is a fixed absorbing state, and τ is the probability of hitting state S. eS is a matrix of zeros
except the state s, where the value is 1. We define an initial condition S(0) = (2, 2, 2, 2, 2),
solve the first passage problem for a small carrying capacity (ω = 10) to understand the imme-
diate effects of mutation in the first extinction event, and obtain the probabilities corresponding
to the initial condition hitting an absorbing state. For the first passage time problem, we obtain
the exact time of extinction for a non-absorbing state by setting eSi

= −1 where Si is a set of all
absorbing states (in our case, states that represent extinction). Given the computational com-
plexity of the first passage problem, with the infinitesimal matrix operator containing elements
of the order (105 × 105, depending on our choice of ω), we perform a LU Decomposition [55]
of the following type:

L = P−1L′U ′Q−1

P−1L′U ′Q−1τ = eS

L′U ′Q−1X = PeS

τ = QU ′−1L′−1PeS

(2.10)

This method of LU decomposition factorizes sparse matrix into a unit lower triangular ma-
trix L’, an upper triangular matrix U’, a row permutation matrix P, and a column permutation
matrix Q. We solve the first passage problem for two cases, with and without mutation, and plot
the difference in probabilities to understand the effect of mutation during extinction events.

2.3 Results

All the results visualized in this section involve the five species starting their journey from
a coexisting state. In Subsection 2.4, we visualize the outputs of our Gillespie algorithm under
varying circumstances. We then draw observations from them and compare the Gillespie sim-
ulations with cyclic mutation and without cyclic mutation. In Subsection 2.5, we analyze the
mean-field behaviour of our model and show their agreement to our Gillespie Simulations. In
Subsection 2.6, we visualize the probabilities under the first passage extinction problem for the
ecosystem with a carrying capacity of 50 members. We again start from a coexisting state and
derive the exact probabilities of the first extinction. We then compare the first passage prob-
lems for cases with and without mutation and draw our observations from the same. Finally,
we check the agreement between the first passage problem and the Gillespie algorithm using
correlation plots.

Throughout all our simulations and first-passage formulations, we have used the following
rates across all species: (ri = r = 1, αp = 0.11, βp = 0.14, γp = 0.08, θp = 0.11, αm = 0.1,
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βm = 0.3, γm = 0.2, θm = 0.4). All of the values corresponding to the predation and mutation
have been normalized by the single-species carrying capacity of our population.
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Figure 2.2 Simulations obtained from long-term Gillespie simulations with Initial condition
S0 = (2, 2, 2, 2, 2). a. Long-term Gillespie simulation for ω = 9 without mutation. b. Long-
term Gillespie simulation for ω = 30 without mutation. c. Long-term Gillespie simulation for
ω = 9 with mutation. d. Long-term Gillespie simulation for ω = 30 with mutation. We can
observe that in the case without mutation, one species of the population survives, whereas in
the case of mutation, we find various species of the population co-existing with each other.

2.4 Gillespie Simulations

Figure 2.2 represents the Gillespie simulations for five-species models. Figure 2.2(a) and
Figure 2.2(b) represent the long-range dynamics for the ecosystem with ω = 30 and ω =

9 for the case without mutation, respectively. Figure 2.2(c) and Figure 2.2(d) represent the
long-range dynamics for the ecosystem with ω = 30 and ω = 9 for the case with mutation,
respectively. We observe that cyclic mutation promotes co-existence in a system. Even if a
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species count drops to zero, cyclic mutation ensures that the same species can resurface and
thrive among the population. Extinction is imminent in the case without mutation, with a single
species surviving long term. In the case where cyclic mutation exists, extinction is imminent,
yet the chance of long-term survival is possible for multiple species. With our cyclic mutation,
it is equally likely for Species A to go extinct at time ti, Species B to mutate to Species A at
time tj where tj > ti, and the population for A to spike up. It is also equally likely (unlike
an ecosystem where cyclic mutation is absent) for species already facing a an abundance in
population to plunge into extinction. Our Gillespie simulations suggest that the five-species
model without mutation follows a transient behavior. In the case of mutation, it is evident
that we do not reach a transient behavior and the population dynamics keep evolving. It is also
intriguing that the long-term simulations of a system with cyclic mutation include burst phases,
where the population from a species undergoes a burst with a steep population increase in a
short time and plunges towards extinction later due to the effect of mutation.

Figure 2.3 represents the short-term Gillespie Algorithm for ω = 9 for two different initial
conditions: S1 = (2, 2, 2, 2, 2) and S2 = (7, 7, 7, 7, 7) for both ecosystems with and without
mutations for a shorter period to make the unit changes more evident. The change in initial
conditions makes an evident difference in the condition where the mutation is absent, pushing
the species extinction at t < 10. When the mutation is present, the initial condition plays
little role as mutation introduces more stochasticity into the system causing random species
burst, extinction events, etc. While it is evident from Figure 2.4 that mutation promotes co-
diversity, it is intriguing to understand under what conditions does extinction events take place
when mutation is present, and how does this differ from a case where mutation is absent.
Understanding the difference between the states of the population during the first extinction
event with and without mutation can help us determine if mutation effectively helps avoid the
extinction of other species. We analyze this in the first passage problems in Section 2.6.

2.5 ODE model of the interacting five species ecosystem

We aim to to understand the mean-field dynamics of the system in this section as ODEs provide
us a mathematical model for predicting system behaviour over time. While the ODE cannot
provide us state-wise extinction parameters, it is crucial to check the agreement of our ODE
with our simulations to ensure similarity in system behaviour. Solving ODEs can help us un-
derstand system behaviour and help us choose appropriate rates to conduct our simulations and
first-passage problems. The ordinary differential equations corresponding to rate equations of
the five species RPS model (see Eqn. (1) in the main text) are shown below. The parameters
αp, βp, γp, θp correspond to heterocidal predation while the terms αm, βm, γm, θm correspond
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Figure 2.3 Simulations obtained from short-term Gillespie simulations with ω = 9. a. Short-
term Gillespie simulation for initial state (2, 2, 2, 2, 2) without mutation. b. Short-term Gille-
spie simulation for initial state (7, 7, 7, 7, 7) without mutation. c. Short-term Gillespie simula-
tion for initial state (2, 2, 2, 2, 2) with mutation. d. Short-term Gillespie simulation for initial
state (7, 7, 7, 7, 7) with mutation. We observe a higher initial condition leading to a slower
overall extinction in the case without mutation. With mutation, we observe multiple surges and
plunges of population corresponding to various species.

to mutation. The coefficient of birth rate is denoted as r. The rate of change of size of each
sub-population is reduced by 2nd-degree (in sub-population size) heterocidal and homocidal
predation terms. The rate also increases from birthing and cross-mutation terms and decreases
from self-mutation terms all of which are of degree one in sub-population size.

19



0 5 10
	N1

0

5

10

	N
4

	Pabs:	N2=0,	N5=1,	N3=2

0 5 10
	N1

0

5

10

	N
4

	Pabs:	N2=0,	N5=2,	N3=2

0 5 10
	N1

0

5

10

	N
4

	Pabs:	N2=0,	N5=4,	N3=2

0 5 10
	N1

0

5

10

	N
4

	Pabs:	N2=0,	N5=8,	N3=2

Figure 2.4 First passage extinction probabilities: 2-Dimensional. Probabilities of the initial
state (2, 2, 2, 2, 2) to be found at the following states during the first extinction event. Pabs
represents the first-passage extinction probability. It can be noticed that the probability dimin-
ishes as the difference in the initial state and the possible extinction state increases indicating
that it is less probable to find a state with rapid evolutionary dynamics during a first extinction
event.

da

dt
= a(r − 2

ω
a− αp

ω
b− βp

ω
c− γp

ω
d− θp

ω
e) +

θm
ω
b+

γm
ω

c+
βm

ω
d+

αm

ω
e− (

αm + βm + γm + θm
ω

)a

db

dt
= b(r − 2

ω
b− θp

ω
a− αp

ω
c− βp

ω
d− γp

ω
e) +

αm

ω
a+

θm
ω
c+

γm
ω

d+
βm

ω
e− (

αm + βm + γm + θm
ω

)b

dc

dt
= c(r − 2

ω
c− γp

ω
a− θp

ω
b− αp

ω
d− βp

ω
e) +

βm

ω
a+

αm

ω
b+

θm
ω
d+

γm
ω

e− (
αm + βm + γm + θm

ω
)c

dd

dt
= d(r − 2

ω
d− βp

ω
a− γp

ω
b− θp

ω
c− αp

ω
e) +

γm
ω

a+
βm

ω
b+

αm

ω
c+

θm
ω
e− (

αm + βm + γm + θm
ω

)d

de

dt
= e(r − 2
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d) +

θm
ω
a+
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ω

b+
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ω
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ω
d− (
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ω

)e

The set of equations has one trivial fixed points: FP1 = (0, 0, 0, 0, 0) and the non-trivial
fixed point: FP2 = ( rω

αp+βp+γp+θp+2
)(1, 1, 1, 1, 1) where the 5 species coexist with the same

population density. For the sake of brevity, r is taken as 1, and the conditions αp = βp =

γp = θp = α and αm = βm = γm = θm = β are applied. Under these conditions, the fixed
point (0,0,0,0,0) is globally unstable (the stability is not shown here). Now we will check the
stability of the non-trivial fixed point, the coexistence steady-state whose Jacobian is shown
below.
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The eigen values of the matrix above are -1, −20αβ+αω−10β−2ω)

4aω+2ω
. Therefore, for −10β(2α +

1) + ω(α − 2) < 0, the coexisting steady-state is a stable node .i.e, for α <= 2, this fixed
point is stable for all values of β >= 0. However, if α > 2 the system is unstable around the
aforementioned equilibrium point for certain non-negative values of β. This bifurcation around
β is discussed in Figure 2.5. With increasing predation parameter, the bifurcation line faces an
upward shift owing to species domination. The bifurcation line across the mutation-predation
space represented in 2.6 is piecewise and with reducing carrying capacity, moves downward
attributing to the fact that with lesser resources, every other species except for one is bound to
go extinct. For parameter tuples from the stable region of parameter space, numerically, the
system was observed to eventually converge to the fixed point calculated above irrespective
of the starting point. However, for parameter values from the unstable region of the parameter
space, the system appeared to converge to different steady states which are represented through
phasic bursts in Figure 2.7. We will explore this behavior in the near future.

For varying carrying capacities, we also vary the α− β parameters to obtain the bifurcation
points in the cyclic mutation-predation plane. Figure 2.6 represents the stability diagram as a
function of α and β for three different carrying capacities. We observe a downward shift of the
unstable region for non-negative values of α and β with a reduction in the carrying capacity.

In our endeavor to replicate the outcomes derived from stability analysis, we turn to Gille-
spie simulations. As depicted in Figure 2.7, we present the outcomes of Gillespie simulations
across a spectrum of mutation rates, focusing on a singular predation rate and carrying capac-
ity. With increasing mutation rates, we find our system going to more stable conditions with
phasic bursts of population ensuring the same density average over timesteps. As our muta-
tion rate increases, the time period of the phasic bursts reduces. Hence, our system becomes
more chaotic, yet, the overall species density remains the same. However, our findings point
towards the emergence of instability in the ordinary differential equations (ODEs) owing to the
dominance of a single species.
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Upon elevating the mutation rate, we observe an increase in the frequency of peaks across
multiple species, giving rise to co-existing states. In these states, multiple species exhibit
recurrent fluctuations in population, characterized by pronounced bursts and declines. These
population dynamics can be interpreted as a collective oscillation of the overall species count
around a shared sub-population size. This phenomenon signifies a convergence into a non-zero
state, ultimately leading to the establishment of a stable converging fixed point in the stability
analysis conducted for the ODEs.

2.6 First Passage Probability and Time

While mutations through the eyes of simulations have been extensively studied, it is crucial
to understand at what states does the actions of mutation kick in, and in what states are species
endangered beyond the purpose of mutation. Hence, it is useful to formulate the exact ana-
lytical solutions of extinction probability and time for various states to better understand the
mechanism of mutation. We formulate a small-scale first passage problem with the carrying
capacity of every species ω = 9. With a coexisting state S0, we obtain the probabilities of S0

reaching an absorbing first extinction state, Se. Figure 2.4 represents the extinction probabil-
ities for the following fixed conditions: one species goes extinct, two are fixed, and two are
variable. The intensities of the probabilities are represented using the size of the circles. Fig-
ure 2.4 can be read as follows: the probability of the initial state S0 = (2, 2, 2, 2, 2) reaching
the state Si = (x, 0, y, a, b). We scale this up to three dimensions to get a better observation.
Figure 2.8 represents the extinction probabilities in 3-D.
We now use this visualization method for the probabilities obtained from the first passage prob-
lem for cases with and without mutation. We compare both cases by subtracting the respective
state probabilities for conditions with and without mutation and representing them in the same
graph. We notice from Figure 2.8. that combining our constants and variables in any possible
way gives us symmetric outputs. This indicates that our cyclic process of mutation and preda-
tion combined with our birth process results in symmetric first-passage probabilities. Similarly,
it can be inferred from Figure 2.5. that the probabilities reduce from our initial state of coex-
istence symmetrically across all the remaining variations of N1, N3, N4, N5. This is precisely
the results obtained from Barendregt et al. which indicated the 5-species model is an extension
of the Rock-Paper-Scissors model [40]. Moreover, it can also be inferred from Figure 2.9. that
it is more likely to find the first extinction state, closer to the initial state S0, when mutation
exists. An ecosystem without mutation will likely experience a first extinction event when
other species in the environment are endangered or close to extinction. This is evident from the
probability differences in Figure 2.9. near the regions N1, N2, N5 = (0, 0, 0) where probabili-
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ties in a case without mutation highly exceed that of a case with mutation indicating that it is
likely to find N1, N2, N5 close to extinction when the first extinction event takes place. Further-
more, there is a high probability in the case of mutation to observe first extinction events when
N1, N2, N5 > (2, 2, 2) (initial state), indicating that mutation aims at diversifying the popula-
tion among species, compared to that of an ecosystem without mutation and plays a major role
in the coexistence of species. It can also be observed that it is as unlikely to find the first extinc-
tion event occurring at a state S ′

e such that |S0 − S ′
e| > ϵ derived from the fact that mutation, a

gradual genetic change, is ill-suited for rapid transformation in real-time environments. In such
dynamic settings, immediate adaptation is crucial, necessitating mechanisms other than slow
mutation to cope with swift changes and maintain competitiveness. Hence, extinction proba-
bilities in such circumstances are similar to those of an ecosystem where mutation is absent.
We formulate the first-passage extinction probabilities for a non-uniform initial condition in
Section 2.7. We observe that there is a general trend for systems without mutations to have a
higher probability to exist in an endangered state compared to that of a system with mutations.
Moreover, A system with mutation is likely to experience an increase in first extinction time
as the overall species count in an ecosystem increases. This can be observed from Figure 2.10.
While there is a spike in the number of states where mutation slows first extinction (Sm) near
Ni = 1, there is a dip as we progress towards Ni > 2, attributing to the fact that stochastic
pathways with mutation lead to extinction faster due to lack of diversity among species. But as
the species count and diversity of the ecosystem increases, there is a huge surge in the number
of states where the first extinction event is slower when mutation is present. This is evident
with the surge we observe in regions Ni > 6 of Figure 2.10. We find that even when mutation
is present, there needs to be a minimum co-existing state of the population for mutation to
increase first extinction time, and that, it is not in all cases that mutation moves a population
away from an extinction event. We validate our inferences by comparing the correctness of our
first-passage problem with Gillespie Simulations. Figure 2.11 shows the correlation plot be-
tween the first-passage problem probabilities and Gillespie simulation probabilities for the first
extinction event represented Equation 2.10. Both cases show good agreement given that both
have an R2 score ≥ 0.97. Due to denser matrices and larger matrix sizes, the exact solutions
of the first passage problem for ω ≳ 10 become intractable.

2.7 Initial Conditions in First-Passage problems

In our formulation of the first-passage problem, the solutions for the extinction distribution
obtained for a uniform initial state. In this section, we vary the initial state to follow a non-
uniform initial condition and extract the first-passage probabilities for the new initial states.
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Our new non-uniform initial state, labelled by S′ follows the species distribution: (2, 6, 2, 2, 2).
Figure 2.12 represents the conditional probability distribution given a first extinction event oc-
curs for a species. Change of conditional probabilities across species still remain symmetrical
with respect to the change of population of single species with the peak at the closest hyper-
plane with respect to the initial condition. An analog of Figure 2.9 for S’ has been shown in
Figure 2.13. Within this comparative framework, we observe a general trend; a system devoid
of mutation exhibits a higher probability to linger around an endangered state space (character-
ized by a species population less than 2) - more visible when a non-uniform initial condition is
taken and near the vicinity of the initial condition. Furthermore, in comparison to our uniform
formulation, we observe fewer red spots in states characterized by increased coexistence. This
suggests that a higher species count facilitates the transition towards a more coexisting state
when the first extinction event takes place.

2.8 Discussion

This work introduces mutations in five-species models and performs first-passage formula-
tion to obtain exact state-wise probabilities for the first extinction event. We demonstrate the
use of cyclic mutations and employ them mathematically in an infinitesimal matrix generator
to observe more nuanced differences during the first extinction event. It is to be noted that
works including Kang et al. [56] and Vukov et al. [57] motivated us to construct mean field
ODE equations (see the Appendix A) of five species model. While they have investigated the
coexistence of species from the perspective of multiple invasion rates, our study focuses on the
extinction for a single parameter through the lens of varying initial conditions.

Furthermore, our mean-field approach varies the α − β (mutation - predation) parameter
space as opposed to the cyclic predation parameters to observe the boundary between extinc-
tion and stable states where species ideally oscillate across a fixed point. We hope to study
co-existence along with a joint perturbation across various cyclic domains of both mutation and
predation in our further studies. When compared to the range of models dicussed in [58], our
model assumes a cyclic mutation where each species mutates to the other. The study operates
on spiral-generating lattices including migration to study the effects of mutations. In our study,
we do not take into consideration the spatio-temporal dynamics of the system, but rather, under-
stand the behaviour of the system from the perspective of extinction and co-existence. Unlike
the stability analysis presented for generic RPS systems with mutations where stability in the
predation-birth space was explored, we provide stability analysis in the predation-mutation
space for uniform cyclic parameters. We find through the Gillespie simulations that cyclic mu-
tation promotes co-existence among the population and promotes population diversity. We also
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observe that population bursts occur frequently, in a phased manner, when mutation exists. We
also uncover that mutations offer more diverse and robust pathways to a first extinction event,
preventing further species endangerment and providing room for coexistence compared to an
ecosystem where mutation does not exist. We observe that it is not always the case that muta-
tion extends our first-extinction time. There is a sudden increase of the number of states where
mutation extends the first-extinction time near the endangered states, followed by a dip, and
then a rise, as the population reaches co-existing states. We also uncover symmetric extinc-
tions in first-passage problems of five-species models, indicating that they are extensions of
three-species models with birth and cyclic predation.

In our simulations, we observe population size oscillations rather than full extinction, as
mutation reactions make the underlying Markov chain irreducible. Our first-passage probabil-
ities are symmetric across various combinations of our constants, reflecting the uniform cyclic
parameters used in our rate equations. The trend of sudden increase, and dip, followed by a
rise again in our first-passage extinction times can be attributed to more stochastic pathways
leading to a reduction in population (with contributing actions being mutation and predation)
are higher than proliferation pathways in the set of states where the dip is observed. Once the
population reaches a non-endangered, and co-existing state the effects of mutations are ob-
served more effectively, as it drives our population away from a first extinction event. In both
our scenarios with and without mutations, our formulations show near-perfect agreement with
our Gillespie simulations.

2.9 Limitations

Although we obtained exact results using first-passage formulation, our studies were lim-
ited to small carrying capacities only. The fact is that increasing the single-species carrying
capacity, even by a small factor, rapidly increased the size of our infinitesimal matrix genera-
tor (L), and reduced the sparsity of our matrix. Hence, after a small carrying capacity, it was
impossible to carry out LU decompositions of our matrix. Moreover, in a real-world scenario,
extinction only occurs in a given probability, and hence, the absorbing states are confined by a
probability which is not taken into account in the first-passage formulation. For larger systems,
thousands of simulations to estimate extinction probability for a given set of parameters can
take hours. Hence, a Machine Learning formulation which can extrapolate to data points is
more suitable for studying extinction events. Finally, through first-passage formulations and
time-based sampling of the Gillespie simulation, it become impossible to study the evolution
of the system. Hence, an ML approach based upon step wise lattice evolution is more suited
for our purpose of studying spatio-temporal evolution of a system.
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Figure 2.5 Stability diagram and time signals as a function of ω and β.(a-b) The light red color
demarcates the unstable regime of Fp2 ( α = 2.3 and α = 2.6 respectively). The blue area
represents the stable parameter space of the same. (c) Time series of the system for a point
(marked by X in (a)) from the stable region of the parameter space for α = 2.3. (d) the time
series of the system for a point (marked by O in (a)) from the unstable region. Similarly, for
α = 2.6 (e) and (f) correspond to the time series of the system for a point in the stable region
and unstable region of the parameter space, respectively. Clearly, if we increase the predation
term (α), the stable region decreases (light blue).
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Figure 2.6 Stability diagram as a function of α and β. For non-negative values of mutation
and predation parameters, we observe a downward shift of unstable region indicating that for a
lower carrying capacity, smaller values of mutation enforces the system towards a more stable
behaviour where all species converge around a specific point.
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Figure 2.7 Gillespie Simulations: For ω = 50 and α = 2.6 and β varying accross (a): 0,
(b): 0.1, (c): 0.3, (d): 0.7, (e): 1.0, (f): 1.5. With increasing mutation rates, we find frequent
population bursts accross multiple difference species which is in correspondance to our ODE
results.
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Figure 2.8 First passage extinction probabilities (Pabs): 3-Dimensional. Probabilities of the
initial state (2, 2, 2, 2, 2) to be found at the following states during the first extinction event. It
can also be noticed that extinction occurs symmetrically across all 3-D graphs.

Figure 2.9 First passage problem extinction probabilities (Pabs), mutation comparison, Con-
figuration 2 (N5 fixed, N2 = 0, (N1, N3, N4): Variable; 3-Dimensional. Red Spheres represent
that the difference in first passage probabilities between the cases of mutation and without
mutation is negative. The blue spheres represent that this probability is positive.
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Figure 2.10 First passage extinction times: Number of states where an ecosystem with mu-
tation leads to a slower first extinction than an ecosystem without mutation. Three vari-
ables N1, N3, N5 are variables across the x and y axis under various line plots. The sum of
states under these settings are taken where the difference in extinction times without and with
mutation is positive.

Figure 2.11 Correlation between the extinction probabilities of 1e6 Gillespie simulations (PG)
and first passage problem (PF ) without (a) with R2 score 0.97 and with mutation (b) with R2
score 0.99.
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Figure 2.12 First passage extinction probabilities: 3-Dimensional. Probabilities of the ini-
tial state (2, 6, 2, 2, 2) to be found at the following states during the first extinction event. It can
be noticed that the probability diminishes as the difference in the initial state and the possible
extinction state increases indicating that it is less probable to find a state with rapid evolution-
ary dynamics during a first extinction event.
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Figure 2.13 First passage extinction probabilities: 3-Dimensional. Probabilities of the ini-
tial state (2, 6, 2, 2, 2) to be found at the following states during the first extinction event. It can
be noticed that the probability diminishes as the difference in the initial state and the possible
extinction state increases indicating that it is less probable to find a state with rapid evolution-
ary dynamics during a first extinction event.
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Chapter 3

Machine Learning for System Behaviour Prediction

The subsequent sections of this chapter are arranged as follows: we describe our algorithm
for lattice-based simulation in Section 3.1 and the theory behind our ML work in Section 3.2.
We then describe the tasks performed in Section 3.3. The results of the tasks along with the data
and model hyperparameters is presented in Section 3.4, and Section 3.5. Finally we conclude
with discussion of the results and outlook in Section 3.6.

3.1 Lattice-based Simulation

For the third chapter of our thesis, we model the three-species ecosystem as a stochastic
process with birth, predation, and migration as stated in Reichenbach et al. [23]. We perform a
Lattice based Monte-Carlo Simulation which is restricted to the lattice using Periodic Boundary
Conditions to emulate the spatio-temporal dynamics of the system. The rate equations have
been provided in Equation 3.1. Migrations can be interpreted as mutations in a lattice which
preserves density in a lattice and prevents species resurfacing. A schematic diagram on lattice
for the respective actions have been provided in Figure 3.1. For various Mr, the patterns
formed have been visualized in Figure 1.3.

Ai −→ 2Ai (with rate r Birthing), i=(0,1,2)

Ai + A(i+j)%3 −→ A(i+j)%3 (with rate p : Predation), i = (0,1,2) and j=(1,2,3)

Ai + A(i+j)%4 −→ A(i+j)%4 + Aj (with rate Mr :Exchange), i = (0,1,2) and j=(1,2,3)

Ai + ϕ −→ ϕ+ Ai (with rate Mr :Exchange)

(3.1)

Our lattice simulation algorithm is as follows. We initialize a lattice with a uniform distribu-
tion of all the three species and vacant sites. For each Monte Carlo (MC) time step, we obtain
a random configuration of lattice sites. We iterate over this order, choose a sample a random
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Figure 3.1 Schematic diagram for actions on lattice. Predation removes a species according to
the cyclic predation order. Birthing results in a neighboring species giving birth to its offspring
in a vacant site. Migration results in a species exchanging its lattice site with a neighboring
species.

action sampled through the Gillespie algorithm given the rates, and perform the action. This
way, we evolve the lattice for T Monte Carlo timesteps. In one Monte Carlo timestep, every
entry in a lattice is randomly updated by randomly sampling one action (with the probability of
choosing being directly proportional to the rate of the action) for every non-vacant entry in the
lattice. We set r = 1 and p = 1 and chose an arbitrary migration rate Mr. We then normalize
these values r′ = r

r+p+Mr
, p′ = p

r+p+Mr
and M ′

r = Mr

r+p+Mr
and simulate lattice using the above

algorithm. For varying migration rates with multiple initial conditions, simulations become
redundant as multiple initial conditions must be chosen to observe long-term behaviour and
generalize. This is because, the long-term behaviour of the above system varies for different
Mr and there is a probability distribution with which species survive, as explained in Chapter
1. Analytically, this probability curve can be predicted [23]. Here, we want to explore an al-
ternative framework. Hence, to reduce the redundancy of time-taking simulations with varying
initial conditions, and learning a survival probability distribution for varying migration rates,
and hence, faster long-term prediction, we employ Machine Learning. We know in suitable
diffusion, we will obtain spiral pattern in 2D space (see Fig 1.3, where migration rates are
1,8,15, and 22). The more we increase the migration the spiral becomes larger (see figure 1.3).
For higher migration rates, after crossing the critical diffusion, the species will go to extinc-
tion [9, 33]. Here we raise a precise question: Can we predict/forecast the future evaluation
of the spiral pattern? In particular, we are able to show that CNN based ML technique can
predict the future evaluation of spatiotemporal pattern of RPS dynamics, In the next section we
describe the basic principles around CNN. Multiple realizations with varying migration rates
(Mr) are taken as datasets for the Machine Learning tasks to train the CNNs presented in this

34



paper. With respect to the rate equations and the system presented in Equation 3.1, Figure 1.3
represents the evolution for various migration rates, Mr.

3.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are variants of feed-forward neural networks which
are designed to handle images, and information where spatial and temporal stream of data
decide the outcome of the task. CNNs are typically used for image data including tasks like
classification [59–61], segmentation [61–63] , and image generation [64–66] . In feed-forward
neural network of L layers, each layer has Nl neurons which are connected to the next layers
of neurons Nl+1 through weights Wl. Simply, multiplying the weights Wl and activations
Ail(i = (0, .., Nl)) provides us Ai(l+1)(i = (0, ..., Nl+1)). Typically, learnable kernels replace
weights in feed-forward networks. These learnable kernels are just 2-D versions of weights
W present in feed-forward neural networks. An Image contains of N ∗ M pixels, which are
treated as feature blocks. These feature blocks act as 2-D neurons which are then operated
by the kernel to create feature block for the next layer. The kernels are convoluted (instead
of multiplied) with existing feature blocks as follows. Given a multi-channel feature f as an
input, the convolution operation for a given kernel h is defined as follows:

G[m,n] = (f ∗ h)[m,n] =
∑
j

∑
k

h[j, k]× f [m− j, n− k] (3.2)

where G is the resultant matrix and × is multiplication. If we want to use multiple feature
maps of varying sizes as inputs, we may pad the image to have uniform image sizes across
all images. Convolutions are usually performed in a strided format with each convolution
occuring over specific stride length given by s. Given a kernel, s decides how many units
to shift the kernel after each step of the convolution. If p is the padding used, and nc is the
number of channels in an image and n is the size of the image, and if our kernel has nf filters,
the convolution operation results in the output of the following size:

[n, n, nc] ∗ [f, f, nc] = [⌊n+ 2p− f

s
+ 1⌋, ⌊n+ 2p− f

s
+ 1⌋, nf ] (3.3)

The resultant matrix G as mentioned in Equation 3.2 is used as the new feature set on
which new set of kernels are used to perform convolution. Kernel sizes may be choosen to
downsample or upsample for the existing feature set. For tasks involving image generation,
both upsampling and downsampling kernels are used. For tasks involving classification, kernels
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are used to downsample images and feature maps. Post the convolution operation, typically,
to generalize local features in a region accross a feature set, we use pooling by extracting
particular values in a partition of a feature set through a selection operation as follows:

G[i, j] = S(k−0,k−1,...,M/q),(k−0,k−1,...,N/q)(A(qi−k,qj−k)) (3.4)

The operator S can perform max pooling, mean pooling, sum pooling, etc. We use batch
normalization and activation functions to tackle exploding gradients. For example, if we have
a feature set F of shape 150× 150× 3 and we use a downsampling operation to perform max
pooling operation of size 2× 2, for every 2× 2 block in our feature set F , the maximum value
is selected, and the resulting feature set is 75× 75× 3. This way, we obtain the global features
from more scattered low-level features in a map. For tasks involving lattice pattern generation,
we can select kernels such that the output feature map is of the same shape as input feature map.
For tasks including classification, we may flatten 2-D feature maps into a 1-D feature set, and
treat each of these features just like neurons in feed-forward networks and apply more layers
to the feed-forward neural network for classification. For the purpose of Image generation we
use a special class of CNNs called UNets which can output a 2-D image (feature map). For
classification purposes, we use a simple CNN classifier, where after few convolution blocks,
the 2-D feature maps are flattened as mentioned above. An overview of the CNN Architecture
is presented in Figure 3.2.

Figure 3.2 A summary of CNN operations. Given an input image and a feature map, a visual
representation of convolutions, pooling, flattening, and feed-forward network.
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Figure 3.3 (a). U-Net Architecture. (i) Each block consists of a Conv Layer, followed by a
Batch Norm, Max Pooling layer, and a ReLU non-linear activation. For each Conv block, we
have downsampling kernels of shape 64, 128, 256, 512, post which upsampling occurs in the
reverse order. (b). CNN architecture. With N = 5, we have kernels 32, 64, 128, 256, 512.
Our flattening layers downsamples each feature vectors into 256, 128, 64, and 2 post flattening
followed by a softmax activation for binary class probabilities.
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3.2.1 U-Nets

U-Nets are a special class of CNNs used for tasks like map generation and image seg-
mentation. Pooling operations are performed followed by upsampling operators. [47] These
upsampling operators are responsible for improving the resolution of the output by merging
embeddings downsampling layers. This residual connection helps the model construct maps
using the local features of an image which are learnt during earlier convolutional layers. The
U-Net model used by us is represnted in Figure 3.3(a).

3.2.2 CNN Classifier

Given an image I , a binary classifier module consists of multiple downsampling modules
followed by a flattening layer which converts feature maps into dense embeddings. These flat-
tened layers are further downsampled to smaller feature vectors as shown in Figure 3.3(b).
Followed by this, we apply a softmax operation to convert the output layer’s values to proba-
bilities. These probabilities represent the classification output for our downstream task [67].

3.2.3 Dropout

Randomly switching off some neurons in CNNs and nullifying their contribution to the
output can help prevent overfitting of data, and generalize posterior distribution by creating
ensemble of networks by randomly switching across different neuron combinations [68, 69].
Moreover, for tasks in which data is stochastic, we can learn a variable predictive distribution
that emulates the stochasticity in our real-world data. During evaluation, multiple predictions
can be made across various ensembles and the mean across the predictions can be estimated as
the model output, and its variance can be estimated as the model uncertainty corresponding to
the data point.

3.3 Tasks

Our tasks aim at introducing Machine Learning for spatio-temporal forecasting and long-
term system behaviour prediction for RPS systems.We perform two important tasks: image
generation by future forecasting and long-term survival prediction which has not been per-
formed using Machine learning. Future behaviour of spirals have not been estimated from
a distribution perspective through the eyes of Machine Learning, and we attempt to forecast
spiral behaviour using our MC data for various downstream tasks using CNNs and U-Nets.
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3.3.1 Lattice Pattern Generation

Single Migration rate: For a single migration rate (Mr), we vary the initial configuration
for every simulation and provide our U-Net model a random configuration at timestep t. We
then ask our U-Net to predict the configuration at timestep t + δt. We then input the output
of our U-Net predictions as an input to itself to perform a to predict lattice for t + 2δt. We
extrapolate the prediction timestep tp > te where te represents the latest data MC time stamp
provided to our model during training. We compare the time evolution of the lattice of U-Net
and an original configuration.

Multiple Migration rate: For multiple migration rates (M1,M2, ...,Mk) we generate mul-
tiple MC simulations. Given a random configuration at timestep t, we ask our U-Net to predict
the approximate lattice configuration at timestep t + δt. For this downstream task, the U-Net
completely relies on two factors: the current MC step pertaining to the lattice configuration and
the migration rate corresponding to the current MC step of the input lattice. We aim to obtain
the spiral pattern of t+ δt using our UNets.

3.3.2 Species Extinction Prediction and Extrapolation

For multiple migration rates (M1,M2, ...,Mk), given an ensemble of lattices at MC steps
(tk1 , tk2 , .., tkn), we ask our model to predict if the system in the long-term observes extinction:
prevelance of a single species over the others. The results of this task can vary across various
simulations for a single migration rate Mr. Hence, during training, we use Dropouts to ensure
variability in outputs and calibrate our model to match the simulation distribution. In this task,
the binary classification task has two aspects: the migration rate corresponding to the lattice
ensembles, forecasting at an MC timestep far away from the input time steps. We train the
model in intervals of migration rates and ask out model to extrapolate predictions to unseen
regions and analyze model predictions.

In Section 3.4, we visualize the outputs of lattice generation for single migration rate a suc-
cessive simulation δt = 20. Followed by this, we visualize the immediate lattice generation
post δt = 40 MC steps for multiple migration rates. In Section 3.5, we draw observations from
our classification task. For tasks in 3.3.1, we use the Cross Entropy loss for loss backpropoga-
tion. For each pixel in the output image, we calculate the cross-entropy loss corresponding to
the simulation ground truth as follows:

Li = −
∑
C

∑
i=(0,..,N),j=(0,..M)

I(s(i,j))log(F (s(i,j))) (3.5)
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where I(s(i,j)) represents the species present at the (i, j) point in the lattice at time t+ δt, s(i,j)
represents the input pixel, C represents the classes (four in our case including vacant species)
and F (s(i,j)) represents the model outputs for the corresponding input pixel and N,M are the
length and width of the lattices.

For task in 3.3.2, we use the Binary cross entropy loss which is a reduced form of Cross
Entropy loss for 2 classes (0 or 1). Given an image matrix I , prediction Ym, and ground truth
value obtained from simulation Ys, the Binary cross entropy loss is given as:

Li = Ymlog(1− Ys) + (1− Ys)log(Ym) (3.6)

The above loss function maximizes loss on increasing difference between Ym and Ys. Adam
Optimizer with learning rate 10−3 is used for all the training processes. A learning rate sched-
uler is also used to reduce learning rate at plateau regions.

3.4 Lattice Pattern Generation

Single Migration rate: 400 MC steps are simulated using single migration with a given
update order. The U-Net is trained by pairing any two timesteps with difference δ = 20. Our
validation set 400 MC steps from simulation with completely different initial conditions. We
train the U-Net for 15 epochs and achieve a Cross Entropy loss of 0.07 on our validation set.
Fig 3.4(a). visualizes an early stage simulation forming into a spiral pattern completely by
our U-Net model in increments of δt = 20. We notice that given a initial condition, for a
given migration rate, our model is able to develop the spatio-temporal evolution of the lattice
effectively. Figure 3.4(b). shows the lattice at t and t + δt as predicted by our model and
simulation respectively. During testing, we also input a terminal timestep to our model (t =
360) and make 8 successive predictions till (t = 520). Noting that the model has been only
trained on data till (t = 400), We compare the quality of extrapolation of our model with the
results obtained from our simulation. We observe accurate results across the lattice generations.
However, we observe an increasing distortion between the lattices generated via simulation
and U-Net predictions. This is due to increased stochasticity with increasing δt which results
in compounding errors as only image at t is given as input and the model outputs for t + 20,
t+ 40, t+ 60, t+ 80 and t+ 100 are used as inputs to generate successive time steps.

Multiple Migration rate: 8000 values from a uniformly distributed interval of migration
rates Mr ∈ [0.2, 10] are extracted from a larger set of Mr ∈ [0.2, 30]. MC Simulations for each
of these migration values are performed for 650 timesteps, and for each simulation, 5 pairs are
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formed between input and output lattices whose difference is δt = 40. From each simulation,
we sample 30,000 points are used for training and the rest 10,000 of the data points are used
for testing. Figure 3.5 shows the input lattice, U-Net outputs, and the simulation result. The
machine learning predictions are accurately able to model the patterns in the target lattice.
Moreover, it can be observed that the patterns are generated accurately across various input
lattice timesteps. We obtain a Cross Entropy loss of 0.76 when predictions are made through
our validation set. However, unlike Task 1, our model is not able to accurately estimate vacant
sites as the their density and distribution in the lattice varies across varying migration rates.

3.5 Extinction Prediction: Multiple Migration Rates

35,000 from a uniformly distributed interval of migration rates Mr ∈ [0.2, 30] are extracted.
MC Simulations for each of these migration values are performed for 5000 timesteps, and four
lattice states at timesteps 500, 800, 1500, 1750 are collected. We then calculate the system
density at long-range 4000th timestep. Given these lattice states, we predict if the system goes
to extinction in the long-term. We use a CNN with flattening layer and fully connect neural
network along with dropouts as described in Figure 3.5. We use Binary Cross Entropy loss
across our training batch to minimize our error. We conduct three experiments to analyze the
generalization of our model:

Accuracy on validation: We obtain 96 % accuracy in extinction prediction. Furthermore,
since class imbalance is prevalent in these tasks, we check the class accuracy for data in our
validation set. We obtain 92 % for tasks where extinction occurs.

Multiple realizations of Single data point: We split our data into buckets, and for each
migration rate, we obtain 250 simulations and long-term ground truths. We then make model
predictions using the ensembles from simulations. For each migration rate, we calculate the
extinction probability as follows:

Re =
Ne

Ne +Nne

(3.7)

where Re is the extinction probability and Ne is the number of realizations for a single
migration rate where extinction occurs and Nne is the number of realizations for a single mi-
gration rate where species survive long-term. Figure 3.6(a) shows the plot for Re versus
migration rates for results obtained simulations and model predictions. The results match to a
great extent, but diverges towards larger migration rates due to class imbalance.
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Model Extrapolation: We modify our dataset to include migration rates only from certain
intervals. The other intervals are then used for testing purposes. Figure 3.6(a) shows the plot
for Re versus migration rates for all intervals. For positive points where extinction occurs, we
obtain an accuracy of 80 % by tuning dropouts and an overall accuracy of 93 % . We observe
a slight dip in accuracy due to the large length of validation intervals used to test prediction
extrapolation.

3.6 Discussion

The results presented in this paper demonstrate the efficacy and limitations of utilizing ma-
chine learning techniques, specifically U-Net and CNN models, for lattice generation and ex-
tinction prediction tasks in complex systems governed by migration rates. In Subsection 3.4,
we focused on single migration rate scenarios, where our U-Net model showed remarkable per-
formance in predicting lattice evolution over successive time steps. Despite being trained on
data up to a certain time point, our model exhibited the ability to extrapolate beyond the train-
ing range, capturing the underlying dynamics of lattice formation accurately. However, as the
prediction horizon extended, we observed increasing distortions between simulated and pre-
dicted lattices due to the accumulation of stochasticity and compounded errors across multiple
predictions used as inputs. Expanding our pattern generation to encompass multiple migration
rates (Subsection 3.4), we encountered additional challenges stemming from the variability in
lattice patterns induced by different migration rates. While our model demonstrated compe-
tence in capturing general patterns across various migration rates, accurately estimating vacant
sites proved to be a more formidable task due to their varying density and distribution. This
highlights the importance of considering the intricacies of the system dynamics when designing
and training predictive models. In Subsection 3.5, we tackled the task of extinction prediction,
leveraging a CNN architecture and Binary Cross Entropy loss function. Our model achieved
high accuracy in predicting the long-term fate of the system, demonstrating its proficiency in
capturing complex relationships between migration rates and extinction probabilities. This task
not only tackles classification among images, but also tackles classification post long-range
forecasting. It is feasible because the model inherently grasps the delicate balance between
spiral size and extinction. As the spiral size increases, it deviates further from the lattice’s
boundaries. Our model predicts the likelihood of spirals exceeding these boundaries, leading
to one species eventually dominating the other within the lattice, by analyzing spiral evolution
based on early-stage ensembles. Notably, our analysis revealed the impact of class imbalance
on model performance, particularly evident at higher migration rates. Despite this, our model’s
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ability to generalize across different migration rate intervals was demonstrated through rigor-
ous experimentation and analysis.

3.7 Summary

This research work introduces an innovative approach to modeling ecosystems using ma-
chine learning techniques, particularly focusing on lattice-based simulations. The ecosystem
dynamics considered include birth, death, predation, and migration of three species. The key
contributions of this work lie in the application of machine learning, specifically Convolutional
Neural Networks (CNNs), for both image generation and binary classification tasks within the
context of ecosystem simulation.

The study progresses through three main tasks, each increasing in complexity. Firstly, we
simulate lattices for a single migration rate. Then, we extend this to generate lattices for mul-
tiple migration rates. Finally, we tackle the challenging task of long-term extinction prediction
within the ecosystem. Throughout these tasks, the authors leverage advancements in computer
vision to achieve accurate results.

Validation of the ML tasks is performed using unseen data points for each task. Notably, in
the third task, we employ a method where certain intervals of data are masked, prompting the
model to extrapolate predictions over large intervals where training data is lacking. Further-
more, we acknowledge the stochastic nature of the data, and recognize that short-term changes
can accumulate and perturb long-term behavior. To address this, we incorporate Monte Carlo
Dropouts into our models to accommodate variability. During testing, these dropouts are re-
tained to ensure variability across test data, enhancing the robustness of the model.

The results demonstrate the effectiveness of the proposed approach in accurately predicting
extinction events across various scenarios, including cases of premature extinction, the pres-
ence of large spirals, and instances where smaller spirals lead to extinction. Overall, the study
showcases the potential of machine learning techniques, particularly CNNs, in advancing our
understanding and prediction capabilities within complex ecological systems.
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Figure 3.4 Results for pattern generation for model trained with single migration rate.
(a) Spiral formation from early-stage lattice predictions. Only t=5 lattice is provided as input
to our model. Then the model outputs are used as successive inputs. (b) Spiral formation for
data corresponding to lattice timesteps outside of training data temporally. In this task, the
model extrapolates and generates spiral patterns for timesteps outside the training range. Only
t=380 is provided as an input to our model. Then the model outputs are used as successive
inputs. (c) Unseen Initial condition. (i) ML based predictions. Given t=5, use U-Net outputs
for further simulation. (ii) Outputs from Monte Carlo algorithm (Simulation). (iii) Deviation
in predictions. 44



(I) (II) (III) 

Figure 3.5 Results from model trained to generate patterns for multiple migration rates.
Lattices from random initial timesteps with input and output in difference of 40 Monte Carlo
Timesteps. (i) Input Lattice. (ii) Expected output lattice post t+ 40. (iii) U-Net predictions.
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Figure 3.6 (a). Extinction Probability Re versus Migration rate Mr across 250 realizations
of 9 different points in validation. For this task, the CNN had been trained across a uniformly
sampled dataset across migration rates 0 to 30. (b). Extinction Probability Re versus Migration
rate Mr across 250 realizations of 11 different points in validation. For this task, the regions
shaded in red were masked during training, but solely used for validation purposes.
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Chapter 4

Conclusion

In this thesis, we study RPS/RPSSL system from two perspectives: first-passage problems
and Machine learning. While first-passage problems provides us in-depth analysis on state-
based probability conditioned on initial configuration and first-extinction time, it is only viable
for small-scale systems. With multiple initial configurations, combined with increasing species
and the need to study extinction from an evolutionary perspective, neither multiple large-scale
systems or first-passage problems rise up to the occasion. Hence, we train Machine Learning
based lattice generators capable of generating evolutionary snapshots of lattices. We also train
a Machine learning predictor capable of learning extinction probabilities and extrapolating to
unknown regions accurately. This thesis advances the domain by optimization, expedition, and
intricate analytical formulation of complex rate reactions pertaining to a system.

Further scope of this thesis can be realized through efficient LU decomposition using dis-
tributed computing for sparse systems. Furthermore, the Machine Learning aspects can be di-
versified by conducting multiple simulations for multiple migration rates through a streamlined
ML channel. For accurate vacant space prediction, recent developments like Transformers and
ConvLSTMs can be used. Moreover, a uniform framework through transfer learning can be
performed for both extinction prediction and lattice generation. Furthermore, the Machine
Learning work can be extended to more complex systems involving fitness-based mutations,
immigration, etc.
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