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Abstract

“Your brain is constantly rewiring itself, adapting with each new experience. It’s a dynamic,
ever-changing network of connections, shaped by the world around you.” - David Eagleman

This thesis investigates the reorganization of brain networks during the aging process, particularly
in the transition from young to middle-aged to older adults. The study utilizes the CAMCAN dataset,
a comprehensive cross-sectional dataset with multimodal data, including pre-processed resting-state
fMRI (rs-fMRI) data. The aim is to understand how brain networks evolve with age and identify key
brain regions and network properties that undergo changes. Data-driven statistical and graph-theoretic
measures are employed to study modular segregation and integration in the brain.

The results reveal characteristic nodes forming stable cores and flexible peripheries in both young and
old age groups. Notably, regions within the Default Mode network (DMN) show a negative correlation
with modularity in the old age group, while regions from the Limbic, SensoriMotor (SMN), and Salience
networks display a positive correlation. Machine learning models based on flexibility scores further
validate the relevance of these regions, providing promising insights for future investigations.

Additionally, the study uncovers age-related changes in brain connectivity and network properties.
Modularity increases with age, indicating greater functional specialization in the aging brain, accompa-
nied by a decrease in flexibility, suggesting reduced adaptability to changing cognitive demands. The
negative correlation between flexibility and modularity across all age groups implies that as the brain be-
comes less modular, it becomes more flexible in its organization. Certain brain regions show significant
connectivity alterations, with increased participation coefficient in some frontal and temporal regions
and decreased participation coefficient in several frontal and parietal regions. Hemispheric differences
indicate that age-related connectivity changes may vary between hemispheres.

Furthermore, the complexity of the relationship between cognitive abilities, task performance, and
brain network dynamics is highlighted. The absence of strong correlations between task scores and
network measures at the nodal level, along with the weak correlation between Cattell scores and global
flexibility, underscore the multifaceted nature of these associations. Age alone cannot fully account for
the observed dynamics, suggesting the involvement of other factors in shaping the relationship between
cognition and brain network measures.

However, this study has limitations. The use of cross-sectional data hinders the exploration of in-
dividual changes over time, and longitudinal data would provide more robust insights. The dataset’s
relatively small size and the categorization of age into discrete groups may limit the generalizability of
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the findings. Moreover, relying solely on resting-state fMRI data may not fully capture the dynamic
nature of brain function during various cognitive processes. Additionally, causal inferences should be
made with caution, as the study is based on observational data, and other factors may influence the
observed brain network changes.

In conclusion, this thesis contributes to understanding age-related changes in brain networks and
their impact on cognitive aging. The findings highlight the importance of specific brain regions in
maintaining functional networks during aging and underscore the complexity of brain network dynam-
ics. Addressing the limitations in future research will enhance our knowledge of brain aging and the
interplay between brain networks, cognitive abilities, and behavior.
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Chapter 1

Introduction

1.1 Motivation

Ageing is an inevitable process that leads to wisdom and serenity, but it also causes the body to
deteriorate faster than it can regenerate. In the brain, this deterioration is accelerated by neurological
disorders like Parkinson’s and Alzheimer’s. As the global population ages, it becomes increasingly
important to find ways to maintain the cognitive and physical health, of both the brain and the body, of
older individuals and ensure their overall well-being. If we can comprehend the underlying mechanisms
of these age-related changes, particularly in healthy ageing, we can develop interventions to slow down
or prevent cognitive decline in ageing populations. Furthermore, studying how the healthy brain ages
can help us identify possible deviations, enabling early intervention in the case of diseases. Overall,
neuroscience research can provide valuable insights into the changes that occur in the ageing brain and
potential ways to address them.

1.2 What happens to the brain when one ages?

As individuals age, the brain undergoes various changes in its structural and functional organization,
which can affect cognition and overall brain health. Genetic factors, lifestyle choices, and environmental
influences influence these changes. It is important to note that while some changes are commonly
observed with age, there is considerable individual variability in the ageing process.

Structurally, the brain undergoes several alterations with age. One of the most noticeable changes is
decreased brain volume, particularly in regions such as the prefrontal cortex, hippocampus, and cere-
bellum. These reductions in volume are often associated with declines in cognitive functions such as
memory, attention, and executive functioning. Additionally, age-related changes in white matter in-
tegrity and connectivity have been observed, which may contribute to slower information processing
and cognitive decline [1, 2, 3, 4, 5, 6, 7, 8].

Functionally, ageing is associated with changes in neural activity and activation patterns. Neuroimag-
ing studies have revealed that older adults often show reduced brain activity during cognitive tasks com-
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pared to younger individuals. This decline in neural efficiency may reflect compensatory mechanisms
or neural reorganization to maintain cognitive performance. However, it is important to note that older
adults can still exhibit remarkable cognitive resilience and adaptability, and some cognitive abilities may
remain stable or even improve with age [9, 10, 11, 12, 8, 13, 14, 15, 16, 17, 18].

Cognition is a complex process encompassing various domains, such as attention, memory, lan-
guage, and problem-solving. With age, cognitive abilities tend to show a pattern of decline, albeit with
significant individual differences. For example, processing speed tends to decrease, making analysing
and responding to information more challenging. Working memory capacity may also decline, affecting
the mind’s ability to hold and manipulate information. However, certain types of knowledge and exper-
tise, such as vocabulary and crystallized intelligence, can remain relatively stable or even improve over
time [19, 20, 21, 22, 23, 10, 24, 25, 26, 27, 28].

1.3 What are the challenges in the field?

There are several challenges faced in the current literature on ageing and brain reorganization. One
major challenge is the lack of standardization in the methods used to study brain structure and function.
Different studies use different techniques and measures, making it difficult to compare findings across
studies [29, 30].

Another challenge is the complexity of the ageing process and its effects on the brain. Ageing af-
fects different brain regions and networks in different ways, and a range of factors, such as genetics,
lifestyle, and environmental factors, influences the changes [31]. Furthermore, there is an increased risk
of ageing-related neurodegenerative diseases, making distinguishing between normal ageing and pathol-
ogy difficult. This complexity makes it difficult to identify clear patterns and mechanisms underlying
brain ageing [32].

There is also a need for longitudinal studies that track brain changes over time to understand better
the progression of ageing and its effects on the brain. Most studies are cross-sectional, meaning they
only capture a snapshot of brain structure and function at a particular point in time [33].

Finally, there is a need for more diverse samples in research on brain ageing. Most studies have
focused on Western, educated, industrialized, rich, and democratic (WEIRD) populations, which may
not represent the global population [32] [34]. This limits the generalizability of findings and hinders
efforts to address health disparities related to brain ageing.

1.4 Contributions of this Thesis

A significant challenge encountered in current literature is the use of diverse brain parcellations and
functional connectivity metrics, leading to difficulties in comparing findings across studies. To over-
come this challenge, we adopted a widely accepted brain parcellation scheme (AAL-116) and employed
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a standardized functional connectivity metric (Pearson correlation). Furthermore, we specifically inves-
tigated static functional connectivity networks, as well as dynamic connectivity networks, enabling us
to examine whole-brain reorganization across various timescales, ranging from seconds to years. Fur-
thermore, we investigated the relationship between modularity, flexibility, participation coefficient and
within-module degree z-scores to provide insights into the brain’s ability to maintain segregation and
integration. We also bridge the gap between static and dynamic functional connectivity and identify the
changes in the functional reorganization across different time-scales. We also investigated the impor-
tant regions that are key to distinguishing brain organization across age groups. The nodes important
for classification have been shown to overlap with those uncovered by data-driven statistical measures.
Finally, we also explored the relation between age related decline in cognitive performance and resting-
state network measures. These approaches make our study unique and provide a more comprehensive
understanding of the brain’s functional organization and dynamics across the lifespan.

1. This study used the Cam-CAN dataset to explore modular reorganization and identify nodes that
make up the stable core and flexible periphery in young and old age groups using dynamic mea-
sures like flexibility. Results suggest that nodes exhibiting higher flexibility in older age groups
are negatively correlated with modularity, while networks responsible for higher-order cognitive
functions make up a stable core with low flexibility scores. Using node flexibility scores as fea-
tures for binary classification, the Support Vector Machine with Gaussian kernel gave the best
results, and the important features identified in classification align with those found through data-
driven network measures analysis.

2. The findings in this study revealed age-related changes in network measures, with older adults
showing reduced global efficiency, increased local efficiency, and decreased modularity compared
to younger adults. Further, the relation between age related decline in cognitive performance and
resting-state network measures were explored.

Overall, both studies suggest that the brain undergoes compensatory mechanisms to maintain cogni-
tive function in the face of these changes, with some regions increasing connectivity to support cognitive
function. In contrast, others decrease in connectivity and contribute to age-related declines in cognitive
function. Most importantly, they highlight the importance of understanding age-related changes in brain
connectivity to better understand the mechanisms underlying age-related cognitive decline and identify
potential targets for interventions to support cognitive function in ageing.

1.5 Thesis Workflow

Chapter 2 is the literature review and methodology section. The purpose of this chapter is to provide
a detailed account of the methods used to conduct the research and explain the rationale for using these
methods. In this chapter, the various methodologies used in the work done is introduced and explained.

3



This includes descriptions of experiments, data collection and analysis techniques, statistical methods,
and other methodologies relevant to the research question.

Chapter 3 provides an overview of the current literature and various theories of ageing. This chapter
includes an explanation of the current state of research in the field of ageing, a review of relevant
literature on the topic, and a discussion of the major theories that have been proposed to explain the
ageing process. The purpose of this chapter is to provide a comprehensive overview of the current state
of knowledge in the field and contextualize the research question within the broader field of ageing.

Chapters 4 and 5 constitute the primary work done as a part of the thesis and present the research
results. These chapters include descriptions of the experiments or data collection techniques used and
analyses of the data collected. The chapters provide a detailed account of the research findings and ex-
plain how these findings contribute to the overall understanding of the research question. These chapters
also include a discussion of the implications of the findings for future research and recommendations
for future studies.
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Chapter 2

Definitions and Methodologies

The aim of this chapter is to offer a comprehensive explanation of the techniques utilized to carry out
the research, along with the reasoning behind their selection. The chapter provides an introduction and
description of the different methodologies employed in literature as well as in the studies documented,
which encompass statistical methods, data collection and analysis techniques, and other relevant ap-
proaches in this thesis’s scope.

2.1 Methods to characterize brain function and structure

The subsequent subsections outline different methods presently utilized for capturing neural activity.

2.1.1 Stimulation-based function characterization

There are various invasive and non-invasive methods to study brain functionality. Invasive measures
involve inserting electrodes into the brain and measuring reactions to electric stimulation. Some exam-
ples of invasive methods are deep brain stimulation (DBS) and motor cortex stimulation (MCS) [35].
However, due to the irreversible damage to the neurons caused by invasive methods, non-invasive meth-
ods like transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS)
have become popular [36].

2.1.2 Neuroimaging modalities

There are many neuroimaging modalities to choose from that are based on various ways to measure
brain activity. Some of the popular ones are:

• Functional Magnetic Resonance Imaging (fMRI): This technique gauges the blood oxygen level-
dependent (BOLD) contrast. It relies on detecting variations in local blood flow, which results in
discrepancies between oxyhemoglobin and deoxyhemoglobin levels. fMRI is widely employed
for precisely mapping extensive functional networks within the brain. Nevertheless, there is a
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compromise between spatial and temporal resolution in this method. Certain drawbacks include
the requirement for minimal head movement during scanning, susceptibility to physiological
noise, limited temporal resolution, and so on. [37].

• Electroencephalogram (EEG): As neurons communicate through electrical impulses, this method
relies on the brain’s electrical activity. It offers a remarkably high temporal resolution in the
millisecond range but exhibits limited spatial resolution due to the placement of electrodes in
specific locations. However, an important drawback of this approach is that it provides relative
differences between brain locations rather than an absolute measure [38, 39].

• Magnetoencephalogram (MEG): This method utilizes the magnetic field generated by electric
currents in the brain to gather information about its structure and function. By identifying the
sources of these magnetic fields, both spatial and temporal resolutions are significantly improved
compared to EEG. MEG serves as a reference-free direct measure of brain activity and does not
exhibit operational noise like fMRI. However, a significant drawback of MEG is that the signal it
captures is inherently weak, which makes it susceptible to interference from background signals.
To mitigate this, special shielding techniques may need to be employed to minimize external
influences on the measurements [40, 41].

• Other measures: Other measures that involve more complicated methods include Positron Emis-
sion Tomography (PET), Diffusion Optical Tomography (DOT), Functional Ultrasound Imaging,
etc. [42] [43][44] [45].

Due to the high spatiotemporal resolution of the fMRI modality that can throw light on the large-scale
brain activity and engagement of a large number of areas. Hence, this is an ideal choice for functional
connectivity creation and identification of large scale brain networks [46] [37].

2.2 Resting state vs Task based data

Task-based functional magnetic resonance imaging (fMRI) is a widely used approach for investigat-
ing brain activity related to specific stimuli or tasks. It involves designing experimental paradigms that
elicit neural responses in response to targeted stimuli or cognitive demands. By analyzing the blood
oxygen level dependent (BOLD) signal during task performance, researchers can identify brain regions
and networks associated with the task and make inferences about their functional roles [42]. Resting-
state fMRI, on the other hand, captures brain activity during periods of rest or when participants are
not engaged in any specific task. Participants are typically instructed to relax and keep their eyes open
or fixed on a point while lying in the scanner. Unlike task-based fMRI, resting-state fMRI does not
involve external stimuli or explicit tasks. Instead, it reflects the intrinsic functional organization of the
brain and its spontaneous activity [47, 48]. Studies have demonstrated that resting-state fMRI captures
approximately 80% of the functional architecture observed in task-based fMRI.[49] [50][51].
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2.3 CAMCAN dataset

The CAMCAN dataset chosen is a cross-sectional dataset that is available on request. In the fol-
lowing subsections, we describe the criteria of selection of the participants and the data acquisition and
pre-processing pipelines that were used. The data that was available was already pre-processed, mapped
onto AAL116 atlas and available as the BOLD signal timeseries for each of the individual regions.

2.3.1 Choice of participants

The second stage of the Cam-CAN project provided the data used in this study, which can be ac-
cessed at http://www.mrc-cbu.cam.ac.uk/datasets/camcan [52]. Cam-CAN is a com-
prehensive cross-sectional study that involves a large-scale collection of multimodal data. The dataset
includes raw and pre-processed data from structural MRI, functional MRI (fMRI), Magnetoencephalo-
gram (MEG), behavioral scores, demographic information, and neuropsychological data. Stage 1 of the
project included 3000 participants. A subset of 637 participants was selected for this study based on the
criteria of being cognitively healthy (MMSE score 25) and having no history of drug abuse or current
drug use. The study was conducted in accordance with the Helsinki Declaration and was approved by
the Cambridgeshire 2 Research Ethics Committee. The participants were divided into three age groups:
young (size: 183, mean age: 31 ± 6), middle-aged (size: 201, mean age: 50.5 ± 6), and old (size:253,
mean age: 73).

2.3.2 Data acquisition and preprocessing

The resting-state fMRI data used in the study were collected at the Medical Research Council Cog-
nition and Brain Sciences Unit, using a 3T Siemens TIM Trio scanner with a 32-channel head coil. The
acquisition parameters included: TR = 1970 ms, TE = 30 ms; voxel size = 3.0 × 3.0 × 3.7 mm; flip angle
= 78°; acquisition time = 8 min 40 s, the total number of volumes = 261; 32 axial slices per volume
(slice thickness 3.7mm, an interslice gap of 20%) acquired in descending order [52]. The Cam-CAN
research consortium provided the preprocessed data. The anatomical Automatic Labelling atlas (AAL)
was used for parcellating the brain into 116 regions, and their mean BOLD time-series signals were
calculated. [53, 54].

2.3.3 Task scores

2 tests were considered to account for fluid and crystallized intelligence.

The Benton Test of Facial Recognition [55] was considered for crystallized intelligence. It is a
measure of the ability to match pictures of unfamiliar faces. It assesses the capability to recognize
newly-seen faces rather than familiar ones. The short form of the Benton Test was used in the CAMCAN
study, consisting of 27 trials where participants are shown a target face and an array of six faces. The
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task is to identify one or more instances of the target face among the array. The total score is based on
the number of correct responses, with a maximum score of 27.

The Cattell Culture Fair, Scale 2 Form A [56, 57] was used to assess fluid intelligence. It includes
four subtests with nonverbal puzzles: series completion, classification, matrices, and conditions. Each
subtest has a specific time limit, and participants are given instructions and examples before each subtest.
The test is completed using a pen-and-paper format, with participants selecting responses from multiple
choices and recording them on an answer sheet. The total score is based on the number of correct
responses, with a maximum score of 46. [58]

2.4 Modelling the brain function - Graph Theory

Graph theory has gained widespread usage in neuroscience literature for modelling the brain and
drawing network-level inferences about its structure and function. The brain can be conceptualized as a
network-like architecture, making it suitable for graph-based analysis. In functional modelling, regions
of interest (ROIs) are represented as nodes, and the edges represent the level of coactivation or func-
tional synchronization between them. For structural modelling, nodes correspond to anatomical regions
(ROIs), while the edges signify the thickness of white matter tracts connecting the regions. Researchers
can easily track the architecture and evolution of brain reorganization by employing various graph the-
ory algorithms and measures. This can be examined at different scales, including global (whole-brain),
mesoscale (network-level), and local (nodal) levels [59, 60, 61]. In the subsequent studies, we use
Pearson’s correlation to quantify the strength of functional connectivity between brain regions. Pear-
son’s correlation coefficient calculates the degree of synchronized activity or functional connectivity by
analyzing the time series data of two regions.

2.4.1 Static Functional Connectivity

A simple and efficient approach to depict the functional connectivity between nodes (ROIs) is to
calculate the mean Pearson’s correlation of the BOLD signal fluctuations throughout the entire scanning
duration. This method provides insights into the network-level architecture of the brain’s stable organi-
zational pattern over an extended period. However, this representation of brain functional connectivity
lacks temporal information, as the correlation values are averaged across the entire scan time and do not
account for dynamic changes over time.[51]

ROI to Network Mapping

The AAL atlas is a widely used brain parcellation scheme that provides standardized regions of inter-
est. In our study, we utilized the resting-state network that was previously mapped to the corresponding
brain regions as described in the work cited [62]. To ensure the reliability and validity of our findings,
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we also cross-validated the regions and their corresponding network mapping using the latest literature,
specifically relying on the AAL atlas.

2.4.2 Dynamic Functional Connectivity

While the static FC gives us insight into the architecture of the networks that remain stable over
time, the non-trivial dynamics are hidden [63, 64]. The tapered sliding window method is a commonly
used approach for examining dynamic functional connectivity in functional magnetic resonance imaging
(fMRI) data. It involves dividing the fMRI time series into shorter, overlapping segments known as
windows and estimating functional connectivity within each window. The use of tapered windows helps
mitigate the abrupt transition artifacts at the edges of the windows.

One commonly employed tapered sliding window method is the Gaussian window, where the weights
gradually decrease from the center of the window towards the edges. This tapering effect ensures
smoother transitions and reduces the impact of abrupt changes in connectivity estimation between ad-
jacent windows [65]. Choosing an appropriate window size is crucial for accurately capturing dynamic
changes in functional connectivity. A window that is too short may not capture meaningful connectivity
dynamics, while a too long window may oversimplify temporal variations or mask transient connectiv-
ity patterns. The optimal window size depends on several factors, including the temporal properties of
the phenomenon under investigation and the fMRI acquisition parameters. For the dynamic functional
connectivity (dFC) analysis, we used a tapered sliding window approach and represented the entire
time series in windows of 44 seconds and a stride of 5 seconds based on the strategies followed in
[66, 67, 68, 69].

2.4.3 Network measures

Complex networks often have diverse structural and functional features that can be characterized
by various measures. Two important categories of measures that are frequently used are measures of
integration and segregation. Integration measures quantify how effectively information can flow across
different modules or clusters of the network. In contrast, segregation measures describe the extent to
which the network is divided into functionally distinct communities or subgroups.

• Common measures of integration include global efficiency and participation coefficient, which
are based on the number of connections that flow through a specific node in the network. Global
efficiency quantifies how efficiently the information can be transferred across the entire network,
whereas participation coefficient characterizes the extent to which a particular node is involved in
multiple communities or subgroups within the network [70].

• Segregation measures, on the other hand, focus on the extent to which the network is divided
into subgroups that perform specialized functions. Segregation enables the network to process
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information in a distributed manner, which reduces the overall wiring cost and improves the net-
work’s efficiency. An example of a measure of segregation is modularity, which quantifies the
extent to which the network is divided into tightly-knit subgroups or modules [70].

Complex small-world networks, common in many natural and artificial systems, are characterized
by efficient integration and segregation. These networks are composed of densely connected subgroups
or modules, but they also have relatively short paths between nodes that enable efficient information
transfer across the entire network.

In addition to these static measures, dynamic measures can also characterize how network properties
change over time. One such dynamic measure that can be used to study the evolution of network
structure over time or to track changes in the network’s functional properties is flexibility [70].

Measures used in the upcoming work are explained in detail in the following subsections.

Within-Module degree

Within-module degree z-score is a static measure of centrality that is a localized, within-module form
of degree centrality [70]. If a node has a high within-module degree z-score, it has a high number of
edges between the nodes within the same module that it is assigned to. For a node i, the within-module
degree z-score, z, is calculated as,

zi =
ki(mi)− k(mi)

σk(mi)
(2.1)

where ki(mi) is the number of edges between i and all the other nodes in mi (within-module degree),
k(mi) is the mean of the within-module mi degree distribution, and σk(mi) is the standard deviation
of the within-module degree distribution for the module mi [70, 71, 72]. The module/community
assignment for all the ROIs must be provided to calculate the within-module degree z-score. Hence for
each iteration of the community detection based on the Louvain algorithm, a corresponding WMD-z-
score is calculated, as shown below,

Zi =
∑

iter∈totaliter

(zi,iter) (2.2)

where zi,iter is the z-score of node i in iteration iter, and totaliter is the total number of iterations per-
formed by the Louvain community detection algorithm. The average z-score, Zi, was then considered
the final measure of localized degree centrality.

Participation coefficient

A complementary measure to within-module degree is the participation coefficient as it captures the
diversity of connections of the node in question [70]. The participation coefficient ranges from 0 to 1,
where 1 indicated a node with many inter-modular connections. It is calculated for every node i as,

pci = 1−
∑
m∈M

(
ki(m)

ki
) (2.3)
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where ki is the degree of node i, ki(m) is the total number of edges between node i and nodes in the
module m, and M is the set comprising all the modules as defined in the community detection algorithm.
In order to calculate the participation coefficient of a node, the community assignments, as detected by
the Louvain algorithm, needs to be provided. Hence, the final measure that is considered is the average
of the normalized participation coefficient calculated over all the iterations, as shown below,

PCi =
∑

iter∈totaliter

(pci,iter) (2.4)

where, pci,iter is the normalized participation coefficient (normalized across values of all nodes of each
subject, range after normalization is 0-1) of node i calculated in iteration iter, and totaliter is the total
number of iterations of the community detection algorithm. This average, PCi, is the final participation
co-efficient considered.

Mutual Information

Mutual information is a common and reliable measure of dependence that, unlike correlation, cap-
tures both non-linear and linear relationships between the two variable X and Y. The mutual information,
MI, is calculated as follows,

MI(X;Y ) = DKL(P(X,Y ∥ PX ⊗ PY ) (2.5)

where, X and Y are the communities detected in the representative FCs of each age group. Representa-
tive FCs are calculated as the average FC matrix over all subjects in each age group. For our analysis,
we used an open source implementation [73, 74, 75].

Modularity

Modularity is a measure of the extent of segregation and integration between different communities
in a graph. Modular communities which have dense within-module connections and sparse between-
module connections, can be detected by various algorithms. These algorithms optimize the partitioning
such that the detected communities in the graph have significantly denser intra-community edges and
sparser inter-community edges when compared to a null model with the same edge distribution but
randomly assigned edges. The quality of the partitioning can be quantified by a quality function also
known as the modularity score, Q, that is calculated by equation 2.6 [76, 77, 78, 79, 80, 81].

Q =
1

2µ

∑
ij

[Aij − Pij ]δ(ci, cj)

µ =
1

2

∑
ij

Aij

(2.6)

where Aij is the adjacency graph with correlations between regions i and j Pij is the correlation in the
null model, ci is the community assigned to node i, and δ(ci, cj) is 1 if nodes i and j belong to the
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Figure 2.1: The overview of the Louvain algorithm used for community detection and modularity cal-

culation. Figure adapted from Figure 1 in Blondel et. al. (2008) [76].

same community, else it is 0. The Newman-Girvan model was considered as the null model [79]. In
the current study, communities were detected using the Louvain algorithm [76] as implemented in the
Brain Connectivity Toolbox [70]. Since the community detection algorithm is stochastic, the modularity
score for each participant was calculated as the average over 1000 runs.

Multilayer Modularity Maximization Algorithm

Since the Louvain community detection is stochastic in nature, a generalized Louvain algorithm that
maintains the homogeneity of the communities detected across different correlation matrices is used
to detect communities while accounting for homogeneity [82]. Further, adjusting the scale and layer
parameter account for the size of the detected community (finer vs coarser) and homogeneity maintained
(nodes being treated as similar or dissimilar), respectively [83, 81]. The algorithm optimizes for the
following modular-partition quality.

Q =
1

2µ

∑
ijlr

((Aijl − γl.Pijl)δlr + δ(ci, cj).ωjlr) δ(gil, gjr)

µ =
1

2

∑
ij

Aij

(2.7)

12

https://doi.org/10.1088/1742-5468/2008/10/P10008


Figure 2.2: An example of the multilayer community organization where the homogeneity of the nodes

is maintained while changing communities across layers. Figure adapted from Figure 6 in Hanteer et.

al. (2020) [84].

where i, j represent nodes and l, r represent different layers. Aijl is the adjacency graph with cor-
relations between regions i and j in layer l, Pijl is the correlation in the null model in layer l, ci is the
community assigned to node i, δ(ci, cj) is 1 if ci = cj , else it is 0, gil is the community assignment of
node i in layer l, δ(gil, gjr) is 1 if the community gil = gjr, else 0, and δl, r is 1 if l = r else 0. The
scale and layer parameters were γl and ωjlr. The Newman-Girvan model was considered as the null
model [79]. The adjacency matrix used as input is a supra-adjacency matrix with the layers as the diag-
onal entries. Each layer corresponds to a temporal window. The multi-layer and multi-scale parameter
was selected based on the strategies mentioned in previous literature [81]. The multi-layer parameter
was set to 1 hence the nodes are treated homogeneously across the layers. Since the modularity algo-
rithm is stochastic in nature, we performed 1000 runs. The network metrics for each participant were
calculated as the average over these 1000 runs.

Flexibility

Flexibility is a measure that captures the community reassignment dynamics across temporal win-
dows at a nodal level [85]. The output of the multilayer maximization algorithm is a graph, G = N×T ,
where N is the number of nodes and T is the number of layers (windows). Flexibility for node i is then
calculated as,

Fi =
m

T − 1
(2.8)

where, m is the number of times the node has changed its community affiliation and T is the number
of time steps (time windows). Nodes with high and low flexibility scores were computed as the top
and bottom 33 percentile of all the flexibility scores. Further, we calculated the network-level flexibility
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scores by averaging the flexibility scores of individual nodes composing the large scale intrinsic pre-
defined resting state networks [86]. High and low flexibility networks are calculated by averaging
the flexibility scores of the constituent nodes showing high and low flexibility behaviour, respectively.
Similarly, global flexibility was calculated as average over all the nodes per participant.

2.5 Statistical Analysis methods

ANOVA - One-Way

ANOVA (Analysis of Variance) is a statistical method used to compare the means of two or more
groups. In a one-way ANOVA, we compare the means of a single dependent variable across different
levels of a categorical independent variable. The p-value obtained from an ANOVA represents the
probability of observing the obtained or more extreme difference in means between groups, assuming
there is no true difference in the population means. A small p-value (typically below a significance
level, e.g., p < 0.05) suggests evidence of a significant difference between at least one pair of group
means [87].

Pearson’s Correlation

Pearson’s correlation coefficient is a statistical measure that quantifies the strength and direction of
the linear relationship between two continuous variables. It ranges from -1 to +1, where -1 indicates a
perfect negative linear relationship, +1 indicates a perfect positive linear relationship, and 0 indicates no
linear relationship. A small p-value suggests that the observed correlation is unlikely to occur by chance
alone, providing evidence for a significant linear relationship between the variables [88].

Spearman’s Correlation

Spearman’s correlation coefficient is a non-parametric measure that assesses the monotonic rela-
tionship between two variables. It is particularly useful when the relationship between variables is not
strictly linear. Spearman’s correlation coefficient ranges from -1 to +1, with -1 indicating a perfect neg-
ative monotonic relationship, +1 indicating a perfect positive monotonic relationship, and 0 indicating
no monotonic relationship [89, 90].

2.6 Identifying important features - ML approach

Classifiers are used to predict the class of a given input based on a set of features. In this study, the
classifiers were used to predict the age group of the subject based on their brain network features. The
features used were the flexibility scores of different nodes in the brain network, which were hypothesized
to be correlated with age. By training different classifiers on the features, the study aimed to identify
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the most effective method for predicting age group and to identify which features were most important
for accurate classification.

2.6.1 Feature Selection and Reduction

Feature reduction and selection methods are used to reduce the dimensionality of the dataset by
selecting a subset of relevant features. In this study, both unsupervised and supervised feature selection
methods were used.

• Principal Component Analysis (PCA) is an unsupervised feature reduction method that can
be used to analyze datasets with multicollinearity and categorical data. PCA extracts important
information and stores it in ”principal components”. It seeks lines, planes, and hyperplanes in K-
dimensional space that best approximate the data in terms of least squares. A line or plane that is
the least squares approximation of a set of data points maximizes the variance of the coordinates
on the line or plane. PCA is used to extract features that account for the most variation in the
data [91, 92, 93].

• On the other hand, the Maximum Relevance-Minimum Redundancy (MRMR) algorithm is a
supervised feature selection method that extracts nodes with maximum information but does not
contain overlapping information, hence minimizing redundancy. MRMR selects features that have
maximum relevance with the target variable and minimum redundancy with the already selected
features. MRMR is a filter-based approach that ranks the features based on their relevance to the
target variable and redundancy with the other features [74, 94, 95, 96].

In summary, PCA is an unsupervised feature reduction method that reduces the dimensionality of
the data by selecting principal components that account for the most variation in the data. MRMR, on
the other hand, is a supervised feature selection method that selects a subset of features with maximum
relevance with the target variable and minimum redundancy with other features.

2.6.2 Choice of classfier

Various classifiers were considered, with variants from linear to complex polynomial functions to
describe the brain model and its functions best. The classifiers include support vector machines (SVMs)
with linear and polynomial kernels, random forest classifiers, and logistic regression. These classi-
fiers were chosen for their ability to handle high-dimensional data and capture non-linear relationships
between variables.

SVMs are a popular classification algorithm that separates data points into different classes using
a hyperplane. Linear SVMs assume that the data can be separated by a straight line or plane, while
polynomial SVMs can capture non-linear relationships by mapping the data into a higher-dimensional
space [97].
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Random forest classifiers are an ensemble learning method that constructs multiple decision trees
and combines their outputs to make a final prediction. This approach is useful for handling noisy or
missing data and capturing complex variables’ interactions. [98]

Logistic regression is a statistical technique that forecasts the likelihood of a binary result by analyz-
ing one or more predictor variables. It is a simple and interpretable model that is often used as a baseline
in classification tasks [99].

2.7 Regression analysis

In order to characterize the effect of age on the network measures and cognitive performance, a poly-
nomial regression analysis was performed where the polynomial factor ranged from 1 to 10. Regression
analysis is necessary to quantify, understand, and assess the relationship between one or more inde-
pendent variables and a dependent variable. It allows for controlling confounding variables, examining
nonlinear relationships, hypothesis testing, and predictive modelling, contributing to a comprehensive
understanding of the impact of age on network measures and cognitive performance [100, 101]. Poly-
nomial regression, specifically, extends the linear regression model by including polynomial terms of
the predictor variables to capture nonlinear relationships.

The general equation for polynomial regression can be represented as

y = β0 + β1x+ β2x
2 + . . .+ βnx

n + ε

where: y represents the dependent variable, x represents the predictor variable, β0, β1, β2, . . . , βn
are the coefficients corresponding to the polynomial terms, n represents the highest degree
of the polynomial, and ε represents the error term.

When fitting the linear model with polynomial terms ranging from 1 to 10, polynomial regression
models of increasing degrees were considered. Each additional degree allowed for more flexibility
in capturing nonlinear relationships between the predictor and the dependent variable. Since higher
degrees may capture more intricate patterns in the data but can also lead to overfitting, we used the
metrics mentioned in the next section along with the Occam’s razor principle [100, 102].

Metrics for the choice of regression model

When comparing regression models, we used AIC, MSE (Mean Squared Error), and R-squared (R2)
which are commonly used metrics. Each metric provides different insights into the performance of the
models.

AIC (Akaike Information Criterion): The AIC is a measure of model fit that takes into account the
goodness of fit and the complexity of the model [103, 104]. It balances the trade-off between model fit
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and model complexity. A lower AIC indicates a better model fit. AIC is often used for model selection
and can be calculated using the formula

AIC = −2 ln(L) + 2k,
where L is the maximum likelihood estimate of the model’s likelihood function, and k is
the number of parameters in the model.

The model with the lowest AIC is generally preferred as it indicates a good balance between fit and
complexity.

MSE (Mean Squared Error): MSE measures the average squared difference between the predicted
and actual values in the data [104, 105]. It can be calculated using the formula

MSE = 1
n

∑n
i=1(yi − ŷi)

2,
where n is the number of observations, y represents the actual values, and ŷ represents the
predicted values.

It quantifies the overall accuracy of the model predictions. A lower MSE indicates better prediction
accuracy, as it reflects smaller errors between the predicted and observed values. MSE is widely used to
evaluate the predictive performance of regression models.

R2 (R-squared): R-squared represents the proportion of the variance in the dependent variable that
is explained by the independent variables in the model [105]. It is calculated by the formula

R2 = 1− SSres
SStot

,
where SSres is the sum of squared residuals and SStot is the total sum of squares.

It measures the goodness of fit and indicates how well the model captures the variability in the data. R2
ranges from 0 to 1, with a higher value indicating a better fit. However, R2 can be misleading if used as
the sole criterion for model comparison, as it increases with the addition of more variables.

To summarize, AIC focuses on model selection and trade-offs between fit and complexity, while
MSE and R2 assess model prediction accuracy and goodness of fit, respectively. Further, in the cases
2 models has similar AIC, MSE and R2 scores, the simpler model was chosen according to Occam’s
razor.

In conclusion, this chapter provides an in-depth examination of the methodologies commonly em-
ployed in the current literature. These methodologies are carefully considered and deliberately chosen
based on the specific requirements and objectives of the research. The CAMCAN dataset is used to
conduct the analysis, which has proven to be a valuable resource in neuroscience studies. This dataset
offers a rich and diverse collection of brain imaging data, allowing us to investigate various aspects
of brain connectivity. A range of network measures is employed to evaluate the connectivity patterns
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within the brain. These measures enable us to quantify and analyze the intricate network properties
and relationships among different brain regions. By utilizing these network measures, valuable insights
can be gained into the complex organization of the brain’s functional connectivity. Furthermore, vari-
ous machine-learning techniques were leveraged to develop predictive and classification models. These
techniques allow us to uncover patterns and relationships within the data and make predictions or clas-
sify different brain states or conditions. By applying these ML techniques, we aim to enhance our
understanding of the brain’s functioning and potentially contribute to diagnostic or prognostic applica-
tions.
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Chapter 3

Related Work

In this chapter, a comprehensive survey of the existing literature concerning age-related transfor-
mations in brain structure, function, and cognition is presented. It explores a wide range of research
endeavours aimed at understanding the modifications that manifest in the ageing brain. The chapter en-
compasses investigations examining structural modifications, such as the reduction in volume observed
in specific brain regions and the decline in white matter integrity. Furthermore, it delves into func-
tional modifications by highlighting alterations in neural activation patterns and connectivity networks
identified in older individuals. The chapter also investigates cognitive alterations associated with the
ageing process, encompassing declines in processing speed, memory function, and executive functions.
In addition to reviewing empirical findings, the chapter discusses various theories proposed to explain
these changes with age. It provides insights into theoretical frameworks that attempt to elucidate the
underlying mechanisms of age-related brain alterations.

Gray matter and white matter are integral components of the central nervous system that work to-
gether to facilitate brain function. Gray matter, found predominantly in the cerebral cortex, is respon-
sible for processing information, integrating sensory inputs, and supporting cognitive functions. It con-
tains the cell bodies, dendrites, and synapses of neurons, forming the computational core of the brain.
On the other hand, white matter consists of myelinated axons that establish connections between dif-
ferent regions of gray matter. As the brain’s communication infrastructure, white matter enables the
efficient transmission of electrical signals between brain regions. The myelin sheath surrounding white
matter axons enhances signal conduction speed and facilitates information integration across neural
networks. The collaborative interaction between gray matter and white matter is crucial for complex
cognitive tasks, effective communication, and the regulation of bodily functions [106, 107].

3.1 Structural changes with age

Various measures can be used to assess the structural integrity of the brain, including volumetric
changes, cortical thickness, and white matter integrity. Here are some of the observed changes in gray
and white matter:

19



White matter

• White Matter Volume Reduction: ageing is associated with a gradual decline in white matter
volume, particularly in frontal areas of the brain. This reduction may be attributed to decreased
myelination, loss of axons, and changes in the density and organization of white matter fibers [6,
108, 109]. White matter volume is generally reduced in frontal areas of the ageing brain [110, 6,
111, 7, 112].

• White Matter Hyperintensities: White matter hyperintensities (WMHs) are areas of increased
signal intensity observed in brain imaging, such as T2-weighted or fluid-attenuated inversion
recovery (FLAIR) MRI. WMHs are commonly found in older individuals and are associated with
small vessel disease, chronic ischemia, and damage to white matter tracts. They can disrupt the
structural integrity of white matter and contribute to cognitive decline [113]. The frontal and
occipital regions contributed to the highest to the affected tissues observed in older ages [5].

• White Matter Microstructural Changes: Diffusion tensor imaging (DTI) allows the assessment
of white matter microstructure. With ageing, DTI studies have shown decreases in fractional
anisotropy (FA) and increases in mean diffusivity (MD) in white matter tracts. These changes
suggest alterations in white matter integrity, including reduced myelination, axonal degeneration,
and changes in fiber density and orientation [114]. Anterior regions of the brain have been shown
to exhibit the most significant structural deficiency in terms of white matter tracts [115].

Gray matter changes

• Gray Matter Volume Reduction: ageing is associated with a gradual decline in gray matter vol-
ume, particularly in regions involved in higher cognitive functions, such as the frontal and parietal
cortices, as well as the insula and hippocampus [110, 6, 111, 7]. This reduction is thought to re-
flect neuronal loss, synaptic pruning, and reductions in dendritic arborization.

• Cortical Thinning: Age-related cortical thinning is observed in various brain regions, including
the prefrontal and posterior cortices. While most studies show relatively stable cortical thickness
in the visual cortex, the calcarine cortex, located near the primary visual cortex, has been found to
display age-related atrophy [4, 110]. This thinning may be related to neuronal atrophy, reductions
in synaptic connections, and changes in dendritic morphology.

Connectome

The brain’s structural organisation can be represented as a graph, often called the connectome, where
the edges correspond to white matter tracts connecting different brain regions. The thickness of these
tracts determines the weight of the edges in the graph.

20



Certain brain regions, such as the superior-frontal cortex, orbitofrontal cortex, anterior cingulate,
lateral occipital cortex, and medial cortex, are less flexible and less susceptible to age-related changes.
These regions are part of modules that span both hemispheres. It is important to note that the ageing
process involves a shrinking corpus callosum, which leads to a decline in interhemispheric connections
and affects the number of modules spanning across hemispheres [116]. On the other hand, brain regions
with high nodal flexibility undergo significant changes over time. These regions include the temporal
regions, motor and sensory areas, parietal lobe, and posterior cingulate. The participation coefficients
of these regions show positive correlations with age, indicating increased integration within the network
during ageing. Conversely, the parietal cortex becomes less integrated with age, as reflected by its
negative correlation with the participation coefficient. These findings help explain bilateral activations
in the parietal regions and changes in the posterior cingulate cortex observed in ageing [117].

Previous research has suggested that changes in frontal-striatal circuits are associated with declines
in memory and executive function [12]. Differences in diffusion tensor imaging (DTI) measures of the
anterior white matter have been observed between older adults with declining memory performance
and those with intact memory functions. Additionally, the lateral occipital cortex exhibits low flexi-
bility and participation coefficient values unrelated to age [8]. When examined at a global scale, the
connectome reveals a complex network. The brain tends to cluster regions that require simultaneous
activation while maintaining efficient information flow through dynamically changing ”hubs”[13, 118].
This reflects a balance between optimizing information flow efficiency and minimizing wiring costs.
The structural brain network exhibits characteristics of both segregation and integration, indicative of a
modular organization [70]. The modularity of younger and older age groups tends to be higher than that
of middle-aged groups [9]. Modularity calculation considers the number of uncovered clusters and the
weights of connections (white matter tract thickness) between regions. During development, the brain
exhibits more clusters with substantial integration among them, leading to high modularity. In adult-
hood, the brain becomes more segregated into functionally distinct, efficiently integrated clusters. In old
age, structural deterioration leads to stronger within-module connections, resulting in higher modularity
due to frequently traversed pathways [9].

3.2 Functional changes with age

The previous chapter discussed various approaches to capture the functional activity of the brain.
Among them, functional magnetic resonance imaging (fMRI) is a commonly used and reliable method.
It captures the signals related to changes in blood oxygen levels in different brain regions, known as the
Blood-Oxygen-Level-Dependent (BOLD) signals. As the flow of oxygenated blood is influenced by the
underlying structural connections formed by white matter tracts, the functional brain revealed through
fMRI is expected to exhibit similarities to the connectome [119]. Connectivity analysis is a powerful tool
to study age-related changes. It involves examining the functional connectivity between different brain
regions or networks. This can be done using various methods, such as seed-based correlation analysis,
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independent component analysis (ICA), or graph theory-based network analysis [50, 120, 70]. Age-
related changes in connectivity strength, network topology, or network efficiency can provide insights
into functional brain changes with ageing. A few key findings related to the changes in connectivity
analysis:

1. Decreased intra-network connectivity: Several studies have shown a decline in functional con-
nectivity within specific networks such as the DMN, executive control network (ECN), and senso-
rimotor network (SMN) with increasing age. This decrease in intra-network connectivity suggests
a loss of integration and coordination within these networks [121].

2. Increased inter-network connectivity: On the other hand, there is evidence of increased func-
tional connectivity between different networks. Older adults tend to exhibit greater coupling
between the DMN and ECN, suggesting a compensatory mechanism to maintain cognitive per-
formance [122].

3. Altered network dynamics: Age-related changes in connectivity analysis also include alter-
ations in network dynamics. Older adults may show reduced flexibility and adaptability of brain
networks, leading to a more rigid and less adaptive functional connectivity profile [121, 122, 123].

4. Regional-specific connectivity changes: Specific brain regions may exhibit age-related changes
in connectivity. For example, frontal regions often show increased connectivity with other brain
regions, which may indicate compensatory mechanisms [124, 125].

Specifically, the changes in functional networks associated with ageing can be summarized as fol-
lows:

1. Decreased Default Mode Network (DMN) Connectivity: ageing is associated with reduced
functional connectivity within the DMN, a network of brain regions involved in self-referential
thinking and mind-wandering. This decline in DMN connectivity may contribute to age-related
cognitive decline and disrupted introspective processes [126, 127, 121].

2. Increased Frontal Activation: Older adults often exhibit increased activation in frontal brain
regions during cognitive tasks. This frontal overactivation may reflect compensatory mechanisms
to maintain cognitive performance despite age-related changes in other brain regions [128, 112,
121].

3. Reduced Ventral Visual and Sensory Activation: There is growing evidence that ageing is
associated with decreased neural specificity and activation in ventral visual and sensory cortex.
Despite the preserved volume, older adults show diminished activation and less neural specificity
in regions such as the fusiform face area, parahippocampal place area, and lateral occipital area,
which are specialized for face recognition, object categorization, and letter processing compared
to young adults. These regions are [11, 129, 130, 125, 131].
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Figure 3.1: Surface plots of RSNs - Functional Networks uncovered in the resting-state brain. A, Default

mode network. B, Somatomotor network. C, Visual network. D, Language network. E, Dorsal attention

network. F, ventral attention network. G, Frontoparietal control network. Figure adapted from Lee et

al. (2013) [50].
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4. Altered Salience Network Function: The salience network, involved in detecting and switching
attention, undergoes functional changes with age. Older adults may exhibit increased salience net-
work activation during task performance, potentially reflecting compensatory efforts to maintain
attentional control and task performance [132].

5. Impaired Fronto-Parietal Network Function: The frontoparietal network, responsible for ex-
ecutive functions, shows altered activation patterns in older adults. Age-related decline in this net-
work’s function may contribute to deficits in working memory, cognitive control, and attentional
processes. An illustrative example is observed in the hippocampal and parahippocampal regions,
where volumetric shrinkage is typically associated with dementia. However, studies in the lit-
erature suggest that compensatory mechanisms, such as bilateral frontal overactivation, initially
attempt to offset the decline in hippocampal activation. However, ver time, these compensatory
mechanisms may reach a pathological limit, beyond which the trade-off between compensation
and functional decline is no longer effective. [12, 133, 11, 14, 134, 15, 135, 136].

3.3 Behavioural and cognitive changes with age

As individuals age, cognitive abilities tend to undergo changes that can vary across different domains.
While some cognitive functions may decline, others may remain stable or even show improvements.
Here are some specific changes observed in brain cognition with age:

1. Processing Speed: One of the most consistent changes observed is a decline in processing speed,
which refers to the ability to quickly perceive and respond to information. This decline is at-
tributed to various factors, including changes in neural processing, reduced efficiency in informa-
tion transmission, and alterations in brain connectivity. [23, 10, 24, 25]

2. Working Memory: Working memory involves the temporary storage and manipulation of in-
formation. While some aspects of working memory may decline with age, such as the ability to
maintain multiple items simultaneously, other aspects, like the ability to use strategies or chunk
information, may remain relatively stable [26].

3. Episodic Memory: Episodic memory refers to the ability to recall specific events from the past.
This ability tends to decline with age, particularly in tasks involving free recall. However, older
adults can often compensate for episodic memory decline through the use of memory strategies
or by relying on semantic memory [27].

4. Semantic Memory: Semantic memory encompasses general knowledge about the world, includ-
ing facts, concepts, and vocabulary. This type of memory tends to remain relatively stable or even
improve with age, as it is based on accumulated knowledge and experiences [28].

However, factors such as education, lifestyle, and genetics can influence the trajectory of cognitive
change in older adults.

24



To identify and understand the aspects of cognition mentioned earlier, various assessment methods
and tests can be employed. These assessments are designed to measure different cognitive functions and
provide insights into an individual’s cognitive abilities. Here are a few commonly used methods:

Neuropsychological Tests: These tests assess different cognitive domains such as processing speed,
working memory, attention, and episodic memory. Examples include the Trail Making Test, Digit Span
Test, Stroop Test, and the Rey Auditory Verbal Learning Test. These tests typically involve tasks that
measure specific cognitive processes and provide quantitative measures of performance [137, 138].

Cognitive Screening Tools: Screening tools like the Mini-Mental State Examination (MMSE) and
the Montreal Cognitive Assessment (MoCA) are brief assessments that provide a snapshot of overall
cognitive functioning. These tools cover multiple cognitive domains and are useful for initial screening
or identifying potential cognitive impairments [138].

Longitudinal Studies: Longitudinal studies track individuals over an extended period, often years,
and repeatedly measure their cognitive abilities. By examining changes in cognitive performance over
time, these studies provide valuable insights into the ageing process and the trajectory of cognitive
decline or stability [133, 56].

Regarding intelligence, two key concepts are often discussed in relation to cognition: crystallized
intelligence and fluid intelligence.

• Fluid Intelligence: Fluid intelligence refers to the capacity to think logically, solve novel prob-
lems, and adapt to new situations. It involves the ability to reason, identify patterns, and draw
inferences without relying heavily on prior knowledge or experience. Fluid intelligence is con-
sidered to be independent of specific knowledge domainqs and is often associated with cognitive
processes such as working memory, abstract reasoning, and mental flexibility. It tends to peak in
early adulthood and gradually declines with age.

• Crystallized Intelligence: Crystallized intelligence, on the other hand, refers to the accumula-
tion of knowledge, skills, and information acquired through experience and education. It involves
the application of previously acquired knowledge, language proficiency, and domain-specific ex-
pertise. Crystallized intelligence is closely related to long-term memory and is influenced by
cultural and educational factors. It tends to increase throughout adulthood as individuals gain
more knowledge and experience.

Two commonly used tasks to characterize these two different aspects Benton’s face recognition task
and Cattell’s puzzle task.

3.4 Theories of ageing

People generally function remarkably well even into advanced old age, and do so even in the
presence of a great deal of pathology as discovered at autopsy (T. W. Mitchell et al. 2002).
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Figure 3.2: Figure depicting the changes in various cognitive aspects throughout lifespan. Accrued

knowledge, like vocabulary, is resilient to ageing while cognitive processing, long-term memory and

working memory show a decline with ageing. Figure adapted from Park et al. (2002)[139].

The puzzle for cognitive neuroscientists is not so much in explaining age-related decline,
but rather in understanding the high level of cognitive success that can be maintained by
older adults in the face of such significant neurobiological change

[10]. Various theories of ageing have been proposed to account for the maintenance of cognitive
performance inspite of a visible decline in the structural architecture.

Compensation and Dedifferentiation

In the ageing human brain, overactivation, characterized by a relative increase in activation com-
pared to younger individuals, is a common phenomenon observed in various brain regions. This over-
activation is believed to reflect a compensatory mechanism aimed at maintaining cognitive performance
in older individuals. Additionally, the dedifferentiation theory proposes that with age, there is an in-
crease in functional similarity across brain regions, resulting in a diminished distinctiveness of neural
responses[16, 20, 11, 140, 141].

Posterior-Anterior Shift in ageing - PASA

The PASA (posterior-anterior shift with age) theory posits that there is a decline in activation in
occipitotemporal regions and a corresponding increase in activation in frontal regions among older in-
dividuals. This theory suggests a shift in neural activity patterns with age, with a decrease in occipital
activity and an increase in prefrontal activity. The HAROLD (hemispheric asymmetry reduction in
older adults) theory provides a more detailed explanation for the increased prefrontal activation in older
adults [15, 142].
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Furthermore, older adults exhibit reduced occipital activity but enhanced prefrontal activity, which
is positively associated with cognitive performance and negatively correlated with occipital activity [15,
17]. This pattern of brain activation aligns with the CRUNCH (compensation-related utilization of
neural circuits hypothesis) theory [143]. The PASA pattern is considered to be a genuine ageing phe-
nomenon and supports the compensation account, which suggests that increased prefrontal activation
compensates for deficits in occipital regions [15]. However, while the PASA theory offers an alternative
perspective on age-related brain activation changes, its limitations include oversimplification, lack of
specificity, limited explanatory power, and inconsistencies in empirical findings.

Hemispheric Asymmetry Reduction in Older Adults - HAROLD

The HAROLD theory suggests that compensatory or dedifferentiation processes reduce hemispheric
asymmetry in the prefrontal cortex among older individuals compared to younger individuals. This the-
ory explains the increased symmetry of activation observed across hemispheres in older adults. Specifi-
cally, older adults exhibit additional activation in the opposite hemisphere, particularly in the prefrontal
cortex, compared to younger adults [128]. While HAROLD theory provides valuable insights, it does
not fully account for all aspects of age-related changes in brain activation patterns.

One limitation is that the theory focuses primarily on the prefrontal cortex and does not consider
other brain regions or cognitive functions. Additionally, some studies have found mixed results and
inconsistencies in hemispheric activation patterns among older adults, suggesting that the theory may
not apply universally [144]. Furthermore, the HAROLD theory does not explain the underlying mecha-
nisms driving compensatory or dedifferentiation processes in older individuals. It does not address the
specific factors or neural processes that lead to the observed changes in activation patterns. Overall, the
HAROLD theory partially explains age-related changes in hemispheric activation.

Compensation-Related Utilization of Neural Circuits Hypothesis - CRUNCH

The CRUNCH (compensation-related utilization of neural circuits hypothesis) theory proposes an
explanation for the observed overactivation in the ageing brain, suggesting that it is primarily a compen-
satory mechanism. This theory argues that the overactivation seen in regions of the ageing brain is not a
result of disease or a significant deviation from what is expected, as these regions also show activation
in the young brain. According to the theory, when the task demand is low, the overactivation observed in
specific regions of the older age group is primarily compensatory. This is supported by the fact that the
performance levels between the young and old age groups remain similar under these conditions [145].
However, beyond a certain level of task demand, the older age groups experience a decline in perfor-
mance. This decline is attributed to a lack of available resources for activation, indicating that the brain
reaches a ”resource ceiling” in older age that hampers further activation of regions.

The compensation-related utilization of neural circuits hypothesis focuses on the trade-off between
the resources available for recruitment and cognitive performance. It suggests that in older age, the
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brain reaches a ”resource ceiling” that hinders further activation of regions, leading to a decline in
performance [145].

While the CRUNCH theory provides valuable insights, it may not fully address certain aspects re-
lated to the mechanisms underlying resource limitations and the extent to which they contribute to
performance decline in older adults.

Scaffolding theory of ageing and Cognition - STAC

The STAC theory, which stands for Scaffolding Theory of ageing and Cognition, presents a frame-
work to explain cognitive performance in ageing. According to this theory, scaffolding serves as a
secondary circuitry, similar to what is observed in the early stages of skill learning, by forming new
connections, strengthening relevant existing connections, and pruning redundant pathways [10]. It is
a lifelong process, not limited to older ages alone. Certain brain regions that experience age-related
decline, such as the hippocampus and ventral visual cortex, may recruit resources from the prefrontal
cortex as part of the scaffolding mechanism. Scaffolding networks are typically activated in response
to challenges, whether extrinsic (such as higher task demands) or intrinsic (such as transient effects like
lack of sleep or more permanent ones like ageing).

Although scaffolded networks are less efficient, relying solely on declining honed networks in old
age would lead to poorer performance. Like the CRUNCH theory, as the brain ages, the need for
scaffolding becomes greater than the extent of reorganization and plasticity. Additionally, pathology
disrupts the reparative process due to cellular health decline, which limits the ability of regions to en-
gage in scaffolding. This, combined with the unique challenges introduced by diseases, eventually
results in a collapse of the secondary compensatory network. Factors that promote scaffolding include
genetic susceptibility to ageing, higher levels of physical fitness, cognitive stimulation, and other ac-
tivities that enhance neurotrophic factors and serotonin [10, 143]. However, its limitations include the
lack of mechanistic specificity, variability in scaffolding effects, limited consideration of other factors,
generalizability, and reliance on cross-sectional evidence.

3.5 Challenges in current methodologies

The challenges faced in the field of ageing neuroscience include methodological variability, complex
interplay of factors, heterogeneity of ageing, and the need for longitudinal studies. To elaborate further,
the following are some major challenges faced.

• Methodological variability: There is a lack of standardization in the methods used to study ageing
and the brain. Different studies employ different techniques, measures, and study designs, making
it challenging to compare findings across studies and establish consistent conclusions [29, 30].

• Complex interplay of factors: ageing is a multifaceted process influenced by various factors, in-
cluding genetic, environmental, lifestyle, and social factors. Untangling the complex interactions
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and understanding the relative contributions of these factors to age-related changes in the brain
poses a significant challenge [10].

• Heterogeneity of ageing and individual differences: ageing is a highly heterogeneous process,
with considerable individual differences in cognitive abilities, brain structure, and function. This
heterogeneity poses challenges for generalizing findings across older adults and understanding
the underlying mechanisms [123, 146]

• Lack of longitudinal studies: Many studies in ageing neuroscience are cross-sectional, providing
only snapshots of brain changes at specific time points. Longitudinal studies that track individ-
uals over time are necessary to understand the trajectory of brain changes and establish causal
relationships [33].

To summarize, the chapter presents a comprehensive synthesis of the literature on age-related changes
in brain structure, function, and cognition, offering insights into the various theories proposed to explain
these changes. It underscores the importance of interdisciplinary research in unraveling the intricate
processes underlying brain ageing and highlights the need for further investigations to deepen our un-
derstanding of the ageing brain and its implications for cognitive function. In the next chapter, we aim
to bridge the gap between the two types of measures - static and dynamic and intuitively understand
the differences in the functional organization in young and old age groups. We use machine learning in
addition to graph network analysis to identify networks and regions that characterize healthy ageing.
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Chapter 4

Characterizing the Dynamic Reorganization in Healthy Ageing -

Young vs Old 1

In the previous chapter, we saw how the brain networks undergo various topological and functional
alterations during healthy ageing. Previous studies have shown that the dedifferentiation of the func-
tional modules could be one of the hallmarks of large-scale brain networks and alterations through the
lifespan. This modular organization and alterations may be critically linked to a variety of neurodegen-
erative disorders and cognitive deficits encountered during ageing. In spite of accumulating evidence
based on tracking static functional connectivity (FC) and modularity in characterizing dedifferentiation
associated with ageing, there is a gap in understanding the brain dynamics of modular segregation and
integration through the lifespan. Using the Cam-CAN dataset (young: 18-44, mean 32 years, old: 65-
88, mean 75 years), we characterize the modular reorganization using dynamic measures like flexibility,
to find characteristic nodes that make up the stable core and flexible periphery in the young and old age
groups. In this chapter, we hypothesize that the nodes that exhibit higher flexibility in the older age
groups will be negatively correlated with modularity since these nodes ‘compensate’ for the functional
integration while ensuring that the segregation is efficient. Our results demonstrate that the regions from
the Default Mode network (DMN) show a negative correlation with modularity in the old age groups.
Further, nodes from Limbic, SensoriMotor (SMN) and Salience networks show a positive correlation
with modularity. These networks that are responsible for higher-order cognitive functions, e.g., decision
making, attentional control, cognitive flexibility, are found to make up a stable core as evidenced by
their low flexibility scores. We also trained various classifiers using node flexibility scores as features
for the binary (young vs old) classification task. Support Vector Machine (SVM) with Gaussian kernel
trained on a reduced-dimensional feature set gave the best classification results. The features (nodes)
that are found to be important for classification concur with those identified through the data-driven
network measures based analysis.

1As published in 2022 International Joint Conference on Neural Networks (IJCNN) [147]
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4.1 Introduction

The human brain is dynamic and undergoes changes throughout the lifespan. New connections are
formed between anatomical regions, frequently used pathways are strengthened and old, scarcely used
pathways are forgotten [148]. The connections between regions usually form clusters called modules /
communities [149]. Biologically, the connections between regions tend to minimize the wiring costs –
hence as one moves from early ages (7-18) to young- middle ages (19-60), there are fewer long range
connections and more short range connections [18, 150, 151]. This is evidence of a modular behaviour
in the developed brain where there is structural segregation into modules with high within-module con-
nections and few integrative links that are responsible for the information flow between modules [80].
In contrast, in the older ages (> 60), there is an onset of structural decline, hence there are fewer
short range connections as well. However, the cognitive performance continues to stay stable. Many
theories have tried to explain the behaviour of the functional brain that upholds healthy and normal cog-
nition [148, 20, 140].
Representing the brain connections as a network can give us insight into the whole-brain organiza-
tion through a data-driven analysis of the network. Graph theory and related measures like modularity
are often used to characterize the organization of the brain on multiple scales (nodal, meso-scale and
global/whole-brain) [61, 152, 148, 153].

Modularity has been shown to follow a U-shaped trend as a function of age, in the sense that the
trend of modularity is higher in the younger and older brains as compared to that of the middle age [18,
150]. Further, individuals who have higher modularity have also shown to perform better in lower-order
cognitive tasks while individuals who have a lower modularity have shown to perform better in higher
order cognitive tasks [154, 155]. Flexibility, a node-level measure which captures the dynamic changes
in the community assignments across time windows, has also similarly been shown to be relate with
cognitive performance. Higher flexibility has been observed in individuals who can perform better in
higher order cognitive tasks [156, 157]. It has also been used as a biomarker to characterize diseases
like autism [158, 21, 159]

Work done to characterize network topology have mainly considered static measures and dynamic
measures individually. There has not been much literature that compares static (modularity) and dy-
namic (flexibility) measures of the topological reorganization together to characterize healthy age-
ing [158, 160]. Here, we compare modularity and flexibility which are both measures of network
reorganization. In this study, we hypothesize that the networks that exhibit lower flexibility in the
older age groups will be positively correlated with modularity since these nodes maintain a stable core
as measured by modularity. Networks that exhibit higher flexibility should be negatively correlated with
modularity since they make up the peripheral regions of the dynamic core that uphold integration of
information and higher level functions [161]. We observed an overlap of features identified through
classification models with data-driven methods.
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4.2 Materials and Methods

4.2.1 Participants

The data was collected as part of stage 2 of the Cambridge Centre for Ageing and Neuroscience
(Cam-CAN) project (available at http://www.mrc-cbu.cam.ac.uk/datasets/camcan)[52]. The Cam-CAN
datset is a large-scale multimodal, cross-sectional study. The database includes raw and pre-processed
structural magnetic resonance imaging (MRI), resting state and tasks-based activations using functional
MRI (fMRI) and Magnetoencephalogram (MEG), behavioural scores, demographic and neuropsycho-
logical data. Stage 1 consisted of 3000 participants of which a subset of approximately 700 participants
were selected. The selection criteria was based on cognitively health (MMSE score > 25), no past or
current treatment for drug abuse or usage. The study was in compliance with the Helsinki Declaration.
It was approved by the Cambridgeshire 2 Research Ethics Committee. The participants were grouped
into young and old age groups (young: 18-44, mean 32 years, 200 participants, old: 65-88, mean 75
years, 223 participants).

4.2.2 Data acquisition and preprocessing

The fMRI data was collected at Medical Research Council Cognition and Brain Sciences Unit, on a
3T Siemens TIM Trio scanner with a 32-channel head coil. The eyes-closed resting state fMRI data was
acquired using Echo-Planar Imaging (EPI) sequence. The following were the parameters: TR = 1970
ms, TE = 30 ms; voxel size = 3.0 × 3.0 × 3.7 mm; flip angle = 78°; acquisition time = 8 min 40 s, total
number of volumes = 261; 32 axial slices per volume (slice thickness 3.7mm, interslice gap of 20%)
acquired in descending order.
Pre-processed data was provided by Cam-CAN research consortium. Anatomical Automatic Labelling
atlas (AAL) (toolbox available at http://www.gin.cnrs.fr/tools/aal) was used for parcellating the brain
into 116 regions whose mean BOLD timeseries signals were calculated [53].

4.2.3 Modeling the functional connectivity

The brain can be represented as a graph where the regions of interest (ROIs) constitute nodes and
the edges represent the similarity of the BOLD activation between the nodes. In this study, we used
Pearson’s correlation to measure the strength of functional connectivity between regions.

4.2.3.1 Static Functional Connectivity

A straightforward and effective way to represent the functional coupling of the nodes (ROIs) is to
consider the average Pearson’s correlation of the fluctuations of the BOLD signal across the scan time.
This method allows us to observe the meso-scale architecture of the steady state brain organization
pattern averaged over a long period of time(scan time).
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4.2.3.2 Dynamic Functional Connectivity

While the static FC gives us insight into the architecture of the networks that remain stable over time,
the non-trivial dynamics are hidden [63, 64]. In the dynamic functional connectivity (dFC) analysis in
this paper, we used a tapered sliding window approach and represented the entire time-series in windows
of 44 seconds based on the strategies followed in [68, 69].

4.2.4 Network measures

4.2.4.1 Modularity

Modularity is a measure of the extent of segregation and integration between different communities
in a graph. Modular communities which have dense within-module connections and sparse between-
module connections, can be detected by various algorithms. These algorithms optimize the partitioning
such that the detected communities in the graph have significantly denser intra-community edges and
sparser inter-community edges when compared to a null model with the same edge distribution but
randomly assigned edges. The quality of the partitioning can be quantified by a quality function also
known as the modularity score, Q, that is calculated by equation 4.1 [76, 77, 78, 79, 80, 81].

Q =
1

2µ

∑
ij

[Aij − Pij ]δ(ci, cj)

µ =
1

2

∑
ij

Aij

(4.1)

where Aij is the adjacency graph with correlations between regions i and j Pij is the correlation in the
null model, ci is the community assigned to node i, and δ(ci, cj) is 1 if nodes i and j belong to the
same community, else it is 0. The Newman-Girvan model was considered as the null model [79]. In
the current study, communities were detected using the Louvain algorithm [76] as implemented in the
Brain Connectivity Toolbox [70]. Since the community detection algorithm is stochastic, the modularity
score for each participant was calculated as the average over 1000 runs.

4.2.4.2 Multilayer Modularity Maximization Algorithm

Since the Louvain community detection is stochastic in nature, a generalized Louvain algorithm that
maintains the homogeneity of the communities detected across different correlation matrices is used
to detect communities while accounting for homogeneity [82]. Further, adjusting the scale and layer
parameter account for the size of the detected community (finer vs coarser) and homogeneity maintained
(nodes being treated as similar or dissimilar), respectively [83, 81]. The algorithm optimizes for the
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following modular-partition quality.

Q =
1

2µ

∑
ijlr

((Aijl − γl.Pijl)δlr + δ(ci, cj).ωjlr) δ(gil, gjr)

µ =
1

2

∑
ij

Aij

(4.2)

where i, j represent nodes and l, r represent different layers. Aijl is the adjacency graph with corre-
lations between regions i and j in layer l, Pijl is the correlation in the null model in layer l, ci is the
community assigned to node i, δ(ci, cj) is 1 if ci = cj , else it is 0, gil is the community assignment of
node i in layer l, δ(gil, gjr) is 1 if the community gil = gjr, else 0, and δl, r is 1 if l = r else 0. The
scale and layer parameters were γl and ωjlr. The Newman-Girvan model was considered as the null
model [79]. The adjacency matrix used as input is a supra-adjacency matrix with the layers as the diag-
onal entries. Each layer corresponds to a temporal window. The multi-layer and multi-scale parameter
was selected based on the strategies mentioned in previous literature [81]. The multi-layer parameter
was set to 1 hence the nodes are treated homogeneously across the layers. Since the modularity algo-
rithm is stochastic in nature, we performed 1000 runs. The network metrics for each participant were
calculated as the average over these 1000 runs.

4.2.4.3 Flexibility

Flexibility is a measure that captures the community reassignment dynamics across temporal win-
dows at a nodal level [85]. The output of the multilayer maximization algorithm is a graph, G = N×T ,
where N is the number of nodes and T is the number of layers (windows). Flexibility for node i is then
calculated as,

Fi =
m

T − 1
(4.3)

where, m is the number of times the node has changed its community affiliation and T is the number
of time steps (time windows). Nodes with high and low flexibility scores were computed as the top
and bottom 33 percentile of all the flexibility scores. Further, we calculated the network-level flexibility
scores by averaging the flexibility scores of individual nodes composing the large scale intrinsic pre-
defined resting state networks [86]. High and low flexibility networks are calculated by averaging
the flexibility scores of the constituent nodes showing high and low flexibility behaviour respectively.
Similarly, global flexibility was calculated as average over all the nodes per participant.

4.2.5 Statistical Analysis

4.2.5.1 Age effects on flexibility

We retained nodes that showed flexibility changes across age for further analysis. This set of nodes
were further considered for age related comparisons. Further, using a one-way ANOVA, the network-
level flexibility scores were compared across age groups to check for statistically significant differences.
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4.2.5.2 Modularity and flexibility relation

Static modularity uncovers communities that remain stable across the entire scan time. Using non-
parametric correlation, the relation between modularity and flexibility was calculated. This was calcu-
lated for flexibility scores at a nodal, network-level and global scale.

4.2.6 Classification

We investigated learning supervised classification models based on the flexibility scores of nodes as
features. Each feature vector represents the flexibility scores of all the participants for the corresponding
node. The aim is to see if such classification models can perform classification of brain age based on the
flexibility scores. Further, we explored distinctive features (nodes) that were identified by the machine
learning model while classifying participants into old or young age group and compare the results with
the insights from the data-driven, graph measures-based analysis described in the previous sections.

4.2.6.1 Feature Selection / Reduction

Two feature reduction/selection procedures were employed. Unsupervised feature reduction us-
ing principal component analysis (PCA) was used. A supervised feature selection using Maximum
Relevance-Minimum Redundancy (MRMR) algorithm was also performed. PCA identified 17 features
that accounted for 95% of the variance. The MRMR algorithm captures the best ‘K’ features that have
maximum relevance with the target variable (here, the class label young vs old) while minimizing the
redundancy with the other features [94, 95]. Classification was done by varying K from 10, 15 and to
20. Beyond 20, the predictor scores of the features calculated by the MRMR algorithm were very low,
as shown in Figure 4.6. The highest classification accuracy was obtained with K = 20.

4.2.6.2 Choice of classifier

Multiple classifiers were used to categorize participants into young and old age groups. SVMs, espe-
cially with non-linear kernel functions, have been shown to be efficient while classifying into different
age groups with various features [162, 163, 164]. This is mainly due to SVMs’ resilience to overfit-
ting [165]. We used baseline models like Logistic Regression, Linear Discriminant Analysis, K-Nearest
Neighbours, and Support Vector Machines (SVM) with linear, quadratic and Gaussian kernels. SVM
with Gaussian kernel yielded the best performance.
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4.3 Results and Discussion

4.3.1 Modularity and Age

Static modularity shows how modular a given functional graph is, i.e., how functionally segregated
the graph is. It measures the whole-brain reorganization over a long time period. A higher network
modularity is indicative of segregation used in lower order tasks while a lower modularity is indicative
of a network-wide integration observed in higher order cognitive tasks [155, 154]. It was observed that
there was a statistically significant increase in modularity in the older age groups as compared to the
younger age groups, shown in Fig. 4.1. This is in line with previous literature [166].

Figure 4.1: Modularity scores of participants across age groups. The difference between the young and

old age groups’ scores shown here is statistically significant (p < 0.05). The mean modularity scores

are indicated by the red line in the box plot while the outliers are indicated by the red ’+’ signs.

4.3.2 Modularity vs Global Flexibility

To represent the brain dynamics, different functional connectivity configurations can be considered
as attractor states. Static modularity measures the depth of the attractor while flexibility measures the
frequency of transitions between the states. Deeper states would hence be more stable, with reduced
flexibility [167, 168, 161]. Following this intuition, flexibility is expected to show a negative correlation
with modularity. This is observed since both the young and old age groups show a negative correlation
with global flexibility [160]. A lower correlation score was observed in the older age group implying
a stronger negative correlation between the two measures (Fig. 4.2). Higher correlation in the younger
age group could be due to the high integration while maintaining high segregation [18, 150]. In the older
age groups, the modularity remains high possibly because of the high connection weights instead of the
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(a) Young age group: ρ = −0.287 (b) Old age group: ρ = −0.361

Figure 4.2: Correlation between static modularity and global flexibility in old and young age groups.

The correlation in the old age group is lower than that in the younger age group, implying a stronger

relation between modularity and global flexibility in the older age groups. Correlations for both age

groups are statistically significant at p < 0.05

sheer number of connections. At the same time, due to dedifferentiation, the flexibility also is expected
to remain high [148, 20, 140].

4.3.3 Modularity vs High/Low Node flexibility

Since a higher flexibility would mean more participation in multiple communities, static modularity
and flexibility are expected to show a negative correlation in a stable network. High and low flexibility
networks are averages of the top and bottom 33 percentile nodes (constituting the respective networks)
based on flexibility scores respectively. In the older age groups, the Visual and Control networks com-
prised the nodes with high flexibility that showed a statistically significant negative correlation with
modularity. Whereas, in the young and old age groups, the Limbic system showed a positive correlation
with modularity when nodes of low and high flexibility scores were considered. This can be seen in
Fig. 4.3 and Fig. 4.4.

4.3.4 Network-level changes across age

Network-wise flexibility was calculated to be the average flexibility of the nodes that constituted the
intrinsic pre-defined resting-state network. When comparing the flexibility scores at the network level
across young and old age groups, as shown in Fig. 4.5, Visual, SensoriMotor (SMN), and Salience-
Ventral Attention (SalVentAttn) networks showed a statistically significant difference. The flexibility of
these networks showed a positive correlation with modularity in both young and older age groups. This
could be indicative of a high segregation while the number of integrative hubs are also high. Further,
when correlated with modularity, the flexibility of Default Mode Network (DMN) showed a negative
correlation with modularity in the older age groups. This indicates that the regions in DMN constituted
a flexible periphery.
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Figure 4.3: Distribution of high network flexibility scores. The network flexibility score was calculated

as the average of the constituent nodes that showed high flexibility scores. There was a significant

difference (p < 0.05) in the flexibility scores of Control and Visual network across age. Further, Control

and Visual network showed a negative correlation with modularity (p < 0.05) in the old age groups,

implying that a higher flexibility in these networks would observe a decrease in modularity. On the other

hand, regions in the Limbic network with high flexibility showed a positive correlation with modularity

(in both young and old age groups) (p < 0.05), implying that nodes belonging to the network contribute

to an increase in modularity inspite of the increase in flexibility.
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Figure 4.4: Distribution of low network flexibility scores. The network flexibility score was calculated as

the average of the constituent nodes that showed low flexibility scores. Salience and Ventral Attention

(SalValAttn), Visual, Control and Limbic networks all showed a significant difference in flexibility

across age groups. In the old age group, Visual and Limbic networks showed a positive correlation

with modularity (p < 0.05), implying that in the old age group these nodes observed a comparatively

higher/lower flexibility value that contributes to an increase/decrease in the modularity . Nodes in the

Control network showed a negative correlation (p < 0.05), where the older age groups observed a

comparatively lower flexibility which would explain the higher modularity. On the other hand, all the

networks showed a positive correlation with modularity in younger age groups (p < 0.05), implying that

an increase/decrease in the flexibility values of the constituent nodes would reflext in the higher/lower

modularity values.
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Figure 4.5: Network-level flexibility comparison across age groups. The SensoriMotor (SMN), Salience

and Attention (Ventral) networks show a significant reduction in the old age group. The star (*) indicates

a significant difference (at p < 0.05) in network flexibility across the age groups. The arrow indicates

a statistically significant correlation of the network with age, and the direction (up/down) indicates the

nature of the correlation (positive/negative), respectively.

4.3.5 Classification

In the current study, features extracted from the network measure ’flexibility’ are considered. The
features selected for classification were selected based on the supervised MRMR algorithm. The fea-
tures that showed the highest 20 predictor scores were selected (Fig. 4.6. Among the classifiers, Support
Vector Machines (SVM) using a Gaussian kernel of scale 3.5 outperformed the other classifiers, as
shown in Table 4.1. This further strengthens the efficiency of SVMs as classifiers used in the neu-
roimaging context [169, 164, 163].The comparison across different SVM kernel functions and features
used in literature is shown in Table 4.2.

4.3.6 Overlap with Network Statistics

The important features detected had a lot of similarities with the characteristic nodes uncovered
in network statistics. Regions that showed high importance from both machine learning models and
network based statistics were primarily from cuneus, parahippocampal, insula, inferior frontal regions
and, posterior and anterior cingulum. More details can be found in Table. 4.3.
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Figure 4.6: The predictor ranks vs predictor scores as calculated by the MRMR algorithm. The x-axis

shows the predictors (nodes/ROIs) sorted by their ranks indicating the ’K’ best features and the y-axis

denotes the predictor score as calculated by the supervised MRMR algorithm [94, 95]. The highest

classification score was obtained with K=20.

4.4 Conclusion

One of the enduring puzzles in cognitive neuroscience is how brain maintains functional stability in
the face of structural decline in the old age. Several attempts have been made at addressing the puzzle
from various perspectives – data-driven analysis using statistical and graph-theoretic measures as well as
whole brain computational models. In this paper, we attempted to address the gap in understanding the
brain dynamics of modular segregation and integration through the lifespan. We used Cam-CAN dataset
investigating ageing related changes from the structural and functional data acquired from participants
with ages ranging from 18 to 88 years. We characterized the modular reorganization using dynamic
measures such as flexibility in order to identify characteristic nodes that make up the stable core and
flexible periphery in the young and old age groups.

The analysis of the graph theoretic measures demonstrate that nodes that exhibit higher flexibility in
the older age group are negatively correlated with modularity and it seems that these nodes are com-
pensating for the functional integration while ensuring that the segregation is efficient. The regions that
exhibited negative correlation with modularity are from the Default Mode network (DMN) in the old age
groups. Regions from Limbic, SensoriMotor (SMN) and Salience networks show a positive correlation
with modularity. It is interesting to note that the identified regions and the corresponding networks are
related to higher-order cognitive functions such as decision making, attentional control, and cognitive
flexibility and these are found to make up a stable core as evidenced by their low flexibility scores.

To complement this data-driven analysis using graph theoretic measures and in order to find inde-
pendent evidence for the relevance of the regions identified, we constructed machine learning models
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Table 4.1: Classifier Models and Accuracy scores

Model name Accuracy

SVM - Gaussian kernel 73.3%

SVM - Linear kernel 66.4%

SVM - Quadratic kernel 71.4%

KNN - Weighted distance 68.3%

Logistic Regression 68.1%

Linear Discriminant 67.6%

Table 4.2: Comparison of features and related performance while using SVM to classify into age groups

Group & Method Features (fts) Accuracy

SVM-non-linear

RBF, [162]

Seed based con-

nectivity, 200 fts

84%

SVM-linear ker-

nel, [164]

Whole brain FC,

62 fts

84%

SVM-Gaussian

kernel

Flexibility of

Nodes, 20 fts

73.3%

for classification of the participants into young and old (binary classification) based on the flexibility
scores as feature vectors for the classifier. Feature reduction with both supervised and unsupervised
methods was performed and the resulting reduced feature set was used to train classifiers. Results show
that Support Vector Machine (SVM) with Gaussian kernel trained yielded the best classification results.
Another redeeming feature of this exercise is that the features (nodes) that are found to be important for
classification also align with those identified through the data-driven network measures based analysis.

We expect that validation with two approaches (data-driven and model-based) to address the same
question offers an important methodological strategy for future investigations. The findings from the
study can help identify the regions that are responsible for the reorganization and maintenance of brain
function in healthy ageing [159].
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Table 4.3: Common features discovered by ML model and Network Statistics

Regions Network

‘Cuneus’ ‘Visual’

‘Cingulum Posterior’ ‘DMN’

‘Cingulum Anterior’ ‘Control’

‘ParaHippocampal’ ‘Limbic’

‘Amygdal’ ‘Limbic’

‘Frontal Superior Orbital’ ‘Limbic’

‘Frontal Inferior Gyrus’ ‘Control; DMN’

‘Cuneus’ ‘Visual’

‘Insula’ ‘SalVentAttn’

‘Hippocampus’ ‘DMN’

‘Cingulum Anterior’ ‘Control’

‘Frontal Inferior Operculum’ ‘SalVentAttn’

43



Chapter 5

Characterizing Age-Related Functional Changes and their Association

with Cognitive Performance: A Graph Theory Approach1

In the previous chapter, we looked at the two ends of the spectrum in healthy ageing. In this chapter,
we would like to tackle the transition of ageing that links the changes in the young age group with the
old age group.

5.1 Introduction

The study of brain networks using network science approaches has gained increasing attention in
recent years. Various network measures have been developed to quantify the topological properties
of brain networks, including modularity, participation coefficient, within-module degree z-score, and
flexibility. These measures have been used to investigate the organization and function of brain networks
across different states and conditions, such as during task performance, resting state, and disease [70,
158].

There has also been growing interest in studying the relationship between the brain’s static and
dynamic network measures. Static network measures are typically computed from the average connec-
tivity matrix across a given period, while dynamic network measures capture the temporal variability
in network organization over time. By integrating static and dynamic measures, it is possible to gain
a more comprehensive understanding of the brain’s functional organization and how it changes over
time [85, 160].

The aim of the study is to investigate the reorganization of brain networks as individuals age, partic-
ularly during the transition from young to middle-aged to older adults. We plan to achieve this goal by
integrating dynamic and static network measures to identify essential brain regions and network prop-
erties that undergo changes with age. By utilizing both dynamic and static network measures, the study
aims to gain a comprehensive understanding of how brain networks evolve over the ageing process. By
doing so, we are able to capture both the stability and flexibility of brain networks and identify specific

1Under Submission

44



brain regions that play important roles in cognitive functions. Ultimately, the study seeks to uncover key
brain regions and network properties that play a significant role in age-related changes in brain connec-
tivity. By identifying these regions and properties, we hope to shed light on the mechanisms underlying
cognitive ageing and potentially discover targets for interventions aimed at supporting healthy brain
ageing.

In this study, we used graph theory and network analysis to investigate changes in the brain’s func-
tional connectivity in relation to ageing. We analyzed resting-state functional MRI data from 637 healthy
adults between the ages of 20 and 89 years and investigated changes in network measures and hub re-
gions.

5.2 Methods

5.2.1 Network measures

For the purpose of this study, both dynamic and static network measures were considered. Static
network measures: Nodal measures like participation coefficient and within-module degree z-score as
well as global measures like modularity are considered.

Modularity refers to the degree of segregation or modular structure within a network. It quanti-
fies how well the nodes of a network can be divided into distinct modules or communities. A higher
modularity value indicates a stronger division into separate modules, whereas a lower modularity value
suggests a more integrated or less modular network structure.

The participation coefficient measures the extent to which a node connects to nodes from other
modules or communities within the network. It assesses the degree of integration of a node with nodes
outside its own module. A higher participation coefficient indicates that a node has connections that ex-
tend beyond its module and is more globally connected, while a lower participation coefficient suggests
that a node is predominantly connected within its own module and has fewer connections with nodes
from other modules.

Within-module degree z-score is a measure that evaluates the connectivity pattern of a node within
its own module relative to the connectivity patterns of nodes in other modules. It compares the degree
of a node to the average degree of nodes within the same module and standardizes it by considering the
variability of degrees across the entire network. A higher within-module degree z-score indicates that a
node has a higher degree of connectivity within its own module compared to other modules.

Dynamic network measures: Flexibility is considered to capture the dynamics of community reas-
signment across different time windows at the nodal level. It quantifies how nodes in a network change
their community or module membership over time. A node with a high flexibility value indicates that it
frequently changes its community or module membership across different time windows or snapshots of
the network.They can act as ”bridges” or ”hubs” between different communities, allowing for efficient
communication and facilitating the integration of information from various sources within the network.
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On the other hand, low flexibility nodes are often referred to as ”specialized” or ”local” nodes, as they
are more focused on interactions within their own community or module.While nodes with low flexibil-
ity may have limited influence on the overall network dynamics, they are important for maintaining the
stability and coherence of their specific communities or modules.

Further details regarding the calculation of these scores are presented in Chapter 2.

5.2.2 Correlation between network measures

A Pearson’s correlation was performed to understand the relationship between the static and dynamic
measures. On a nodal level, this correlation is done between the nodes that show a significant difference
in the graph/network measures across age groups. When averaged across all nodes, flexibility provides
a global estimate of the network’s flexibility. This global value is then correlated with modularity.
To determine the significance of the correlation between these static and dynamic measures, a p-value
threshold of less than 0.05 was used. A p-value below this threshold indicates a statistically significant
correlation, suggesting that there is a meaningful relationship between the static and dynamic measures
being examined.

5.2.3 Calculating the task scores

Detailed analysis of the choice of task scores is presented in Chapter 2. The Benton Test of Facial
Recognition is considered for crystallized intelligence [55]. The total score is based on the number of
correct responses, with a maximum score of 27.

On the other hand, the Cattell Culture Fair, Scale 2 Form A is used to assess fluid intelligence [56, 57].
The total score is based on the number of correct responses, with a maximum score of 46. For regression
purposes, these scores were normalized

5.2.4 Choice of regression model

The dependent variables considered are the normalized task scores (Benton and Cattell task scores)
and global network measures (flexibility, participation coefficient and within-module degree z-score).
Age is considered to be the predictor variable. When fitting the linear model with polynomial terms
ranging from 1 to 10, polynomial regression models of increasing degrees are considered. Each addi-
tional degree allows for more flexibility in capturing nonlinear relationships between the predictor and
the dependent variable. Since higher degrees may capture more intricate patterns in the data but can
also lead to overfitting, we use Akaike Information Criterion (AIC), Mean Squared Error (MSE) and R2
metrics along with Occam’s razor principle to pick the model that best represents the relation between
the independent variable and the predictor.
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5.2.5 Correlation between task scores and network measures

A straightforward Pearson’s correlation is performed to capture the relation between the task scores
(Benton and Cattell tasks) and the network measures. Further, to ensure that this correlation was inde-
pendent of the effect of age,

1. A polynomial regression was performed with age as the independent variable and the individual
task scores and network measures as the dependent variables.

2. The residuals were calculated for both the task scores and network measures. The residuals rep-
resent the remaining variation in the variables after removing the effect of age.

3. The correlation coefficient between the residuals of each task score and the residuals of each
network measure was calculated. This correlation represents the association between the two
variables after accounting for age.

5.3 Results

The initial findings depict the patterns observed in the network metrics throughout the lifespan,
followed by an explanation of the interrelationships between these metrics.

Age effects on the network measures

5.3.1 Modularity changes on age

As age increases, there is a notable rise in global modularity, demonstrating a weak positive Pearson’s
linear correlation of 0.188 (p<0.05). Nevertheless, the quadratic polynomial fit in Figure 5.1 provides
the most accurate representation of the relationship. In both linear and quadratic fits, it becomes evident
that as the brain ages, functional modularity, a measure of segregation, increases accordingly.

5.3.2 Node-level changes in flexibility

For analysis of the flexibility as a measure of the dynamic behaviour of reorganization, only nodes/ROIs
whose flexibility scores exhibited an age effect were considered. Upwards of 50 nodes out of the 116
regions exhibited a significant age effect, indicating that the flexibility scores of these nodes differed
across age groups. Specifically, the younger age group had a higher number of nodes with high flex-
ibility scores, while the older age group had a lower number of nodes with high flexibility scores.
The group average flexibility scores of the nodes that show significant differences across age groups
(p < 0.05 in ANOVA) can be found in A.1. Comparing the subset of 48 nodes showing age effect as
well as significant differences across the three age groups, young and middle age groups had a higher
range of flexibility scores when compared to the old age group, and the significance was calculated using
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(a) A linear fit

(b) A quadratic polynomial fit

Figure 5.1: Modularity vs age where age is the predictor and modularity is the dependent variable. The

95% confidence intervals are plotted for the data points and the predicted values from the linear and

quadratic polynomial fit. The quadratic fit explained more variance (adj-rsquare = 0.037) than the linear

fit (adj-rsquare = 0.033) with the same RMSE score (0.028).
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ANOVA. Nodes belonging to the Default Mode Network and Salience and Ventral Attention Networks
demonstrated greater flexibility in the younger age group. In contrast, the older age group showed the
least flexibility among the three groups. Nonetheless, within the older age group, the nodes in the De-
fault Mode Network had higher flexibility scores than the other nodes (within the age group). The lower
flexibility in the nodes within the Salience and Ventral Attention network in the old age group could be
evidence of a more modular network behaviour.
In the older age groups, the nodes that showed significantly higher flexibility compared to the other age
groups mainly belonged to SensoriMotor Network. These values and comparisons can be seen in A.1.
Further, the flexibilities of nodes that show a significant effect of age can be seen in Fig. A.2. Nodes
with flexibility value > 0.4 are labelled in the figure since they represent the higher end of the flexibility
scores.

5.3.3 Network-level changes in flexibility with age

In the young age group, the visual network has lower flexibility than global flexibility, while the
salience and ventral attention, subcortical, and default mode networks have significantly higher flex-
ibility than global flexibility (p < 0.05).These network-level changes are depicted in Fig. 5.2. The
young and middle age groups showed a similar trend across network flexibility (p< 0.05 in a one-way
ANOVA). However, the flexibility scores of the networks in the middle age group are lower than that
observed in the young age group (p<0.05). However, there is a deviation from this trend in the old age
group. Specifically, the flexibility of the Visual network is observed to increase in the old age group,
while that of the Subcortical and Salience and ventral attention networks show a significant decrease
(p< 0.5 in a one-way ANOVA individually on the respective networks across age groups). It is impor-
tant to note that although there is an increase in the visual network’s flexibility, it is still far lower than
that of the other networks as well as the mean global flexibility.

5.3.4 Participation coefficient changes with age

The participation coefficient is used to assess the degree of integration at the nodal level. Similar
to flexibility, it detects the extent of connection a node has to other networks’ nodes. A majority of
the regions that showed a significant difference, in a one-way ANOVA, across age groups belong to the
Sensorimotor and Visual networks. A detailed list of the regions can be found in A.5.
In fact, all the regions observed in Sensorimotor and Visual networks that showed differences showed
the highest participation coefficient in the old age group. Regions of the Default Mode Network like
the Orbitofrontal region and Temporal regions see a much lower participation coefficient in the old age
group compared to the other age groups. The network-level participation coefficient changes, which is
the average of the participation coeffient of nodes showing age related effect, across age groups can be
observed in 5.3.
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Figure 5.2: Network changes in flexibility scores across age group. The changes across age groups

within each network is significant (p < 0.05). The differences across networks within the same age

group is significant (p < 0.05). While young and middle age groups show a similar decreasing trend

across networks, there is a deviation from this trend observed in old age groups. There is a consistent

increase/decrease toward the global flexibility scores in the flexibility scores of the networks in the older

age groups.
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Figure 5.3: Network average participation coeffient of the young, middle and old age groups. Visual,

SensoriMotor and Default Mode network showed significant difference across age groups (p < 0.05)

.

Capturing similarity of participation scores across age groups
In order to capture the similarity of the participation coefficient pattern across age groups, mutual in-
formation was calculated for young-middle, young-old and middle-old as seen in table 5.3. Further, it
was normalized across each age group in focus to compare. In the young age group, the participation
coefficient showed the most resemblance to the middle age group as compared to the old age group.
This was also seen in the middle age group, where the mutual information captured with the young age
group’s participation coefficient was higher than that with the older age group. In the older age group,
however, the mutual information captured by the young and middle age groups’ participation coefficient
was much lower, with the younger age group having higher mutual information.

5.3.5 Within-module degree z-score (WMD) across age groups

This network measure is calculated as a z-score. Hence, nodes that have a negative score indicate
that they’re unlikely to be in the assigned functional module [70]. To intuitively understand this con-
clusion, the within-module degree of a node is the number of links/edges passing through the node in
question. The edges/links considered in the calculation are from the nodes that belong to the same com-
munity/module as the node in question. Finally, this degree is z-score normalized to obtain the WMD
score. Hence, a node with very low score would have comparatively few links/edges from other nodes
that pass through the node in question.
The results from a one-way ANOVA to identify the nodes that show a significant difference (p < 0.05)
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in the within-module degree z-scores across age groups A.6. Visual and Subcortical networks show an
significant difference across age groups 5.4, where both the absolute values decrease.

Figure 5.4: Network average within-module degree (z-score) of the young, middle and old age groups.

This figure showcases the average within-module degree (z-score) of various networks within the young,

middle, and old age groups. The plot highlights significant differences observed across age groups,

specifically in the visual and subcortical networks (p<0.05).

.

Capturing similarities of within module degree z-scores across age groups
Mutual information was computed for the within-module degree z-scores across age groups. Then for
each of the age group, this MI value was normalized. This can be seen in table 5.4. The normalized MI
values are very low for all pairs of age groups. Since these similarities after L2-normalization are very
low, using within-module degree as a feature for classification would be desirable.

5.3.6 Correlation between dynamic and static network measures

Modularity vs Global Flexibility

A negative correlation between modularity and global flexibility is observed in all age groups. This
is shown in Fig. 4.2. This correlation is statistically significant (p < 0.05). [18, 150]. The modularity
increases as one goes from young to old while flexibility decreases Fig. 5.5.
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(a) Young age group (b) Middle age group

(c) Old age group

Figure 5.5: Modularity vs global flexibility. The young, middle and old age groups show a negative

correlation between flexibility and modularity, as expected. Rho, the correlation between modularity

and global flexibility, is the highest in the case of old age group. The x-axis represents the flexibility

scores and the y-axis represents the modularity values.
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Network flexibility vs Modularity

In the young age groups, Salience and Ventral Attention network as well as the SensoriMotor network
shows a negative correlation with modularity 5.12. In the middle age groups, the Default Mode network
as well as the Salience and Ventral Attention network show a negative correlation between flexibility
and modularity 5.13. However, in the older age groups, there is a participation in the contribution to
the negative correlation observed between global flexibility and modularity. All the networks except
the visual network seem to show a significant negative correlation between the flexibility scores and
modularity (p < 0.05). This can be seen inFig. 5.14.

Network flexibility and participation coefficient

Calculating Pearson’s correlation across all ages involves considering the relationship between net-
work participation coefficient (PC) and flexibility by aggregating these scores from individuals across
the entire age spectrum. This analysis examines the general trend observed when age is treated as a
continuous variable. In this case, the average values of PC and flexibility across nodes within each
resting-state network are used. The findings indicate that the Visual, Sensorimotor (SMN), Subcortical,
and Default Mode Network (DMN) show a weak positive correlation with flexibility. The statistical
significance of this correlation is determined using a significance level of p <0.05 5.6.

On the other hand, calculating Pearson’s correlation within specific age groups (such as young, mid-
dle, and old) involves examining the relationship between PC and flexibility within each age category
separately. In this analysis, the focus is on investigating how the correlation varies within distinct age
groups. The results reveal that the DMN and Visual network exhibit a significantly weak positive cor-
relation between PC and flexibility within the young age group 5.15. The SMN and Visual network
show a weak positive correlation in the middle age group 5.16. In contrast, the DMN, Salience, Ven-
tral Attention, and SMN networks display a weak positive correlation with flexibility in the old age
group 5.17.

These findings emphasize a weak positive relationship between network PC and flexibility, which
holds when considering all ages collectively as well as within individual age groups (highest correlation
< 0.3).

Network flexibility and within-module degree z-score

Calculating Pearson’s correlation across all ages involves examining the relationship between net-
work within-module degree z-score (WMD) and flexibility by considering data from individuals across
the entire age range. Similar to the previous section, this analysis examines the general trend observed
when age is treated as a continuous variable. The average values of WMD and flexibility across nodes
within each resting-state network are used. The results indicate a weak negative correlation between
WMD and flexibility for the Visual, Salience and Ventral Attention Network, Subcortical, and Default
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(a) Correlation value: 0.198 (b) Correlation value: 0.142

(c) Correlation value: 0.149 (d) Correlation value: 0.083

Figure 5.6: Correlation Between Network-Averaged Participation Coefficient and Flexibility Across All

Ages. The plot shows Pearson’s correlation scores between the network-averaged participation coeffi-

cient (PC) and flexibility. Only correlations with p-value<0.05 are presented to account for statistical

significance.
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Mode Network (DMN) 5.7. The statistical significance of this correlation is determined using a signifi-
cance level of p < 0.05.

(a) Correlation value: -0.180 (b) Correlation value: -0.258

(c) Correlation value: -0.203 (d) Correlation value: -0.273

Figure 5.7: Correlation Between Network-Averaged Within-Module Degree z-score and Flexibility

Across All Ages. The plot illustrates the correlation between the network-averaged within-module

degree z-score and flexibility. The within-module degree z-scores were scaled using a linear transfor-

mation to fit between -1 and 1. Only correlations with p-value <0.05 are presented.

Conversely, Pearson’s correlation is calculated within specific age groups (young, middle, and old).
This analysis focuses on understanding how the correlation varies within distinct age groups. The
findings reveal that within the young age group, the Salience and Ventral Attention Network, Subcortical
and Visual network show a significantly weak negative correlation between WMD and flexibility 5.18.
In the middle age group, the DMN, Salience and Ventral Attention Network, Subcortical and Visual
network exhibit a weak negative correlation 5.19. In the old age group, the DMN, Subcortical, Visual,
and Sensorimotor (SMN) networks display a weak negative correlation with flexibility 5.20.
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Overall, these findings suggest a weak negative relationship between network WMD and flexibility
when considering all ages as a continuous variable and within different age groups.

5.3.7 Changes in provincial hubs across age

The table A.9 provides information on the nodes that are considered provincial hubs. These nodes
have high within-module degrees and low participation coefficients, which means they are important
for local connections within their respective modules. The table indicates that the provincial hubs tend
to be located in the SMN, Visual, and Subcortical networks in the young and middle age groups. This
suggests that these networks may constitute the rigid core, as these nodes are more tightly connected
within their respective network and less connected to other brain regions.

The table also provides information on the age-related changes in network connectivity for different
brain regions. For example, in the SMN network, some nodes considered provincial hubs in younger
individuals or middle-aged cease to be so in older individuals. This suggests that the local connectivity
within the SMN network decline in old age. Occipital regions remain provincial hubs across all age
groups. Figure 5.8 shows the age category-wise distribution of the nodes. For example, a greater
percentage of the Young age group in the figure signifies that the provincial hubs show more activity
during the younger ages and have relatively lower activity during older ages. This implies that the Visual
network’s internal connectivity may decrease as individuals age, specifically for the regions crucial for
connecting within the module.

Overall, the hubs reported in table A.9 have a greater impact on integrating information flow within
networks in cognitive tasks and brain functions most prominent within their respective age groups.

5.3.8 Changes in connector hubs across age

According to the table A.8, the regions associated with attention, memory, and visual processing
show changes with age.

In contrast to that observed in provincial hubs in the previous section, most nodes presented in the ta-
ble turn into connector hubs in the older age groups as seen in Figure 5.9. Regions like Frontal-Inferior-
Triangularis (Frontal-Inf-Tri), Middle Temporal gyrus (Temporal-Mid) and Hippocampus remain con-
nector hubs across all age groups. These regions are primarily involved in higher-order processes,
language-related tasks, visual and auditory processing for spatial navigation and memory processing.
From table A.8 and Figure 5.9, the old age group has a higher percentage of connector hubs than the
middle or young age groups, which may suggest that these brain regions are more actively engaged in
integrating information flow across different brain networks in older individuals.
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Figure 5.8: Analysis of Provincial Hubs’ Age Categories. The pie chart depicts the distribution of

provincial hubs based on age categories, revealing the percentage of hubs exhibiting distinct age-related

activity patterns. It showcases hubs that are exclusively active in a single age group, hubs active across

multiple age groups, and hubs active across all three age groups. Generated from A.9

Figure 5.9: Analysis of Connector Hubs’ Age Categories. The pie chart depicts the distribution of

connector hubs based on age categories, revealing the percentage of hubs exhibiting distinct age-related

activity patterns. It showcases hubs that are exclusively active in a single age group, hubs active across

multiple age groups, and hubs active across all three age groups. Generated from A.8
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5.3.9 Hemispherical asymmetry in regions with ageing

There are hemispherical differences observed in the study. For example, in the table for connector
hubs, table A.8, the frontal regions show asymmetry in all age groups. However, more hemispher-
ical symmetry is observed in connector hubs present only in the older age groups. Regions in the
frontal cortex, hippocampus and temporal gyrus however show asymmetry in old age. For example, the
changes in connectivity in the right ’Temporal-Mid-R’ region, which becomes a connector hub in old
age as opposed to ’Temporal-Mid-L’, may reflect compensatory mechanisms in the right hemisphere for
maintaining attentional performance. Similarly, in the table for participation coefficient, table A.9, the
regions that are provincial hubs in the older age groups display this symmetry in all the corresponding
age groups. These hemispherical differences suggest that age-related changes in brain connectivity may
not be uniform across the brain but rather differ between the left and right hemispheres for the young
and middle age groups. These differences may reflect the specialization of different brain regions for
specific cognitive functions.

5.3.10 Age-related changes in task-scores

Task scores show a significant (p-value < 0.005) correlation with age. As shown in figure 5.10, Cat-
tell and Benton’s task performance declines with age and displays a rather strong negative correlation.
The Cattell task and age have a Pearson’s correlation value of -0.650, while the Benton task decreases
with age with a strength of -0.452. While a linear fit does capture strong correlations of the task scores
with age, the best-fit model is a quadratic model, as seen in Table 5.2.

5.3.11 Relation between network measures and cognitive performance

The tables A.10, A.12 and A.11 contain the correlations between various network measures (flex-
ibility, within module degree z-score and participation coefficient) and the task scores (Benton and
Cattell). This analysis was done at a node level. There are no strong correlations for both tasks with any
of the task measures. To be precise, the range of correlation for each of the network measures across
both tasks is as follows:

• Participation Coefficient: From -0.218 to 0.270.

• Within-module degree z-score: From -0.164 to 0.197.

• Flexibility: From -0.159 to 0.271.

As shown in the table 5.1, for both tasks, none of the network measures considered on a global level
(flexibility, participation coefficient, within-module degree) showed significant correlations with task
performance, except for a weak positive correlation between flexibility and the Cattell task (r = 0.093,
p < 0.05). As described in Chapter2, the residuals from the regression analysis were plotted to observe
any correlations between the task scores and different network measures after removing the effect of
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(a) Cattell scores vs age

(b) Benton score vs age

Figure 5.10: Scatter plot showing the relationship between Cattell and Benton task scores (y-axis) and

age (x-axis). There is a strong negative correlation between both the task scores and age. The p-value is

highly significant (p < 0.05), suggesting a significant association in both cases.
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Figure 5.11: This plot illustrates the residuals in relation to task performance (Benton and Cattell tasks)

and network measures (Flexibility, Participation Coefficient, and Within-Module degree z-score). The

plot also has the average global value of the network measures.

age. The best-performing regression models are presented in table 5.2. Figure 5.11 are the residual
plots of the tasks vs network measures. From the plot, only Cattell task scores correlate significantly,
albeit weak, with global flexibility.

5.4 Discussion

5.4.1 Modularity vs Global Flexibility

The brain dynamics can be represented according to the theory of attractor states. Attractor states
are the stable states which can be represented as Functional Connectivity configurations. Flexibility
measures the transitions between the attractor states while modularity defines the depth of the attractor
states [167, 168, 161]. Following this intuition, flexibility is expected to show a negative correlation
with modularity. As expected, all the age groups show a negative correlation between modularity and
flexibility, as shown in Fig. 4.2. This correlation is statistically significant (p < 0.05). [18, 150]. It
is theorized that in the older age groups, the modularity remains high because of the high connection
weights instead of the sheer number of connections. At the same time, due to dedifferentiation, other
nodes are expected to participate in more number of functional modules [148, 20, 140].
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(a) Modularity vs Global flexibil-

ity

(b) Modularity vs Salience and

Ventral Attention Network flexi-

bility

(c) Modularity vs SensoriMotor

Network flexibility

Figure 5.12: Correlation between Modularity and Flexibility in Networks Among Young Age Groups.

Networks whose flexibilities show a negative correlation with modularity in Young age groups. The

x-axis represents the flexibility scores and the y-axis represents the modularity values.

5.4.2 Node-level changes in flexibility

Greater than 50 nodes showed a significant age effect when flexibilities were compared across all
ages. The younger age group witnessed a greater number of nodes with high flexibility than the other
age groups. This could be due to the larger integration observed as one is still ’learning’ meaningful
connections and optimizing the segregation-integration balance [170]. On the other hand, the old age
group witnessed a lower number of nodes that exhibit high flexibility scores. This could be evidence
of a small number of nodes being responsible for the integration while maintaining the efficiency of the
segregated modules.
However, when the flexibility scores were compared, younger and middle age groups showed a wider
range of flexibility scores when compared to the old age group A.1. This was observed in nodes that
belong to Default Mode Network and Salience and Ventral Attention Networks. However, in spite of
the age-related decline of Default Mode Network that has been shown in previous literature, the intra-
network connections are expected to be higher in the older age groups. That being said, the flexibility
scores of the nodes comprising the Default Mode Networks were on the higher end relative to the scores
of the other nodes in the old age group[126]. In the salience subsystems, it has been shown that the
ventral salience subsystem shows an increase in connectivity in older age groups [171]. The lower
flexibility in the nodes that belong to the Salience and Ventral Attention network in the old age group
could be evidence for a more modular behaviour of this network.
In the older age groups, the nodes that showed a significantly higher flexibility compared to the other
age groups mainly belonged to SensoriMotor Network. Previous literature has reported an increase in
the intra-network connections observed in the nodes comprising the SensoriMotor Network. In addition,
the integration of sensory information is optimized with age. [172, 22].
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(a) Modularity vs Global Flexibil-

ity

(b) Modularity vs SalVentAttn

Flexibility

(c) Modularity vs DMN Flexibil-

ity

Figure 5.13: Global and Network wise flexibility correlation with modularity in the middle age

group.The x-axis represents the flexibility scores and the y-axis represents the modularity values.

(a) Modularity vs Global Flexibil-

ity

(b) Modularity vs DMN Flexibil-

ity

(c) Modularity vs SalVentAttn

Flexibility

(d) Modularity vs SMN Flexibil-

ity

(e) Modularity vs Subcortical

Flexibility

Figure 5.14: Global and Network wise flexibility correlation with modularity in the old age group.The

x-axis represents the flexibility scores and the y-axis represents the modularity values.
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5.4.3 Network-level changes in flexibility across age

The flexibility of different brain networks changes with age, and this change is not uniform across
all networks 5.2. Specifically, in the young age group, the visual network has lower flexibility compared
to other networks such as the salience and ventral attention, subcortical, and default mode networks
which have significantly higher flexibility than the mean global flexibility. This trend is also observed
in the middle age group, although the overall global flexibility was lower than in the young age group.
However, in the old age group, there was a deviation from this trend and the individual networks tended
to converge towards global flexibility 5.2.

Furthermore, the study found that the flexibility of the visual system increased in the old age group
compared to the other age groups, while the subcortical and salience and ventral attention networks
showed a significant decrease. The decrease in flexibility of the subcortical and salience and ventral
attention networks may suggest a decline in their ability to respond to changes in the environment,
which may contribute to age-related cognitive decline. While the visual network still seems to make
up the rigid core in the older age group, it also appears to be more flexible than the other age groups,
implying a possible overactivation as a part of the compensatory mechanisms [30]. This suggests that
the nodes of the visual network are more likely to co-activate with nodes from other networks, which
still have higher flexibility than the mean global flexibility in the respective group but show a significant
decrease in the old age group.

This is a deviation from the PASA theory that suggests the overactivation of the prefrontal cor-
tex to compensate for the decrease in occipital activations in old age groups compared to young age
groups [15, 173]. However, it is worth noting that the PASA theory focuses on age-related changes in
specific regions rather than in resting-state networks. Hence, the observed increase in flexibility of the
visual system in older adults may indicate a compensatory mechanism that is not captured by the PASA
theory. The finding that the visual network becomes more strongly connected with age is in line with
several previous studies that have reported age-related increases in functional connectivity within visual
regions [174, 175].

5.4.4 Network flexibility vs Modularity

The negative correlation between flexibility and modularity suggests that as brain networks be-
come more flexible, they become less modular, meaning that they are less distinct and more inter-
connected [168, 167]. This may indicate that the brain networks are becoming more integrated and may
be involved in more complex and integrated cognitive processing. Another way to look at it is a neg-
ative correlation with flexibility suggests that as subnetworks/modules become more specialized, they
become less able to adapt to changes in other parts of the brain.

In young and middle-aged adults, networks such as the Salience and Ventral Attention network, De-
fault Mode network and the SensoriMotor network show a negative correlation between flexibility and
modularity (statistically significant correlation), suggesting that these networks may be more special-
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ized and less adaptable (Figures 5.12,5.13. However, in older adults (figure 5.14, there is a more general
trend towards a negative correlation between flexibility and modularity across all networks, suggesting
that ageing may be associated with a decline in the ability of networks to adapt to changes in other parts
of the brain.

(a) Default Mode Network:

Correlation: 0.263

(b) Visual Network:

Correlation: 0.173

Figure 5.15: Correlation between flexibility and participation coefficient at the network level in the

young age group. All correlations shown are statistically significant (p-value < 0.05). The correlation

analysis reveals a weak positive relationship between network-wise flexibility and participation coeffi-

cient across all networks. This suggests that as the participation coefficient increases, indicating a higher

level of integration with other nodes in different networks, the flexibility of the node in community as-

signment also tends to increase. However, the observed correlation is not very strong or consistent,

indicating that other factors may also influence this relationship.

5.4.5 Participation coefficient

The participation coefficient measures how well a node in a network is connected to different mod-
ules or communities within the network. A high participation coefficient indicates that a node is well-
connected to different modules, while a low participation coefficient indicates that a node is primarily
connected to a single module [70].

In this context, the positive correlation between the participation coefficient and flexibility suggests
that regions with a higher participation coefficient have a more flexible connection pattern and can easily
switch between different functional networks 5.6.
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(a) Sensorimotor Network:

Correlation: 0.181

(b) Visual Network:

Correlation: 0.161

Figure 5.16: Correlation between flexibility and participation coefficient at the network level in the

middle age group. All correlations shown are statistically significant (p-value < 0.05). The correlation

analysis reveals a weak positive relationship between network-wise flexibility and participation coeffi-

cient across all networks. This suggests that as the participation coefficient increases, indicating a higher

level of integration with other nodes in different networks, the flexibility of the node in community as-

signment also tends to increase. However, the observed correlation is not very strong or consistent,

indicating that other factors may also influence this relationship.
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(a) Default Mode Network:

Correlation: 0.166

(b) Salience and Ventral Attention

Network:

Correlation: 0.135

(c) Sensorimotor Network:

Correlation: 0.153

Figure 5.17: Correlation between flexibility and participation coefficient at the network level in the old

age group. All correlations shown are statistically significant (p-value < 0.05). The correlation analysis

reveals a weak positive relationship between network-wise flexibility and participation coefficient across

all networks. This suggests that as the participation coefficient increases, indicating a higher level of

integration with other nodes in different networks, the flexibility of the node in community assignment

also tends to increase. However, the observed correlation is not very strong or consistent, indicating that

other factors may also influence this relationship.
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(a) Subcortical Network:

Correlation: -0.243

(b) Salience and Ventral Attention

Network:

Correlation: -0.243

(c) Visual Network:

Correlation: -0.181

Figure 5.18: Network-wise flexibility correlation with within-module degree z-score in the young age

group

The results suggest that the regions within the sensorimotor and visual networks tend to be more flex-
ible and participate more in communication between different brain regions as individuals age, which
may reflect compensatory mechanisms to maintain cognitive function 5.16,5.17.

In contrast, regions within the default mode network, such as the orbitofrontal and temporal regions,
show a lower participation coefficient in older age groups, indicating a decreased ability to integrate
information from other brain regions A.5.

The mutual information analysis provides a measure of how similar the participation coefficient
patterns are across age groups. The observation that younger and middle age groups show higher mutual
information with each other compared to the older age group suggests that the participation coefficient
patterns in older adults are more distinct from those in younger and middle-aged adults[175], table 5.3.

5.4.6 Within-Module z-degree

The within-module degree (WMD) measure captures the degree of interconnectedness of nodes
within their assigned functional module. The WMD score is z-score normalized, and nodes with neg-
ative scores indicate that they are unlikely to belong to the assigned functional module. In the present
study, a high WMD score indicates that a node has many links/edges passing through it from other nodes
within the same functional module.

The WMD measure is negatively correlated with flexibility, which suggests that nodes with high
within-module degree are less flexible in their functional connectivity 5.18,5.7.

The mutual information computed for WMD scores across age groups indicates that the WMD pat-
tern of the young age group is more similar to that of the old age group than the middle age group.
Similarly, the middle age group shows a WMD pattern more similar to the old age group. However, the
similarities observed after normalization are low 5.4.
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(a) Default Mode Network:

Correlation: -0.194

(b) Subcortical Network:

Correlation: -0.148

(c) Salience and Ventral Attention Network:

Correlation: -0.199

(d) Visual Network:

Correlation: -0.318

Figure 5.19: Network-wise flexibility correlation with within-module degree z-score in the middle age

group
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(a) Default Mode Network:

Correlation: -0.297

(b) Subcortical Network:

Correlation: -0.273

(c) Sensorimotor Network:

Correlation: -0.14

(d) Visual Network:

Correlation: -0.221

Figure 5.20: Network-wise flexibility correlation with within-module degree z-score in the old age

group
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5.4.7 Provincial hubs

The number of provincial hubs that decline with age are not uniform across the resting state networks
as seen in table A.9. This suggests that the specialization of brain regions for specific cognitive processes
may change with age, with some regions becoming more specialized (provincial) and others becoming
less specialized.

Across all age groups, the occipital regions remained localized centres, suggesting that these areas
might play a significant role in maintaining visual processing [173]. This observation aligns with previ-
ous studies indicating that older individuals tend to develop compensatory mechanisms in these occipital
regions, depending more on cognitive control to sustain their cognitive performance. Specifically, the
older age group may utilize top-down cognitive control to make up for declines in bottom-up visual
processing [15]. The finding that the SMN network becomes less strongly connected with age is also
consistent with previous research, which has shown age-related declines in motor function and changes
in the functional connectivity of motor-related regions [176, 177].

Moreover, in the provincial hubs of the Visual and SensoriMotor networks, the within-module de-
gree z-scores were positively associated, albeit weak, with cognitive performance, suggesting that the
preservation of these hubs may be important for maintaining cognitive function with age A.14.

5.4.8 Connector Hubs

The study found that the most of the connector hubs were identified in the older age group (Fig-
ure 5.9). Majority of these nodes belonged to the Visual and Subcortical networks. This suggests that
older adults may rely more on visual and attention networks for compensatory mechanisms in cogni-
tive processing. The persistence of connector hubs in the hippocampus, frontal regions, and temporal
regions across all age groups suggests the importance of these areas in maintaining cognitive abilities
throughout the ageing process. The frontal-inferior-triangular region is associated with language-related
tasks and higher-order cognitive processes [178, 179, 180, 181]. The temporal-mid region is involved in
auditory processing and memory functions [182, 183]. The hippocampus plays a crucial role in spatial
navigation and memory processing [184, 185, 186].

The connector hubs however showed a decline in cognitive task performance with increasing partic-
ipation coefficient or within-module degree z-scores for various brain regions within the Salience and
Ventral Attenion as well as the Subcortical networks A.13

Overall, the identification of connector hubs in certain brain regions across all age groups highlights
the critical role of these regions in integrating information across different brain regions and in support-
ing cognitive processes.

5.4.9 Hemispherical asymmetry in activations

Hemispherical asymmetry in the brain has been a topic of interest in neuroscience for several decades.
The left and right hemispheres of the brain are structurally and functionally different, and this lateral-
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ization plays a crucial role in various cognitive processes such as language, spatial awareness, and
emotional processing [187].

Studies have found that language processing is predominantly lateralized to the left hemisphere, with
the left inferior frontal gyrus and left superior temporal gyrus being particularly important. In contrast,
spatial awareness and emotional processing are often lateralized to the right hemisphere [188].

Moreover, hemispherical asymmetry may change with age. For example, some studies have reported
that hemispherical asymmetry in language processing may decrease with age, as older adults tend to
rely more on the right hemisphere to compensate for declines in left hemisphere function. Similarly,
hemispherical asymmetry in emotional processing may also change with age, with some studies sug-
gesting that older adults may show reduced lateralization in emotional processing compared to younger
adults [144]. The study found that the younger and middle-aged groups exhibited asymmetry in the
connector hubs, indicating specialized functions. However, symmetry was observed in the hubs specific
to older age groups, suggesting the involvement of compensatory mechanisms. The reason for select-
ing connector hubs for comparison is that they signify the integration of information across various
networks. A.8,A.9.

5.4.10 Task scores with age

Previous studies have indicated a decline in face recognition with age. Fluid intelligence is believed
to reflect the functioning of the frontoparietal multiple-demand system in constructing mental control
programs for complex activities [189]. The strong negative correlation between task scores and age
aligns with previous literature.

5.4.11 Relation between task scores and network measures of rs-fMRI

1. The lack of strong correlations between task scores and resting-state functional connectivity (FC)
at the node level suggests that the cognitive or behavioural processes assessed by the tasks may
not be directly reflected in the functional connectivity patterns of the resting-state brain. This
finding is consistent with recent research indicating that functional connectivity measures may
not always align closely with specific cognitive functions or task performance [190]. It suggests
that the relationship between task performance and resting-state FC may be more complex and
involve higher-order network properties or distributed brain networks rather than individual nodes.

2. Despite a significant correlation between Cattell scores and global flexibility computed on resting-
state FC, the observed correlation was very weak. Global flexibility measures the ability of a
network to reconfigure its functional connections dynamically. The weak correlation indicates that
Cattell scores explain only a small portion of the variance in global flexibility. This finding aligns
with previous studies highlighting the multifaceted nature of the relationship between cognitive
abilities and brain network dynamics [157, 191, 192].
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3. The continuation of the trend, with weak correlations between task scores and resting-state FC,
even after regressing out age as a factor, suggests that age-related changes in brain function do
not fully account for the observed lack of strong associations. This finding is consistent with
recent literature demonstrating that age-related differences in functional connectivity may not
solely explain the relationship between cognitive performance and resting-state FC [175, 193, 194,
126]. It implies that other factors, such as task specificity, individual differences, or additional
unmeasured variables, may contribute to the weak correlations between task scores and resting-
state FC beyond the influence of age.

In summary, the findings suggest that the relationship between cognitive abilities, task performance,
and brain network dynamics is complex and influenced by multiple factors beyond age and nodal-level
connectivity.

Furthermore, it is important to note that resting state FC explains approximately 70% of the variance
in task-based FC [49]. This finding underscores the substantial influence of intrinsic brain connectivity
on task-related brain activity. The high proportion of variance explained by resting state FC suggests
that the brain’s intrinsic functional architecture serves as a foundational framework upon which task-
specific networks are built. However, it is crucial to recognize that the remaining 30% of the variance
in task-based FC is likely attributed to task demands, cognitive processes, and other factors that are not
captured solely by resting state FC.

5.5 Conclusion

In conclusion, our study aimed to understand the reorganization of brain networks during the ageing
process, specifically examining the transition from young to middle-aged to older adults. Through the
integration of dynamic and static network measures, we identified significant changes in brain connec-
tivity associated with ageing.

Firstly, we observed that certain brain regions undergo changes in connectivity as individuals age.
Notably, we found an increase in modularity with age, indicating a greater degree of functional special-
ization in the ageing brain. In contrast, there was a decrease in flexibility with age, suggesting reduced
adaptability to changing cognitive demands.

Additionally, we investigated the relationship between flexibility and modularity, revealing a negative
correlation in all age groups, with the strongest correlation observed in the young and old age groups.
This finding suggests that as the brain becomes less modular, it becomes more flexible in its organization.
Furthermore, the participation coefficient and within-module degree z-scores, complementary centrality
measures characterizing node diversity and localized degree, indicated that nodes with higher flexibility
scores are more likely to be integrative connector hubs rather than provincial hubs.

Our analysis of regional network measures highlighted significant differences, including decreased
participation coefficient in several frontal and parietal regions, and increased participation coefficient
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Task Measure Correlation

Cattell Flexibility r = 0.093, p<0.05

Cattell Participation coefficient r ≈ 0, p>0.05

Cattell Within-Module Degree (z-score) r = 0.017, p>0.05

Benton Flexibility r = 0.025, p>0.05

Benton Participation coefficient r = 0.028, p>0.05

Benton Within-Module Degree (z-score) r = 0.013, p>0.05

Table 5.1: Partial Correlations between Global Network Measures and Task Performance Scores, Con-

trolling for Age. This table presents the partial correlations between global network measures and task

performance scores for two tasks: Cattell and Benton. The analysis takes age into account as a con-

trolled factor to isolate the relationship between network measures and task performance beyond the

influence of age.

in several frontal and temporal regions. These findings suggest alterations in information integration
across different brain regions with ageing.

Further exploration of hub regions revealed that provincial hubs primarily belonged to the younger
age group, while connector hubs predominantly belonged to the older age group. We also discov-
ered hemispheric differences in network measures, with the right hemisphere exhibiting greater local
efficiency (provincial hubs). This suggests that age-related changes in brain connectivity may not be
uniform across the brain and may differ between the left and right hemispheres.

Regarding cognitive abilities and brain network dynamics, we found the absence of strong correla-
tions between task scores and network measures at the node level, weak correlations between Cattell
scores and global flexibility, and persistence of these findings even after accounting for age. These re-
sults underscore the complexity of the relationship between cognitive abilities, task performance, and
brain network dynamics, indicating that factors beyond age and nodal-level connectivity play significant
roles in shaping their associations.

Overall, our study contributes to a deeper understanding of the reorganization of brain networks dur-
ing ageing. The identified changes in network measures and hub regions may be crucial in explaining
age-related declines in cognitive performance. These findings have potential implications for the devel-
opment of interventions aimed at supporting healthy cognitive ageing by targeting specific brain regions
and network properties. However, further research is needed to elucidate the underlying mechanisms
behind these age-related changes and their impact on cognitive function.
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Regression model MSE R2 AIC

flex ∼age2 0.005 0.080 -1371

PC ∼age 0.012 0.006 -868

WMD ∼age 0.010 0.032 -967

CatNorm ∼age2 0.557 0.446 1220

BenNorm ∼age2 0.778 0.227 1439

Table 5.2: Best fit of Regression Models Based on MSE, R2, and AIC. The table showcases the eval-

uation of multiple regression models using Mean Squared Error (MSE), R-squared (R2), and Akaike

Information Criterion (AIC). The dependent variables examined include flexibility (flex), participation

coefficient (PC), within-module degree z-score (WMD), normalized Cattell task scores (CatNorm), and

normalized Benton task scores (BenNorm). The network measures considered are calculated at the

global scale. The predictor considered is age. The models displayed in the table are selected based on

their lower MSE and AIC values, indicating superior predictive accuracy and goodness of fit.

Group 1 Group 2 MI Normalized-MI

Young’ Young’ 1.651 0.932

Young’ Middle’ 0.591 0.334

Young’ Old’ 0.248 0.140

Middle’ Young’ 0.591 0.362

Middle’ Middle’ 1.502 0.921

Middle’ Old’ 0.236 0.145

Old’ Young’ 0.248 0.173

Old’ Middle’ 0.236 0.164

Old’ Old’ 1.396 0.971

Table 5.3: Mutual Information (MI) and Normalized Mutual Information of Participation Coefficients

Between Age Groups. This table showcases the mutual information (MI) and normalized mutual infor-

mation values of participation coefficients calculated between different age groups. The mutual infor-

mation quantifies the association between Group 1 and Group 2, while the normalized value is computed

relative to the focused group, Group 1. The table offers insights into how participation coefficients vary

and are related across age groups
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Group 1 Group 2 MI Normalized-MI

Young’ Young’ 0.135 1.000

Young’ Middle’ 0.001 0.008

Young’ Old’ 0.002 0.016

Middle’ Young’ 0.001 0.005

Middle’ Middle’ 0.232 0.987

Middle’ Old’ 0.038 0.161

Old’ Young’ 0.002 0.006

Old’ Middle’ 0.038 0.097

Old’ Old’ 0.386 0.995

Table 5.4: Table illustrating the mutual information (MI) and normalized mutual information values of

within-module degree z-score calculated between different age groups. The mutual information repre-

sents the association between Group 1 and Group 2, while the normalized value is calculated across the

focused group, Group 1.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In conclusion, this thesis sought to investigate the brain dynamics and changes in connectivity as-
sociated with ageing. Chapter 4 focused on the comparison between young and old age groups, while
Chapter 5 expanded the analysis to include young, middle, and old age groups, treating age as a contin-
uous variable. By examining both discrete age groups and the continuous nature of ageing, this thesis
provided a comprehensive understanding of how the brain’s functional stability is maintained amidst
structural decline.

In Chapter 4, a data-driven analysis using statistical and graph-theoretic measures was employed
to study modular segregation and integration in the brain. The findings revealed characteristic nodes
that constituted a stable core and flexible periphery in the young and old age groups. Notably, regions
within the Default Mode network (DMN) exhibited a negative correlation with modularity in the old age
group, while regions from the Limbic, SensoriMotor (SMN), and Salience networks showed a positive
correlation. Machine learning models based on flexibility scores further confirmed the relevance of these
regions, aligning with the data-driven network analysis. This integration of data-driven and model-based
approaches provides a promising methodological strategy for future investigations.

Chapter 5 age-related changes in brain connectivity and network properties. It found an increase
in modularity with age, indicating greater functional specialization in the ageing brain, along with a
decrease in flexibility, suggesting reduced adaptability to changing cognitive demands. The negative
correlation between flexibility and modularity across all age groups implies that as the brain becomes
less modular, it becomes more flexible in its organization. Certain brain regions showed significant
alterations in connectivity, with increased participation coefficient in some frontal and temporal regions
and decreased participation coefficient in several frontal and parietal regions. Hemispheric differences
were also observed, with the right hemisphere displaying greater local efficiency (provincial hubs),
suggesting that age-related connectivity changes may vary between hemispheres.

The complexity of the relationship between cognitive abilities, task performance, and brain network
dynamics was highlighted in Chapter 5. The absence of strong correlations between task scores and
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network measures at the nodal level, as well as the weak correlation between Cattell scores and global
flexibility, underscored the multifaceted nature of these associations. Age alone could not account for
the observed dynamics, suggesting the involvement of other factors in shaping the relationship between
cognition and brain network measures.

These findings significantly contribute to our understanding of the reorganization and maintenance of
brain function in healthy ageing. The identified brain regions and their connectivity changes shed light
on the transition from modularity to flexibility in the ageing brain. Moreover, this research highlights
the need for further investigation into the intricate associations between cognitive abilities, task perfor-
mance, and brain network measures. Future studies could explore additional cognitive or behavioral
measures, examine dynamic changes in network connectivity during task performance, or investigate
other potential factors influencing the relationship between cognition and brain network dynamics. By
advancing our understanding of these complex relationships, we can gain insights into the mechanisms
underlying cognitive abilities and the role of brain network dynamics in supporting cognitive function.
Such knowledge may have implications for developing interventions and strategies to enhance cognitive
performance and promote healthy brain ageing.

In conclusion, this thesis has provided valuable insights into the brain dynamics and changes in
connectivity associated with ageing. Through a comprehensive analysis of discrete and continuous age
groups, the findings contribute to our understanding of the reorganization and maintenance of brain
function in healthy ageing. The identified brain regions and their connectivity changes underscore the
transition as the brain ages. Further research is warranted to unravel the underlying mechanisms and
their impact on cognitive function. Ultimately, this knowledge has the potential to inform interventions
and strategies for enhancing cognitive performance and promoting healthy brain ageing.
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Appendix A

Appendix A

Table A.1: Brain Regions with Significant Age-Related Differences in Flexibility Values. The nodes in

this table exhibit notable variations in flexibility scores across different age groups. The columns ’Group

- max’ and ’Group - min’ indicate the age groups with the highest and lowest flexibility values for each

respective brain region. These regions have previously been shown to be significantly influenced by age.

Region Name Young group
mean

Middle
group mean

Old group
mean

Group - max Group - min Network

SFGdor.L 0.360 0.310 0.320 young middle DMN
ORBsup.L 0.430 0.410 0.380 young old DMN
ORBsup.R 0.430 0.420 0.390 young old DMN
IFGoperc.L 0.410 0.380 0.350 young old SalVentAttn
IFGoperc.R 0.380 0.340 0.340 young old SalVentAttn
IFGtriang.L 0.410 0.380 0.350 young old SalVentAttn
IFGtriang.R 0.380 0.340 0.340 young old SalVentAttn
ORBinf.L 0.460 0.410 0.380 young old SalVentAttn
ORBinf.R 0.430 0.400 0.380 young old SalVentAttn
OLF.R 0.500 0.490 0.420 young old SMN
ORBsupmed.L 0.500 0.490 0.440 young old DMN
ORBsupmed.R 0.460 0.430 0.390 young old DMN
REC.L 0.490 0.450 0.430 young old DMN
REC.R 0.470 0.460 0.410 young old DMN
DCG.L 0.370 0.350 0.310 young old Subcortical
DCG.R 0.350 0.320 0.300 young old Subcortical
PCG.L 0.460 0.450 0.400 young old DMN
PHG.L 0.430 0.400 0.350 young old Subcortical
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Table A.1 (continued)

Region Name Young group
mean

Middle
group mean

Old group
mean

Group - max Group - min Network

PHG.R 0.420 0.380 0.360 young old Subcortical
AMYG.L 0.480 0.460 0.420 young old Subcortical
MOG.R 0.260 0.230 0.220 young old Visual
SPG.L 0.320 0.290 0.260 young old SMN
SPG.R 0.310 0.280 0.260 young old SMN
IPL.L 0.400 0.380 0.300 young old SalVentAttn
IPL.R 0.420 0.420 0.340 young old SalVentAttn
SMG.L 0.380 0.380 0.310 young old SMN
PCUN.L 0.370 0.340 0.290 young old DMN
PCUN.R 0.390 0.360 0.300 young old DMN
TPOsup.L 0.460 0.440 0.400 young old SMN
TPOsup.R 0.450 0.440 0.380 young old SMN
TPOmid.L 0.540 0.490 0.450 young old Subcortical
TPOmid.R 0.520 0.470 0.450 young old Subcortical
ITG.L 0.410 0.380 0.360 young old DMN
ITG.R 0.420 0.380 0.360 young old DMN
LING.L 0.250 0.230 0.300 old middle Visual
LING.R 0.260 0.250 0.300 old middle Visual
IOG.L 0.300 0.270 0.320 old middle Visual
IOG.R 0.320 0.320 0.380 old young Visual
PCL.R 0.290 0.260 0.310 old middle SMN
HES.L 0.370 0.390 0.440 old young SMN
HES.R 0.380 0.400 0.440 old young SMN
STG.R 0.300 0.320 0.370 old young SMN
Vermis7 0.350 0.340 0.400 old middle Visual
OLF.L 0.530 0.540 0.450 middle old SMN
SMG.R 0.390 0.400 0.310 middle old SMN
ANG.L 0.440 0.450 0.390 middle old SalVentAttn
ANG.R 0.420 0.430 0.350 middle old SalVentAttn
STG.L 0.350 0.390 0.380 middle young SMN
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Table A.2: Nodes with High Flexibility in the Young Age Group. The nodes in the young age group that

show a significant difference (p < 0.05) in flexibility scores(F) across age groups with F > 0 = 0.4

Region Name Young group mean Network
ORBsup.L 0.427 DMN
ORBsup.R 0.431 DMN
ORBsupmed.L 0.502 DMN
ORBsupmed.R 0.460 DMN
REC.L 0.489 DMN
REC.R 0.470 DMN
PCG.L 0.458 DMN
ITG.L 0.412 DMN
ITG.R 0.419 DMN
IFGoperc.L 0.410 SalVentAttn
IFGtriang.L 0.409 SalVentAttn
ORBinf.L 0.455 SalVentAttn
ORBinf.R 0.432 SalVentAttn
IPL.L 0.402 SalVentAttn
IPL.R 0.424 SalVentAttn
ANG.L 0.444 SalVentAttn
ANG.R 0.420 SalVentAttn
OLF.R 0.502 SMN
TPOsup.L 0.459 SMN
TPOsup.R 0.446 SMN
OLF.L 0.529 SMN
PHG.L 0.427 Subcortical
PHG.R 0.423 Subcortical
AMYG.L 0.478 Subcortical
TPOmid.L 0.537 Subcortical
TPOmid.R 0.522 Subcortical
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Table A.3: Nodes with High Flexibility in the Middle Age Group. The nodes in the middle age group

that show a significant difference (p < 0.05) in flexibility scores(F) across age groups with F > 0.4

Region Name Middle group mean Network
ORBsup.L 0.411 DMN
ORBsup.R 0.424 DMN
ORBsupmed.L 0.488 DMN
ORBsupmed.R 0.431 DMN
REC.L 0.452 DMN
REC.R 0.457 DMN
PCG.L 0.455 DMN
ORBinf.L 0.410 SalVentAttn
ORBinf.R 0.401 SalVentAttn
IPL.R 0.417 SalVentAttn
ANG.L 0.451 SalVentAttn
ANG.R 0.433 SalVentAttn
OLF.R 0.493 SMN
TPOsup.L 0.436 SMN
TPOsup.R 0.437 SMN
OLF.L 0.542 SMN
AMYG.L 0.462 Subcortical
TPOmid.L 0.486 Subcortical
TPOmid.R 0.472 Subcortical
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Table A.4: Nodes with High Flexibility in the Old Age Group. The nodes in the old age group that show

a significant difference (p < 0.05) in flexibility scores(F) across age groups with F > 0.4

Region Name Old group mean Network
ORBsupmed.L 0.445 DMN
REC.L 0.427 DMN
REC.R 0.407 DMN
PCG.L 0.404 DMN
OLF.R 0.422 SMN
TPOsup.L 0.400 SMN
HES.L 0.436 SMN
HES.R 0.436 SMN
OLF.L 0.447 SMN
AMYG.L 0.425 Subcortical
TPOmid.L 0.450 Subcortical
TPOmid.R 0.450 Subcortical
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Table A.5: Brain Regions with Significant Differences in Participation Coefficient across Age Groups.

This table displays the brain regions that exhibited a significant difference (p<0.05) in participation

coefficient values among the young, middle, and old age groups. The mean and standard deviation

values for each age group are provided for these regions. These findings highlight the varying levels of

information integration across different brain regions in relation to age.

Region Names Network Young -
mean

Middle
- mean

Old -
mean

Young-
StdDev

Middle-
StdDev

Old-
StdDev

Frontal-Sup-Orb-L DMN 0.717 0.693 0.652 0.196 0.221 0.233
Frontal-Inf-Orb-R SalVentAttn 0.710 0.716 0.752 0.167 0.179 0.170
Lingual-L Visual 0.644 0.627 0.688 0.215 0.202 0.190
Lingual-R Visual 0.658 0.625 0.678 0.214 0.201 0.189
Occipital-Inf-L Visual 0.656 0.635 0.683 0.214 0.206 0.200
Occipital-Inf-R Visual 0.645 0.638 0.693 0.218 0.216 0.191
Paracentral-Lobule-R SMN 0.652 0.628 0.693 0.197 0.203 0.193
Heschl-L SMN 0.642 0.668 0.699 0.213 0.208 0.201
Heschl-R SMN 0.611 0.657 0.683 0.225 0.212 0.204
Temporal-Sup-L SMN 0.680 0.722 0.742 0.195 0.172 0.172
Temporal-Sup-R SMN 0.674 0.720 0.748 0.190 0.166 0.161
Temporal-Inf-L DMN 0.719 0.721 0.635 0.182 0.188 0.236
Temporal-Inf-R DMN 0.755 0.743 0.695 0.151 0.165 0.213
Cerebelum-8-L Subcortical 0.644 0.610 0.589 0.184 0.204 0.224
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Table A.6: Brain Regions with Significant Differences in Within-Module Degree z-score across Age

Groups. Regions that show a significant difference (p<0.05) across age groups in their within-module

degree scores. The table shown is a long table that provides the regions that show a significant difference

across age groups in their within-module degree scores. The table includes columns for the region

names, network, mean degree scores, and standard deviations for each age group. The within-module

degree scores for each region are negative or positive, indicating the degree to which the region interacts

with other regions within the same module.

Region Names Network Young -
mean

Middle
- mean

Old -
mean

Young-
StdDev

Middle-
StdDev

Old-
StdDev

Frontal-Inf-Oper-L SalVentAttn -0.220 -0.134 0.043 0.649 0.758 0.720
Frontal-Inf-Oper-R SalVentAttn -0.117 0.070 0.177 0.738 0.716 0.685
Frontal-Inf-Tri-R SalVentAttn 0.210 0.359 0.356 0.652 0.685 0.652
Frontal-Inf-Orb-R SalVentAttn 0.166 0.283 0.106 0.758 0.640 0.728
Cingulum-Post-L DMN -0.565 -0.586 -0.737 0.795 0.766 0.793
ParaHippocampal-L Subcortical -0.023 0.213 0.437 0.846 0.868 0.789
ParaHippocampal-R Subcortical -0.008 0.190 0.566 0.839 0.797 0.724
Lingual-L Visual 0.627 0.588 0.274 0.566 0.549 0.673
Lingual-R Visual 0.670 0.562 0.302 0.451 0.596 0.646
Occipital-Inf-L Visual 0.117 0.194 -0.156 0.690 0.767 0.927
Occipital-Inf-R Visual -0.015 -0.091 -0.320 0.726 0.768 1.002
Parietal-Inf-L SalVentAttn -0.273 -0.250 0.010 0.652 0.713 0.675
Parietal-Inf-R SalVentAttn -0.611 -0.634 -0.310 0.741 0.806 0.841
SupraMarginal-R SMN -0.399 -0.467 -0.138 0.820 0.867 0.825
Angular-R SalVentAttn -0.564 -0.696 -0.496 0.844 0.806 0.796
Paracentral-Lobule-R SMN -0.049 0.038 -0.373 0.648 0.715 0.832
Heschl-R SMN -0.810 -0.695 -0.541 1.053 0.963 0.916
Temporal-Sup-R SMN 0.483 0.298 0.349 0.714 0.785 0.735
Cerebelum-3-L Subcortical -1.349 -0.904 -0.777 1.045 0.982 0.977
Cerebelum-3-R Subcortical -1.340 -1.028 -0.764 0.969 0.944 0.954
Cerebelum-8-L Subcortical 0.688 0.637 0.475 0.548 0.733 0.746
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Table A.7: Brain Regions with Significant Difference in Both Participation Coefficient and Within-

Module Degree z-score across Age Groups. Regions showing a significant difference (p<0.05) across

age groups in their within-module degree scores and the corresponding participation coefficient. The

table consists of the columns: Region Names, Network, Young-WMD, Young-PC, Middle-WMD,

Middle-PC, Old-WMD, and Old-PC. The Region Names and Network columns show the names of

the brain regions and the corresponding functional network they belong to, respectively. The Young-

WMD, Middle-WMD, and Old-WMD columns show the within-module degree scores of each region

for young, middle-aged, and older participants, respectively. The Young-PC, Middle-PC, and Old-PC

columns show the participation coefficients of each region for young, middle-aged, and older partici-

pants, respectively.

Region Names Network Young -
WMD

Young
- PC
Mean :

0.673 ±

0.047

Middle
- WMD

Middle
- PC
Mean :

0.672 ±

0.045

Old -
WMD

Old
- PC
Mean :

0.675 ±

0.043

Frontal-Inf-Oper-L SalVentAttn -0.220 0.671 -0.134 0.680 0.043 0.676
Frontal-Inf-Oper-R SalVentAttn -0.117 0.676 0.070 0.680 0.177 0.693
Frontal-Inf-Tri-R SalVentAttn 0.210 0.698 0.359 0.685 0.356 0.719
Frontal-Inf-Orb-R SalVentAttn 0.166 0.710 0.283 0.716 0.106 0.752
Cingulum-Post-L DMN -0.565 0.721 -0.586 0.718 -0.737 0.704
ParaHippocampal-L Subcortical -0.023 0.668 0.213 0.666 0.437 0.671
ParaHippocampal-R Subcortical -0.008 0.688 0.190 0.695 0.566 0.671
Lingual-L Visual 0.627 0.644 0.588 0.627 0.274 0.688
Lingual-R Visual 0.670 0.658 0.562 0.625 0.302 0.678
Occipital-Inf-L Visual 0.117 0.656 0.194 0.635 -0.156 0.683
Occipital-Inf-R Visual -0.015 0.645 -0.091 0.638 -0.320 0.693
Parietal-Inf-L SalVentAttn -0.273 0.704 -0.250 0.693 0.010 0.679
Parietal-Inf-R SalVentAttn -0.611 0.699 -0.634 0.686 -0.310 0.689
SupraMarginal-R SMN -0.399 0.670 -0.467 0.683 -0.138 0.686
Angular-R SalVentAttn -0.564 0.698 -0.696 0.704 -0.496 0.705
Paracentral-Lobule-R SMN -0.049 0.652 0.038 0.628 -0.373 0.693
Heschl-R SMN -0.810 0.611 -0.695 0.657 -0.541 0.683
Temporal-Sup-R SMN 0.483 0.674 0.298 0.720 0.349 0.748
Cerebelum-3-L Subcortical -1.349 0.628 -0.904 0.644 -0.777 0.634
Cerebelum-3-R Subcortical -1.340 0.608 -1.028 0.623 -0.764 0.634
Cerebelum-8-L Subcortical 0.688 0.644 0.637 0.610 0.475 0.589
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Table A.8: Identification of Connector Hubs in the Network. Nodes labeled as ’1’ in this table represent

connector hubs, characterized by high participation coefficient values. Connector hubs are indicative

of strong integration and information exchange across different brain regions in the network. Nodes

labeled as ’0’ do not meet the criteria for connector hubs. This classification provides insights into the

network’s architecture and its capacity for information integration.

Region names Network Young Middle Old
’Frontal-Inf-Oper-L ’SalVentAttn 0 0 1
’Frontal-Inf-Oper-R ’SalVentAttn 0 1 1
’Frontal-Inf-Tri-R ’SalVentAttn 1 1 1
’Frontal-Inf-Orb-R ’SalVentAttn 1 1 1
’Rolandic-Oper-R ’SMN 0 1 0
’Hippocampus-R ’Subcortical 1 1 1
’ParaHippocampal-R ’Subcortical 0 1 0
’Lingual-L ’Visual 0 0 1
’Lingual-R ’Visual 0 0 1
’Parietal-Inf-L ’SalVentAttn 0 0 1
’Putamen-R ’Subcortical 0 0 1
’Thalamus-L ’Subcortical 0 0 1
’Thalamus-R ’Subcortical 0 0 1
’Temporal-Sup-R ’SMN 1 1 1
’Temporal-Mid-L ’DMN 1 1 0
’Temporal-Mid-R ’DMN 1 1 1
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Table A.9: Identification of Provincial Hubs in the Network. Nodes labelled as ’1’ in this table represent

provincial hubs, characterized by high within-module degree values and low participation coefficient

values. Provincial hubs indicate specialized regions that primarily interact within their own modules.

Nodes labelled as ’0’ do not meet the criteria for provincial hubs. This classification provides insights

into the network’s organization, with nodes serving as specialized provincial hubs within their respective

modules.

Region names Network Young Middle Old
’Rolandic-Oper-L ’SMN 1 0 0
’Rolandic-Oper-R ’SMN 1 0 0
’ParaHippocampal-L ’Subcortical 0 1 1
’ParaHippocampal-R ’Subcortical 0 0 1
’Lingual-L ’Visual 1 1 0
’Lingual-R ’Visual 1 1 0
’Occipital-Sup-L ’Visual 1 1 1
’Occipital-Sup-R ’Visual 1 1 1
’Occipital-Mid-L ’Visual 1 1 1
’Occipital-Inf-L ’Visual 1 1 0
’Paracentral-Lobule-L ’SMN 0 1 0
’Paracentral-Lobule-R ’SMN 0 1 0
’Thalamus-L ’Subcortical 1 0 0
’Thalamus-R ’Subcortical 1 0 0
’Cerebelum-8-L ’Subcortical 1 1 1
’Cerebelum-8-R ’Subcortical 1 1 1
’Cerebelum-9-L ’Subcortical 1 1 1
’Cerebelum-9-R ’Subcortical 1 1 1
’Vermis-6 ’Visual 1 1 0
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(a) Young WMD (b) Young PC: pc = 0.673± 0.047

(c) Middle WMD (d) Middle PC: pc = 0.672± 0.045

(e) Old WMD (f) Old PC: pc = 0.675± 0.043

Figure A.1: Within-Module Degree and Participation Coefficients of Nodes with Significant Age-

Related Differences in WMD Scores. Subfigures (a, c, e) depict the within-module degree z-scores,

while subfigures (b, d, f) show the participation coefficients, color-coded to represent positive (red) and

negative (blue) WMD scores. Nodes above the mean PC are considered to have high Participation Co-

efficients.
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(a) Young age group. Legend: A.2

BrainNet Visualization of nodes that show age effect and are significantly different across age groups.
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(b) Middle age group. Legend: A.3

BrainNet Visualization of nodes that show age effect and are significantly different across age groups.
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(c) Old age group. Legend: A.4

Figure A.2: Nodes whose flexibilities show a significant age effect and differences across age groups

(p < 0.05). The labelled nodes are those that show the highest flexibilities > 0.4. The regions and

their information corresponding to the groups they showed the highest flexibility in can be found in

A.2,A.3,A.4
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Figure A.3: Brain Regions with Significant Differences in Participation Coefficients across Age Groups.

This figure displays brain regions that exhibited a statistically significant difference in participation co-

efficients among the different age groups. For further details on the specific brain regions and corre-

sponding statistical analysis, refer toA.5
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TASKS

Table A.10: Correlation of Nodal Flexibility with Benton (Visual Perception and Memory) and Cattell

(Fluid Intelligence) Task Scores. Regions that show a significant correlation of nodal flexibility and task

scores of Benton (Visual perception and memory) and Cattell (fluid intelligence). Flexibility captures the

dynamic nature of brain connectivity and reflects the ability of brain regions to adapt and reconfigure

their network relationships over time. Negative and positive correlations indicate the direction and

strength of the relationship, respectively.

ROI Network Correlation Benton(1)/Cattelll(2)

Frontal-Inf-Oper-L SalVentAttn 0.090 1
Frontal-Inf-Orb-L SalVentAttn 0.103 1
Frontal-Inf-Orb-R SalVentAttn 0.092 1
Olfactory-L SMN 0.114 1
Olfactory-R SMN 0.130 1
Frontal-Med-Orb-L DMN 0.091 1
Rectus-R DMN 0.080 1
Cingulum-Post-L DMN 0.121 1
ParaHippocampal-L Subcortical 0.096 1
Lingual-L Visual -0.160 1
Lingual-R Visual -0.105 1
Occipital-Inf-R Visual -0.149 1
Parietal-Inf-L SalVentAttn 0.090 1
Parietal-Inf-R SalVentAttn 0.109 1
SupraMarginal-R SMN 0.121 1
Angular-R SalVentAttn 0.165 1
Precuneus-L DMN 0.096 1
Precuneus-R DMN 0.095 1
Temporal-Sup-R SMN -0.082 1
Temporal-Pole-Sup-R SMN 0.102 1
Temporal-Inf-L DMN 0.088 1
Frontal-Sup-Orb-L DMN 0.086 2
Frontal-Sup-Orb-R DMN 0.124 2
Frontal-Mid-L SalVentAttn 0.086 2
Frontal-Mid-R SalVentAttn 0.105 2
Frontal-Inf-Oper-L SalVentAttn 0.192 2
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Table A.10 (continued)

ROI Network Correlation Benton(1)/Cattelll(2)

Frontal-Inf-Tri-L SalVentAttn 0.154 2
Frontal-Inf-Orb-L SalVentAttn 0.115 2
Supp-Motor-Area-R SMN 0.080 2
Olfactory-L SMN 0.216 2
Olfactory-R SMN 0.184 2
Frontal-Med-Orb-L DMN 0.119 2
Frontal-Med-Orb-R DMN 0.134 2
Rectus-R DMN 0.150 2
Cingulum-Mid-L Subcortical 0.181 2
Cingulum-Mid-R Subcortical 0.141 2
Cingulum-Post-L DMN 0.113 2
ParaHippocampal-L Subcortical 0.137 2
ParaHippocampal-R Subcortical 0.106 2
Amygdala-L Subcortical 0.082 2
Lingual-L Visual -0.164 2
Lingual-R Visual -0.115 2
Occipital-Inf-L Visual -0.098 2
Occipital-Inf-R Visual -0.157 2
Parietal-Inf-L SalVentAttn 0.170 2
Parietal-Inf-R SalVentAttn 0.222 2
SupraMarginal-L SMN 0.179 2
SupraMarginal-R SMN 0.256 2
Angular-L SalVentAttn 0.171 2
Angular-R SalVentAttn 0.209 2
Precuneus-L DMN 0.174 2
Precuneus-R DMN 0.172 2
Paracentral-Lobule-R SMN -0.137 2
Temporal-Sup-R SMN -0.115 2
Temporal-Pole-Sup-L SMN 0.115 2
Temporal-Pole-Sup-R SMN 0.155 2
Temporal-Mid-R DMN -0.091 2
Temporal-Pole-Mid-L Subcortical 0.088 2
Temporal-Pole-Mid-R Subcortical 0.104 2
Temporal-Inf-L DMN 0.115 2
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Table A.10 (continued)

ROI Network Correlation Benton(1)/Cattelll(2)

Temporal-Inf-R DMN 0.176 2
Cerebelum-Crus1-L DMN -0.087 2
Cerebelum-Crus1-R DMN -0.107 2
Vermis-7 Visual -0.110 2
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Table A.11: Correlation of Participation Coefficient with Benton (Visual Perception and Memory) and

Cattell (Fluid Intelligence) Task Scores. Regions that show a significant correlation of participation-

coefficient and task scores of Benton (Visual perception and memory) and Cattell (fluid intelligence).

The participation coefficient measures the degree to which a region connects with different network

modules. Negative and positive correlations indicate the direction and strength of the relationship,

respectively.

ROI Network Correlation Benton(1)/Cattelll(2)

Olfactory-R SMN 0.100 1
Cingulum-Mid-L Subcortical 0.081 1
Fusiform-L * Visual 0.081 1
Precuneus-R DMN 0.080 1
Caudate-R Subcortical -0.091 1
Temporal-Inf-L DMN 0.125 1
Temporal-Inf-R DMN 0.149 1
Vermis-10 Visual -0.114 1
Frontal-Sup-L DMN 0.099 2
Frontal-Inf-Oper-L SalVentAttn -0.135 2
Frontal-Inf-Oper-R SalVentAttn -0.159 2
Frontal-Inf-Tri-L SalVentAttn -0.092 2
Frontal-Inf-Orb-L SalVentAttn 0.100 2
Frontal-Inf-Orb-R SalVentAttn 0.131 2
Rolandic-Oper-L SMN 0.269 2
Rolandic-Oper-R SMN 0.270 2
Rectus-L DMN 0.090 2
Cingulum-Post-R DMN 0.120 2
Hippocampus-R Subcortical -0.164 2
ParaHippocampal-L Subcortical -0.162 2
ParaHippocampal-R Subcortical -0.218 2
Lingual-L Visual 0.244 2
Lingual-R Visual 0.222 2
Occipital-Sup-L Visual 0.106 2
Occipital-Sup-R Visual 0.086 2
Occipital-Mid-L Visual 0.149 2
Occipital-Mid-R Visual 0.095 2
Occipital-Inf-L Visual 0.201 2
Occipital-Inf-R Visual 0.122 2
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Table A.11 (continued)

ROI Network Correlation Benton(1)/Cattelll(2)

Parietal-Inf-L SalVentAttn -0.181 2
Parietal-Inf-R SalVentAttn -0.185 2
SupraMarginal-R SMN -0.196 2
Angular-R SalVentAttn -0.108 2
Paracentral-Lobule-L SMN 0.087 2
Paracentral-Lobule-R SMN 0.182 2
Caudate-L Subcortical -0.085 2
Caudate-R Subcortical -0.089 2
Putamen-L Subcortical -0.097 2
Putamen-R Subcortical -0.123 2
Thalamus-L Subcortical -0.091 2
Temporal-Mid-L DMN 0.109 2
Temporal-Mid-R DMN 0.095 2
Cerebelum-3-L Subcortical -0.190 2
Cerebelum-3-R Subcortical -0.203 2
Cerebelum-7b-L SMN 0.130 2
Cerebelum-8-L Subcortical 0.137 2
Cerebelum-8-R Subcortical 0.126 2
Vermis-3 Visual -0.119 2
Vermis-4-5 Visual -0.082 2
Vermis-8 Visual 0.081 2
Vermis-10 Visual -0.181 2
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Table A.12: Correlation of Within-Module Degree z-score with Benton (Visual Perception and Mem-

ory) and Cattell (Fluid Intelligence) Task Scores. Regions that show a significant correlation of within-

module degree and task scores of Benton (Visual perception and memory) and Cattell (fluid intelli-

gence). The within-module degree measures the connectivity of a region within its respective network

module. Negative and positive correlations indicate the direction and strength of the relationship, re-

spectively.

ROI Network Correlation Benton(1)/Cattelll(2)

Frontal-Inf-Oper-L SalVentAttn -0.123 1
Frontal-Inf-Oper-R SalVentAttn -0.081 1
Rolandic-Oper-L SMN 0.147 1
Rolandic-Oper-R SMN 0.084 1
Cingulum-Mid-L Subcortical 0.090 1
Cingulum-Mid-R Subcortical 0.095 1
ParaHippocampal-L Subcortical -0.134 1
ParaHippocampal-R Subcortical -0.159 1
Cuneus-L Visual -0.080 1
Lingual-L Visual 0.163 1
Lingual-R Visual 0.191 1
Occipital-Mid-L Visual 0.082 1
Occipital-Inf-L Visual 0.129 1
Parietal-Inf-R SalVentAttn -0.087 1
Angular-R SalVentAttn -0.132 1
Paracentral-Lobule-L SMN 0.093 1
Paracentral-Lobule-R SMN 0.121 1
Thalamus-L Subcortical -0.109 1
Heschl-R SMN -0.081 1
Temporal-Mid-L DMN 0.119 1
Temporal-Mid-R DMN 0.117 1
Cerebelum-3-L Subcortical -0.118 1
Cerebelum-3-R Subcortical -0.164 1
Cerebelum-8-L Subcortical 0.088 1
Cerebelum-9-L Subcortical 0.106 1
Cerebelum-9-R Subcortical 0.136 1
Vermis-10 Visual -0.112 1
Precentral-L SalVentAttn 0.117 2
Frontal-Sup-L DMN 0.143 2
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Table A.12 (continued)

ROI Network Correlation Benton(1)/Cattelll(2)

Frontal-Sup-R DMN 0.099 2
Frontal-Sup-Orb-L DMN 0.126 2
Frontal-Sup-Orb-R DMN 0.084 2
Frontal-Mid-L SalVentAttn 0.149 2
Frontal-Mid-R SalVentAttn 0.084 2
Frontal-Inf-Orb-R SalVentAttn -0.091 2
Supp-Motor-Area-L SMN 0.087 2
Olfactory-L SMN 0.095 2
Olfactory-R SMN 0.109 2
Frontal-Sup-Medial-L DMN 0.102 2
Frontal-Sup-Medial-R DMN 0.080 2
Cingulum-Mid-L Subcortical 0.114 2
Cingulum-Mid-R Subcortical 0.091 2
ParaHippocampal-R Subcortical 0.089 2
Amygdala-R Subcortical 0.118 2
Fusiform-L Visual 0.093 2
Fusiform-R Visual 0.094 2
Parietal-Inf-L SalVentAttn 0.100 2
Precuneus-L DMN 0.094 2
Putamen-R Subcortical -0.089 2
Heschl-R SMN -0.085 2
Temporal-Sup-R SMN -0.101 2
Temporal-Pole-Sup-L SMN 0.111 2
Temporal-Inf-L DMN 0.197 2
Temporal-Inf-R DMN 0.162 2
Cerebelum-6-L SMN 0.085 2
Vermis-9 Visual -0.084 2
Vermis-10 Visual -0.124 2
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Table A.13: Connector Hubs: Correlation of Participation Coefficient and Within-Module Degree z-

score with Benton and Cattell Task Scores. Connector hubs are identified with the PC and WMD scores

(high PC). Correlation values of both measures with Benton and Cattell task scores are also captured.

Considering age to be a continuous variable, column ’corr-with-task’ captures the PC/WMD with the

Benton/Cattell task. Cattell task has been greyed out for better readability. The numbers under the

columns ’young,’middle and ’old denote whether the region is a connector hub in the respective age

group.

ROI Region names Network Young Middle Old Corr

with

task

Benton(1)

/ Cat-

tell(2)

WMD(1)

/ PC(2)

8 Frontal-Mid-R SalVentAttn 1 1 1 0.084 2 2

11 Frontal-Inf-Oper-L SalVentAttn 0 0 1 -0.123 1 1

12 Frontal-Inf-Oper-R SalVentAttn 0 1 1 -0.081 1 1

16 Frontal-Inf-Orb-R SalVentAttn 1 1 1 0.131 2 1

16 Frontal-Inf-Orb-R SalVentAttn 1 1 1 -0.091 2 2

18 Rolandic-Oper-R SMN 0 1 0 0.084 1 1

38 Hippocampus-R Subcortical 1 1 1 -0.164 2 1

40 ParaHippocampal-R Subcortical 0 1 0 -0.159 1 1

40 ParaHippocampal-R Subcortical 0 1 0 0.089 2 2

47 Lingual-L Visual 0 0 1 0.163 1 1

48 Lingual-R Visual 0 0 1 0.191 1 1

61 Parietal-Inf-L SalVentAttn 0 0 1 -0.181 2 1

61 Parietal-Inf-L SalVentAttn 0 0 1 0.100 2 2

74 Putamen-R Subcortical 0 0 1 -0.123 2 1

74 Putamen-R Subcortical 0 0 1 -0.089 2 2

77 Thalamus-L Subcortical 0 0 1 -0.109 1 1

82 Temporal-Sup-R SMN 1 1 1 -0.101 2 2

85 Temporal-Mid-L DMN 1 1 0 0.119 1 1

86 Temporal-Mid-R DMN 1 1 1 0.117 1 1
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Table A.14: Provincial Hubs: Correlation of Participation Coefficient and Within-Module Degree z-

score with Benton and Cattell Task Scores. Provincial hubs are identified with the PC and WMD scores

(low PC and high WMD). Correlation values of both measures with Benton and Cattell task scores

are also captured. Considering age to be a continuous variable, column ’corr-with-task’ captures the

PC/WMD with the Benton/Cattell task. Cattell task has been greyed out for better readability. The

numbers under the columns ’young, ’middle and ’old denote whether the region is a provincial hub in

the respective age group.

ROI Region names Network Young Middle Old Corr

with

task

Benton(1)

/ Cat-

tell(2)

WMD(1)

/ PC(2)

17 Rolandic-Oper-L SMN 1 0 0 0.147 1 1

18 Rolandic-Oper-R SMN 1 0 0 0.084 1 1

39 ParaHippocampal-L Subcortical 0 1 1 -0.134 1 1

40 ParaHippocampal-R Subcortical 0 0 1 -0.159 1 1

40 ParaHippocampal-R Subcortical 0 0 1 0.089 2 2

47 Lingual-L Visual 1 1 0 0.163 1 1

48 Lingual-R Visual 1 1 0 0.191 1 1

49 Occipital-Sup-L Visual 1 1 1 0.106 2 1

50 Occipital-Sup-R Visual 1 1 1 0.086 2 1

51 Occipital-Mid-L Visual 1 1 1 0.082 1 1

53 Occipital-Inf-L Visual 1 1 0 0.129 1 1

69 Paracentral-Lobule-L SMN 0 1 0 0.093 1 1

70 Paracentral-Lobule-R SMN 0 1 0 0.121 1 1

77 Thalamus-L Subcortical 1 0 0 -0.109 1 1

103 Cerebelum-8-L Subcortical 1 1 1 0.088 1 1

104 Cerebelum-8-R Subcortical 1 1 1 0.126 2 1

105 Cerebelum-9-L Subcortical 1 1 1 0.106 1 1

106 Cerebelum-9-R Subcortical 1 1 1 0.136 1 1
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