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Abstract

The goal of rendering is to produce a photorealistic image of the given 3D scene description. Phys-

ically based rendering simulates the physics of the light as it travels and interacts with objects in the

scene before finally reaching the camera sensor. Monte Carlo methods have been the go-to approach for

physically based rendering. They are general and robust but introduce noise and are computationally

expensive. Recent advancements in hardware, algorithms, and denoising techniques have enabled real-

time applications of Monte Carlo methods. However, complex scenes still demand high sample counts.

In this thesis, we explore and present the utilization of analytic and neural approaches for physically

based rendering. Analytic methods offer noise-free renderings but are less general and may introduce

bias. In recent years, neural-based approaches have gained traction, offering a balance between general-

ity and computational efficiency. We compare and contrast the traditional Monte Carlo-based methods

and emerging analytic and neural network-based methods. We then propose analytic and neural solu-

tions to two challenging cases: direct lighting with many area lights and efficient rendering of glinty

appearances on specular normal-mapped surfaces.

Direct lighting from many area light sources is challenging due to variance from both choosing an

important light and then a point on it. Existing methods weigh the contribution of all lights by estimating

their effect on the shading point. We propose to extend one such method by using analytic methods to

improve the estimation of the light’s contribution. This enhancement accelerates the convergence of the

algorithm, making it more efficient for scenes with many dynamic lights.

The second case deals with the challenge of rendering glinty appearances on normal mapped spec-

ular surfaces efficiently. Traditional Monte Carlo methods struggle with this task due to the rapidly

changing spatial characteristics of microstructures. Our solution introduces a novel method supporting

spatially varying roughness based on a neural histogram, offering both memory and compute efficiency.

Additionally, full direct illumination integration is computed analytically for all light directions with

minimal computational effort, resulting in improved quality compared to previous approaches.

Through comprehensive analysis and experimentation, this thesis contributes to the advancement of

rendering techniques, shedding light on the trade-offs between different methods and providing insights

into their practical applications for achieving photorealistic rendering.
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Chapter 1

Introduction

Rendering is the process of generating an image from a detailed scene description. Accurately rep-

resenting and rendering scenes in a photorealistic manner has been a long-standing goal in computer

graphics. To achieve photorealistic renderings, one needs to simulate the interaction of light as it

bounces throughout the scene before reaching the camera. This process of tracking the trajectory of

light as it travels and interacts with the scene to render an image is called Physically Based Rendering

(PBR). Since we follow the laws of physics, the results obtained from PBR are photorealistic and con-

sistent with the real world. To achieve PBR, one needs to solve the Light Transport Equation (LTE).

The LTE describes how light interacts with objects and travels throughout the scene. It is an infinitely

high dimensional integral with no closed-formed solution available.

Currently, Monte Carlo-based methods are the most general and robust methods for solving the LTE.

They are agnostic to the complexity of the scene geometry, reflection models, and lighting models and

are guaranteed to converge to the correct answer. Monte Carlo methods operate by randomly sampling

multiple paths in the scene and averaging their results to solve the LTE. This process of random sampling

manifests as noise in the image. Increasing the number of random samples reduces the noise but is

computationally expensive.

As discussed before, a closed-form solution to the LTE is not available in the general case. However,

by making some assumptions, the LTE can be simplified, and a closed-form expression to solve the

simplified LTE can be obtained. The exact assumptions made and the analytic method depend upon the

problem being solved. Since no random sampling is involved, rendering produced by analytic methods

is noise-free. Furthermore, analytic methods are generally cheaper as they only involve evaluating a

mathematical expression. However, analytic methods are less general and often introduce some amount

of known bias.

Neural networks have been increasing in popularity in recent years. Neural network-based ap-

proaches have been used in the rendering to varying extents, ranging from representing a complex

BSDF to learning the radiance distribution of the scene. Neural approaches are general but must be

carefully tuned to balance the runtime, quality, and bias induced based on their use case.

The goal of this thesis is to explore and present the usage of analytic and neural approaches and their

application for solving light transport problems. We begin by providing a formal definition of rendering

and presenting an overview of the two commonly employed algorithms for rendering. We then explain

1



the meaning of bias and variance in context of rendering algorithms and their implications. Finally, we

provide a detailed discussion of two setups involving complex light transport, for which we propose

solutions. The first one deals with direct lighting in the presence of many area lights, and the second

deals with efficient rendering of glinty appearance of specular normal-mapped surfaces.

1.1 Rendering

(a) Rasterization.

Image Courtesy: Mariano Trebino.

(b) Ray Tracing.

Image Courtesy: NVIDIA.

Figure 1.1: Comparison between rasterization and ray tracing. In rasterization, we project the vertices

to the image plane and check if the pixel lies inside the projection. In ray tracing, we cast a ray through

each pixel and check if the ray intersects the object.

Rendering is the process of taking a 3D scene and producing a 2D image of the scene as seen from

a camera. The scene can consist of multiple models with different surface properties and lighting. A

rendering algorithm takes this 3D scene description and a camera as input and produces a 2D image of

the world as seen from the camera. There are two broad types of rendering algorithms: rasterization

and ray tracing. Each method has a set of strengths and weaknesses, which we will discuss in the next

sections.

1.1.1 Rasterization

The rasterization algorithm can be broken into two stages. The first stage projects all of the scene

geometry onto the image plane. In the second stage, there is an iteration over all pixels to check if the

pixel lies inside any of the projected geometry and shade it based on the closest surface. Rasterization

has been used by the graphics community ever since the inception of the field. Almost all Graphics

Processing Units (GPUs) have special-purpose hardware built for rasterization. The simplicity of the

algorithm and excellent hardware support have led to rasterization being used for real-time applica-

tions such as video games. However, achieving photorealistic rendering is hard with rasterization, and

oftentimes, various tricks have to be used to obtain plausible results.
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Figure 1.2: Illustration of bias and variance. Left: Render obtained with Spherical Harmonics (SH)

is biased but has no variance. Meanwhile, the render obtained with Monte Carlo (MC) has variance,

which manifests as noise. Increasing the number of samples removes the noise (Reference). Right:

Convergence plot of the renderings. The dark grey line represents an analytic biased algorithm (SH),

the light grey line represents a stochastic unbiased solution (MC), and the dotted line represents the

reference.

1.1.2 Ray Tracing

The ray tracing algorithm can also be broken into two stages. In the first stage, rays passing through

each pixel are generated. Then, for each pixel, the closest intersection point is found by iterating over all

objects. The pixel is then shaded based on the interaction of light with the environment. Notice that this

process is similar to rasterization, but the order of the iteration is flipped, i.e., the iteration is first made

over pixels first and then over the objects in the scene. One can produce photorealistic images using ray

tracing by tracking the trajectory of the light as it travels through the scene. However, ray tracing is much

more computationally expensive and has been primarily used for offline rendering applications such as

VFX or animation. Recent advances in hardware (NVIDIA RTX, AMD RDNA2), algorithms [7,38,47]

and denoising [8,52] methods has allowed ray tracing to be used in real-time applications such as video

games. Several modern games use rasterization for the base rendering and ray tracing for certain effects

such as reflections, refractions, soft shadows, and depth of field.

1.2 Bias and Variance

Bias and variance are two important properties associated with a rendering algorithm. Bias refers

to a systematic error introduced by the algorithm by disregarding or approximating certain aspects of

the light transport equation. For example, Linearly Transformed Cosines [24] (LTCs, see section 2.4.1)

approximate the BSDF using a cosine and disregard visibility information. These approximations lead

to a rendered image that is different from the ground truth.

Variance is generally associated with stochastic algorithms such as Monte Carlo Ray Tracing [60],

Stochastic Photon Mapping [23] or Metropolis Light Transport [62]. These algorithms operate by ran-

domly sampling paths and evaluating the LTE for these paths. This random sampling introduces variance
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in the estimation of the LTE, which manifests as noise in the image. The variance reduces as the number

of samples is increased and the method will converge to the exact solution in expectation.

Figure 1.2 illustrates bias and variance when estimating the LTE with two different algorithms. The

rendering obtained with Spherical Harmonics is biased but has no variance. While the rendering ob-

tained with Monte Carlo has variance which manifests as noise but is unbiased. The graph on the right

shows the convergence properties of both of the methods.

Rasterization based techniques are generally biased and have zero variance, while ray tracing tech-

niques are unbiased (i.e., they converge to the correct answer in expectation) but have finite or, in some

cases infinite variance.

1.3 Our Contributions

Despite the recent advances in hardware support for ray tracing, complex scenes with intricate light

transport still require high sample counts with Monte Carlo Ray Tracing to obtain noise-free renders.

We identify two such cases and propose analytical and neural approaches to render them efficiently.

This section offers a concise overview of our contributions. We begin by outlining the problem context

for each contribution, providing an intuitive grasp of its complexity, and offering a brief overview of our

proposed solutions.

1.3.1 Direct Lighting with Many Area Lights

Figure 1.3: Two complex scenes ray traced with direct lighting from many dynamic lights. (Left) A

still from the Zero Day video with 11,000 dynamic emissive triangles. (Right) A view of one ride in

an Amusement Park scene containing 3.4 million dynamic emissive triangles. Both images show three

methods [7, 41] running in equal time on a modern GPU. Image Courtesy: Bitterli et al. [7].

Direct lighting with many area lights is the accurate simulation of the illumination in a scene where

numerous area lights contribute to the overall lighting conditions. The difficulty arises due to the intri-
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Figure 1.4: Two complex scenes with objects exhibiting glinty appearance. (Left) A render of the cutlery

scene with direct illumination caused by a point light and an environment map. (Right) A still of the

snail scene with global illumination effects. Image Courtesy: Gamboa et al. [20].

cate interactions and complex shadowing effects caused by the multiple light sources. A naive algorithm

would be to iterate over all lights for each shading point and calculate its contribution. However, this

quickly becomes expensive and doesn’t scale well if the scene contains a large number of lights. For a

given shading point, only a small set of lights close to it have a significant effect on it, and many lights

can also be completely occluded and don’t affect the shading point at all. Existing algorithms [7, 41]

exploit this fact and propose algorithms that weigh each light’s contributions based on the above factors.

We extend upon [7] and use analytic methods to better estimate the effect of light on the shading point,

leading to faster convergence of the algorithm.

1.3.2 Efficient Rendering of Glinty Appearance

Complex specular surfaces with rapidly changing microstructure exhibit glinty appearance. This

appearance arises from the rapidly changing spatial characteristics of the underlying microstructure.

Using Monte Carlo for rendering such surfaces is difficult because only a small portion of the surface is

oriented to reflect the light in the correct direction. This integration is further compounded in the pres-

ence of large light sources as another integration over the light source needs to be performed. Existing

algorithms use special data structures [4,20,72,74] which help in efficiently querying the appropriately

oriented microfacets. Additionally, they are also limited to a constant roughness for the entire surface.

We present a new method that supports spatially varying roughness based on a neural histogram that

computes per-pixel NDFs with arbitrary positions and sizes. Our representation is both memory and

compute-efficient. Additionally, we compute full direct illumination integration analytically for all light

directions with O(1) effort. Our method shows an improved quality compared to previous works by

supporting smaller footprints while offering GPU-friendly computation and compact representation.

In the next chapter, we give a brief background of Physically Based Rendering and focus on some

methods that are applicable to our contributions.
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Chapter 2

Background

This chapter gives an overview of Physically Based Rendering (PBR). The goal of this chapter is to

introduce some concepts that will be used in chapter 3 and chapter 4, establish the notation and terminol-

ogy used, and provide an overview of various methods employed to achieve photorealistic renderings.

We start by defining the Light Transport Equation (LTE) (section 2.1), which gives a mathematical

formulation of how light travels and interacts in the world. Following this, we offer a brief survey

of various methodologies employed to solve the LTE, with a specific emphasis on approaches rele-

vant to our contributions. These methodologies are broadly categorized into three approaches, namely

Monte Carlo-based methods (section 2.3), Analytic Methods (section 2.4), and Neural Approaches (sec-

tion 2.5).

2.1 Physically Based Rendering

Figure 2.1: The LTE integrates the incoming light at a point modulated by the BSDF over the unit hemi-

sphere around the shading point to obtain the radiance reflected in the direction ωo. Image Courtesy:

Wikipedia.

Physically Based Rendering (PBR) is a technique that models the physics of light interacting with

the environment and reaching the camera sensor to create an image. At the heart of PBR lies the light

transport equation (LTE) [31], which describes how the light travels and interacts in the scene. The LTE
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is written as:

Lo(x,ωo) = Le(x,ωo) +

∫

Ω
Li(x,ωi)fr(x,ωi,ωo)(ωi · n)dωi, (2.1)

where Lo(x,ωo) is the outgoing radiance from shading point x in direction ωo, Le(x,ωo) is the

emitted radiance from the point, Li(x,ωi) is the incident radiance on the surface from direction ωi,

fr(x,ωi,ωo) is the Bi-directional Scattering Distribution Function (BSDF) which describes the sur-

faces appearance, and n is the surface normal. The LTE integrates the incoming light at a point mod-

ulated by the BSDF over the unit hemisphere around the shading point to obtain the radiance reflected

in direction ωo (see fig. 2.1). This equation is a special case of the more general Radiative Transfer

Equation (RTE) [9], which also considers the interaction of the light as it travels through the medium.

In this thesis, we focus on the former and assume that the radiance doesn’t change as the light travels

through the medium.

2.2 Direct Lighting

Figure 2.2: Comparison of the Cornell Box scene rendered with only direct illumination (left) and global

illumination (right). Global illumination captures the effect of light bouncing on multiple surfaces before

reaching the camera.

Direct lighting is a special case of the PBR, where we only consider paths with a single bounce. In

direct lighting, we only consider radiance emitted by light sources and disregard the reflected (indirect)

illumination from other surfaces of the scene. Figure 2.2 shows a comparison of the Cornell Box scene

rendered with direct (left) and global illumination (right). Since we are interested in light directly

coming from emitters in the scene, we can rewrite the LTE as a discrete sum over all light sources as
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follows:

Lo(x,ωo) = Le(x,ωo) +
∑

l∈L

∫

Ω
Li(x,ωi)fr(x,ωi,ωo)V (x,ωi, l)(ωi · n)dωi, (2.2)

where L is the list of all light sources in the scene, V (x,ωi, l) is the binary visibility term, which

indicates if the emitter is unoccluded in the given direction. In this thesis, we focus on two cases in

which direct lighting is hard to solve and provide efficient algorithms for the same. In the rest of this

chapter, we will briefly introduce some methods that can be used to solve eq. (2.2). Note that some of

these methods are also applicable to solve the complete LTE (eq. (2.1)), but we focus on their application

to solve the direct lighting equation.

2.3 Monte Carlo Integration

To render a scene with direct lighting, we must evaluate eq. (2.2) for each direction going into

the camera. While the integral has a closed-form solution for simple light sources such as point or

directional lights, a closed-form solution for most light types is unavailable. Hence, we use Monte Carlo

integration to evaluate the direct lighting integral numerically. For a given function f(x), the Monte

Carlo estimator ⟨F ⟩ of its integral F =
∫
D f(x)dx over the domainD is formed by repeatedly evaluating

the function at randomly sampled points in the domain and taking it’s average. Mathematically, it is

written as follows:

⟨F ⟩ = |D|
N

N∑

i=1

f(xi), where xi ∈ D. (2.3)

Applying such an estimator for eq. (2.2) we get:

⟨Lo(x,ωo)⟩ = Le(x,ωo) +
2π

N

N∑

i=1

Li(x,ωi)fr(x,ωi,ωo)(ωi · n). (2.4)

Note that the domain of integration for direct lighting is the hemisphere around the shading point Ω and

|Ω| = 2π.

Monte Carlo integration computes an accurate (unbiased) solution to the LTE by randomly determin-

ing the direction for the next segment of a ray. However, this random sampling introduces variability,

manifesting as noise in the rendered image. Increasing the number of samples (shooting more rays

per pixel) helps in better estimating the integral and reducing the noise in the image. The variance of

the Monte Carlo estimator is heavily influenced by the scene’s complexity, with more complex light

transport requiring a higher number of samples to achieve acceptable render quality, making rendering

computationally expensive.

Various variance reduction techniques can be employed to mitigate the variance introduced by Monte

Carlo. One such technique we delve into in the following sections is Importance Sampling and its varia-
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tion: Multiple Importance Sampling [61]. For a comprehensive exploration of other variance reduction

techniques and their analysis, readers are encouraged to refer to Chapter 2 of Veach’s thesis [60].

2.3.1 Importance Sampling

Importance sampling is a method to reduce the variance of a Monte Carlo estimator by sampling

from a distribution that has a shape similar to that of the integrand. The closer p(x) is to the integrand

f(x), the better the variance reduction achieved. An importance sampled Monte Carlo estimator for

function f(x) with a probability distribution function (PDF) p(x) is given by:

⟨F ⟩ = 1

N

N∑

i=1

f(xi)

p(xi)
. (2.5)

In the case of eq. (2.4), one can sample proportional to either the BSDF fr(x,ωi,ωo) (BSDF sampling),

the incoming radiance Li(x,ωi) (emitter sampling) or the (ωi · n) term (Cosine Weighted sampling).

Usually based upon the properties of the shading point and the scene, one of the above strategies per-

forms better than the others (see fig. 2.3).

2.3.2 Multiple Importance Sampling

(a) BSDF Sampling (b) Light Sampling (c) MIS

Figure 2.3: Comparison of various importance sampling strategies. BSDF sampling performs well if the

light source is source is big or the surface is specular. Light sampling works well if the light is smaller

or the surface is diffuse. MIS combines both of the sampling methods. Image Courtesy: PBRTv3 [50].

Combining the above importance sampling strategies is not straightforward. Simply averaging the

results obtained from each sampling strategy with equal weights doesn’t work well since Monte Carlo

noise is additive. If a single strategy has a high variance, it will be added to the final estimator. Instead,

we need to combine all the strategies based on which sampling strategy is better for the given shading

point. This combination of multiple sampling strategies to get an optimal estimator is called Multiple

Importance Sampling (MIS) [61]. MIS works by defining a set of weights wi(x) for each of the sampling
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strategies to be combined and uses them to build an estimator as follows:

⟨F ⟩ = 1

N

N∑

i=1




M∑

j=1

wj(xij)
f(xij)

pj(xij)


 , (2.6)

where M is the number of sampling strategies used. For the estimator to be unbiased, the following two

conditions have to be met by the MIS weights:

• The sum of weights should be 1 if the integrand is non-zero.

• The MIS weight for a strategy should be zero if the sampling probability of that strategy is zero.

There are many strategies to obtain the above weights. The Balance Heuristic [61] is a provably good

way of calculating weights for MIS to achieve close to optimal variance reduction. When using the

balance heuristic, the weight wi(x,ωi) for a sampling strategy is given as:

wi(x) =
pi(x)∑M
j=1 pj(x)

(2.7)

It is trivial to see that the above MIS strategy satisfies both conditions required for an unbiased estimator.

Kondapaneni et al. [34] propose an extension to the Balance Heuristic by also considering negative

weights. We refer readers to Chapter 9 of Veach’s thesis [60] for further in-depth analysis and proof of

MIS.

2.4 Analytic Solutions

While the Monte Carlo methods are general and unbiased (if done correctly), it is computationally

expensive to obtain noise-free renderings. Denoising algorithms help reduce this noise but can be ex-

pensive and also add uncontrolled bias. Analytical solutions, on the other hand, produce noise-free

renderings and are much cheaper to evaluate. However, to come up with analytic solutions, various

simplifying assumptions about the LTE are made (for example, disregarding visibility), which makes

these methods less general. Moreover, these methods oftentimes introduce some amount of known bias.

Nonetheless, the ability to produce noise-free renderings with considerably lesser computational cost

has made analytic solutions popular in real-time applications. In this section, we describe two methods

that will be used in the further chapters of the thesis. We also describe the source of bias for both cases

and outline possible solutions to avoid them.

2.4.1 Linearly Transformed Cosines

Area lights are shapes in the scene that emit light from their surfaces with some directional distri-

bution. Usually, area lights are composed of polygons or analytical shapes such as circles, spheres,

cylinders, etc. In general, computing the LTE in the presence of area lights requires one to integrate
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Figure 2.4: Shading in the presence of an area light requires one to integrate the Radiance-BSDF product

over the surface of the light. A closed-form solution is often unavailable, and Monte Carlo integration

is used. Image Courtesy: Heitz et al. [24].

over the surface of the area light (see fig. 2.4), and a closed-form analytical solution is not available.

To calculate the shading of a point under the influence of an area light we need to solve the following

integral:

Lo(A,x,ωo) =

∫

A

Li(y → x)fr(x,y → x,ωo)V (y → x)G(x↔ y)dy, (2.8)

where A is the surface of the area light, x is the shading point, y is a point on the light, G(x ↔ y) is

the geometric term which includes the Jacobian for change of measure from differential solid angle dωi

to a differential area on the area light dy and the cosine foreshortening term.

Figure 2.5: Linearly Transformed Cosines involve applying a transform M to the BSDF and light

vertices to bring them into a frame where an analytical solution is available. Image Courtesy:

Heitz et al. [24].

Linearly Transformed Cosines (LTC) [24] is a method to compute a plausible analytic approximation

to the integral in eq. (2.8) in the presence of polygonal area lights. This is achieved with a matrix that

transforms the light and BSDF from the true BSDF to a cosine distribution (see fig. 2.5) where analytic

integration is possible. Concretely, given an area light A with vertices (p0,p1, · · · ,pn), we apply
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a linear transform M , which transforms the BSDF into a cosine. These transformation matrices are

precomputed for a set of view directions ωi and roughness values α and interpolated at runtime. Given

the set of transformed polygonal vertices p
′ = Mp, the approximate total unshadowed illumination

E(A) from the area light is given as:

E(A) =
1

2π

n∑

i=1

cos−1
(〈
p
′
i,p

′
j

〉)
〈

p
′
i × p

′
j

|p′
i × p

′
j |
,



0

0

1



〉

(2.9)

Source of bias: The main source of bias in LTCs is due to the assumption that the emitter is completely

unoccluded. This assumption removes all shadows cast by the emitter. Several solutions, both stochastic

[25] and analytic [36] have been proposed to add back visibility information in LTCs.

Another source of bias comes from the fact that a linearly transformed cosine doesn’t fit the BSDF

exactly hence, the analytical integral would not exactly be equal to the actual one. In chapter 3, we

propose to use LTCs for sampling instead of using them to evaluate the final shading. Doing so allows

us to achieve a low variance Monte Carlo estimator, completely avoiding the issue of bias in LTCs.

2.4.2 Spherical Harmonics

Figure 2.6: Visualization of the first four Spherical Harmonic bands. The radius of the sphere is given

by the SH value in that direction. Blue denotes positive values, and yellow denotes negative values.

Image Courtesy: Wikipedia.

Spherical Harmonics (SH) are orthonormal basis functions defined on the sphere that allow us to

express directionally varying functions as a weighted sum. The real basis functions Y for band l ∈
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{0, . . . , lmax} and index m ∈ {−lmax, . . . , lmax} are defined as:

Y l
m(ω) =





√
2 Km

l P−m
l (cos θ) sin(−mφ) m < 0

Km
l Pm

l (cos θ) m = 0
√
2 Km

l Pm
l (cos θ) cos(mφ) m > 0

(2.10)

where P are the associated Legendre Polynomials and K are the normalization factors.

Given a function f , computing its SH coefficients requires:

cml =

∫

Ω
f(ω)Y m

l (ω)dω (2.11)

and with sufficient SH order (i.e. lmax), function f can be perfectly represented by a vector fSH of all

coefficients cml . Spherical Harmonics have several useful properties that make them suitable for solving

the LTE. One particularly useful property of SH, which we use in chapter 4 is the Double Product

Integral (DPI). Given a function f(ω) and g(ω) that are represented using a set of SH coefficients fSH

and gSH correspondingly, the integral of the product of both functions is given by the dot product of the

SH coefficient vectors, i.e.: ∫

Ω
f(ω)g(ω)dω = (fSH · gSH). (2.12)

If we represent the BSDF and the lighting in SH, then we can use the DPI property to calculate the

unshadowed LTE (without the visibility term) at the shading point. Specifically we set f = Li(x,ωi)

and g = fr(x,ωi,ωo)(ωi · n). In chapter 4, we use this double product integral property to compute

the shading due to the complex lighting and a complex BSDF efficiently.

Source of bias: Similar to LTCs, solving the LTE using DPI will discard visibility information. One

can use the TPI property [45] to incorporate visibility information analytically; however, it is much more

expensive to compute. Like LTCs, we can apply Ratio Estimators [25] to stochastically add visibility

information.

In practice, we usually need to limit the SH order to some lmax. Doing so removes the high-frequency

content of the signal being represented, also removing it from the final integral obtained from DPI. This

bandlimiting of the signal causes a systematic bias to be introduced into the system. However, in most

cases, choosing a sufficiently high cutoff frequency ensures this bias is negligible.

2.5 Neural Approaches

Neural networks are universal function approximators and have been increasingly popular for their

high representation power in recent years. Recent works have started using Neural Networks in various

parts of the rendering system to varying degrees. While neural methods are general, one has to carefully

tune the training procedure, architecture, and inference method to balance computational cost, quality,
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and error due to the network. In this section, we summarize some works which are relevant to our

contributions.

2.5.1 Learning Radiance

Figure 2.7: NeRF trains a neural network that learns the radiance distribution of the scene. The neu-

ral network takes the position x and view direction ωo of a point as input and outputs the radiance

Lo(x,ωo), which can then be used to perform volumetric rendering for novel view synthesis. Image

Courtesy: Mildenhall et al. [40].

Neural radiance fields (NeRFs) [69] have become popular neural rendering methods in recent years.

NeRFs train a neural network that learns the radiance distribution of the scene. The neural network takes

the position x and view direction ωo of a point as input and outputs the radiance Lo(x,ωo), which can

then be used to perform volumetric rendering to produce novel views (see fig. 2.7). The weights of the

network are optimized by backpropagating the gradients of the L2 loss between the produced rendering

and ground truth images. While NeRF is more applicable to the vision domain, the ideas it presents

have also been applied to a traditional rendering setup.

Neural Radiance Caching (NRC) [43] applies the idea of using a neural network to predict the radi-

ance to path tracing. It does so by training the neural network on the fly while rendering on a subset of

pixels for which full path tracing is performed. The neural network then predicts the radiance for the

other pixels. Further work along these lines has been made to limit the bias introduced by the neural

network and efficiently render multiple scattering in hair [35]. Finally, work has also been done to im-

prove convergence rates of Monte Carlo methods in the presence of complex lighting structures [77] by

learning the emitted radiance distribution in the scene.

2.5.2 Learning BSDF

Another use of Neural Networks in the rendering loop has been to learn the BSDF distribution of the

objects. Oftentimes, BSDFs used in production are quite complex and become the biggest bottleneck

in the rendering, limiting their usage in real-time applications. Even in offline rendering, Manuka [19],

the in-house renderer used by WetaFX, was architected while keeping this bottleneck in mind. Much
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Figure 2.8: Neural networks being used for fitting to a BSDF. Often times, complex BSDFs are a bot-

tleneck limiting their usage in real-time applications. Using small neural networks that are fast to infer

allows such complex BSDFs to be used for real-time applications. Image Courtesy: Zeltner et al. [76].

research has gone into representing such BSDFs using neural networks. The idea is to take as input

the view and outgoing direction pair (ωo,ωi) along with some optional auxiliary spatial information

at point x to output the BSDF value fr(x,ωi,ωo). Works in this domain include those by Kuznetsov

et al. [37], Fan et al. [18], Zeltner et al. [76], and Xu et al. [70]. In chapter 4, we make similar use

of neural networks to learn the multi-scale BSDF for a given position and scale. However, instead of

taking ωi,ωo as input, we predict the bin counts on the hemisphere, which represent a discrete binned

BSDF.

This chapter provided an overview of Physically Based Rendering (PBR) and introduced key con-

cepts such as the Light Transport Equation (LTE). We explored three main approaches to solving the

LTE: Monte Carlo-based methods, analytical methods, and neural approaches. In the next two chapters,

we will present our solutions to two cases with complex light transport.
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Chapter 3

Direct Lighting with Many Area Lights

Figure 3.1: We propose to combine Resampled Importance Sampling (RIS) from ReSTIR [7] and Pro-

jected Solid Angle Sampling [49] for rendering scenes with a large number of area light sources. This

figure shows an equal-time comparison of our method with RIS on the Zero-Day (left, 10K lights) and

Bistro Exterior (right, 30K lights) scenes. Our method traces a similar number of samples as RIS and

achieves a lower Mean Absolute Percentage Error (MAPE) w.r.t a 1M spp reference.

3.1 Introduction

In this chapter, we present an efficient method to render scenes with direct lighting in the presence of

many area lights. Direct lighting from many area light sources is challenging due to variance from both

choosing an important light and then a point on it. Resampled Importance Sampling (RIS) [57] achieves

low variance in such situations, however, it is limited to simple sampling strategies for its candidates.

Specifically for area lights, we can improve the convergence of RIS by incorporating a better sampling

strategy: Projected Solid Angle Sampling (ProjLTC) [49]. Naively combining RIS and ProjLTC im-

proves equal sample convergence, however achieves little to no gain in equal time. We identify the

core issue for the high run-times and reformulate RIS for better integration with ProjLTC. Our method
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achieves better convergence and results in both equal sample and equal time. We evaluate our method

on challenging scenes with varying numbers of area light sources and compare it to uniform sampling,

RIS, and ProjLTC. In all cases, our method seldom performs worse than RIS and often performs better.

Motivation Direct lighting from the environment and area light sources is at the core of Monte Carlo

path tracing. Monte Carlo methods repeatedly sample light sources to evaluate the direct lighting in-

tegral. In the case of environment lights, sampling is in accordance with the environment map’s PDF.

However, in the case of area lights, sampling involves first choosing one from a list of all area lights and

then choosing a point on it, introducing two sources of variance. Thus, direct lighting especially in the

presence of many area light sources is an active research area.

Given a shading point x viewed from direction ωo and a set of area lights A = {A1, A2, ...Aj}, the

radiance Lo(x,ωo) at x is given as:

Lo(x,ωo) =
∑

Aj∈A

Lo(Aj ,x,ωo), (3.1)

where Lo(A,x,ωo) is the total incoming radiance from the area light A reflected in direction ωo (see

eq. (2.8)). Monte Carlo is used to estimate eq. (3.1) with a discrete probability p(Aj |A) to sample a

light and a continuous probability density p(yi|Aj) to sample a point yi on this light as:

⟨Lo(x,ωo)⟩ =
1

N

N∑

i=1

Li(yi → x)fr(x,yi → x,ωo)V (yi → x)G(x↔ yi)

p(Aj ,yi)
, (3.2)

where p(Aj , yi) = p(Aj |A)p(yi|Aj). The variance of this estimator is low if this joint PDF and, by

extension, the individual conditional PDFs closely approximates the integrand.

In this work, we explore a clear gap: we combine RIS, the state-of-the-art direct lighting framework,

with state-of-the-art point sampling of area lights, i.e., ProjLTC, for rendering scenes with a large num-

ber of area lights. A naive combination is to directly use ProjLTC for p(yi|Aj) in RIS. We show that this

results in poor run-time as RIS needs to sample this underlying conditional PDF multiple times, which

is expensive to do with ProjLTC. We propose to improve the run-time by reformulating RIS to operate

on p(Aj |A) using LTCs and then applying ProjLTC once to sample from the selected light. We evaluate

our and previous methods on three scenes with varying numbers and sizes of light sources. Compared

to RIS-ProjLTC (the naive version), uniform sampling, RIS, and ProjLTC, our method achieves lower

error in equal time.

Figure 3.1 shows equal time comparisons of our method with RIS on two scenes. In both scenes, our

method achieves a lower quantitative and perceptual error.
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3.2 Related Work

Sampling lights: There are various methods for efficiently sampling a single light from a list of lights

on the GPU. The most straightforward approach is uniform sampling, where lights are selected with

equal probability [50]. However, a more effective strategy involves sampling lights in proportion to

their power, as suggested by Shirley et al. [54]. To speed up the sampling process, an alias table can

be employed [63]. Although sampling proportional to power provides good results, it overlooks the

distance of the light source from the shading point. Lights far away may have high power but might not

significantly contribute to the illumination. LightBVH [17] builds a BVH on the lights in the scene and

stochastically traverses it to sample proportional to the effective radiance received at the shading point.

A further improvement is presented by Moreau et al. [41], who divide the BVH into multiple levels.

This modification enhances the efficiency of rebuilding the LightBVH, making it suitable for real-time

applications where rapid updates are required. Lightcuts proposed by Walter et al. [64] build a binary

tree where the leaf nodes are the light sources and interior nodes are representative lights approximating

the contribution of all their children nodes. The final illumination from the lights is determined by

dynamically cutting the tree based on the shading point and then utilizing the leaf nodes of the pruned

tree to calculate the overall illumination. Stochastic Lightcuts [75] extends this idea and uses the binary

tree only for sampling, thereby removing the bias. An extension of the method [39] to make it suitable

for GPUs has been proposed.

Sampling points: Similarly, various methods exist for sampling a point yi on the chosen area light.

The simplest method samples yi according to the area of the chosen light [50]. Methods which sample

proportional to the solid angle [3, 21, 58] of the area light have also been proposed. These methods aim

towards low sampling variance from p(yi|Aj). A recent method [49] achieves a stable implementation

with near zero variance using projected solid angle sampling and LTCs (section 2.4.1). This method

achieves the state-of-the-art in sampling points on area lights, albeit at the cost of more computation. We

refer to this method as ProjLTC. Instead of relying on data structures for light sampling and attempting to

approximate the PDF proportional to LTE, Spatiotemporal Reservoir Sampling (ReSTIR) [7] proposes

to use simple and efficient strategies for both p(Aj |A) and p(yi|Aj). The resulting PDF p(Aj ,yi)

is then transformed to the target PDF which is proportional to the LTE using Resampled Importance

Sampling (RIS) [57]. RIS with spatiotemporal reuse achieves state-of-the-art results on scenes with a

large number of light sources.

3.3 Preliminaries

We start with a review of Resampled Importance Sampling (RIS), which is at the core of ReSTIR [7].

We then review the ProjLTC method [49] which uses LTCs (see section 2.4.1) with projected solid angle

sampling to sample points on area lights.
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3.3.1 Resampled Importance Sampling

Resampled Importance Sampling (RIS) [57] is an approach to obtain an importance sampled Monte

Carlo estimator. Instead of combining multiple different sampling strategies like MIS (see section 2.3.2),

RIS starts with a PDF p(x) which is easy to sample from, and transforms it into a target PDF p̂(x) which

is hard to sample from. It does so by generating an initial set of M candidate samples and choosing an

index z ∈ {1, . . .M} with probability:

p(z|x) = w(xz)∑M
i=1w(xi)

where w(x) =
p̂(x)

p(x)
. (3.3)

The chosen sample from RIS, a correction factor dependent on w(x) and the target PDF p̂(x) can then

be used for unbiased MC estimation as follows:

⟨F ⟩ = 1

N

N∑

i=1


f(xz)

p̂(xz)
·


 1

M

M∑

j=1

w(xij)




 (3.4)

In the context of solving the Direct Lighting, the target distribution is set to be the unshadowed

illumination i.e., p̂(x,ωi) = Li(x,ωi)fr(x,ωi,ωo)(ωi · n) at the shading point. For the candidate

sampling PDF p(x,ωi), one can choose any function. However, better results are achieved if p(x,ωi)

closely matches the target PDF. RIS has been used as a core component of recent algorithms which

reuse samples spatially and temporally to achieve real-time direct [7] and global [38, 47] illumination.

We extend upon [7] and reformulate RIS (see chapter 3) in the case of direct lighting with many area

lights to achieve better results.

We refer to and use the version of RIS as described by ReSTIR. In the context of direct lighting

with area lights, RIS sets p̂(x,ωi) = Li(x,ωi)fr(x,ωi,ωo)(ωi · n) and p(x) = p(Aj |A)p(yi|Aj) =

p(Aj |x) · 1/|Aj |, where |Aj | denotes the area of the light source Aj . We set the number of candidates

to M = 32. The choice of p(Aj |A) is orthogonal to our contribution and method: we focus on using

the best sampling strategy for p(yi|Aj) in RIS.

3.3.2 Projected Solid Angle Sampling

Peters [49] described a method that can sample the projected solid angle of an area light with PDF:

p(yi|Aj) =
G(yi ↔ x)

S(Aj)
, (3.5)

where S(.) gives the projected solid angle. Given a light source, their method applies LTC, transforming

the BSDF to the cosine space where projected solid angle sampling can be used. Their method achieves

close to zero variance for diffuse BSDFs and uses an MIS strategy for low variance in the case of glossy

BSDFs.
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3.4 Method

We aim to improve the equal time and equal sample Monte Carlo convergence for direct lighting

with a large number of area light sources. To that end, we start with a simple combination of RIS and

ProjLTC (section 3.4.1). We observe that this leads to excessive run-time and propose to improve it by

reformulating RIS for light sampling only and using ProjLTC for sampling a point on the chosen light

and final shading (section 3.4.2).

3.4.1 Combining RIS and ProjLTC

In RIS for area light shading, the candidate PDF p(yi|Aj) is uniform over the area of the chosen

light. A naive way to incorporate projected solid angle sampling is to use the sampling and PDF of

ProjLTC instead. The problem with this approach can be understood from section 3.3.1: sampling has

to be done M times, and ultimately only one sample is chosen. The majority of the sampling effort

is thus wasted and does not affect the final answer Furthermore, given that sampling using ProjLTC is

more expensive, the efficiency decreases. This is precisely why the original RIS uses other simple and

efficient strategies like uniform area sampling for p(yi|Aj).

Figure 3.2: This figure shows an equal time (200 ms) comparison of our method (section 3.4.2) with

RIS-ProjLTC (section 3.4.1) on the Bistro Interior scene with 2K light sources. The insets show dif-

ference images with a 1M spp ray-traced reference. Our method achieves lower error and traces more

samples in the same time.
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3.4.2 Reformulating RIS

The core issue is that RIS works on point samples on area lights. This implies that the candidate PDF

p(x) in eq. (3.3) should be over all points on all area lights. Therefore, to combine it with ProjLTC, we

have no choice but to use ProjLTC for each candidate sample since ProjLTC itself is a point sampling

strategy.

We can however reformulate RIS to sample a single light instead of a point on it by setting the target

and candidate PDFs to:

p̂(x) = E(Aj) and p(x) = p(Aj |x), (3.6)

where E(Aj) is the analytic solution of LTCs (eq. (2.9)). Our reformulated version of RIS thus chooses

a point on an area light as follows: (1) sample lights from p(x), (2) evaluate p̂(x) on the candidate lights

with LTCs, (3) assign weights and sample a single light according to eq. (3.3) and (4) apply ProjLTC

to this sampled light. Since we use LTCs strictly for sampling and not final shading, our method is

unbiased.

Figure 3.2 shows an equal time (200 ms) comparison of the naive combination of RIS and ProjLTC

(RIS-ProjLTC) with our method combining reformulated RIS with ProjLTC. Our method achieves lower

error and traces more samples than RIS-ProjLTC. The difference image insets also shows a lower per-

ceptual error for our method.

3.5 Implementation

We implement our reformulated RIS, projected solid angle sampling, and LTCs in an open-source

Vulkan renderer [49]. We use the Frostbite BSDF as our material model and use LTCs that are optimized

for it. Our RIS implementation uses Weighted Reservoir Sampling (WRS) [68] to stream samples,

similar to ReSTIR.

Alg. 1 describes the pseudocode of our method to compute direct lighting given a shading point x

(line 14). It starts with sampling of an area light with our reformulated RIS with M = 32 (line 15).

The next step is to apply projected solid angle sampling (ProjLTC) to the chosen light (line 16) and

then finally compute the radiance estimate (line 17). Note that L here is a multiplication of the BRDF,

incoming light, visibility, and geometry terms (line 2).

The ris sample light function (line 5) describes our reformulated RIS that samples a light

using LTCs. We use the definition of a Reservoir from ReSTIR [7] (lines 6, 7). Each of the M

light candidates are sampled using p(Aj |A) and the target PDF p̂ is set to the respective candidate’s

LTC evaluation (eq. (3.6), lines 9, 10). In our implementation we choose the candidates uniformly

at random, i.e. p(Aj |A) = 1/|A|. Better sampling strategies for choosing the candidate lights may

further improve convergence rates. We use the LTC approximation of [26] for efficiency. Finally, line

11 computes the weights (eq. (3.3)) and updates the reservoir.
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ALGORITHM 1: RIS with Projected Solid Angle Sampling

1 Def proj ltc(x, Aj):

/* Projected Solid Angle Sampling [49] */

2 L = projected solid angle sample(x, Aj) // L = fr · V · Li ·G
3 p̃ = projected solid angle pdf(x, Aj)

4 return L, p̃

5 Def ris sample light(x, M ):

/* Refer to [7] for the definition of Reservoir */

6 Reservoir r
7 r.M = M
8 for i← 1 to M do

9 generate Aj ∼ p(Aj |x)
10 p̂ = E(Aj) // Equation (3.6)

11 r.update(Aj ,
p̂

p(Aj |x)
) // Calculate weight Eq. Equation (3.3)

12 r.W = 1
E(r.y)

(
1

r.M
· r.wsum

)
// E(.) is the target PDF p̂

13 return r

14 Def direct lighting(x):

15 Reservoir r = ris sample light(x, 32) // M = 32
16 L, p̃ = proj ltc(x, r.y) // r.y stores the chosen light Aj

17 return L
p̃
· r.W

The proj ltc method is straightforward: it takes shading point x and the chosen light Aj and

samples it using projected solid angle sampling, potentially using MIS [49] (line 2). This function also

returns the corresponding sampling PDF (line 3).

3.6 Results and Analysis

We qualitatively and quantitatively compare our method against the following: (1) Uniform: Uni-

form light and uniform area sampling, (2) ProjLTC: Uniform light sampling and ProjLTC, (3) RIS:

RIS with uniform light and uniform area sampling and (4) RIS-ProjLTC: Naive combination of RIS

with ProjLTC (section 3.4.1). Note that we do not compare against light sampling methods such as

Moreau et al. [41] because Bitterli et al. [7] (RIS) already show superior results in the paper.

We use three scenes with varying numbers and sizes of area lights for the evaluation: (1) Zero-Day,

10K lights, (2) Bistro Interior, 2K lights and (3) Bistro Exterior, 30K lights. All renderings are done at

a resolution of 1920 × 1080 on an NVIDIA RTX 3090. We use the Mean Absolute Percentage Error

(MAPE) to quantify the error with respect to a ray-traced 1M spp reference.

Figure 3.1, fig. 3.2 and fig. 3.3 show rendered results with difference images for our and previous

methods. Our method traces a nearly equivalent number of samples as RIS while achieving lower error.

Figure 3.4 shows equal time convergence graphs for all methods. These graphs are plotted for diffuse
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(a) Zero-Day

(b) Bistro Exterior

(c) Bistro Interior

Figure 3.3: We show the equal time comparison of our method (section 3.4.2), previous work, and

the naive combination of RIS with ProjLTC (section 3.4.1). We show three scenes with diffuse (top)

and glossy (bottom) variants and difference images. The reference is rendered with 1M samples. Our

method achieves lower error when compared to all other methods.
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Figure 3.4: We plot equal time convergence graphs of our method (orange, section 3.4.2), RIS-ProjLTC

(blue, section 3.4.1), RIS (green), ProjLTC (cyan) and uniform sampling (purple) for both diffuse and

glossy versions of three test scenes. Our method achieves a lower Mean Absolute Percentage Error

(MAPE) in the same amount of time.

Table 3.1: We show the time to render one frame in milliseconds (ms) and equal sample MAPE for RIS

and our method on three scenes.

MAPE

RIS Ours 100 spp 2K spp

Scene (ms) (ms) RIS Ours RIS Ours

Zero-Day (10K) 3.98 4.70 0.499 0.458 0.173 0.131

Bistro Int. (2K) 3.33 4.06 0.214 0.168 0.066 0.047

Bistro Ext. (30K) 11.85 12.03 0.411 0.378 0.135 0.107

and glossy versions of the three scenes mentioned above. These graphs show that our method converges

to a lower error in equal time and that our method is most beneficial for glossy scenes. Note that it never

performs worse than RIS in the case of diffuse scenes. Also note that our method’s convergence graph is

essentially a translation of RIS-ProjLTC, clearly demonstrating that our method improves its efficiency.

Finally, we show the time taken to render one frame in milliseconds (ms) and equal sample MAPE

of our method in comparison to RIS in Table 3.1. On average, our method takes about 1ms more time

to render but achieves a lower error.

3.7 Discussion

In this chapter, we presented a naive combination of Resampled Importance Sampling (RIS) and

Projected Solid Angle Sampling (ProjLTC) for rendering scenes with many area lights. We identified

issues that make this method inefficient. We then proposed a reformulation of RIS that improved the

efficiency of this combination, achieving a similar run-time as RIS with a lower error. We analyzed our

method’s convergence and compared it with previous methods demonstrating superior quantitative and

qualitative performance.

Our method makes a contribution to improving the convergence of RIS. ReSTIR uses RIS at its core

and thus ReSTIR itself and any improvement on it will benefit from our contribution. For example,

the spatio-temporal reuse of samples as already done by ReSTIR can use our method instead to further
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improve the convergence. It should be noted that our reformulated RIS will always be faster than

the naive combination of RIS and ProjLTC, independent of the hardware and the implementation. To

see why, consider that ProjLTC has to evaluate LTCs and then do a few more operations on top for

sampling. Since our method stops after evaluating LTCs, it will always be faster. Our method, like RIS

(and ReSTIR) naturally supports textured area lights. Note however that in this case, the target PDF of

RIS will be further away from the true target which may affect convergence. One of the limitations of

our method is that it is limited to single-lobed BRDFs as LTCs cannot represent multi-lobed BRDFs.

For future work, we would like to investigate the performance of using LTCs instead of ProjLTC

with our RIS reformulation. We would also like to investigate the performance in the presence of

textured area lights. Finally, using LTCs for sampling instead of the final evaluation, to achieve unbiased

rendering is a recent trend that we would like to further explore.
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Chapter 4

Efficient Rendering of Glinty Appearance

Figure 4.1: Our method improves realism by supporting high-frequency normal-mapped surfaces with

spatially varying roughness (orange). Gamboa et al. [20] doesn’t support spatially varying roughness

and doesn’t capture the smudge effect on the kettle. Our method has modest memory requirements, even

with different normal maps (we show four). Furthermore, we also reduce errors (green) and improve

performance (1spp).

4.1 Introduction

In this chapter we present an efficient method to render scenes containing objects with glinty appear-

ance. Complex glinty appearance that arises from detailed normal mapped surfaces at different scales

requires computing expensive per-pixel Normal Distribution Functions; this integration is further com-

pounded by large light sources. Existing solutions focus on fixed material roughness. We present a new

method that supports spatially-varying roughness based on a neural-histogram that computes per-pixel

NDFs with arbitrary positions and sizes. Our representation is both memory and compute-efficient. Ad-

ditionally, we compute full direct illumination integration for all light directions with O(1) effort. Our

method shows an improved quality compared to previous works by supporting smaller footprints while

offering GPU-friendly computation and compact representation.
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Many real-world objects exhibit a rich, glinty appearance due to mesoscale features like scratches,

bumps, or flakes. Efficiently modeling these appearances at different scales is crucial for achieving

realism in the rendering process. This phenomenon can arise even under large light sources, requiring

additional integration.

Motivation Material appearance is often modeled using high-resolution normal maps. Unfortunately,

normal map filtering is not a linear process and requires special filtering techniques to keep the appear-

ance of the surface across scales. Dedicated data structures [4,20] or hierarchical representations [14,74]

are used to model the underlying normal distribution (NDF) inside the pixel footprint. These techniques

can be expensive in memory or not support analytical integration over large light sources.

The NDF typically has a standard deviation parameter that models the roughness of the surface.

The prior focus has been on efficiently computing the per-pixel NDF for constant roughness across

the surface. Constant roughness, however, does not exist in practice. Material mixing or impurities

cause changes in roughness that cannot be described fully with a normal map. Such details significantly

improve realism (fig. 4.1) and cannot be reproduced with existing techniques.

We propose a new method to accurately and efficiently compute per-pixel NDF from high-resolution

normal maps and varying roughness under complex lighting. We achieve this by combining a roughness-

independent binned NDF [20], with a novel neural-histogram and an improved adaptive discretization.

Our representation needs 60× less memory for the underlying distribution compared to fixed roughness.

Our approach introduces support for spatially varying roughness at negligible additional cost both in

memory and performance. Our main contributions are:

• An adaptive binning strategy to reduce discretization error of the continuous P-NDF.

• A neural network-based method for obtaining the spherical histogram for a patch, reducing the

memory requirements and improving the performance of the algorithm.

• Support for double filtering both the material appearance and lighting using Spherical Harmonics

(SH).

• A compact and tabulated Zonal Harmonics (ZH) representation and efficient on-the-fly rotation

to render glinty surfaces with spatially-varying (SV) intrinsic roughness.

4.2 Related work

To the best of our knowledge, no existing technique supports rendering complex high-resolution

normal-mapped surfaces with spatially varying roughness. For this reason, we relate to existing works

grouped by the way they represent and query the NDF.
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Microfacet theory: Similarly to prior works, our method is based on microfacet theory and targets to

support the filtering operation of the NDF at different scales. However, unlike the analytical model [5,

65], our BSDF model parameterizes the NDF by using a normal map. Support for SV roughness in the

analytical model is possible by relying on linear filtering of a roughness texture or top-level integration.

However, this approach cannot be used for normal-mapped NDFs.

Implicit representations: Some prior works use an implicit representation for the NDF, meaning the

normal distribution is generated on the fly. For instance, Jakob et al. [29] stochastically produce discrete

oriented facets and determine how many are well aligned based on the spatial and directional support.

Similar ideas have been adapted to real-time rendering based on bi-scale NDF [78], and physically-

based multi-scale precomputed NDF [10]. Using neural networks, we explicitly express the NDF from

the normal map and target offline rendering.

Explicit NDF Filtering the underlying normal map accurately is a challenging task. LEAN [46] and

LEADR [16] express multiscale auxiliary statistics such as mean and variance that are compatible with

MIP-mapping [67]. These methods are cheap and effective but cannot model complex materials’ glint

distributions across different scales accurately. Yan et al. [72] developed a hierarchical technique to

prune normals in the NDF that do not contribute to the final shading based on a fixed intrinsic roughness

parameter. This technique is highly accurate, but its cost increases proportionally with footprint size.

Later approaches have improved performance [74] or introduced wave-effects [73], however, there’s no

support for SV roughness or analytic integration of large light sources. Wang et al. [66] accelerate a

4D Gaussian query by blending and synthesizing different distributions. Additionally, their technique

supports environment maps using a prefiltering approach, however, they cannot synthesize macro-scale

glints. Deng et al. [14] developed a prefiltering method that provides constant-cost for rendering glints.

They achieve this by expressing the non-overlapping NDF images for a 32 × 32 footprint and then

compressing this representation using tensor decomposition [33]. Their approach uses MIP-mapping

for larger footprints, however, we found that trilinearly interpolated NDFs result in a blurry distribution.

In contrast, we use a Binned NDF representation with a neural network to properly interpolate NDF at

different scales without introducing blurriness.

Binned NDF: Gamboa et al. [20] combine normal map filtering and environment map lighting. Their

technique uses SH expressed in half-direction domain to compute the double product integral between a

histogram-based NDF and environment lighting. Although this approach is computationally efficient, it

requires a significant amount of memory, i.e., 4.8 GB for a normal map with a resolution of 2K×2K. We

borrow from their ideas, improving data representation to increase accuracy, achieve smaller memory

footprint and higher performance while adding support for SV roughness. The approach by Atanosov

et al. [4] uses a forest of kd-trees to accelerate histogram lookup. While this data representation is not

memory intensive (∼10-40 MB depending on histogram resolution), the lookup cost still depends on

footprint size. It also loses the ability to filter both surface appearance and environmental lighting.
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Figure 4.2: For a pixel footprint with location (u, v) and size s, we query our Adaptive Neural His-

togram (sections 4.4.1 and 4.4.2) to get bin counts. SH coefficients for each rotated Gaussian lobe with

roughness σs are obtained through on-the-fly Zonal Harmonics rotation (section 4.4.3). Multiplying

these coefficients with the corresponding bin count yields the SH vector of the P-NDF. Finally, a dot

product of the P-NDF and Light SH vectors (section 4.3.2) results in the final shading.

Neural-network in material models: Neural models [44] or differentiable indirection [12] have

proven to be an alternative versatile compression scheme. In particular, neural networks have been

used extensively for BSDF appearance compression [18, 27, 51] or improving filtering for SVBRDF

map [22]. A recent approach by Zeltner et al. [76] demonstrates how careful network design and hier-

archical MIP-mapped latent code [37] can capture detailed surface appearance at different scales. We

also use NeuMIP [37] in our technique to compress and pre-filter our representation.

Note that most deep appearance models require MC integrations of the incoming lighting. Special-

ized approaches have been developed to generate samples proportional to the neural material. Xu et

al.’s [70] histogram approach can be seen as similar to ours, however, our histogram captures the NDF

profile and supports pre-filtering operations.

4.3 Preliminaries

Our method is memory-efficient, GPU-friendly, and capable of analytical integration. We employ

explicit NDF and Spherical Harmonics (see section 2.4.2) for surface appearance modeling and light

integration. We also support spatially varying roughness and don’t need additional precomputations

when the roughness map changes. Yan et al. [74] and Atansov et al. [4] solve for a single roughness

value, resulting in fixed representations. We now explain the relevant concepts briefly.

4.3.1 Explicit NDF

Microfacet models [11] have been traditionally used for describing the BRDF at a point x

fr(x,ωi,ωo) =
F (ωi · ωo)G(ωi,ωo)D(x,ωh)

4(n · ωo)(n · ωi)
, (4.1)
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where ωi, ωo are the incident and outgoing directions respectively, n is the geometric normal at x and

ωh = ωi+ωo

∥ωi+ωo∥
is the half-vector. F and G are the Fresnel and shadowing-masking terms, respectively,

and the normal distribution function (NDF), D(x,ωh), describes the distribution of microfacets on the

surface. In this work, we focus on explicit NDFs defined by an underlying high-resolution normal map

instead of infinitesimally small microfacets [72].

The explicit NDF (P-NDF) is defined by a set of normals present in a patch P on the normal map.

The patch is given by projecting the pixel footprint on the normal map. [72] and subsequent work

perform 2D gaussian-weighting across the footprint. Contrary to this, we use equal-weighting similar

to prior work on discrete P-NDF [4, 20, 29]:

D(P,ωh) =
1

NP

∑

x∈P

Gr(ωh;ωx, σs), (4.2)

where Gr is an isotropic Gaussian that enables intrinsic roughness σs around a mean direction obtained

from the normal map, i.e., ωx = normal(x), and NP is the number of normals in the patch.

We can further discretize normals in the normal map into a set Ω̂ of directions ωj , resulting in the

binned P-NDF:

D̂(P,ωh) =
1

NP

∑

ωj∈Ω̂

cPωj
Gr(ωh;ωj , σs) , (4.3)

where cPωj
indicates the count for normal ωj inside footprint P . We discuss the set Ω̂ and present our

solution in section 4.4.1. Gamboa et al. [20] store this binned NDF as a spherical histogram, which is

memory inefficient. To this end, in section 4.4.2 we propose a neural-based histogram for efficiently

querying arbitrary footprints and achieving a low-memory profile.

4.3.2 Filtered Appearance Rendering

The light transport equation described in eq. (2.1) calculates the radiance at a single point x. How-

ever, a camera pixel covers multiple such points, forming a patch P . The contributions from all points

in P must be considered to obtain a correct answer. To consider this, we use a modified version of the

LTE that averages the contributions of all points in the patch P as follows:

Lo(P,ωo) =

∫

P

∫

Ω
Li(x,ωi)fr(x,ωi,ωo)(n · ωi)dωidx . (4.4)

Monte Carlo integrators perform this filtering task implicitly at no extra cost per sample, however, using

high-resolution normal maps requires extremely high sample counts to resolve all normal variation and

lighting effects correctly [72]. Under a far-field assumption and a microfacet model, we can consider all

normal filtering and variation inside the P-NDF [29, 72]:

Lo(P,ωo) ≈
∫

Ω

Li(x,ωi)F (ωi · ωo)G(ωi,ωo)D̂(P,ωh)

4(n · ωo)
dωi , (4.5)
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with P computed around the observed point x using e.g. ray differentials [28].

We can approximate eq. (4.5) by decoupling F and G terms and then re-parameterize to half-

direction space to form a double product Light-NDF integral. The effective problem to solve becomes:

Lo(P,ωo) ≈ F̂G(ωo)

∫

Ω
Li(x,ωi)D̂(P,ωh)dωi

= F̂G(ωo)

∫

Ωh

L̂i(x,ωo,ωh)4(ωh · ωo)︸ ︷︷ ︸
Light

D̂(P,ωh)︸ ︷︷ ︸
NDF

dωh . (4.6)

Going between L̂i(x,ωo,ωh) and Li(x,ωi) is trivial as ωi = reflect(ωo,ωh). Projecting each function

to Spherical Harmonics (SH) allows solving eq. (4.6) efficiently with:

Lo(P,ωo) ≈ F̂G(ωo)(LightSH(ωo) · NDFSH(P)) . (4.7)

Successfully computing these coefficients is expensive, as projecting a function is an integration process,

and under eq. (4.7), each SH vector is dependent on either view direction or footprint. LightSH can be

precomputed densely for ωo for environment emitters.

Additionally, LightSH and NDFSH are in the global and local frame, respectively, which mandates a

change of frame, i.e., an expensive SH rotation, before the dot product. Gamboa et al. [20] precomputed

rotated SH lobes tied to a fixed roughness to accelerate this process. Instead, in section 4.4.3, we show

how to obtain an arbitrary roughness NDFSH relying on on-the-fly ZH rotation while lowering memory

requirements and improving performance.

4.4 Method

Our method pipeline is shown in Figure 4.2. We introduce an adaptive binning strategy (Sec 4.4.1)

that reduces discretization errors and significantly improves rendering quality for equal histogram res-

olution. Our neural histogram (Sec 4.4.2) compresses and predicts this adaptive representation, allow-

ing efficient appearance filtering. Finally, we propose to change how SH coefficients of P-NDF are

calculated, reducing the memory requirement and allowing spatial varying or live editing of intrinsic

roughness (Sec 4.4.3).

4.4.1 Adaptive Binning

The binned P-NDF introduces discretization errors, especially at lower intrinsic roughness values or

under sharp lighting. This error translates as structural artifacts inside the rendered images (Figure 4.3,

left). A naı̈ve way of reducing this error is to increase the histogram resolution at the cost of runtime

and storage requirements. We mitigate this by distributing bins based on the distribution of normals in

the normal map (Figure 4.3, center). Specifically, we want to identify the set Ω̂ of Nθ ×Nφ bin centers

that best represent the underlying distribution. We have analyzed multiple normal maps and observed
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Figure 4.3: Comparing uniform and adaptive binning techniques under low-frequency (orange) and

high-frequency (green) lighting. We isolate the impact by using binned NDF and rendering all images

with Monte Carlo. Adaptive binning clearly improves quality ( FLIP difference scaled by 2×).

that the distribution of φ is mostly uniform. Based on this observation, we seek to find only the optimal

θ bins while retaining the uniform discretization along φ.

Adaptive θ discretization Our approach uses k-means++ [2], which improves the seeding procedure

for the k-means algorithm that minimizes an L2 norm. More specifically, we use the greedy initialization

variant of this technique. Compared to simpler solutions, k-means assigns bins to clusters, emphasizing

regions with a high concentration of normals and providing a balanced representation important to

conserve the material’s appearance (Figure 4.3).

4.4.2 Neural Histogram

We present a compact, flexible representation that supports filtering for different pixel footprints and

can be easily parallelized on the GPU. This replaces the memory-intensive summed area table in prior

work [20]. Our main idea is to compress the underlying distribution by storing a sparse histogram for a

given footprint and perform interpolation at run-time to reconstruct the histogram for a given footprint.

In practice, we set the minimum footprint size s = 8 × 8 to balance the memory budget and the

accuracy of our baseline model. We can explicitly iterate over all the corresponding normals for smaller

footprints.

Our approach is similar to Deng et al. [14], which converts a high-frequency normal map into a set

of sparsely distributed NDF images organized as a grid and compresses each image NDF using tensor
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Figure 4.4: Comparison between [14] and our technique. Our use of neural networks results in fewer

interpolation artifacts being observed. We include a reference with a square footprint to precisely show-

case the difference between the methods.

decomposition [33]. MIP-mapping interpolation is then used to reconstruct the NDF image associated

with a given query, decompressing their decomposition for a single direction. In contrast, we obtain

directly the requested histogram from our network. Additionally, their representation is tied to the input

NDF image set computed from fixed intrinsic roughness. This process fundamentally differs from ours

since a histogram is naturally roughness-independent.

In Figure 4.4, we show that trilinear interpolation-based methods suffer from additional blurriness

due to linearly blending different NDFs. In contrast, our method uses a deep learning-based approach

to produce faithful surface appearances. For this comparison, we use a scratches normal map with a

fixed roughness of 0.05 and a point light. Similar results were observed for different normal maps.

The reference is computed with MC using square footprints to isolate the differences between the NDF

representation and interpolation approaches. In the next subsection, we will empirically describe and

justify our network design.

4.4.2.1 Baseline neural model

We adapt NeuMIP design [37], which uses a feature pyramid as a natural solution to our problem.

The feature pyramid is arranged as textures with decreasing spatial resolution, similar to MIP-mapping.

We obtain the feature vector by trilinearly interpolating inside the feature pyramid for a given footprint

size and location. Then, a Multi-Layer Perceptron (MLP) network decodes them to obtain the final

histogram for the given footprint.
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Figure 4.5: Our proposed neural architecture. a) Our neural texture pyramid is inspired by [37] and a

decoder MLP, which predicts a partial histogram. b) We decompose the histogram into multiple smaller

partial histograms and compress them using Nθ + 1 smaller MLPs.

We experimented by replacing trilinear interpolation to choose one level stochastically [76], but

found the additional noise added to final images detrimental as our integration is noise-free. Usually,

our targeted histogram resolution is 9×32 bins. For this resolution, the baseline model uses MLP with 4

layers of width 256 each. Each layer is followed by a ReLU non-linearity. We apply the TriangleWave

non-linearity with amplitude of 1 and period of 2 on the final layer since the normalized range of his-

togram count will always lie in the range 0− 1. We normalize this output by the total sum of predicted

logits to ensure they sum to 1.

4.4.2.2 Improved network design

While the baseline method works well, it has two issues. First, the size of the MLP required for

high-quality results is too expensive, as it directly affects the performance of histogram queries. Sec-

ond, scaling to higher histogram resolutions requires an even bigger MLP and potentially larger feature

vectors. Keeping multiple MLPs rather than a large one is beneficial as it allows important practical

optimization, e.g., operation fusing or exploiting GPU caching architecture.

Based on these issues, we propose partitioning the histogram into partial histograms and training

multiple MLPs to predict them (fig. 4.5). The normalized bin count can be expressed as a probability

mass function P (φi, θj) for a bin oriented in (φi, θj). We can then decompose this density as

P (φi, θj) = P (φi|θj)P (θj) ≈ P ∗
Φ,j(φi)P

∗
Θ(θj) , (4.8)
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where P ∗
Φ,j is the learned conditional partial-histogram with θj oriented bins, and P ∗

Θ is the learned

densities of φs. Figure 4.5 show our proposed architecture. We need Nθ + 1 neural network inference

to estimate the full histogram.

4.4.2.3 Baseline vs improved architecture

(a) Scratches

(b) Isotropic

(c) Flakes

(d) Brushed Metal

Figure 4.6: Comparison between the baseline neural model and our multiple small network design for

different normal maps and P-NDF at three different scales. The summed area table (SAT) acts as a

reference pixel response, but uses 87× more memory than our neural approach. Our network design

outperforms the baseline model while maintaining quality across different scales.

Our improved architecture (section 4.4.2.2) relies on partitioning the histogram to make learning the

signal easier. Instead of using the baseline model (section 4.4.2.1), which consists of a 256×4 MLP, we

can use a much smaller MLP of size 64× 2 for better results. Furthermore, since individual evaluations

of the smaller MLP are much faster than the larger MLP, evaluating multiple such MLP is still faster.

Our improved version is 1.2×-1.3× faster than the baseline model. This difference can be explained as

the improved architecture also respects hardware constraints on GPU, allowing faster computation and

fused networks.

Figure 4.6 shows that both methods resolve different normal distributions at different scales, how-

ever, our improved architecture always produces a more accurate NDF distribution. This results in fewer

errors in the generated renders. For reference, we use the NDF SAT representation used in Gamboa et

al. [20], which accurately reproduces the NDF distribution at the cost of using 87× more memory than
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our neural representation. More comparisons between our model and the technique of Gamboa et al.

are available in the results section.

4.4.3 On-the-fly Rotation

Figure 4.7: Comparison between precomputed [20] and our on-the-fly computation of NDFSH coeffi-

cients. The (2×) FLIP difference (bottom row) shows that our method eliminates block-like artifacts

stemming from the discretization of stored SH coefficients.

Given the spherical histogram of a footprint, the SH coefficients of P-NDF, i.e., substitute eq. (4.3)

in eq. (2.11), are computed as follows:

NDFSH(P) =
1

NP

∑

ωj∈Ω̂

cPωj
GSH(ωj , σs) , (4.9)

where cPωj
is the frequency of ωj in P and GSH(ωj , σs) are the SH coefficients of a Gaussian lobe

oriented in direction ωj and roughness σs. Notice that if ωj = ωj , then the resulting SH coefficients

are in the local frame, however, when solving eq. (4.9) we can go straight to the global frame by making

ωj = toGlobal(ωj). Gamboa et al. [20] accelerate this computation by storing GSH coefficients with

fixed directions at 4× higher resolution than the histogram resolution (i.e. 65× 128). Then, at runtime,

they bi-linearly interpolate to compute the SH coefficients for an arbitrary direction. This approach has

two issues:

• Interpolation and discretization can generate visual artifacts with low roughness surfaces (fig. 4.7,

left).

• The rotation array has fixed σs, and storage cost significantly increases if there are objects with

spatially varying roughness or if there are objects with different roughnesses.
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4.4.3.1 Fast Rotation of Zonal Harmonics

Zonal Harmonics (ZH) are a special case of SH that can represent circularly symmetric functions

aligned about z using only the m = 0 coefficients. Of interest is the fast rotation property of ZH [55]

that allows computing the resulting SH coefficients gml after rotating ZH coefficients f0
l to an arbitrary

direction ωj by evaluating and scaling the basis functions Y m
l in that direction:

gml = f0
l Y

m
l (ωj)

√
4π

(2l + 1)
, (4.10)

Since the individual Gaussian lobes are isotropic, we propose using this property and precomputation to

perform fast on-the-fly rotation.

4.4.3.2 On-the-fly Rotation

Given ZH coefficients for a canonically oriented Gaussian lobe, we rotate them on-the-fly to remove

discretization error (fig. 4.7, center). Furthermore, the storage requirement is reduced drastically from

114 MB to 240 B for order-60 SH, using 32-bit floats.

To perform the fast rotation, we need to evaluate the SH basis functions at a given ωj direction

(eq. (4.10)). To accelerate this operation, we precompute the value of Legendre polynomials densely

for different θ, and we bake in the normalization factors as well (see eq. (2.10)). For a resolution of

2048 and order-60, the precomputed data requires a storage space of 30 MB. Notice that this texture is

common for the entire scene and remains independent of the roughness or any other scene parameter.

4.4.3.3 Spatially-Varying Roughness

A benefit of our approach is that the reduced memory footprint allows us to precompute and store the

ZH coefficients for many roughness values, enabling support for spatially varying roughness. In prac-

tice, we precompute the ZH coefficients for roughness values from 0− 1 at 1000 uniformly distributed

points. At runtime, we linearly interpolate the ZH coefficients from the two nearest σs and then perform

fast rotation to obtain the desired NDFSH. Storing the ZH values for 1000 σs values for order-60 takes

roughly 240 KB.

4.5 Implementation

We implement neural networks using TinyCudaNN [42] and PyTorch [48] for training. All experi-

ments are conducted on an NVIDIA RTX 4090 GPU. Training samples are generated by sampling the

footprint center X ∼ U(0, 1) and a random normalized footprint size σ ∼ λe−λx. Experimentally, we

found that setting λ = 16 works well. We clamp the resulting footprint size to a minimum of 8 × 8

and train each feature pyramid/decoder independently. We use the Adam [32] optimizer with a learning

rate of 10−3 for both the network weights and learnable feature vectors. We generate 218 samples per
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iteration and train each network for 20k iterations, leaving us with ∼ 5 billion training samples gener-

ated online. Each feature pyramid/decoder pair takes ∼ 10 mins to train, which leaves us with a total

training time of ∼ 1.5 hours. Latent code and network weights are stored in half-precision because it

does not affect the quality of our generated images

We train the network to minimize the KL Divergence DKL(P
∗||P ) between the partial-histogram

prediction P ∗ and ground truth partial-histogram P . The ground truth is obtained efficiently on-the-fly

while training uses the SAT proposed by Gamboa et al. [20] with our adaptive binning (section 4.4.1).

Note that this SAT is only needed for training and doesn’t contribute to the memory footprint during

runtime.

4.5.1 Rendering Pipeline

Our method is implemented completely on the GPU and uses Mitsuba 3 [30]. After getting the initial

intersection points, we build a G-Buffer consisting of the uv-coordinates and footprint size. We then

query our Neural Histogram to predict the histogram at each intersection point. Finally, the histograms

are projected to SH while lights SH are calculated using bilinear interpolation in half-vector space. We

use a custom CUDA kernel to calculate the double integral product from these coefficients and obtain

the final shading. Since we use small MLPs, our method can be implemented in a single mega-kernel

with inline MLPs similar to Vaidyanathan et al. [59].

Like Gamboa et al. [20], we also use Ratio Estimators [25] to add visibility information. This

introduces some variance noise in penumbra regions, to mitigate this, our images are denoised with

Optix AI Denoiser. We naively apply temporal denoising for animated sequences by setting the motion

vector to zero as we expect small camera movement. More advanced denoising methods are orthogonal

to our technique.

Our work analytically integrates complex lighting (e.g., an environment map) reflected on a normal-

mapped surface. No directional integration is required for delta lights, such as point or directional lights.

These delta lights can be easily handled using a pruning approach [20] or directly evaluating our neural

histogram. We use the former approach as its overhead is negligible, i.e., ∼ 5-20 milliseconds.

4.6 Results and Analysis

We compare our technique to the histogram representation and SH computation of Gamboa et

al. [20]. All techniques have been implemented on GPU using a 9 × 32 resolution histogram. We

will release our implementation upon acceptance. All references are calculated using Monte-Carlo with

high sample counts. It is important to note that while Gamboa et al. [20] supports rectangular queries,

we are restricted to a square footprint, however, this limitation is more apparent at grazing angles or

other highly anisotropic footprints, where both are inefficient. Finally, we evaluate the results using the

LDR- FLIP metric [1]. We display our results with Troy James Sobotka’s AgX tone mapping function.
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Figure 4.8: From left to right: GxD [20], our adaptive binning, neural network representation, on-the-fly

rotation, and the P-NDF reference. The reference is calculated using Monte-Carlo with high sample

counts. We observe an improvement in both memory usage and rendering quality with our approach.

We use FLIP for the difference image.

Table 4.1: Comparison of memory usage and runtime of our method with GxD [20], using a 9 × 32
histogram resolution on a 2K × 2K normal map with SH-Order of 60. Environment map coefficient

storage is excluded, as it remains the same for both methods. The runtimes are calculated assuming

the glinty materials fills the entire screen with resolution 1920× 1080. All timings are measured on an

NVIDIA RTX 4090 GPU.

Memory Runtime (s)

Histogram BSDF Coeffs Km
l Pm

l Total Histogram Dot Product Total

GxD 4.8 GB 114 MB − 4.91 GB 0.69 9.15 9.84

Ours 55 MB 240 B 30 MB 85 MB 0.40 7.42 7.82

Ratio 87× 475k× − 60× 1.7× 1.2× 1.25×

Empirically design study Figure 4.8 shows an ablation study of our design choices compared to the

Gamboa et al. [20] technique. The scene uses the isotropic normal map and an intrinsic roughness of

0.01. Our adaptive histogram representation and SH computation techniques have improved rendering

quality, while our neural network has significantly reduced memory usage. Even though we need to

evaluate MLPs to obtain the histogram, this process is still faster than the SAT NDF representation [20].

This can be attributed to GPUs being generally more bandwidth-limited than compute-limited. Table 4.1

shows the compression ratio achieved compared to prior work except for the light SH coefficients and

the runtime comparisons of histogram query and dot product. The light SH coefficients take 342 MB for

order 60 SH in both methods. Overall, our technique is faster and one order of magnitude more compact

compared to Gamboa et al. [20]’s approach.

Comparison against Gamboa et al. Figure 4.9 shows additional scenes with different normal maps.

All scenes have an environment map and a point light. Each scene contains different normal and en-
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Table 4.2: We isolate the rendering cost of our materials (1 spp) shown in fig. 4.1. Notice how most

rendering time is spent on the background objects and the ratio estimator for shadows (1k spp Monte

Carlo).

Object Normal Map SH Order Time (s)

GxD Ours

Spoon Scratches 60 0.16 0.13

Mug Flakes 40 0.26 0.29

Handle Isotropic 40 0.51 0.51

Kettle Brushed Metal 70 2.04 1.65

Total 2.97 2.58

Ratio Estimator + BG 3.26

vironment maps. Our technique consistently produces more accurate results than Gamboa et al. [20]

while using less memory. These results show that our neural network component does not introduce

visible artifacts.

Different histogram resolution Figure 4.10 shows the impact of a higher-resolution histogram on

our technique. Increasing the histogram resolution helps to reduce some discretization errors. Our

compact representation enables design choices compared to impractical memory requirements by SAT

NDF representations [20], which will require 18.4 GB at higher resolution. Higher histogram resolution

impacts the storage of the latent code, which is proportional to the number of histogram bins. We must

also increase our decoder network from an MLP of size 64 × 2 to 256 × 3 to maximize rendering

quality. The runtime increase due to a bigger network is negligible compared to the 4× increase in SH

dot product computation (Table 4.2).

Spatially-varying roughness Figure 4.1 compares Gamboa et al. [20] (GxD) and our technique with

spatially varying roughness. Supporting this is critical for realistic appearances as can be observed

by the differences in the kettle object. Our method is more compact and closer to the reference image.

Table 4.2 shows that our technique is slightly more efficient than GxD, where most of our computational

budget is spent on dot SH computations and the ratio estimator used to compute the shadow of the

environment map. Note that our method supports live-editing of the roughness texture. Editing the

roughness texture only requires a rendering a new image and not any additional computations, thanks to

our roughness-independent NDF representation and our fast and compact SH projections.

4.7 Discussion

In this work we presented a novel method to capture complex material appearances arising from

spatially-varying roughness and high-resolution normal maps.
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(a) Cutlery (Scratches)

(b) Snail (Isotropic)

(c) Car (Flakes)

Figure 4.9: Comparison between Gamboa et al. [20] and our method on various complex scenes. The

third column shows FLIP error of Gamboa et al. (left) and our method (right) computed against a

Monte-Carlo reference with 16k spp. We have a lower FLIP score in all the scenes with a much lower

memory footprint.
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Figure 4.10: Comparison of different histogram resolutions. Increasing the resolution by a factor of

two has minor local improvements in discretization error at the expense of increased memory usage.

Memory figures are only for our neural histogram storage.

Our solution relies on a neural representation histogram with an improved adaptive binning strategy.

We compute the complex P-NDF - Light integral in a single dot product of SH vectors. We believe our

technique pushes the realism of materials and opens a venue for future research.

Our method uses square footprints relying on a MIP-mapping style representation. To obtain a better

P-NDF, we could use multiple queries, similar to anisotropic filtering, at an added cost. As future work,

we want to explore other feature space designs to support anisotropic filtering in a single query, similar

to recent work by Deliot et al. [13].

The cost of our neural histogram depends on the normal map and P-NDF resolutions. We exper-

imented with differentiable codebooks [56] and differentiable indirection [12], but found difficulties

balancing compression and keeping sharp features of the P-NDF, essential to faithful surface appear-

ance.

Like all SH-based techniques, we suffer from SH order constraints. We can observe that SH compu-

tation is one of the biggest bottlenecks to our technique (table 4.1). The fast rotation array for the light

SH is 342 MB, which is 4 times more than the memory usage for all our other components. Addition-

ally, our technique only supports environmental lights. As future work, we want to explore alternative

bases [71] to overcome these issues.
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Chapter 5

Conclusion

In this thesis, we have provided an overview of various approaches for solving physically based

rendering. We conclude this thesis by summarizing our contributions.

We first present an improvement to the state-of-the-art method for direct lighting with many area

lights. Our use of analytic method (LTC) to evaluate the total illumination from an area light leads to

better estimation of the weights in RIS, improving the overall algorithm’s convergence rate. We showed

better quality results in equal time with the state-of-the-art methods. Our method is more beneficial in

the case of glossy material, but it never performs worse than the state-of-the-art, even in the case of

diffuse surfaces.

In our second work, we present an efficient way to render glinty appearance. We propose a com-

bination of neural and analytic methods to achieve better results than previous techniques while also

requiring less memory. We use neural networks to compress the data structures required for our algo-

rithm. We also propose improvements to the spherical harmonics-based analytic integration to further

reduce the memory requirements of the method and improve the quality of the results. Additionally,

to the best of our knowledge, our method is the first method to support glinty surfaces with spatially

varying roughness.

For future work, we would like to explore the extension of both of our methods to Global illumi-

nation. For our first work, one can trivially extend it to global illumination by applying our method at

each path vertex. Similarly, for the second work, we can use secondary ray differentials [6] to obtain

the footprint of secondary bounces and apply our algorithm to it. Another interesting avenue is to ex-

plore rendering glinty surfaces under the influence of area lights using LTCs. The explicit NDF can be

represented as a weighted sum of lobes which can be approximated by LTCs and then analytically inte-

grated. The computational complexity and its impact on the runtime remain to be evaluated. Finally, it

would also be interesting to use the Spherical Harmonics double product only for guiding the sampling

process, similar to our first work [53] and Diolatzis et al. [15]. Doing so would avoid the approximation

error due to insufficient SH order, giving us an unbiased estimator with potentially better equal-time

convergence.
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