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Abstract

Visual servoing been gaining popularity in various real-world vision-centric robotic applications,
offering enhanced end-effector control through visual feedback. In the realm of autonomous robotic
grasping, where environments are often unseen and unstructured, visual servoing has demonstrated its
ability to provide valuable guidance. However, traditional servoing-aided grasping methods encounter
challenges when faced with dynamic environments, particularly those involving moving objects.

In the first part of the thesis (Chapter 3), we introduce DynGraspVS, a novel Visual Servoing-aided
Grasping approach that models the motion of moving objects in its interaction matrix. Leveraging a
single-step rollout strategy, our approach achieves a remarkable increase in success rate, while converg-
ing faster and achieving a smoother trajectory, while maintaining precise alignments in six degrees of
freedom (6 DoF). By integrating the velocity information into the interaction matrix, our method is able
to successfully complete the challenging task of robotic grasping in the case of dynamic objects, while
outperforming existing deep Model Predictive Control (MPC) based methods in the PyBullet simula-
tion environment. We test it with a range of objects in the YCB dataset with varying range of shapes,
sizes, and material properties. We show the effectiveness of our approach by reporting against various
evaluation metrics such as photometric error, success rate, time taken, and trajectory length.

In addition to introducing DynGraspVS, this thesis in the second half (Chapter 4) explores the
integration and implementation of Image-Based Visual Servoing (IBVS) mechanisms on the XARM7
robotic platform. Through successful integration, our work demonstrates the feasibility and practical
applicability of IBVS in real-world robotic systems. Furthermore, a comprehensive analysis of the
Recurrent Task-Visual Servoing (RTVS) framework’s performance in diverse real-world scenarios sheds
light on its robustness and versatility. Additionally, the introduction of Imagine2Servo, a conditional
diffusion model for generating target images, enhances the capabilities of IBVS for complex tasks.
Through a combination of experimental validation and rigorous testing, this thesis provides valuable
insights into the effectiveness and potential applications of IBVS in real-world robotic systems, setting
the stage for future advancements in visual servoing technology.
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Chapter 1

Introduction

The intersection of robotics, computer vision, and control systems has given rise to groundbreaking
advancements across domains. Visual servoing offers a compelling alternative to traditional methods for
predicting robot controls, including reinforcement learning (RL). Unlike kinematic or dynamic models
that rely solely on the geometric or dynamic properties of the robot and its environment, visual servoing
harnesses the power of vision to guide robot actions [2, 3]. By integrating real-time visual feedback from
cameras into the control loop, visual servoing enables robots to perceive and respond to environmental
changes with unparalleled flexibility and adaptability [4]. In contrast to RL, which learns control poli-
cies through reward and punishment interactions with the environment, visual servoing offers a more
structured and deterministic approach to the robot control. While RL can achieve impressive results in
tasks with well-defined objectives and ample exploration time, it often struggles in real-time applica-
tions where precise control is required and safety is paramount [5]. Visual servoing, on the other hand,
leverages explicit visual cues to guide robot actions, enabling precise and responsive control in dynamic
environments without extensive training or exploration. By directly incorporating visual feedback into
the control loop, visual servoing bypasses the need for complex reward functions and exploration strate-
gies, offering a more straightforward and interpretable approach to robot control. This makes visual
servoing particularly well-suited for tasks requiring real-time responsiveness and robustness, such as
robotic manipulation in cluttered or dynamic environments.

Motivation: In the context of grasping moving objects, the dynamic and unpredictable nature of the
environment poses significant challenges for traditional robotic manipulation techniques. Conventional
methods based on pre-defined models need help to adapt to the variability and uncertainty inherent in
dynamic scenarios, often resulting in suboptimal performance or failure to grasp moving objects reliably.
In contrast, Image-Based Visual Servoing (IBVS) offers a promising solution that directly utilizes visual
information to guide grasping actions. By dynamically adjusting robot motions based on real-time visual
feedback, IBVS enables robots to respond promptly and accurately to changes in the object’s position
and orientation, improving the chances of successful grasping in dynamic environments.

In this thesis, we introduce a novel algorithm designed to adapt the visual servoing-aided grasping
methods to the shortcomings of dynamic environments. Our proposed approach considers the motion of

1



Figure 1.1: We introduce a solution to the dynamic visual servoing problem, where an object is in motion

and needs to be reached. Unlike other approaches, our method remarkably improves trajectory lengths

while maintaining precise alignments in 6DoF. With our real-time control generation, the robotic arm

successfully reaches its target, outpacing other deep MPC-based visual servoing techniques that struggle

to catch up.

moving objects and generates optimized control strategies to control the robotic arm. Unlike traditional
methods that often struggle with tracking objects in motion [6], our algorithm harnesses predictive
models, adaptive control techniques, and real-time visual feedback. Our approach is able to converge
and perform the execution of actions needed to reach and manipulate dynamic objects. Leveraging
Contact GraspNet [7], we generate desired images from the most confident poses identified through
the Contact GraspNet module. Through the Cross-Entropy Method (CEM) [8], we sample controls,
resulting in a remarkable success rate exceeding 90% in grasping tasks.

We look into implementing Image-Based Visual Servoing (IBVS) in real-world scenarios to evaluate
its adaptability and effectiveness. Our focus lies in harnessing the capabilities of the XARM7 robotic
manipulator to integrate IBVS control mechanisms and gauge their performance in practical environ-
ments. However, a significant challenge emerged during the implementation of RTVS proposed in [9]:
the need for a model capable of generating target images autonomously. In many scenarios, manually
capturing target images proves impractical or infeasible, necessitating an automated solution to generate
sub-goal images for long-range servoing tasks.

We adopt a diffusion model proposed in [10] to autonomously predict the sub-goal images to address
this challenge. With this model, we generated target images essential for predicting the manipulator’s
control. These target images enabled us to successfully execute tasks like sorting and stacking using
xARM7 manipulator, showcasing the effectiveness of our approach in real-world settings.

2



1.1 Contributions

Our contributions are highlighted through the following key innovations:

• We introduce a novel real-time visual servoing based control algorithm tailored to dynamic en-
vironments. This new approach is able to handle the challenges of grasping moving objects by
accurately predict controls using 6D pose.

• By introducing the velocity terms in the interaction matrix, our approach achieves shorter trajec-
tories and heightened reachability, outperforming previous approaches. Adding velocity terms
in the interaction matrix enhances performance, facilitating accurate interaction with moving ob-
jects.

• We conducted extensive experiments involving objects of varying sizes, shapes, and velocities,
encompassing linear motions. This inclusive approach mirrors real-world scenarios and accentu-
ates the versatility of our proposed framework.

• Our work includes the successful integration and implementation of IBVS control mechanism
[9] on the XARM7 platform, demonstrating the feasibility and practical applicability of IBVS in
real-world robotic systems.

1.2 Thesis Layout

C1 In this introductory chapter, we provide an overview of the scope of the work presented in this
thesis within the context of advancements in visual servoing for dynamic environment. We iden-
tify the key challenges we aim to address and outline the motivation behind the methods we will
develop in subsequent chapters.

C2 The second chapter serves as a comprehensive background exploration, focusing on the vast field
of visual servoing and manipulators. It is dedicated to reviewing existing literature, where we dis-
cuss significant research, methodologies, and the advancements contributed by fellow researchers
within these domains.

C3 This chapter focuses on the detailed implementation of DynGraspVS, including its components,
methodologies, and experimental setups. We present the experiments conducted and analyze the
results obtained from applying DynGraspVS in various scenarios.

C4 In this chapter, we explore the intricacies of implementing RTVS on the XARM 7 robotic manip-
ulator. We discuss the process of integrating RTVS into the hardware platform, highlighting key
details of the implementation and addressing any challenges encountered along the way.

3



C5 The final chapter provides the conclusion to the thesis, summarizing the key findings, contribu-
tions, and implications of the research presented. We discuss the significance of our work, its
limitations, and potential avenues for future research and development in the field.

4



Chapter 2

Background

2.1 Visual Servoing

Visual servoing is a technique used in robotics to control the motion of a robotic system using visual
feedback obtained from sensors, typically RGB cameras. The primary goal of Visual Servoing is to
manipulate the robot’s movements based on real-time visual information, allowing it to perform tasks
such as object tracking, manipulation, and navigation as shown in 2.1

Within the broader framework of Visual Servoing, two main categories are often distinguished based
on the method used to guide the robot’s motion:

Image Based Visual Servoing relies on extracting 2D features from RGB images, such as keypoints
or edges, to formulate control laws. These control laws are designed to minimize the error between the
desired and actual positions of these features in the image frame. By continuously adjusting the robot’s
motion based on changes in the visual feedback, IBVS enables accurate and responsive control.

Position Based Visual Servoing incorporates both the position of objects within the camera frame
and features extracted from RGB images to predict the 3D position of objects in the robot’s workspace.
This prediction is then used to optimize the robot’s control, allowing for precise manipulation and
navigation tasks.

The primary objective of Visual Servoing is to minimize the error, denoted as e(t), at time t, between
the current features F (t) and the desired features F ∗, which remain constant throughout the process.
This error is calculated as 2.1:

e(t) = F (t)− F ∗ (2.1)

The selection of F (t) is crucial and requires careful consideration to identify the pertinent features.
After selecting the appropriate features, the control law predicts the 6-DOF velocity Vt. The relationship
between the features F and Vt is expressed in 2.2:

Ḟ = LfVt (2.2)

5
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Here, Lf represents the interaction matrix, depicting the correlation between the motion of features and
the camera’s motion. This relationship forms the basis for deriving effective control strategies in Visual
Servoing.

2.2 LSTM

Long Short-Term Memory networks (LSTMs) are a special kind of Recurrent Neural Network
(RNN) capable of learning long-term dependencies. They were introduced by Hochreiter & Schmid-
huber in 1997 [11] to address the vanishing gradient problem encountered by standard RNNs during
backpropagation. LSTMs are designed to maintain a memory over long sequences, making them par-
ticularly effective for tasks involving sequential data such as time series prediction, natural language
processing, and, as in our case, tracking object movement through a sequence of images.

2.2.1 Architecture

An LSTM unit comprises four main components: the cell state, the input gate, the output gate, and
the forget gate. These components work together, allowing the unit to remember or forget information
selectively.

Cell State: The cell state, Ct, represents the “memory” of the LSTM unit, carrying relevant infor-
mation through the sequence.

Forget Gate: The forget gate, ft defined in 2.3, decides which information should be discarded from
the cell state. It uses the previous output ht−1 and current input xt to generate a value between 0 and 1
for each number in the cell state Ct−1. The operation is defined as:

ft = σ(Wf · [ht−1, xt] + bf ) (2.3)

Input Gate: The input gate, it 2.4, determines which new information will be stored in the cell state.
Meanwhile, a tanh layer proposes a new candidate values vector, C̃t, that could be added to the state
using 2.5:

it = σ(Wi · [ht−1, xt] + bi) (2.4)

C̃t = tanh(WC · [ht−1, xt] + bC) (2.5)

Output Gate: The output gate, ot, decides the next hidden state ht, which contains information
about previous inputs. The hidden state is used for predictions and passed to the next LSTM unit using
2.6 and 2.7:

ot = σ(Wo · [ht−1, xt] + bo) (2.6)

ht = ot ∗ tanh(Ct) (2.7)

Updating Cell State: The cell state is updated to the new cell state Ct by removing information
deemed unnecessary by the forget gate and adding new candidate values scaled by the input gate’s
output, 2.8:

Ct = ft ∗ Ct−1 + it ∗ C̃t (2.8)
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Figure 2.2: An LSTM Cell:Illustrating its critical components and their interactions. The forget gate

is highlighted in red, indicating its role in determining which information is retained or discarded from

the cell state. The input gate, marked in purple, decides which new information is added to the cell

state. The cell state update, depicted in green, shows the combination of retained information and new

information added. Lastly, the output gate is highlighted in blue, demonstrating how the cell’s output

is generated based on the updated cell state. This structure facilitates the LSTM’s ability to effectively

learn temporal dependencies in sequential data by managing information flow across the network
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2.3 Related Work

2.3.1 Visual Servoing

Visual Servoing is a well-known approach in robotics, aiming to achieve precise target poses through
the utilization of image data from a camera sensor. It was first introduced in 1979 by [12]. Visual
Servoing is mainly classified into two control laws, IBVS [13] and PBVS [14]. The Image-based Visual
Servoing (IBVS) paradigm centers on explicit feature extraction to minimize errors in image space.
Diverse strategies have been employed for feature extraction in IBVS. Keypoint-based methods, like
SIFT [3], [15], are notable for their robustness in handling changes in scale and orientation. Edge-
based approaches, as evidenced by [16, 17], utilize edge detectors to capture significant contours within
the scene, thereby assisting in pose estimation. [14] takes advantage of indirect visual servoing and
tries to map the feature space to joint velocities using Jacobian. In contrast, the methods that use
direct visual servoing [18] aim to directly minimize the photometric error [19] in the images instead
of extracting the features from the images. In these approaches, one might avoid the issue of incorrect
matching of features. However, these methods need to improve when confronted with substantial camera
transformations.

2.3.2 Deep Visual Servoing

In response to the limitations of classical visual servoing, deep learning-based methods have emerged.
Recent approaches like [20, 21] tend to learn the relation between the current and the target image and
predict the camera’s relative pose, leading to smaller steps. Convolutional Neural Networks (CNN)-
based techniques [22], such as those enhancing object recognition [23] and motion estimation [24],
have been strengthening the convergence rate, but these supervised approaches lacking the ability to
generalize to an unknown environment. The [25] generalizes to unseen environments by combining an
unsupervised model with visual servoing to predict the 6-DOF controls. Yet, these approaches primarily
focus on predicting single-step future controls, making it subpar as it can get stuck in local minima due
to greedy algorithms.

2.3.3 Reinforcement Learning based Servoing

In recent years, there have been a surge in reinforcement learning-based navigation methods aimed
at achieving target-reaching tasks [26, 27]. These methods typically segment the low-level policy into
subtasks to facilitate efficient decision-making. However, a standard limitation is their prediction of op-
timal controls, which usually do not encompass all six degrees of freedom (6DoF) over longer horizons.
This approach often results in inefficiencies due to the extended time frame required for planning. Ad-
ditionally, deep reinforcement learning techniques such as [28, 29] aim to learn both the controller and
system dynamics simultaneously. While promising, this approach faces challenges adapting to unseen
environments and handling higher-dimensional continuous actions.
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2.3.4 Model Based Visual Control

Model predictive control (MPC) optimizations are successful in the cases of visual feedback due to
the usage of accurate feature mapping. One of the earliest works in MPC-based models proposed with
visual servoing [30] uses a few key points with the assumption that key points are matched accurately.
Due to the scaling issue in classical approaches of MPC, deep learning-based approaches have been
introduced [31, 32]. In [33], the MPC model is formulated to optimize an optical flow-based interaction
matrix using the Cross-Entropy Method (CEM), offering a novel approach to motion planning. By
utilizing a vanilla neural network for predicting velocity from the flow, their method exhibits potential
for generalizability across various scenarios. However, the computationally expensive nature of training
the vanilla neural network on the fly limits its practicality for real-time applications. In contrast, RTVS
[9] presents a more efficient solution by leveraging an LSTM model and differential CEM, enabling
real-time operation without sacrificing performance.

2.3.5 Dynamic Environment Grasping with Visual Servoing

The traditional method for grasping needs to identify the target and perform optimal pose estimation
[34], but it struggles to generalize effectively in real-world scenarios. [35] is one of the first deep-
learning based approaches used for grasping. It achieved 73.9% accuracy. However, the drawback of
the approach is the very slow inference speed. The latest approaches do not incorporate visual feedback,
making them impractical to adapt to the real-world. There exists previous approaches [36], [37] address-
ing the challenge of reaching moving objects. The technique proposed by Weiss et al. [37], based on
the image Jacobian matrix, holds a prominent place in robot hand-eye coordination. Its advantages lie
in addressing the non-linear relationship between image and spatial coordinates. Despite its merits, this
technique falls short in certain contexts. Ribeiro et al., [38] proposes a pipeline to grasp moving objects
using CNN based visual servo control. It needs a training the CNN to predict the controls.

2.3.6 Manipulator

Manipulators are increasingly employed across various industries for their unparalleled ability to
manipulate objects with precision and efficiency. From manufacturing [39] and assembly lines to ware-
house logistics [40], agriculture [41], space exploration [42], garbage management [43] and healthcare
[44] settings, manipulators play a crucial role in automating tasks and streamlining processes. Their
versatility and adaptability make them indispensable tools in modern-day operations. Many studies
have been performed to understand the motion dynamics of manipulators, typically categorized into
two main types: forward and inverse kinematics [45]. According to Dereli et al., [46], inverse kine-
matics poses a more challenging task than forward kinematics, primarily due to its involvement with
nonlinear equations. These equations are complex to solve, with instances where no feasible solution
exists.
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Manipulators with 7 degrees of freedom (DOF) hold a distinct advantage over non-redundant ma-
nipulators, as they possess the ability to navigate away from singularity configurations with greater ease
[47]. However, despite this advantage, the inverse kinematics of 7 DOF manipulators remain com-
plex, as discussed by [48]. In solving inverse kinematics problems, two main methods are commonly
employed: analytical methods [49], which involve deriving closed-form solutions, and numerical meth-
ods [50], which utilize iterative techniques to approximate solutions. [51] explains that the analytical
methods are fast, but they are only applicable to a few special structures. The article [52] provides a
comprehensive overview of the Jacobian-based mathematical model for inverse kinematics.

Significant advancements have been made in this field. For instance, [53] proposes a novel numerical
method for solving the inverse kinematics problem of 7-DOF redundant manipulators while considering
self-collision avoidance. This method combines the Jacobian pseudo-inverse with a penalty function
approach to ensure the manipulator avoids collisions with itself during movement. Similarly, [54] ad-
dresses singularity avoidance and posture optimization for 7-DOF redundant manipulators by modifying
the traditional Jacobian pseudo-inverse method. This modification considers these factors, ensuring the
manipulator avoids singular configurations and maintains a preferred posture during movement.

More recently, deep learning techniques have been applied to inverse kinematics. For example, [55]
explores a Deep Reinforcement Learning (RL) approach for robot arm control. In this approach, the
RL agent learns to solve the inverse kinematics problem and achieve desired end-effector poses through
trial and error in a simulated environment. This method considers factors such as joint limits and path
smoothness to achieve accurate and efficient manipulation tasks.

In the domain of robotic manipulation, especially in dynamic environments, a notable gap is evident
in research focusing on grasping using visual servoing for moving objects using monocular camera.
The absence of prior research tackling this specific challenge underscores the novelty and significance
of our approach. We extend [9] working to incorporate dynamic environments by introducing velocities
in interaction matrix.
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Chapter 3

DynGraspVS: Servoing Aided Grasping for Dynamic Environments

3.1 Introduction

This chapter introduces the DynGraspVS model, a novel approach for achieving robust grasping in
dynamic environments. The increasing demand for robots to operate in real-world scenarios necessitates
controllers that can handle unpredictable object motion. Traditional visual servoing techniques often
struggle in such situations, as they primarily rely on the current camera image and don’t explicitly
account for object dynamics.

To address these challenges, we introduce an Image-Based Visual Servoing (IBVS) model specif-
ically designed for dynamic settings. Our method builds upon and refines the concepts introduced in
[9], notably by integrating object velocity into the interaction matrix, a critical advancement that signif-
icantly boosts the system’s responsiveness to moving objects.

The foundation of this chapter is laid by briefly revisiting the fundamentals of Visual Servoing and
the conventional model of IBVS. We then provide an overview of our approach, paving the way for a
detailed exploration of each architectural component within subsequent sections of 3.2.

Following the methodology exposition, the chapter progresses to discuss experimental setups and
result evaluations. A pivotal aspect of our experimental framework is the use of the PyBullet [56]
simulation environment, coupled with a UR5e robotic arm known for its precision and adaptability.
This setup is further augmented with objects from the YCB [57] dataset, chosen for their diverse range
of attributes, providing a comprehensive testing ground to rigorously assess the efficacy of our dynamic
visual servoing model in interacting with moving objects. Through this structured approach, we aim
to demonstrate the viability and effectiveness of DynGraspVS in advancing the capabilities of robotic
systems in real-world, dynamic scenarios.

3.2 Methodology

We propose an architecture (Fig. 3.1) which takes RGB image, It as an input and predicts the
velocity, vt of the robotic arm. The components of the model are described in detail below.
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Figure 3.1: Here, we present our dynamic visual servoing based grasping architecture, optimising the

controls in 6 DoF. We generate the Goal Image, I∗ using the Contact Graspnet, which provides the

most confident pose to grasp. Subsequently, a Perception System predicts the desired flow, P between

current image, It and goal image, I∗. To calculating the objects’s velocity relative to the ground, v⃗o, we

utilise sequence of 5 images - 1 of current timestep and 4 past frames and extract their Depth Images

using a Perception System. These RGBD image sequences are then input into a Deep Network, which

computes the velocity of object v⃗o. Interaction matrix is used along with calculated v⃗o to estimate the

Predicted Flow, P̂ . The control predictor aims to optimise the perception flow loss, Lflow between the

predicted flows and desired flow, P and generate optimal controls commands, (v⃗t, w⃗t) to facilitate the

grasping process.
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Figure 3.2: The Deep Network: Detailed architecture of the proposed deep learning model for 3D

object velocity prediction. The model comprises four main components: (1) The Feature Extractor,

utilizing a pre-trained and modified ResNet-18 CNN for robust image feature extraction, which captures

essential spatial information from a sequence of images through convolutional layers, residual blocks,

and global average pooling. (2) The Temporal Features module, employing an LSTM network to process

the sequence of 512-dimensional feature vectors extracted from the ResNet-18, enabling the model

to understand and encode the temporal dynamics and dependencies across the frames. (3) A fully

connected (FC) layer, which translates the high-dimensional LSTM output into a concise 3D vector,

encapsulating the object’s predicted velocity in the x, y, and z dimensions. (4) The Output, which

presents the predicted 3D velocity vector of the object across the sequence.

3.2.1 Problem Formulation

Given a monocular RGB image It captured from an in-motion robotic arm at any time instant t, the
goal image I∗ is generated from ContactGraspNet of the object that is relevant to perform a specific
grasping task. The aim is to finally generate a set of optimal control commands [vt, ωt] necessary for
the robotic arm to reach the moving object appropriately. The object is moving linearly with a speed of
v⃗o. The task is performed by minimizing the photo-metric error, et = ||It − I∗||, the basic objection
function proposed for Image-based visual servoing (IBVS).

3.2.2 Deep Network

We propose a deep learning architecture, as shown in 3.2, for object tracking that tackles the chal-
lenge of predicting the 3D velocity of objects within a sequence of images. The architecture, illustrated
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in Figure 1, leverages the complementary strengths of convolutional neural networks (CNNs) and recur-
rent neural networks (RNNs) to achieve this goal.

3.2.2.1 Feature Extractor

The cornerstone of the proposed architecture is a pre-trained modified ResNet-18 model employed
for feature extraction. ResNet-18 has established itself as a powerful tool for image classification tasks,
demonstrating its ability to learn informative representations from visual data. In this context, the model
is harnessed to extract meaningful features that effectively represent the objects present in each frame
of the sequence of images.

The initial stage of feature extraction involves a convolutional layer with a 7x7 kernel size, stride
of 2, and padding of 3. This layer performs downsampling while capturing low-level features such as
edges and corners that are crucial for object recognition. Subsequently, the core of ResNet-18 consisting
of residual blocks takes center stage. These residual blocks address the vanishing gradient problem, a
common challenge in deep learning, by building upon the outputs of previous layers. This allows the
network to learn increasingly complex feature representations that capture more intricate relationships
within the data. Finally, Global Average Pooling is applied after the final residual block. This opera-
tion transforms the feature maps extracted from each frame into a fixed-size vector of 512 dimensions,
essentially summarizing the essential information about the objects present in that frame.

3.2.2.2 Temporal Information and Velocity Prediction

A critical aspect of accurately predicting object velocity lies in understanding the temporal dependen-
cies between frames. This is where the power of Long Short-Term Memory (LSTM) networks comes
into play. LSTMs are a type of recurrent neural network specifically designed to handle sequential
data. In this architecture, the LSTM module receives the sequence of feature vectors generated by the
ResNet-18 encoder. Each vector in the sequence represents the extracted features from a single frame.
The LSTM then processes this sequence by analyzing how the features change over time. This allows
the network to capture the dynamics of object movement across frames, which is crucial for accurate
velocity prediction.

LSTM is connected to a fully connected layer that transforms the output of the LSTM network into
a 3D vector. This vector represents the predicted velocity of the object in the world frame for the entire
image sequence in x, y and z direction.

3.2.3 Goal Image Generation

This section explains how our framework utilizes Contact GraspNet’s [7] output to generate the goal
image that guides our visual servoing controller.
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3.2.3.1 Inference Pipeline

The Contact GraspNet is a sophisticated deep learning model designed to predict the distribution of
6 Degrees of Freedom (6 DOF) grasp poses for robotic manipulation tasks.

• Input: The object data, including depth map (or point cloud), camera matrix (K), and optional
segmentation map, is formatted as an .npz or .npy file for efficient processing.

• Pre-processing: Internally, Contact GraspNet’s inference pipeline might incorporate a depth-to-
point cloud conversion module, in case depth map as input. This module utilizes the depth map
(D) and camera matrix (K) to reconstruct a 3D point cloud (P) of the object:

X =
(u− u0) · Z

fx
(3.1)

Y =
(v − v0) · Z

fy
(3.2)

Z = D(u, v) (3.3)

where,

– (u, v) are pixel coordinates in the depth map,

– (u0, v0) is the principal point from the camera matrix (K),

– fx and fy are the focal lengths,

– X , Y , and Z represent the 3D coordinates of a point in the object,

– and D(u, v) is the depth value retrieved from the depth map for that pixel location.

Once the point cloud (P) is reconstructed, it becomes the primary input for Contact GraspNet’s
internal network architecture. The network likely employs a CNN for feature extraction from the
point cloud data, followed by a lightweight module for predicting a distribution of grasp poses.

• Top Grasp Pose: The raw output from Contact GraspNet is a distribution of grasp poses, each
with a 6DOF configuration (g = [R, t]) and additional information like gripper width, w, openings,
go, contact point, c, and a confidence score, CS. Non-Maximum Suppression (NMS) is applied
as a post-processing step to remove redundant grasp predictions in close proximity. A threshold
(τ ) is applied to the grasp confidence scores (CSi) to filter out low-confidence grasps:

Gfiltered = gi|CSi ≥ τ (3.4)

From the remaining grasps, the most confident grasp is chosen based on its score. In case of ties,
the contact point might be used as a secondary criterion.
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3.2.3.2 Image Generation

Once the final grasp pose (g*) is selected, it defines the desired gripper configuration relative to
the object. This includes the rotation matrix (R*) and translation vector (t*) defining the gripper’s
orientation and position relative to the object.

R∗ = [⃗a, b⃗× a⃗, b⃗] (3.5)

t∗ = c∗ +
w

2
a⃗+ d⃗b (3.6)

Here,

• b⃗: Represents the approach direction, indicating the direction along which the gripper fingers
close on the object.

• a⃗: Represents the axis of the gripper, defining the orientation of the gripper fingers.

• d: The distance along the approach direction, b⃗ between the gripper’s center point and the contact
point on the object.

• c*: Contact Point of the gripper and the object.

Apply the grasp pose (g*) to each vertex (vi) of the object model to transform it into the desired
grasp configuration, v′i as mentioned in 3.7

v′i = R(vi) + t∗ (3.7)

Project each transformed vertex (v′i) onto the image plane, pixels (ui, vi) using the camera matrix
(K) by using the formula 3.8

(ui, vi) = K ∗ [v′ix, v′iy, v′iz, 1] (3.8)

For each pixel location, maintain a depth buffer by storing the depth value (z-coordinate) of the
closest object surface point projected onto that pixel to prevent occlusions. Iterate through all projected
vertices, If the current vertex depth (v′iz) is closer than the corresponding value in the depth buffer
(Z(ui, vi)), update the depth buffer: Z(ui, vi) = v′iz.

The resulting image is the goal image, I* projected from the robot’s camera perspective.

3.2.4 MPC Objective

The MPC objective function serves as a dynamic decision-making tool by continuously evaluating
the cost function based on current state information and the desired outcome. The MPC system refines
control actions in real-time, enabling optimal performance within the defined constraints. The success
of robotic grasping tasks involving moving objects hinges on the ability to adapt to the object’s dynamic
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behavior in real-time. This section delves into the core of our approach - the Model Predictive Control
(MPC) objective function. This function plays a crucial role in guiding the robot’s motion towards a
successful grasp by continuously minimizing the discrepancy between the observed object motion and
the predicted motion based on potential control actions. We build our approach upon the model proposed
in RTVS [9], which is futher built upon the MPC objective. We further extend it to the case where both
of the robot and the object are in motion and test it for a particular task of grasping.

The equation 3.9 essentially searches for the optimal robot velocity (v∗t ) that minimizes the discrep-
ancy between the perceived flow (actual object motion) and the scaled the pseudo-flow, P̂ which is
calculated by eq. 3.10 as given below:

v∗t = ArgMin
vt

(
∥∥∥P(It, I

∗)− h ∗ P̂(vt)
∥∥∥) (3.9)

Perceived flow(P(It, I
∗)) embodies the actual motion of the object observed by the camera system.

It’s typically calculated using Image-based Visual Servoing (IBVS) techniques that analyze the current
image (It) captured by the camera and the desired goal image (I*) whereas the pseudo-flow represents
the system’s estimation of how the object’s motion will appear in the camera’s view based on a potential
control action (vt) for the robot. In simpler terms, it’s a forecast of the object’s movement in the image
plane if the robot moves with a specific velocity.

Here, h is the scaling factor, adapting the predicted flow to learn the mean optical flow, rather than
spanning a horizon of time. It helps to ensure that the MPC controller does not generate large, unrealistic
flows for one step rollout. We need to do a one step rollout because it is very difficult to predict the object
flow multi-steps in the future.

P̂(vt) = L(Zt) ∗ vt +
1

Zt
∗ vo (3.10)

The calculation of pseudo-flow relies on current velocity of camera, interaction matrix, depth and
velocity of object . The robot’s current velocity, vt is typically a 3 DoF vector and the interaction
matrix, L(Zt) explains how depth information influences the flow and defines a relationship between
features from camera frame to image frame. The multiplication of vt with L(Zt) transforms the raw
velocity into a weighted velocity. This weighted velocity reflects the expected motion of the object in
the image plane, taking into account its distance from the camera forming the foundation of the pseudo
flow.

3.2.4.1 Interaction Matrix

This section introduces the generalized formulation of the interaction matrix to handle moving ob-
jects, enabling the system to adapt to dynamic environments. the interaction matrix is concerned with
the relationship between the motion of objects in the camera’s field of view and the resulting motion
observed in the camera’s image plane. This relationship is influenced by several factors, including the
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Figure 3.3: The Basic Camera Model: This figure illustrates the fundamental camera model, depicting

the relationship between the camera’s position in world coordinates ( X⃗c = [xc, yc, zc]), the object’s

position in world coordinates (X⃗o) is [X, Y, Z]), and the object’s position relative to the camera at point

P (X⃗o
c = [x, y, z]) in camera frames which corresponds to pixel coordinates (u, v) in the image frame.

The rotation matrix, R, transforms coordinates from the world frame to the camera frame, while t = X⃗c

represents the translation of the camera within the world frame.

object’s depth in the scene (Zt) at time t, its velocity relative to the camera (v⃗oc ), the velocity of the
camera (v⃗c) and the velocity of object in ground itself, (v⃗o).

The formulation to generalise Interaction matrix for moving objects:

X⃗o = R ∗ X⃗o
c + X⃗c (3.11)

So, R refers to Rotational matrix corresponding to the transformation from camera to ground frame, X⃗o

refers to position of object with respect to ground, X⃗o
c refers to position of object with respect to camera

and X⃗c refers to position of camera with respect to ground in 3.11.
Assuming that R is constant for a step and differentiating both sides,

X⃗o
c = R−1(X⃗o + X⃗c) (3.12)

⃗̇
Xo

c = R−1(
⃗̇
Xo +

⃗̇
Xc) (3.13)

⃗̇
Xo

c = R−1(v⃗o + v⃗c) (3.14)

Let’s say, v⃗o = [p, q, r] and v⃗c = [vx, vy, vz]. So now, the 3.14 can be re-written as,

X⃗o
c = R−1

p− vx

q − vy

r − vz

 =

X
o
c x

Xo
c y

Xo
c z

 (3.15)

Convert the conventional coordinates (focal plane) to normalised homogeneous image coordinates,
(pixels-(u,v)) as shown in 3.20.
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u =
Xo

c

Zo
c

(3.16)

v =
Y o
c

Zo
c

(3.17)

So, differentiating both sides in 3.20,

u̇ =
Ẋo

c

Zo
c

− Xo
c ∗ Żo

c

Zo2
c

(3.18)

u̇ = R−1(
1

Z
(p− vx)−

Xo
c

Z2
(r − vz)) (3.19)

u̇ = R−1(
1

Z
(p− vx)−

u

Z
(r − vz)) (3.20)

We get a similar equation for v, the p⃗ = [u̇, v̇]. Under the assumption that the camera is aligned with
the ground, we achieve eq. 3.24.

ṗ =
1

Z

[
p− vx + u(vz − r)

q − vy + v(vz − r)

]
(3.21)

[
u̇

v̇

]
=

1

Z

[
−1 0 x

0 −1 y

]vxvy
vz

+
1

Z

[
p− ur

q − vr

]
(3.22)

L(Zt) =
1

Zt

[
−1 0 u

0 −1 v

]
(3.23)

Substituting eq. 3.23 in eq. 3.22,

v⃗oc = L(Z) ∗ v⃗c + 1

Z
v⃗o (3.24)

The interaction matrix solely depends on the pixels, u, v and depth at time t, Zt

3.2.4.2 Loss Function

The loss function formulated is to facilitate the optimal control generation is given by eq. 3.25:

Lflow = ∥h(L(Zt) ∗ vt +
1

Zt
∗ vo)− P(It, I

∗)∥ (3.25)

The loss function ensures that the MPC controller generates predicted flows that are close to the target
flows, while also avoiding unrealistic flows. The presented formulation offers an advantage over the
classical IBVS controller by providing an optimal controls.
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Algorithm 1 Visual Servoing based Grasping for Dynamic Environment

Require: Current observation It, Convergence constant ϵ

1: Initialise vo ▷ Initialise with random velocity

2: Generate I∗ ▷ Goal Image from Contact GraspNet

3: while ||It − I∗|| ≤ ϵ do ▷ Convergence Criteria

4: It−4 : It−1 := GetPrevObs() ▷ Get 4 previous RGB images

5: It := GetCurrentObs() ▷ Capture current RGB image from sensor

6: Ft := predict-target-flow (Ig, It) ▷ Predict the flow using the flow network

7: Dt−4 : Dt := P(It−4 : It) ▷ Predict sequence of Depth images

8: v⃗o := DeepNetwork(Dt−4 : Dt) ▷ Calculate world frame velocity of object

9: Lt := CalculateInteractionMatrix(Zt) ▷ Calculate the Interaction Matrix

10: vo = MDCEM(v0) ▷ Sample the manipulator velocity

11: P̂ := CalculatePredictedFLow(Lt, v⃗o, vo,P(It, I
∗)) ▷ Predict the flows

12: vt = g(vt−1) ▷ Compute Controls

13: Lflow := ∥h(Lt ∗ vt + 1/Z ∗ vo)− P(It, I
∗)∥ ▷ Minimise the flow loss

14: vt+1 := minLflow ▷ Control Commands

15: end while
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3.2.5 Perception System

The perception system functions as an advanced global pose generator, creating an array of poses.
By strategically selecting two adjacent poses and analyzing their differential, it efficiently extracts in-
formation pertaining to optical flow or depth, contingent upon the specified requirements. The system
utilizes FlowNet2 [1], a deep learning architecture specifically designed for estimating optical flow be-
tween consecutive images. FlowNet2 analyzes the visual content of the current image (It) and the
desired image (I∗t ) computes the displacement of pixels between these images, effectively capturing the
motion patterns. The algorithm works by extracting features from each image and then correlating these
features across the two images to estimate the flow vectors. This process results in a dense optical flow
field, where each vector in the field indicates the direction and magnitude of motion for a corresponding
pixel in the first image.

Building on the capabilities of optical flow estimation, the perception system employs an innovative
approach to infer depth information from the computed flow. This is based on the principle that the rela-
tive motion between the observer and objects within the scene can be indicative of the objects’ distances
from the observer. Specifically, objects that appear to move faster (indicating larger flow magnitudes)
are generally closer to the camera, while objects that appear to move slower (smaller flow magnitudes)
are further away. The perception system utilizes the formula, Z ≃ 1/||flow|| to calculate the nor-
malized depth, Z, from the optical flow magnitude. This formula encapsulates the inverse relationship
between flow magnitude and depth, providing a mechanism to estimate the depth of objects within the
scene from two-dimensional image data.

3.2.6 Dynamic Controller

The high-dimensional nature of our flow-based state representations poses a challenge for conven-
tional Model Predictive Control (MPC) solvers, potentially limiting their efficacy in optimizing equa-
tion 3.9. To address this challenge, we generate the modified and differential version of Cross Entropy
Method [58], MDCEM. The original MPC objective function involves optimizing a continuous control
variable, vt. Instead, we can define a set of N discrete control actions (v1, v2, ..., vN ) representing the
robot’s possible velocities. This discretization simplifies the problem for MDCEM. Mathematically, we
replace the continuous optimization problem with a discrete selection problem:

v∗t = ArgMin
vi

(∥h(L(Zt) ∗ vi +
1

Zt
∗ vo)− P(It, I

∗)∥|i = 1, 2, ..., N) (3.26)

In our approach, the MDCEM framework is harnessed to strategically choose elite samples, opti-
mizing control actions over time. We draw from the rich range of elite samples to guide our control
decisions toward optimal trajectories achieved by the following:

Initially, MDCEM assigns equal probability to all possible control actions in the discretized space,
treating each action as equally likely to succeed. This allows the method to explore the entire range of

22



possibilities initially. Subsequently, each action is evaluated based on the MPC objective function and
identifies a subset of best performing actions. MDCEM uses the information from the elite actions to
refine its selection process for the next round. It does this by refitting a Gaussian probability distribution
over all control actions. This function assigns higher probabilities to the actions that were part of the
elite group in the previous round, effectively favoring those that led to better grasping outcomes in the
past. At each step of MPC, the hyper parameters of gaussian function is updated making it adaptable to
learn the entire process successfully.

3.3 Experiments and Results

This section provides a detailed overview of the simulation setup, baseline comparisons, evaluation
metrics, and a comprehensive discussion of both quantitative and qualitative results derived from a series
of experiments designed to assess the performance of our proposed models. Through this structured
evaluation, we aim to illustrate the effectiveness, adaptability, and potential of our approaches in various
scenarios, offering insights into their practical applicability and areas for future enhancement.

3.3.1 Simulation Setup

We conducted a series of experiments in a simulated environment using the PyBullet [56] physics
engine. The PyBullet allows for precise control over robot movements, interactions, and sensory data.
The simulation environment was populated with diverse set of objects from the YCB [57] dataset, rep-
resenting a wide range of shapes, sizes, and material properties. We employed a Universal Robots UR5e
robotic arm with a robotiq 2f140 gripper, equipped with a high-resolution camera mounted on its end ef-
fector, enabling it to capture real-time visual information with the frequency of 25Hz. We designed a set
of experimental scenarios to evaluate the performance of our dynamic visual servoing algorithm. Each
scenario involved the robotic arm interacting with a moving object, simulating scenarios that robots
might encounter in real-world applications.

We trained the Deep Network on a custom toy-dataset, which consisted of GT images and velocities.
We use the pretrained models of FlowNet2.0 and ContactGraspNet on the YCB dataset. The training of
Deep Network, inference of the pretrained models and the pybullet simulation interface was done on an
Nvidia 1080Ti with 40 CPUs.

3.3.2 Baselines

We use the following baselines:

1. DeepMPCVS-aided Grasping (DeepMPCVS): We adopt the DeepMPCVS [33] paper to the prob-
lem of grasping. DeepMPCVS employs a vanilla neural network as a baseline for MPC problem
solving. Despite its ability to achieve real-time convergence and operate in a receding horizon
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fashion, the method is hampered by significant computational overheads, limiting its applicability
in real-world scenarios.

2. RTVS-aided Grasping (RTVS): We apply the Real-Time Visual Servoing (RTVS) approach to
address the grasping problem. RTVS, as outlined in the referenced paper [9], does not consider
moving objects due to the absence of velocity terms in its kinetic interaction matrix. This limita-
tion arises from the design of the RTVS framework, where the kinetic interaction matrix is used
for the dynamic environments.

3.3.3 Evaluation Metrics

We detail the metrics used to compare our performance against the baselines.

3.3.3.1 Time Taken

We use Time Taken(s) as one of the convergence measure. We gain insights into the computational
efficiency and responsiveness of our approach. A lower time taken indicates that our method can quickly
adapt to changes in the environment and execute the grasping action in a timely manner. This metric is
particularly important in real-world applications where fast and responsive robotic actions are necessary.

3.3.3.2 Success Rate

Success Rate measures the effectiveness of our approach in successfully grasping moving objects.
It quantifies the percentage of grasping attempts that result in a successful interaction with the object.
A higher success rate indicates that our algorithm can reliably grasp moving objects, demonstrating its
robustness and effectiveness in dynamic environments.

3.3.3.3 Trajectory Length

Trajectory Length evaluates the efficiency of our approach by measuring the length of the robotic
arm’s trajectory during grasping interactions. A shorter trajectory length suggests that our algorithm
can plan and execute more direct and efficient paths to reach the desired grasp location. This metric
provides insights into the algorithm’s ability to navigate complex environments and avoid unnecessary
movements, ultimately contributing to improved performance and resource utilization.

3.3.3.4 IoU

The Intersection over Union measures the congruence between the predicted grasp region and the
desired grasp region. This metric is required due to the continuously changing background, not neces-
sarily matching with the background of goal image, leading to incorrect photometric error. A higher IoU
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Figure 3.4: Qualitative Results on the “Tennis ball” object of YCB dataset: We show the RGB

images overlapped with the associated Flow images for intermittent poses captured during the grasping

of the Tennis ball object. Note that the flow uses the color coding mentioned in the supplementary

section of FlowNet2.0 [1].

value (> 0.90) signifies successful convergence, indicative of our algorithm’s adeptness in estimating
the optimal interaction region with moving objects. This metric is essential for evaluating the precision
and reliability of our approach in grasping tasks.

3.3.3.5 Photometric Error

We utilize photometric error as a convergence measure. It quantifies the difference between the seg-
mented images and serves as an indicator of the algorithm’s ability to maintain accurate visual alignment
required for successful grasping. In our proposed approach we calculated the error on segmented image,
as aids in trajectory refinement due to changing background.
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3.3.4 Qualitative Results

We plot a comparison against the baselines in Fig. 3.4. It can be observed from the RGB images that
the end-effector fails to to grasp the moving object (Banana) in case of RTVS and DeepMPCVS, but is
successful in our case. RTVS is able to come close to the object and make a grip, however DeepMPCVS
fails to make a grip. It can also be seen that the flow is lesser (color is lighter) for our case as compared
to others. This can be attributed to the fact that End-effector is able follow the object much better for
our case and relative position converges well.

3.3.5 Quantitative Results

Time ↓ IoU ↑ Success ↑ Traj. Length ↓

(s) (%) (m)

DeepMPCVS 3.95 0.11 8 1.04

RTVS 3.17 0.80 40 0.45

DynGraspVS [Ours] 0.58 0.95 96 0.18

Table 3.1: Benchmark Comparison on YCB dataset: The given table denotes results aggregated over

all objects in YCB dataset. Our method outperforms the baselines in all metrics.

Table 3.1 presents the quantitative results on the YCB dataset. We aggregated results for reported

values are averaged over multiple experiments for different objects. Our method substantially improves

the baselines DeepMPCVS [33] and RTVS [9] over the different metrics.

While RTVS and DeepMPCVS have similar time taken, we achieve 5.47x faster convergence than

RTVS, and 6.81x faster than DeepMPCVS. We also report a shorter trajectory length, reporting a 2.5x

decrease over RTVS, and 5.78x decrease over DeepMPCVS. It proves that our method also finds an

optimal minimal length trajectory to perform the grasping in comparison to others. We also report a

substantially 2x better success rate than RTVS, and 12x over DeepMPCVS. This also proves that our

method able to effectively interact and complete the grasping in presence of dynamic objects, while

others fail to do so.

We achieve 1.18 times better IoU than RTVS, and 8.63x better than DeepMPCVS. The IoU metric

tends to be much better than both the baselines as they do not explicitly model the velocity of the object,

and treat it as a stationary object.
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(a) Chips Can at v⃗ = (-0.09, 0.03) m/s (b) Chips Can at v⃗ = (-0.09, 0.03) m/s

(c) Banana at v⃗ = (0.02, -0.07) m/s (d) Banana at v⃗ = (0.02, -0.07) m/s

Figure 3.5: Evolution of metrics with time for Banana and Chips Can: Comparison of Intersection

over Union (IoU) and Photometric Error over time for YCB objects Banana and Chips Can at a given

velocity.
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(a) Tennis Ball at v⃗ = (0.06, 0.04) m/s (b) Tennis Ball at v⃗ = (0.06, 0.04) m/s

(c) Mustard Bottle at v⃗ = (-0.05, -0.05) m/s (d) Mustard Bottle at v⃗ = (-0.05, -0.05) m/s

Figure 3.6: Evolution of metrics with time for Mustard Bottle and Tennis Ball: Comparison of

Intersection over Union (IoU) and Photometric Error over time for YCB objects Mustard Bottle and

Tennis Ball at a given velocity.
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Our photometric error (100x) stays below 500 for most of the time, while the error stays high for

DeepMPCVS and RTVS, indicating that our perception flow loss function is able to adapt well to the

dynamic objects present in the scene. For the Chips Can example, our approach reaches convergence

(photometric error falling to zero) much earlier, whereas the RTVS and DeepMPCVS approaches even-

tually converge at 2s. For the Mustard Bottle object, where we achieve convergence within 1s, and other

approaches fail to converge even at 4s.

(a) Velocity for object moving in straight line. (b) Velocity for object moving in circular motion.

Figure 3.7: Velocity Comparison: This graph shows how velocity varies with number of iterations.

In the velocity comparison depicted in fig. 3.7, our model demonstrates convergence at iteration

number 22 for straight line and iteration number 60 for circular motion, as indicated by the stabilization

of velocity values. A notable observation is the difference in velocity behavior between our model and

the baseline approaches, DeepMPCVS and RTVS. RTVS exhibits a cautious approach characterized by

smaller velocity increments, suggesting a conservative prediction of changes in velocities. Conversely,

DeepMPCVS displays a tendency to take larger steps, resulting in more pronounced fluctuations and

occasional overshooting in velocity predictions. This contrast highlights the distinct velocity prediction

methodologies adopted by the models in question, where RTVS emphasizes a more cautious and precise

adjustment strategy, whereas DeepMPCVS opts for quicker velocity changes, which might compromise

precision in favor of speed.
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Figure 3.8: Trajectory Comparison of object in linear motion: We plot the trajectory of RTVS,

DeepMPCVS and DynGraspVS.

In Figures, 3.8, 3.9, the trajectory depicted in black represents the path of the moving object. The

presence of a pink marker indicates a successful grasp achieved by DynGraspVS, denoting the intersec-

tion point where DynGraspVS’s trajectory converges with that of the object. This successful interception

underscores DynGraspVS’s precise timing and trajectory planning. Contrarily, the trajectory marked in

green, corresponding to DeepMPCVS, diverges from the object’s path, illustrating a scenario where the
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Figure 3.9: Trajectory Comparison of object in circular motion: We plot the trajectory of RTVS,

DeepMPCVS and DynGraspVS.

robot deviates from the target rather than approaching it. The RTVS method, denoted by the orange

trajectory, exhibits a highly oscillatory behavior. Despite multiple instances where it appears to near the

object, RTVS consistently fails to secure a grasp, illustrating its struggle with accuracy and consistent

trajectory alignment under dynamic conditions.
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3.3.5.1 Object-wise Results

Figure 3.10: Given is the performance of our baselines on different objects in the YCB dataset. We

report (a) IoU, (b) Success Rate (%), (c) Time Taken (s) and (d) Trajectory Length (m).

In Fig 3.10, we plot the metrics stated in previous section for 3 of the objects in YCB dataset - Chips

Can, Mustard Bottle, Banana and Tennis Ball. We report that for Chips Can and Banana object, our

approach improves upon the baselines by achieving better IoU, and Success Rate. It also achieves faster

convergence than these baselines, by taking lesser time, and a shorter trajectory. For the Mustard Bottle

and Tennis Ball, the improvement is substantial in terms of the trajectory length, and time taken.

Additionally, in Fig. 3.5, 3.6 we also plot IoU and photometric error with time for 4 different objects

- Chips Can, Banana, Mustard Bottle and Tennis Ball with time at in Fig. 3.5, 3.6. For all the 4 objects,

the IoU climbs early and reaches 0.9 within 0.5s. However, for RTVS the IoU stagnates at 0.8 for
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Chips Can, 0.78 for Banana, and 0.70 for Mustard Bottle respectively and is changing for Tennis Ball

around 0.8. Notably, IoU for DeepMPCVS falls after climbing for all the objects. DeepMPCVS is

computationally heavy, and with the object moving away, it is unable to account for the photometric

error resulting in a dip of IoU.
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Chapter 4

Real-World Applications

4.1 Introduction

In this chapter, we provide an in-depth exploration of the hardware and software components of the

XARM7 robotic platform in section 4.2, detailing the setup and configuration required for controlling

the manipulator. We discuss the intricacies of connecting and interfacing with the XARM7 hardware

and software tools utilized for commanding the manipulator’s motion.

Following the setup, we look into the methodology, sec. 4.3 employed for integrating diffusion

models and Recurrent Task-Visual Servoing (RTVS) into the robotic system. We explain the architecture

of the proposed model. Additionally, we present a comprehensive overview of the experimental setup,

including the design of tasks, data collection procedures, and performance metrics utilized for evaluating

the effectiveness of the proposed approaches in section 4.4.

Subsequently, we present the experimental results obtained from conducting various tasks using the

RTVS and integrated framework of RTVS and diffusion model. We analyze the performance of the

system in terms of success rate of tasks and convergence in case of RTVS, providing insights into the

efficacy and robustness of the proposed methodologies in real-world scenarios.

4.2 Real World Setup

This section details the hardware configuration and software setup for our UFACTORY xARM7 [59]

robotic manipulator equipped with a camera for visual servoing tasks.

We establish a setup comprising the xARM 7 robotic manipulator equipped with an Intel RealSense

D455 [60] camera sensor mounted on its end effector, eye-in-hand configuration. The xARM 7 is con-
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Figure 4.1: Complete Setup for working of xARM7
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nected to a desktop computer via an Ethernet port, while the camera is connected to the same computer

via USB. This configuration allowed for seamless communication between the manipulator, camera, and

computer. The desktop computer served as the central control unit, hosting a Python script for running

the entire system. This script coordinated the operation of the camera and manipulator, issuing the con-

trol commands to facilitate the execution of tasks. Once the objects were arranged within the workspace,

the camera is activated to capture images at a continuous frequency of 30 Hz. Concurrently, the Python

script is executed to initiate and manage the manipulator’s actions, ensuring synchronized operation

between the visual input from the sensor and manipulator throughout the task execution process.

4.2.1 xARM 7

The xARM7, with its 7 Degrees of Freedom and a reach of 700mm, is designed for precision and

versatility in both industrial and research settings. Weighing 13.7 Kg, it supports a payload of 3.5

kg and operates with a repeatability of ±0.1mm, suitable for detailed assembly work and delicate

object manipulation. Its maximum speed of 1 m/s streamlines tasks with efficiency. Equipped with

advanced safety features, including collision detection and singularity avoidance, the xARM7 ensures

secure operations by automatically halting motion in critical scenarios, making it a reliable tool for

complex automation challenges.

The specific range of motion for each joint of the xARM7 is detailed in Table 4.1. This information

is crucial for understanding the manipulator’s workspace limitations and planning motion trajectories

that stay within its capabilities.

Joint Range

Joint 1 ±360◦

Joint 2 −118◦ ∼ 120◦

Joint 3 ±360◦

Joint 4 −11◦ ∼ 225◦

Joint 5 ±360◦

Joint 6 −97◦ ∼ 180◦

Joint 7 ±360◦

Table 4.1: xARM7 Joint Range
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Figure 4.2: Serial Model of xARM

The third digit from the right, L, in figure 4.2 indicates that the model of the xARM7 manipulator is

2. Further details about this specific model are provided in Table 4.2, which outlines the specifications

and characteristics of the xARM7 manipulator.

The xARM 7 features an integrated 2-finger gripper with a single degree of freedom, designed to

perform dynamic grasping tasks. The gripper’s operation range spans from -10 to 850, where a higher

value corresponds to a wider grip span. This range enables precise control over the grip’s tightness,

allowing for adjustments until the grasp is secured. For optimal performance, the gripper’s speed should

be set between 1000 and 5000 to ensure the reliability in grip execution.

4.2.2 Software

For controlling the xARM 7, we employ the xARM Studio software for live configuration manage-

ment via a user interface. Initial setup requires establishing a network communication link between the

computer and the control box, ensuring both are on the same IPV4 network segment.

For programmatic control, the xARM-Python-SDK provided by UFactory is utilized. It necessitates

specifying the control box’s IP address within the code. The SDK supports two primary motion modes:
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Dynamics Mass (Kg) Center of Mass (mm)

Link1 2.46 [0.13, 30.1, -12.0]

Link2 1.916 [0.2, -129.6, 16.9]

Link3 1.69 [46.76, -25.3, -7.46]

Link4 1.774 [70.66, -116.6, 11.7]

Link5 1.357 [-0.3, 15.6, -25.3]

Link6 1.362 [65.0, 33.4, 21.3]

Link7 0.17 [0,-6.77,-10.98]

Table 4.2: Specifications of each link

• Joint Motion: Directs the manipulator to a specified joint position at defined speed and accelera-

tion parameters.

• Cartesian Motion: Moves the end effector to a designated Cartesian coordinate, again with prede-

termined speed and acceleration.

Commands issued in either mode are executed immediately without buffering, with the control box

capable of processing commands at up to 250Hz. Commands sent at a frequency exceeding this thresh-

old may be disregarded.

Additionally, three movement modes are supported.

• Position Control Mode(Mode 0): The default mode upon startup, where the control box automat-

ically plans and executes a sequence of motion commands.

• Servo Mode(Mode 1): Designed for executing high-frequency joint position commands, this

mode requires users to manually implement a trajectory planner.

• Joint Teaching Mode(Mode 2): Allows manual manipulation of the manipulator’s links, provided

the details like tool center point (TCP) load and payload are accurately configured.

This configuration flexibility and the integration of both manual and automated control methodolo-

gies facilitate precise manipulator control, essential for executing complex tasks and research experi-

ments.
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4.3 Methodology

Our proposed method as shown in fig. 4.3 operates through an iterative process, employing an

alternating loop of intermediate goal generation and action execution to accomplish the specified task

described in the language instruction. At the core of our approach lies the integration of a foresight

model and a flow-based Image-Based Visual Servoing (IBVS) controller.

The foresight model* is a conditional diffusion image-to-image translation model. This model is

conditioned on the current monocular eye-in-hand camera input, as well as text prompt. By leveraging

this information, the foresight model generates intermediate goal images that encapsulate the desired

state or configuration of the scene, guided by the task description provided.

Once the intermediate goal image is generated, it serves as the target for the flow-based IBVS con-

troller. This controller, based on the Real Time Visual Servoing (RTVS) framework proposed by [9],

utilizes optical flow features to predict and execute subsequent actions in six degrees of freedom (6 DOF)

to reach the intermediate goal. This end effector position is reached by calculating the joint angles using

inverse kinematics. The IBVS controller operates iteratively, continuously updating its actions based on

real-time feedback from the camera input and the generated intermediate goal images.

4.3.1 Foresight Model

Unlike unconditional diffusion models that aim to learn the data distribution itself, CDMs leverage

additional information to guide the generation process towards a desired outcome. In the context of

image generation with textual guidance, the conditioning information is a textual prompt that describes

the desired content of the image. Mathematically, a CDM can be formulated as follows: given a latent

noise vector z and a conditioning variable c (text prompt in our case), the model learns the conditional

diffusion process:

pt(x|z, c) = N
(
µt(x, c), σ

2
t (x, c)

)
,

where:

*Would like to acknowledge that the specific implementation details of the diffusion model are part of Pranjali Pathre’s

ongoing thesis work. The high-level concepts presented here provide a general understanding of how a diffusion model can be

integrated into our robot control approach.
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Figure 4.3: Pipeline for Task Execution: First, the foresight model, a diffusion-based image-to-image

translation model conditioned on the current monocular eye-in-hand camera input and additional scene

observations, generates the target image. Subsequently, the optical flow between the current and tar-

get image is computed to determine the motion required to reach the target. Similarly, the optical flow

between the target and the previous image is utilized to predict depth using flow to depth. Once the 6 de-

grees of freedom (6DOF) control is predicted by the Recurrent Task-Visual Servoing (RTVS) controller,

inverse kinematics (IK) is employed to calculate the joint angles necessary to move the manipulator to

the predicted end effector position.
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x represents the image at diffusion step t. pt(x|z, c) denotes the conditional probability density

function of the image x at step t given the latent noise z and conditioning variable c. µt(x, c) and σ2
t (x, c)

represent the predicted mean and variance of the image at step t, respectively, which are functions of

both the current image state x and the conditioning information c.

In this work, we utilize the recent advancements in image-editing models, specifically utilizing the

Instruct-Pix2Pix [61] architecture, as a ’foresight’ model for generating subgoals for our servoing algo-

rithm. The model takes as input the current image It from the camera sensor and outputs the subgoal

image Ig.

4.3.2 RTVS Controller

In our pipeline, we integrate the RTVS [9] controller to guide the manipulator towards the desired

subgoal predicted by the diffusion model. RTVS, known as Image-based Visual Servoing controller, op-

erates within an unsupervised framework and utilizes an MPC objective to generate control commands.

Unlike the loss function discussed in Section 3.2.4, RTVS’s loss function does not explicitly account

for moving objects. Therefore, the loss function crucial for training our real-time control generation

network is distinct. It is designed to optimize the manipulator’s movements based on visual feedback,

enabling precise and adaptive control in real time.

Lflow = ∥F̂(v̂t)−F(It, I
∗)∥ = ∥[L(Zt)v̂t]−F(It, I

∗)∥ (4.1)

In RTVS, F(It, I
∗) is the desired optical flow between the current image, It and the sub-goal image,

I∗ and L(Zt)v̂t is an estimation of the movement between the current state and the desired subgoal.

The interaction matrix, L(Zt) is described in eq. 4.2.

L(Zt) =

−1/Zt 0 x/Zt xy −(1 + x2) y

0 −1/Zt y/Zt 1 + y2 −xy −x

 (4.2)

This MPC objective guides the network towards generating control signals that effectively minimize

this discrepancy, thus steering the robot towards the desired outcome.

4.3.3 Inverse Kinematics

As RTVS provides us with the with the predicted end-effector velocity (Ve = [vx, vy, vz, ωx, ωy, ωz])

at each step, we now need to move the end-effector to a specific position and orientation. This necessi-

tates solving the inverse kinematics (IK) problem, which involves determining the joint configurations
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(angles) needed to reach a desired end-effector pose. For a 7 DOF manipulator, this task can be compu-

tationally challenging.

In our work, we addressed this challenge by leveraging the Jacobian method, a well-established

numerical approach for IK. The Jacobian method allows us to translate this desired end-effector motion

into the corresponding joint velocities required to achieve it. The core principle lies in the relationship

between joint velocities (q̇ = [q̇1, q̇2..., q̇7]) and the end-effector twist (combination of linear and angular

velocities) as expressed by the Jacobian matrix, J(q):

Ve = J(q).q̇ (4.3)

The Jacobian matrix can be expressed as

J(q) =



∂x
∂q1

∂x
∂q2

· · · ∂x
∂q7

∂y
∂q1

∂y
∂q2

· · · ∂y
∂q7

∂z
∂q1

∂z
∂q2

· · · ∂z
∂q7

∂r
∂q1

∂r
∂q2

· · · ∂r
∂q7

∂p
∂q1

∂p
∂q2

· · · ∂p
∂q7

∂γ
∂q1

∂γ
∂q2

· · · ∂γ
∂q7


(4.4)

Here, J(q) is a 6x7 matrix that depends on the end effector position (x,y,z,r,p,γ) and the current joint

angles (q). The elements of this matrix capture how each joint’s motion contributes to the end-effector’s

overall linear and angular velocities.

The end effector position can also be calculated using the manipulator’s Denavit-Hartenberg (DH)

parameters, which provide a systematic method for determining the kinematics of robotic manipulators.

These parameters define the geometric relationship between adjacent links in the manipulator and allow

for the computation of the end effector position. For our XARM7 manipulator, we utilize the DH

parameters listed in Table 4.3.

The DH parameters consist of four parameters, ai, αi, di, θi, where i represents the index of the joint.

These parameters describe the link lengths, link twist angles, link offsets, and joint angles, respectively.

By applying the DH transformation matrices recursively from the base to the end effector, we can

determine the position and orientation of the end effector relative to the base frame.
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Joint θ (rad) d (mm) a (mm) α (rad)

Joint 1 0 267 −π/2 0

Joint 2 0 0 π/2 0

Joint 3 0 293 π/2 52.5

Joint 4 0 0 π/2 77.5

Joint 5 0 342.5 π/2 0

Joint 6 0 0 −π/2 76

Joint 7 0 97 0 0

Table 4.3: Standard D-H Parameters of xARM7

While directly solving for joint angles might be challenging, the Jacobian allows us to compute the

required joint velocities for a desired end-effector twist using eq. 4.5

q̇ = J(q)−1Ve (4.5)

Since, the J(q) is a non-square matrix, we utilize the pseudo-inverse (J(q)+ ) of the Jacobian matrix

to compute the joint velocities required to achieve a desired end effector velocity.

q̇ = J(q)+Ve (4.6)

The pseudo-inverse allows us to approximate the inverse of a non-square matrix and is calculated

using the Singular Value Decomposition (SVD) method.

However, it’s important to acknowledge that the Jacobian might not always have a unique inverse,

particularly at singular configurations where the manipulator loses dexterity. In such cases, alternative

approaches or optimization techniques are used to avoid such cases.

For practical implementation, we leveraged the capabilities of PyBullet, a popular physics simulation

library. PyBullet provides a convenient function, calculateInverseKinematics, that simplifies the IK

computation. This function takes the desired end-effector pose, the current joint configuration, and

the robot model as inputs and returns the corresponding joint angles. By utilizing PyBullet’s efficient

implementation, we were able to effectively solve the IK problem for our 7 DOF manipulator and

achieve precise control of its end-effector throughout our experiments.
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4.4 Experiments and Results

We plan and conduct our experiments within the workspace of the manipulator, ensuring that all

tasks remain feasible within the operational boundaries of the robotic system. The workspace of the

manipulator is defined by the range of motion it can achieve in the x, y, and z dimensions, relative to

the base link position of the xARM. Specifically, the workspace spans from x = 0.255 m to x = 0.568

m, y = −0.098 m to y = 0.22 m, and z = 0.48 m to z = 0.636 m. These boundaries outline the

region within which the manipulator can effectively perform tasks and interact with objects, guiding

our experimental setup and ensuring that all planned actions remain within feasible operational limits.

Moreover, we use the xARM Python SDK in mode 0 to execute joint motions, facilitating precise and

controlled movements during our experiments.

Figure 4.4: Real-world setup: We employed a UFACTORY xARM7 robotic manipulator equipped

with an eye-in-hand Intel RealSense D455 depth camera.

4.4.1 Dataset

We designed a data collection strategy that involved generating a significant amount of diverse train-

ing examples. For each task our system was designed to handle, we generated 400 unique trajectories.

Each trajectory captured a sequence of 15 video frames. This approach ensured the model was exposed

to a variety of potential motions and scenarios within each task context.

We sampled input-output image tuples from existing video demonstrations showcasing the desired

manipulator actions for each task. An input image represents object configuration while that step and
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the output image depicts the desired outcome of the manipulator’s manipulation. These image tuples

were paired with language prompts that explicitly explained the task objective.

4.4.2 Evaluating RTVS Efficacy in Real World

In our initial real-world testing of the RTVS (Real-Time Visual Servoing) system, we opted for a

straightforward scenario to assess its convergence capabilities. The experiment involved a basic setup

where a box was positioned on the floor. Our primary objective was to evaluate whether the RTVS

framework could effectively converge in a real-world environment. By employing this simplified sce-

nario, we aimed to gauge the system’s ability to perceive visual cues, generate appropriate control

actions, and navigate towards the target object successfully. This preliminary test served as a crucial

step in validating the functionality and efficacy of the RTVS system in practical settings, laying the

groundwork for more complex experiments and applications in the future.

Initial Image RTVS Intermediate Steps Final Image Target Image

Figure 4.5: Converge Results: This figures shows that the RTVS is able to converge in the basic setup

where there is object on the simple floor.

The RTVS demonstrates its convergence capability with a photometric error of 450. In our visual

representation of the convergence process, the initial images are bordered in black, while the interme-

diate steps are highlighted in yellow. The final reached image is marked in green, representing the

achieved state, while the target or goal image is depicted in red, indicating the desired outcome. In the

first scenario, the manipulator requires movement solely in the z-direction, achieving convergence in

just 5 steps. Contrastingly, in the second scenario, the initial end-effector position is 10 cm up and 5 cm

left from the final position. Here, the convergence process takes longer, spanning 56 steps to reach the

desired outcome.
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Following our successful validation of RTVS in simpler scenarios, we introduce more complexity

to the environment to assess its performance in navigating intricate surroundings and accomplishing

specific tasks. In these advanced scenarios, RTVS is tasked with reaching designated positions within

complex environments.

Initial Image RTVS Intermediate Steps Final Image Target Image

Figure 4.6: Converge Results: The RTVS results on a complicated environment.

In Figure 4.6, we observe two trajectories wherein RTVS exhibits divergent behaviors under differ-

ent initial conditions despite targeting the same destination. In trajectory 1, RTVS successfully con-

verges with a photometric error of 800, indicating effective task completion. However, in the second

trajectory, despite aiming for the same target position, the manipulator fails to reach the desired loca-

tion within 1000 steps, rendering it unsuitable for real-world applications. To address this, we explore

enhancements by augmenting the feature set to improve optical flow, a crucial component for RTVS

performance. Increasing the number of features leads to a modest improvement in convergence rates,

rising from 40% to 74%, yet falling short of desired efficacy. Subsequently, we investigate the impact of

background variations on RTVS performance, as depicted in Figure 4.7, employing diverse backgrounds

to discern their effect on convergence rates and overall system robustness.

The experimentation with various backgrounds, as illustrated in Figure 4.7, shed light on the limita-

tions of Flownet2’s capacity to accurately predict optical flow in complex real-world scenarios. Specif-

ically, the checkerboard background produced notably chaotic flow predictions. This disruption arises
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Figure 4.7: Comparison of various backgrounds: The RTVS results variations of backgrounds.

from flownet’s challenges in consistently matching the cube from its initial position to its final one

against the visually intricate checkerboard pattern. Similarly, experiments conducted against a bed-

sheets background predominantly resulted in white optical flow fields. This outcome indicates a failure

in capturing correct velocities, significantly attributed to the background’s lack of distinguishable fea-

tures. Although the introduction of additional features offered some improvement, it was insufficient

to counteract the camouflage effect, where objects blend into the background, further complicating the
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identification process. This series of tests underlines the critical need for adaptive or enhanced feature

detection methods in complex environments to ensure the reliability and effectiveness of visual servoing

systems like RTVS in real-world applications.

Initial Image Intermediate Steps Final Image Target Image

Figure 4.8: Flow Comparison: This figure shows the comparison between various optical flow meth-

ods.

The comparative analysis of trajectories in fig. 4.8 highlights the critical dependency of robotic

visual servoing systems on the accuracy of optical flow and depth perception technologies. In trajectory
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1, the reliance on Flownet2 for optical flow estimation resulted in convergence issues, primarily due

to inadequate flow prediction quality. This challenge was vividly demonstrated when transitioning to

trajectory 2, where, despite switching to RAFT [62], a decision motivated by Flownet’s inconsistent

performance—convergence was still not achieved. The persistent issue in trajectory 2 was traced back

to the noisy depth data provided by the RealSense D455 camera, which underscored the sensitivity of

visual servoing systems to precise depth information.

The pivotal advancement in our study was achieved with trajectory 3, marked by the successful

convergence facilitated by the integration of Normalised FlowDepth explained in [9]. The transition to

Two view depth normalisation addressed previous challenges related to velocity prediction errors, which

were primarily due to unreliable flow estimations. The effectiveness of FlowDepth was previously com-

promised by inaccuracies in flow prediction; however, the incorporation of RAFT for more dependable

flow estimation enabled the productive use of Normalised FlowDepth. This adaptation was crucial for

overcoming the limitations encountered with earlier approaches, showcasing the critical role of precise

flow estimation coupled with depth data in improving the performance of visual servoing systems.

This progression underscores a pivotal finding: the effectiveness of visual servoing in robotic systems

is profoundly influenced by the interplay between optical flow accuracy and depth perception fidelity.

Our experiments demonstrate that enhancements in flow prediction, when coupled with innovative ap-

proaches to handling depth data, can significantly improve the performance of visual servoing systems.

This insight directs future research towards optimizing both flow estimation methods and depth data

handling to achieve reliable and efficient robotic navigation and manipulation in complex environments.

Initial Image Intermediate Steps Final Image Target Image

Figure 4.9: Trajectory demonstrating convergence utilizing flow depth and RAFT.

This figure 4.9 shows the trajectory that achieves convergence with less than 200 steps by employing

two-view normalised depth alongside RAFT.

To conclude, after extensive experimentation, it was found that the RTVS system performed effec-

tively when integrated with two-view normalized depth strategies, specifically normalized flow depth
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and RAFT. This combination proved to be successful in enhancing the system’s ability to accurately

interpret real-world environment and interacting with it.

4.4.3 Results

We demonstrate our diffusion model-generated sub-goals in conjunction with the RTVS controller

to accomplish two distinct tasks:

• Task 1: Place the shape in the shape sorter.

• Task 2: Stack the shape into a designated sorter slot.

The tasks of sorting and stacking, as illustrated in Figures 4.10 and 4.11, serve as compelling demon-

strations of the sophisticated capabilities enabled by our integration of the Imagine2Servo model and

the RTVS system within a real-world robotic application. The diffusion model, a cornerstone of our ap-

proach, plays a pivotal role in generating visually coherent and contextually relevant sub-goal images,

which are foundational to guiding the robot’s actions toward task completion.

In Task 1 (Sorting), the efficacy of our method is showcased through its ability to discern and classify

objects based on shape, subsequently manipulating them into their correct locations with an 80% success

rate. This task not only tests the precision of the robot’s movement and control but also the model’s

capacity to understand and interpret complex visual scenes. The blue images represent the model’s

predictions or sub-goals, which are impressively close to the real-world scenarios depicted by the yellow

images. These final images represent the successful state achieved after RTVS execution, indicating the

system’s high level of accuracy and the practical applicability of our method in sorting tasks.

Task 2 (Stacking) elevates the challenge by requiring precise alignment for the stacking of objects.

This task is significantly more demanding due to the need for exact positioning to ensure that objects are

not only correctly identified and picked up but also placed with a high degree of accuracy. The success

rate of 70% in this task underscores the robustness of our approach, particularly in handling tasks that

require delicate manipulation and spatial awareness. The ability of the foresight model to generate

actionable sub-goals, even with partially visible objects, highlights the advanced perceptual capabilities

of our system. It navigates the complexities of the physical world, where visibility and positioning play

crucial roles in task execution.

Crucially, both tasks demonstrate the system’s resilience to real-world operational challenges, such as

actuation noise, which can significantly impact the precision and reliability of robotic systems. Despite
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Initial Image Intermediate Sub-Goals Final Image

Put the hexagon 
in the shape sorter

Put the circle in 
the shape sorter

Put the square in 
the shape sorter

Figure 4.10: Qualitative Analysis of Task 1.

these potential disturbances, our method exhibits remarkable adaptability and accuracy. It consistently

converges towards the desired outcomes, maintaining a photometric error within an acceptable range

across various scenarios. This level of performance attests to the potential of integrating advanced

visual servoing techniques with diffusion models in robotic applications, promising enhancements in

autonomy, efficiency, and applicability across a broad spectrum of tasks in dynamic and unstructured

environments.
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Figure 4.11: Qualitative Analysis of Task 2.

4.5 Challenges

The real-world implementation of our model encountered several challenges, each impacting the

overall performance and reliability of the visual servoing tasks. One significant issue was the noisy depth

information obtained from the RealSense D455 camera. Depth data, crucial for accurately positioning

and orienting the robotic arm in three-dimensional space, was compromised by noise, making precise

control more challenging and leading to less reliable task execution.
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Lighting conditions posed another considerable challenge. Ideally, consistent lighting is necessary

for visual servoing systems to accurately recognize and track objects. However, in our setup, either

excessive lighting led to the creation of shadows, introducing variability in each image captured, or

inadequate lighting reduced the system’s ability to discern objects. Shadows, in particular, created

inconsistencies in the visual data, complicating the task of image matching and affecting the algorithm’s

ability to converge accurately on the target.

Furthermore, the physical interaction between the robotic gripper and the objects introduced addi-

tional complexities. Achieving the delicate balance of applying sufficient force to grip objects securely

without causing them to stick to the gripper proved difficult. Gripping objects with too much force re-

sulted in them sticking to the gripper, complicating the release process and, in some cases, affecting the

task’s success. Conversely, gripping too lightly risked the object slipping or not being secured properly,

also leading to task failure. However, solving this issue is out of scope of this thesis.

These challenges highlight the intricacies and unpredictability of translating visual servoing systems

from controlled environments to the real world.
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Chapter 5

Conclusions

In conclusion, this thesis has made significant strides in advancing the field of visual servoing tech-

nology, particularly in the context of real-world robotic applications. Through the introduction of Dyn-

GraspVS, a novel Visual Servoing-aided Grasping approach, we have addressed the challenges associ-

ated with grasping in dynamic environments, achieving remarkable success rates and trajectory conver-

gence while maintaining precise alignments. By leveraging a single-step rollout strategy and integrating

velocity information into the interaction matrix, DynGraspVS outperforms existing MPC-based meth-

ods, demonstrating its efficacy in complex grasping tasks.

Furthermore, our exploration of IBVS mechanisms on the XARM7 robotic platform has demon-

strated the practical applicability and feasibility of IBVS in real-world scenarios. Through successful

integration and implementation, we have shown how IBVS can enhance the capabilities of robotic sys-

tems, enabling them to perform tasks with greater flexibility and adaptability. Additionally, our analysis

of the RTVS framework’s performance in diverse real-world scenarios has provided valuable insights

into its robustness and versatility, highlighting its potential for various applications. Moreover, the

utilization of Imagine2Servo, a conditional diffusion model for generating target images, has further

enhanced the capabilities of IBVS, particularly for complex tasks requiring precise visual feedback.

Through a combination of experimental validation and rigorous testing, we have demonstrated the ef-

fectiveness of IBVS in real-world robotic systems, setting the stage for future advancements in visual

servoing technology.
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[55] Winfried Lötzsch. Using deep reinforcement learning for the continuous control of robotic arms.

CoRR, abs/1810.06746, 2018.

[56] Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation for games,

robotics and machine learning. http://pybullet.org, 2016–2022.

[57] Berk Calli, Aaron Walsman, Arjun Singh, Siddhartha Srinivasa, Pieter Abbeel, and Aaron M.

Dollar. Benchmarking in manipulation research: Using the yale-CMU-berkeley object and model

set. IEEE Robotics &amp Automation Magazine, 22(3):36–52, sep 2015.

[58] Brandon Amos and Denis Yarats. The differentiable cross-entropy method, 2020.

[59] xarm robot: Ufactory. https://www.ufactory.cc. Accessed: 06-04-2024.

[60] Intel® realsense™ depth and tracking cameras. https://www.intelrealsense.com/

depth-camera-d455. Accessed: 06-04-2024.

[61] Tim Brooks, Aleksander Holynski, and Alexei A. Efros. Instructpix2pix: Learning to follow image

editing instructions, 2023.

[62] Zachary Teed and Jia Deng. RAFT: recurrent all-pairs field transforms for optical flow. CoRR,

abs/2003.12039, 2020.

61

http://pybullet.org
https://www.ufactory.cc
https://www.intelrealsense.com/depth-camera-d455
https://www.intelrealsense.com/depth-camera-d455

	Introduction
	Contributions
	Thesis Layout

	Background
	Visual Servoing
	LSTM
	Architecture

	Related Work
	Visual Servoing
	Deep Visual Servoing
	Reinforcement Learning based Servoing
	Model Based Visual Control
	Dynamic Environment Grasping with Visual Servoing
	Manipulator


	DynGraspVS: Servoing Aided Grasping for Dynamic Environments
	Introduction
	Methodology
	Problem Formulation
	Deep Network
	Feature Extractor
	Temporal Information and Velocity Prediction

	Goal Image Generation
	Inference Pipeline
	Image Generation

	MPC Objective
	Interaction Matrix
	Loss Function

	Perception System
	Dynamic Controller

	Experiments and Results
	Simulation Setup
	Baselines
	Evaluation Metrics
	Time Taken
	Success Rate
	Trajectory Length
	IoU
	Photometric Error

	Qualitative Results
	Quantitative Results
	Object-wise Results



	Real-World Applications
	Introduction
	Real World Setup
	xARM 7
	Software

	Methodology
	Foresight Model
	RTVS Controller
	Inverse Kinematics

	Experiments and Results
	Dataset
	Evaluating RTVS Efficacy in Real World
	Results

	Challenges

	Conclusions
	Bibliography

