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Abstract

The relentless growth of scholarly publications, exemplified by the annual publication rate
exceeding 5 million articles, has posed a formidable challenge for researchers seeking efficient lit-
erature review methodologies. Systematic Literature Reviews (SLRs), crucial for understanding
existing knowledge and identifying research gaps, are hindered by the manual extraction of in-
formation, contributing to extended timelines and potential obsolescence. This thesis addresses
the urgent need for improved literature review methodologies by focusing on two challenges:
Cited Text Span Retrieval (CTSR) and Named Entity Recognition (NER). CTSR involves
identifying cited text spans, facilitating the tracing of information origin, while NER identifies
and categorizes entities within the text.

In this thesis, we introduce CitRet, a hybrid model for CTSR, leveraging semantic and
syntactic characteristics of scientific documents and outperforming existing methods on the
CLSciSumm shared tasks. Using only 1040 documents for finetuning, CitRet achieves a re-
markable over 15% improvement in the F1 score evaluation.

Further, we explore Complex NER for English, a non-trivial task of identifying rare and
semantically ambiguous entities. Utilizing pre-trained language models, our models consistently
outperform the baseline, with the best model advancing the baseline F1-score by over 9%.

Expanding our scope to complex NER for low-resource languages, we leverage pre-trained
language models for Chinese and Spanish. Employing Whole Word Masking (WWM) to en-
hance the Masked Language Modeling objective, our models, incorporating CRF, BiLSTMs,
and Linear Classifiers, outperform the baseline by a significant margin. The best-performing
model attains a competitive position on the evaluation leaderboard for the blind test set. This
work aims to catalyze further research in the challenging domain of ambiguous, low-resource,
complex NER.

By addressing CTSR and NER, our thesis contributes significantly to the broader goal of
enhancing systematic literature reviews (SLRs). Integration of these tasks provides a structured
and comprehensive approach to navigating the vast scientific publication landscape, easing the
burden on researchers and promoting a more efficient dissemination of knowledge.
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Chapter 1

Introduction

1.1 Motivation

Scientific documents and publications are the cornerstone of academic knowledge dissemina-
tion, providing a repository of critical findings and insights. The rapid proliferation of scholarly
content, exemplified by an exponential increase in the annual publication rate, poses a sig-
nificant challenge for researchers. In 2022, over 5 million academic articles were published,
contributing to a cumulative total surpassing 200 million articles. Navigating this extensive lit-
erature becomes increasingly daunting, leading to the inadvertent oversight of crucial scientific
discoveries [76].

The traditional method of conducting literature reviews, notably the Systematic Literature
Review (SLR), has become a formidable task in this voluminous landscape. The importance of
such reviews cannot be overstated, as they provide a comprehensive understanding of existing
knowledge, identify research gaps, and guide future investigations. However, the sheer volume of
publications makes the manual extraction of relevant information a time-consuming and error-
prone process. Researchers may need to sift through dozens or even hundreds of papers to gain
a rudimentary grasp of the state-of-the-art in a particular domain, increasing the likelihood of
overlooking significant results.

SLRs usually demand a multidisciplinary team with specialized skills, including subject mat-
ter experts. Despite assembling such teams, SLRs remain time-consuming endeavors because
of the intricate nature of SLRs, involving time-consuming and labor-intensive steps of data
extraction, analysis, summarization, and synthesis, and the duration to complete an SLR may
range from six months to 1.5 years [3][1]. The extended timeline has substantial implications for
accuracy and relevance, as 23% of SLRs are considered outdated within two years of publication
due to emerging evidence.

The comprehensive manual effort required in SLRs poses a scalability challenge, and ad-
dressing this challenge necessitates innovative approaches. Tools and methodologies such as
Question Answering (QA) models, Retrieval-Augmented Generation (RAG), and summariza-
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tion present promising avenues to streamline the literature review process. These techniques
aim to automate the extraction of relevant information, thereby facilitating quicker and more
precise comprehension of scientific content.

Our motivation aligns with this urgent need for improved literature review methodologies,
echoing the efforts of SciAssist by WING@NUS [2] and PaperQA [76]. In this context, our
thesis focuses on two specific challenges: Cited Text Span Retrieval (CTSR) and Named En-
tity Recognition (NER). These tasks, while seemingly narrow in scope, play a crucial role in
addressing the broader issue of facilitating effective literature review.

Cited text span retrieval involves identifying and extracting portions of text referenced in
a document, offering a means to trace the origin and context of cited information. Simultane-
ously, named entity recognition focuses on identifying and categorizing entities (e.g., authors,
concepts) within the text. These tasks collectively contribute to a more automated and efficient
literature review process, forming the foundation for enhanced tools to alleviate the burden on
researchers.

By addressing CTSR and NER, our thesis contributes to the broader goal of making system-
atic literature reviews more accessible and effective. These tasks, when integrated, provide a
structured and comprehensive approach to navigating the vast landscape of scientific publica-
tions, ultimately easing the burden on researchers and promoting a more efficient dissemination
of knowledge.

In the subsequent parts of this section, we explore the formal definitions, motivations, and
challenges of the tasks undertaken, while also delineating the contributions of our research work.

1.2 Research Problem: Cited Text Span Retrieval

1.2.1 The Significance of Citations and the Evolution of Citation Analysis

In the realm of academic communication, citations function as crucial markers, symbolizing
the interconnected network of ideas, knowledge, and scholarly progress. The act of citation
goes beyond mere formality and a simple acknowledgment; it constitutes a nuanced dialogue
where scholarly works validate their arguments and engage thoughtfully with prior research
through precise bibliographic references. Citations construct a contextual bridge to previous
works and assist readers in navigating the chronological progression of knowledge, aiding in a
comprehensive understanding of the intellectual landscape and laying the groundwork for new
contributions.[112]

The inception of citation analysis can be traced back to Eugene Garfield’s pioneering work on
citation analysis as a tool for journal evaluation, as elaborated upon in his 1972 publication [41].
Garfield’s introduction of citation indexing marked a significant development in the evaluation
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Figure 1.1: Example of a citation. The text on the left (highlighted in green) is referred

to as the Citance text, while the text on the right (highlighted in red) is referred to as the

Cited/Reference text.

of scholarly impact. This innovative approach involved creating indexes that encompassed
all references in a research document. By examining citation patterns, Garfield proposed a
quantitative measure for assessing the influence and contribution of academic journals. The
frequency of citations to a journal’s articles emerged as a tangible metric, reflecting its influence
within the scientific community.

1.2.2 Exploring Citation Linkage in Scholarly Communication

In the landscape of scientific publications, a fundamental practice involves citing referenced
documents. However, a notable limitation exists within this practice- a citation, while indicating
a connection to another document, remains silent on the specific span of text within that
document to which it refers. The impediments posed by this limited citation specificity are
listed below.

• Compelled Comprehensive Reading Due to Unspecified Citation Context: As
a consequence of this inherent limitation, interested readers encountering a citation en-
counter an obstacle. The citation, devoid of information regarding the exact span of text
in the referenced document, necessitates a comprehensive study of the entire cited doc-
ument for those seeking a deeper understanding of the issue at hand. This requirement
not only imposes a time-intensive task on the reader but also poses efficiency challenges
in extracting relevant information. Consequently, the scholarly discourse is hindered by
an inherent lack of precision and accessibility.

• Subjectivity and Bias in Cited Information: Adding to the complexity, the infor-
mation ascertained about a referenced paper is susceptible to subjectivity and potential
bias introduced by the citing author(s) [139]. As shown in figure 1.2 (directly picked from
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[27]), this subjectivity can significantly alter the epistemic value of claims presented in
the cited work [27]. The citing author’s intentions, opinions, and biases may influence the
interpretation of the referenced paper, leading to variations in the perceived reliability
and objectivity of the cited information. Such subjective interpretations might result in
reporting preliminary results or claims as definite facts, introducing an additional layer
of complexity to the reliability of scholarly information.

Figure 1.2: Example of Epistemic Value Drift. The claim in (Voorhoeve et al., 2006) becomes

fact in (Okada et al., 2011).

Limitations of Traditional Citation Metrics: The traditional metric of a paper’s impact
based solely on the count of citations is not immune to these challenges. While often considered
a measure of a paper’s influence, the count of citations can be influenced by the subjective
interpretations and biases of citing authors. This reliance on quantitative metrics alone may
not accurately capture the true impact or significance of a paper, necessitating a shift towards
more nuanced and qualitative approaches capable of overcoming inherent biases in scholarly
discourse.

This establishes the foundation for delving into the analysis of citation context and cita-
tion linkage analysis as pivotal augmentations to scholarly communication. In the context
of a research article, a citation typically pertains to a segment within the referenced paper,
which is defined as the citation context. The citation context, in practice, may encompass
anywhere from a single sentence to several paragraphs. The process of associating a citation
with a specific span of text is termed citation linkage [112].

Citation Linkage, by identifying precise text spans referenced by citations within a paper,
can help us improve the assessment of a referenced publication’s impact, highlights, and weak-
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nesses, contributing to refined citation-based metrics, enhanced information retrieval, and im-
proved literature navigation tools, thereby elevating the qualitative aspect of citation evaluation.
Furthermore, in the context of automated related work generation, grounding outputs in the
content of cited papers becomes imperative to avoid inaccuracies and ensure factual precision
[70]. The formal details of our approach to this Cited Text Span Retrieval task are covered in
Chapter 3.

1.3 Research Problem: Named Entity Recognition

Named Entity Recognition (NER) stands as a foundational task in Natural Language Process-
ing (NLP), pivotal in transforming unstructured text into structured, interpretable information.
This process involves identifying and classifying entities within a text, such as persons, orga-
nizations, locations, dates, and more. The representation of named entities provides crucial
contextual information, enabling machines to comprehend and process language more effec-
tively.

Named Entity Recognition (NER) involves several key steps, including tokenization, span
detection, and classification, to extract and understand entities in text. The steps are briefly
described below.

1. Tokenization and Contextual Representation: The first step in NER is to tokenize
the input text into individual words or tokens. Tokenization is crucial as it breaks down
the text into smaller units for analysis. The tokens are then embedded into a contextual
representation, capturing the relationships and meanings between words in the sentence.
Contextual embeddings, often generated by pre-trained language models like BERT or
GPT, enhance the model’s understanding of the text.

2. Span Detection and Classification: The span detection step involves identifying the
beginning and end of a sequence of tokens that form a named entity. This is crucial
for delineating the boundaries of the entity within the text. Once the span of the named
entity is detected, the next step is to classify the type of entity it represents. This involves
assigning a predefined label to the identified span, such as person, organization, location,
date, etc. In standard NER tasks, the BIO (Begin, Inside, Outside) tagging scheme is
commonly employed for classifying entity spans within a text. Entities are labeled with
B-<entity_type> for the beginning, I-<entity_type> for inside, and O for outside the
entity span. This tagging system allows for the explicit delineation of entities and their
boundaries.

NER finds extensive use in various domains, offering substantial benefits in applications such
as information retrieval, question answering, and text summarization. In the general domain,
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NER has been a well-studied problem, with models achieving state-of-the-art results on datasets
like CoNLL 2002 [117] and CoNLL 2003 [118]. However, it has been noted that these impressive
results can be attributed to their training on well-structured news text, the prevalence of "easy"
entities like person names, and the potential for memorization due to entity overlap between
training and testing sets [9].

As NER technology matures, contemporary challenges emerge, particularly in recognizing
Complex Named Entities (Complex NEs). Traditional NER systems, trained on general do-
main data, encounter difficulties when confronted with these Complex NEs, and it results in a
significant decline in performance [88, 37]. The syntactic diversity and ambiguity of Complex
NEs pose challenges in contextual recognition, as they may not conform to the conventional
structure of named entities such as persons or locations.

The complexities are exemplified in domains involving creative works and scientific literature,
where named entities are not only diverse but also exhibit long-tail distributions. Scientific
entities, often described in technical language, pose challenges in NER due to their complex,
rare, and domain-specific nature[83].

Complex NEs, particularly those associated with Creative Works (CW), present additional
intricacies with fine-grained classifications such as SCIENTIST AND ATHELETE [38]. Recog-
nizing these entities requires nuanced understanding and the ability to discern subtleties in the
linguistic composition.

Recent studies underscore the difficulties in processing complex and long-tail named entities.
Even state-of-the-art pre-trained Transformers face limitations without external knowledge, ne-
cessitating the infusion of transformers with knowledge bases and gazetteers[38]. However, such
solutions prove brittle against out-of-knowledge-base entities and scenarios involving spelling
mistakes or typos. The emergence of new entities compounds these difficulties, creating a
scenario where entity types are open classes, continually evolving with faster growth rates in
specific categories. This evolving landscape demands test sets with a multitude of unseen
entities to simulate an open-world setting. Moreover, these challenges are amplified for low-
resource languages, which lack foundational work compared to well-established languages like
English. Addressing NER complexities in such linguistic landscapes requires tailored solutions
and underscores the need for broader research efforts in these domains. A list summarizing the
complexities we’ve discussed is provided below.

• Noisy NER: A user input contains a typo: "somy xpria" instead of "Sony Xperia."
Gazetteer-based models, relying on exact matches, struggle to recognize the entity due to
the misspelling, significantly degrading their performance.

• Ambiguous Entities and Contexts: The term "Inside Out" may refer to a movie in
some contexts but could have a different meaning in other contexts, such as describing an
emotional state. Ambiguous entities like "Inside Out," "Among Us," and "Bonanza" pose

6



challenges as they resemble regular syntactic constituents and may or may not be entities
based on the context.

• Complex Entities - General Domains: In the context of creative works, entities like
"Eternal Sunshine of the Spotless Mind" present linguistic complexity as they are expressed
as complex noun phrases. Current parsers/NER systems often struggle to recognize such
entities, and syntactic parsing becomes challenging.

• Ambiguous Entities and Contexts - Voice and Search Domains: In voice or search
domains, ambiguity arises with short inputs. For instance, the entity "Bonanza" could
refer to a TV show in some contexts, but in the context of a search query, its intended
meaning may differ. The lack of surface features like capitalization/punctuation in short
inputs complicates the NER task.

• Emerging Entities: In domains with growing entities, such as the release of new books,
songs, or movies, there’s a continuous influx of entity types. For instance, a recently
released book, not present in the training data, poses a challenge for NER systems. True
generalization requires test sets with numerous unseen entities to mimic an open-world
setting.

This thesis aims to explore, analyze, and propose solutions for the complexities inherent in
NER tasks By delving into the nuances of these challenges, we seek to contribute to the ad-
vancement of NER methodologies, fostering a deeper understanding of language representation
in intricate and specialized contexts.

We use the MultiCoNER dataset [81] for our task, selected for its capacity to mirror real-
world scenarios. The MultiCoNER dataset stands out as an extensive and intricate resource
designed for Multilingual Complex Named Entity Recognition (NER). Encompassing various
domains such as Wiki, question, and search queries across 11 languages, it offers a compre-
hensive representation of the challenges inherent in NER research. This dataset deliberately
incorporates entities that are low-context, structurally complex, semantically ambiguous, and
emerging in nature, making it particularly pertinent for tackling the complexities associated
with recognizing entities like titles of creative works.

The deliberate inclusion of such entities ensures that a substantial number of pre-trained
language models lack prior exposure to them, thereby enhancing the realism of the task. Ad-
ditionally, the dataset’s strategic design results in a test data quantity that surpasses that of
the training data by over 100 times, effectively mitigating the issue of potential memorization
due to entity overlap between training and testing sets, which has been a concern in previous
tasks. This thoughtful approach addresses and rectifies problems encountered in earlier tasks
and ensures a more robust evaluation of the NER model’s generalization capabilities. Figure
1.3 and Figure 1.4 consist of labelled sequence and the explanation of the assigned NER tags.
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Figure 1.3: Labelled Sequence and Explanation for English NER task.

This thesis aims to explore, analyze, and propose solutions for the complexities inherent in
NER tasks, with a specific focus on Creative Works and Scientific Domains. By delving into the
nuances of these challenges, we seek to contribute to the advancement of NER methodologies,
fostering a deeper understanding of language representation in intricate and specialized contexts.
The formal details of our approach to Complex NER in English and Complex NER for Low
Resource Languages (Chinese and Spanish) tasks are covered in Chapter 4 and Chapter 5
respectively.
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Figure 1.4: Labelled Sequence and Explanation for Spanish NER task.

1.4 Applications of CTSR and NER

Joint applications of Cited Text Span Retrieval (CTSR) and Named Entity Recognition
(NER) can enhance the overall understanding of the literature and improve information retrieval
in various domains. Here are some potential joint applications:

• Academic Literature Mining: Combined CTSR with NER can facilitate the extraction
of specific spans related to citations, aiding researchers in comprehending the context of
citations and the entities mentioned. This enhances the literature review processes. In
domains like Biomedical Text Mining, this integration can accelerate the otherwise time-
consuming extraction of information from cited research papers, clinical trials, and named
entities such as genes, proteins, and diseases.
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• Automated Summarization: Jointly identifying cited text spans and named entities
contributes to more informative and contextually rich document summaries, enabling a
swift grasp of key concepts and entities in academic papers or lengthy documents.

• Semantic Search and Information Retrieval: The integration of CTSR with NER
can enhance semantic search capabilities, enabling users to search for specific entities in
the cited context. This can result in more precise and relevant search outcomes, further
contributing to improved content recommendation.

• Knowledge Graph Construction and Database Creation: Named entities within
cited text spans can be leveraged to construct or enhance knowledge graphs, establishing
connections between entities in the literature. This process not only improves relationship
representation in specific domains but can also contribute to the creation of structured
and searchable databases.

• Legal Document Analysis: In legal texts, the combination of CTSR with NER can aid
legal professionals in efficiently extracting pertinent information. This process assists in
locating references to legal cases, statutes, and entities, ultimately establishing the legal
basis for arguments.

• Media Analysis: Combining CTSR with NER in news articles or media content can
enhance the extraction and comprehension of references to individuals, organizations, lo-
cations, and events. This integration, significant in the context of extensive data, includ-
ing social media, can notably contribute to advanced media analysis and is particularly
valuable for efficient claim and fact-checking processes.

1.5 Challenges

• Low Annotated Data and Deep Learning Requirements: Most existing efforts are cen-
tered on common language corpora, like news articles, Twitter posts, and online product
reviews. The applicability of models trained on such data to specialized domains, es-
pecially scientific literature, poses significant challenges. Deep learning models, widely
utilized in both cited text span retrieval and NER, demand substantial annotated data,
and annotating data for scholarly literature requires domain expertise.

• Biases in Annotated Data for Cited Text Span Retrieval: The challenge intensifies for
cited text span retrieval, where annotated data is scarce and, if available, exhibits bias
due to the limited representation of positive classes. This hampers the development of
accurate models, impacting the ability to generalize effectively to different domains [112]
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• Neglect of Scientific Texts’ Unique Challenges: Limited attention has been given to the
distinctive challenges associated with understanding scientific texts. These challenges
include idiosyncratic writing styles, specialized article organizations, and domain-specific
vocabularies uncommon in other text genres [47].

• Ambiguity and Variability in Scientific Language: The automated extraction of claims
from scientific papers faces difficulty due to inherent ambiguity and variability in natural
language. Even seemingly straightforward tasks, such as isolating reported values for
physical quantities, encounter complications arising from domain-specific conventions and
referencing of named entities.

• Esoteric Encoding of Literature: Scientific literature often employs esoteric encoding,
adding another layer of complexity to cited text span retrieval and NER. Deciphering
and interpreting such encoding require specialized attention, making it essential for the
effective application of these techniques in scientific contexts.

In summary, the challenges in Cited Text Span Retrieval and Named Entity Recognition
extend beyond conventional constraints, necessitating domain-specific adaptations to effectively
address the intricacies of scientific literature.

1.6 Key Contributions and Thesis Outline

1. We comprehensively explore the research landscape pertaining to Word and Word Se-
quence Representation, Cited Text Span Retrieval, Sequence Labelling, and Named En-
tity Recognition. Our survey encompasses various aspects, investigating how these tasks
pose challenges in complex settings marked by structural ambiguity, low resources, or the
need for domain expertise. We discuss different tasks and challenges organized to address
these issues, highlighting the frequent utilization of various pre-trained models and other
techniques to tackle these complexities. We elaborate on the related work in Chapter 2.

2. We introduce CitRet, a novel hybrid Cited Text Span Retrieval (CTSR) model. This
model, designed with simplicity and efficacy in mind, demonstrates a remarkable capa-
bility to operate with reduced data requirements for fine-tuning. CitRet utilizes the
distinctive semantic and syntactic structural characteristics inherent in scientific docu-
ments. This unique approach allows us to achieve superior performance with significantly
less data for fine-tuningspecifically, a mere 1040 documents. CitRet combines mildly-
trained SBERT-based contextual embeddings with pre-trained non-contextual Word2Vec
embeddings, harnessing semantic textual similarity to enhance accuracy. Moreover, its
computational efficiency stands as a key advantage in resource-conscious environments.
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The proposed CTSR model surpasses the current state-of-the-art (SOTA) by a substan-
tial margin, achieving a notable advancement of over 15% in the identification of cited
text spans. We present the details of CitRet in Chapter 3.

3. We address Named Entity Recognition (NER), with a specific focus on Complex NER in
English and Low Resource NER in languages such as Spanish and Chinese. Through ex-
perimentation with transformer-based models like BERT-Linear, BERT-CRF, and BERT-
BiLSTM-CRF, we demonstrate that simpler models outperform larger ensembles and even
surpass certain systems trained on additional gazetteer-based data. In the Low Resource
NER setting, our investigation extends to Spanish and Chinese, employing various BERT-
based architectures. Notably, the Whole Word Masking (WWM) strategy proves effective,
particularly for languages like Chinese. Our models achieve competitive rankings in the
MultiCoNER shared task, underscoring their effectiveness. For a more in-depth explo-
ration of our approach to this task, refer to Chapters 4 and 5.

4. We perform extensive experimentation, result compilation, and error analysis, specifically
focusing on Cited Text Span Retrieval (CTSR) and Named Entity Recognition (NER) in
diverse settings. The conducted experiments offer nuanced insights into the challenges and
intricacies of CTSR and NER, forming a foundational pillar for our research contributions.
This thorough exploration of experimental results enriches the scholarly discourse on these
tasks in different contexts.

5. In Chapter 6, we summarize our findings and explore potential directions for future re-
search in these domains.
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Chapter 2

Related Work

In this section, we embark on a comprehensive exploration of the related work that lays
the foundation for our research. We endeavor to contextualize our study within the broader
landscape of natural language processing and information retrieval. We delve into various
research domains that not only serve as influential methodologies but also encapsulate tasks
intrinsic to our work. Among these, Cited Text Span Retrieval (CTSR) and Named Entity
Recognition (NER) are a pivotal focus, given their paramount role in our research objectives.

We first briefly touch upon text and sentence representation, which is foundational to all
natural language processing (NLP) challenges.

For Cited Text Span Retrieval, we dissect the methodologies employed for retrieving specific
spans of text within documents, particularly in the context of academic literature.

The examination of NER encompasses a meticulous review of sequence labeling approaches,
shedding light on the diverse strategies employed for entity recognition. We also scrutinize
the influence of pre-trained language models on NER, exploring how these models have revolu-
tionized the accuracy and efficiency of named entity identification. Our investigation extends
to the occurrence of Named Entities in low-resource and complex settings, acknowledging the
importance of making NER accessible and effective across diverse linguistic landscapes.

2.1 Word and Word Sequence Representation

In the realm of text representation, the foundational task involves capturing the meaning
of words and word sequences. The distributional hypothesis, asserting that words with similar
meanings occur in similar contexts, has driven this field. Early count-based models, exemplified
by Sahlgren [107], relied on term co-occurrence matrices and matrix factorization. Mikolov et
al. introduced Word2Vec in 2013, with variants such as Continuous Bag of Words (CBOW)
and Skip-Gram optimizing context word prediction [90, 91]. These embeddings revolutionized
the field by efficiently representing word meanings. Moving beyond individual words, under-
standing complex language units necessitates encoding word sequences. Traditional methods
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like one-hot vectors, Bag of Words (BoW)[12, 86], and TF-IDF [113, 106] suffered from high
dimensionality and sparsity. With the rise of deep learning, word embeddings gained promi-
nence for sequence representation. Compositional models aimed to represent sequences as dense
vectors, applying composition functions to word embeddings. Vector averaging emerged as a
common composition function [65, 40, 91, 92, 49, 42, 93, 7, 35, 111]. Notably, it involves calcu-
lating the component-wise mean of word embeddings in a sequence. Various works, including
[91] and [42], demonstrated the effectiveness of such representations. In recent advancements,
pre-trained transformer-based language models, exemplified by BERT and its variants (e.g.,
ELECTRA, ALBERT, and RoBERTa), have dominated NLP tasks with state-of-the-art re-
sults. These models leverage attention mechanisms and multi-task learning [32, 26, 64, 73].
BERT, for instance, uses self-attention to generate embeddings for tokens, including a special
[CLS] token representing the entire sequence. While BERT embeddings are commonly obtained
by averaging token embeddings or using the [CLS] token, research by Reimers and Gurevych
[103] suggests that, in an unsupervised regime, BERT embeddings for sentence embeddings
might perform inferiorly compared to averaging GloVe embeddings. The authors’ rationale for
the inferior performance of BERT embeddings in an unsupervised regime is attributed to the
incompatibility of BERT-generated sentence embeddings with cosine similarity or Euclidean
distance metrics [103].

2.2 Cited Text Span Retrieval

2.2.1 History of Cited Text Span Retrieval Tasks

The history of Cited Text Span Retrieval tasks traces back to the Text Analysis Conference
(TAC) 2014, specifically BioMedSumm Task3. This pilot task marked a significant milestone
as the first initiative to provide annotated resources with citing and cited sentences, laying
the foundation for biomedical article summarization. The task introduced sub-tasks addressing
various steps crucial for an efficient scientific summarization system, focusing on cited text
spans.

Building on this initiative, the CL-SciSumm Shared Tasks emerged, further promoting the
identification of cited text spans and their utilization in generating scientific summaries. In
2016, the second CL-SciSumm [52] Shared Task took place as part of the Joint Workshop
on Bibliometric-enhanced Information Retrieval and Natural Language Processing for Digital
Libraries (BIRNDL) workshop at the Joint Conference on Digital Libraries (JCDL 2016). Subse-
quently, from 2017 to 2019, CL-SciSumm was colocated with BIRNDL at the ACM Conference
on Research and Development in Information Retrieval (ACM SIGIR 20172019) [51, 53, 21].
CL-SciSumm 2020 was organised as a part of Scholarly Document Processing at EMNLP 2020
[20].
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2.2.2 Prior Approaches of CTSR

The primary objective of the CL-SciSumm Shared Task is to unite the summarization com-
munity in addressing challenges related to scientific communication summarization.

The task of CTSR requires modeling the relationship (similarity) between a citing and a
candidate cited sentence. Early systems proposed using features based on TFIDF [137, 17, 97]
and n-grams or sentence graph overlap [5, 58] in order to calculate similarity scores between
the citing sentence and candidate sentences. Similarity measures such as Jaccard similarity and
cosine similarity were commonly used to solve this task. [15, 30, 57, 96]. The problem has also
been posed as a binary classification problem in [29, 137, 139]. In addition to traditional fea-
tures such as TF-IDF and n-grams, prior methods have also proposed using learned distributed
vector space representation (word embeddings) based features since they contain the semantic
similarity information at the word level. Models using both non-contextual embeddings such
as Word2Vec and contextual embedding methods like BERT have been utilized to find these
word embeddings. These extracted features are further used as an input to machine learning
algorithms like SVM [79], random forests [122], Word Mover’s Distance [68], CNN [69, 4] or
XGBoost [114, 96]. Furthermore, many approaches even adopted voting mechanisms and en-
semble techniques on top of their models to improve their metrics [19, 122, 79, 80, 98]. The
current best-performing models exploit transformers fine-tuned on very large datasets [19, 138].
[19] also experimented with adding document-level features to the model using special tokens.
Other noteworthy approaches, like [10] formulated the task as a search problem and used a
two-step approach for retrieving relevant sentences for a given citation. They first find candi-
date sentences using Apache Solr and BM25 and then re-rank the retrieved sentences using a
computationally expensive BERT-based re-ranker.

CTSR as Semantic Textual Similarity: We model the problem as a semantic textual
similarity (STS) task. To this end, learning sentence embeddings instead of word embeddings
has shown promise and improvement in performance [103]. Using pooling strategies such as
mean or max pooling of word embeddings has proven to be an efficient way of obtaining sentence
embeddings. SBERT [103] by default uses mean pooling. [23] further explored generalized
pooling strategies to enhance sentence embeddings. CNN-based models have also been used to
encode sentences into fixed length vectors [56]. To improve performance on sentence matching
tasks, [72] proposed syntax- and semantics-aware BERT(SS-BERT), which implicitly integrates
syntactic and semantic information of sentences. [120] showed that sentence embeddings could
be further improved by employing principal component removal based denoising as a post-
processing step.

15



2.3 Named Entity Recognition

2.3.1 Evolution of Named Entity Recognition

The inception of Named Entity Recognition (NER) tasks gained prominence through bench-
mark datasets like CoNLL 2002 [117] and CoNLL-2003 [108] shared tasks, focusing on language-
independent named entity recognition. These tasks concentrated on identifying persons, lo-
cations, organizations, and miscellaneous entities. As NER tasks expanded into real-world
settings, addressing long-tailed entities became imperative, leading to the exploration of deep
learning models for supervised training. However, the annotation of large amounts of token-level
data for NER tasks remained a substantial challenge.

In response to these challenges, and to address the need for real-world applicability in com-
plex settings, MultiCoNER 2022 [84] was organized, featuring 13 tracks focusing on detecting
semantically ambiguous and complex entities in various languages. The dataset encompassed
11 languages and included entities such as media titles, products, and groups. By dividing
the task into 13 tracks, MultiCoNER 2022 encouraged participants to build monolingual NER
models for individual languages, as well as multilingual models capable of working across all
languages.

Building upon the success of MultiCoNER 2022, MultiCoNER 2 (SemEval-2023 Task 2) [38]
continued to push the boundaries of NER. The dataset, known as MULTICONER V2, com-
prised 2.2 million instances across 12 languages. The data extraction strategy involved sentences
from localized versions of Wikipedia, with entities interlinked and resolved using Wikidata as
a reference. To enhance the challenge for models, the text was preprocessed by lowercase con-
version and punctuation removal, resulting in more representative and challenging sentences
reflective of real-world data.

Furthermore, MultiCoNER 2 introduced a fine-grained NER taxonomy building upon the
WNUT 2017 classification [31]. It featured 33 fine-grained classes grouped across six coarse
types, allowing for a more nuanced understanding of complex entities. This fine-grained tax-
onomy enabled the identification of specific types of entities, including those with complex
structures (e.g., Creative Works) or entities that are ambiguous without context (e.g., distin-
guishing between SCIENTIST and ATHLETE within the PER coarse-grained type).

In the landscape of Named Entity Recognition (NER), the challenges posed by identifying
named entities in scientific documents are particularly intricate, given their long-tailed nature,
rarity, and domain specificity. The inherent complexity of entities in scientific literature under-
scores the necessity for specialized approaches tailored to this unique domain.

One notable initiative on this scientific front is the DEAL (Detecting Entities in the Astro-
physics Literature) shared task, documented in the Workshop on Information Extraction from
Scientific Publications (WIESP) during AACL-IJCNLP 2021 [44]. DEAL specifically addressed
NER within astrophysics publications, necessitating the recognition of entities ranging from sim-
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ple elements like URLs to highly unstructured components such as formulas. The labels for this
task were meticulously curated by domain experts, encapsulating entities deemed relevant to
the astrophysics community. This ranged from entities useful to researchers, like "Telescope," to
those valuable to archivists and administrators, such as "Grant." DEAL effectively navigated the
complexities inherent in entity recognition within scientific literature, highlighting the diverse
nature of entities within this domain.

In addition to DEAL, recent works have delved into various aspects of NER within scientific
documents. Some focus on detecting biomedical entities [59] or scientific entities like tasks,
methods and datasets [74, 55, 89], while others concentrate on specific entity types like dataset
names or polymer names in materials science publications [47]. The diverse array of scientific
NER tasks emphasize the critical need for specialized approaches capable of addressing the
intricacies inherent in different scientific domains.

2.3.2 Prior Approaches of NER

• Sequence Labelling in NER: In the realm of Named Entity Recognition (NER), se-
quence labelling is a fundamental task involving the classification of each token within
a sequence by assigning a specific label. Traditional approaches to NER treated it as a
sequence labelling problem, employing models such as CRF (Conditional Random Fields)
[61] and HMM (Hidden Markov Model) [24]. Recent advancements have introduced deep
learning models, exemplified by Bidirectional LSTM with a CRF layer [66], to address the
inherent challenges. The high cost of labelling, especially for rare, long-tailed entity types,
prompted the exploration of methods such as Active Learning [43], Distant Supervision
[124], and Reinforcement Learning-based Distant Supervision [95, 135]. Liu et al. [71]
focused on detecting dataset mentions in scientific text, utilizing data augmentation to
mitigate label scarcity successfully.

• Pre-trained Language Models for NER: The introduction of pre-trained language
models, particularly transformer-based models like BERT [33], has revolutionized NER
methodologies. These models leverage transfer learning, with approaches such as Bidi-
rectional LSTM with a CRF on top [48] and BERT with a CRF layer [50]. Utilizing
a BERT-based model with a CRF layer, competitive performance has been achieved
in low-resource NER tasks across multiple languages, surpassing baseline performance
significantly. CAIR-NL [109] employs a multi-objective joint learning system (MOJLS)
that intricately enhances the representation of low-context and fine-grained entities. The
training procedure involves minimizing Representation Gaps( Addressing gaps between
fine-grained entity types within a coarse-grained type.), Information Augmentation (Re-
ducing representation gaps between an input sentence and the input augmented with
external information for a given entity.), Negative Log-Likelihood Loss (Employing this
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loss function to refine model predictions.), Biaffine Layer Label Prediction Loss (Incorpo-
rating a biaffine layer to predict label losses.) Furthermore, CAIR-NLP leverages external
context retrieval via search engines for input text

• Large Language Models on IE Recent strides in NLP have scaled the parametric
number of language models to hundreds of billions, yielding exceptional performance
from models like GPT-3 [16], OPT-175B [140], Flan-PaLM [25], LLaMA [119], and Chat-
GPT2. In the domain of Information Extraction (IE), ChatIE [130] harnesses ChatGPT
for extraction, demonstrating potential for further improvement. Ongoing experiments
explore instruction fine-tuning [129] and simplified training objectives [123] to adapt large
language models to extraction tasks.

• Gazetteer-based Models for NER: Top-performing teams in the MulttCoNER chal-
lenge extensively utilized external knowledge bases , such as Wikipedia and gazetteers, to
enhance context [128, 22]. Examples include DAMO-NLP’s unified retrieval-augmented
system (U-RaNER) [115], which incorporated knowledge from Wikipedia paragraphs and
the Wikidata knowledge graph. Other top systems, like PAI [78] and USTC-NELSLIP
[77], explored the use of gazetteers to provide additional contextual knowledge for NER.
Gazetteer-based models played a crucial role in accurately identifying complex entities,
as demonstrated by their success in the MultiCoNER challenge.

NER in Low Resource Settings: Addressing NER in low-resource settings has been
a focus of recent research. Cross-lingual knowledge transfer [36], bilingual dictionaries
[132], and Bayesian graphical models [101] have been proposed to leverage cross-lingual
contextual information. Other approaches include the creation of soft-gazetteers for low-
resource languages [104] and unsupervised methods for circumventing label scarcity [13].
Additionally, multilingual transfer learning [100] and distant supervision [46] have been
employed to enhance NER performance in low-resource languages. Recent approaches
also involve innovative techniques, such as the concatenation of embeddings [125] and
co-regularization frameworks [142], contributing to the state-of-the-art in NER tasks.

These diverse approaches collectively highlight the evolving landscape of NER, emphasizing
both traditional and innovative strategies to address challenges in different settings and scenar-
ios.
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Chapter 3

A Hybrid Model for Cited Text Span Retrieval

3.1 Overview

This chapter aims to identify cited text spans in the reference paper related to the given
citance in the citing paper. We refer to it as cited text span retrieval (CTSR). Most current
methods attempt this task by relying on pre-trained, off-the-shelf deep learning models like
SciBERT. Though these models are pre-trained on large datasets, they underperform in out-of-
domain settings. We introduce CitRet, a novel hybrid model for CTSR that leverages unique
semantic and syntactic structural characteristics of scientific documents. This enables us to
use significantly less data for finetuning. We use only 1040 documents for finetuning. Our
model augments mildly-trained SBERT-based contextual embeddings with pre-trained non-
contextual Word2Vec embeddings to calculate semantic textual similarity. We demonstrate the
performance of our model on the CLSciSumm shared tasks. It improves the state-of-the-art
results by over 15% on the F1 score evaluation.

3.2 Introduction

Citations are an integral part of scientific literature as they help better understand the
relationships between scientific documents. Authors cite other papers to acknowledge their
contributions, compare to their work, criticize, and improve upon their work. Citances often
focus on the most important components of a scientific document. Moreover, citance-based
summarization is also a widely studied field because it covers some insights that might not be
present in abstract-based summarization [34].

However, a citance depends on the intention and opinion of the citing author and can be
affected by epistemic value drift1 [27]. Also, a citance in itself lacks sufficient details to capture
the exact content of the referenced paper. Hence, identifying the correct context of the cited text

1An example of epistemic value drift is citing a claim as a fact.
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can enable us to verify the biases [139], overcome epistemic value drift, build dense knowledge
graphs, and generate better summaries [54, 20]. Furthermore, it also helps in qualitative analysis
of the citations [116]. Motivated by these, research tasks and tracks such as BiomedSumm2 and
CLSciSumm lay significant emphasis on this fundamental and challenging problem of finding
the exact cited text span. We refer to this task as cited text span retrieval (CTSR).

Most of the current methods targeting this problem are centered around fine-tuning deep
neural networks. In this regard, transformer [121] based encoders such as BERT [32] and
SciBERT [14] have proven to be very effective and have outperformed standard baselines like
LDA and TF-IDF. However, a major drawback of these methods is that they require large
domain-specific datasets, often exceeding 1 million documents, to fine-tune.

This chapter proposes CitRet, a hybrid CTSR model that performs well even in low-resourced
domain-specific settings. We model the problem as a semantic textual similarity (STS) task. We
exploit the distinctive semantic and syntactic structural characteristics of scientific literature,
i.e., when a paper is cited, the cited text of the reference paper is often paraphrased in such a way
that it still expresses the same central idea while also preserving certain keywords. Hence, we use
these keywords, which are common to both the citance and the cited sentence, to find weighted
contextual embeddings for the sentences. To find these weighted contextual embeddings, we
use Sentence-BERT (SBERT) [103] fine-tuned to minimize cosine similarity loss on training
data. However, when the training data is scarce, these contextual embeddings fail to capture
out-of-domain knowledge. To overcome this, we further leverage pre-trained non-contextual
embeddings like Word2Vec [90] to capture the general domain knowledge. We use Word Mover’s
Distance (WMD) [60] to find (dis)similarity scores based on these non-contextual embeddings.
This hybrid approach of utilizing contextual and non-contextual embeddings enables CitRet to
generalize well over unseen datasets. Definitions of the terms used throughout the chapter are:

• Reference paper (RP): A scientific document of which one or more sentences have
been cited by another paper(s).

• Citing paper (CP): A document that contains one or multiple citations to an RP.

• Citance: A sentence in CP that contains the reference to the RP.

• Cited sentence: The exact piece of the text belonging to the RP that a citance refers
to.

• Cited text span: Span of the cited sentence(s) belonging to the RP corresponding to a
citance.

The major contributions of this work are: 1) Proposing a simple yet effective CTSR
model that requires less data for fine-tuning and is computationally inexpensive. We train only

2http://www.nist.gov/tac/2014/BiomedSumm/
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Figure 3.1: Illustration of the CitRet model. WMD and weighted contextual embeddings

(WCEs) are calculated for an input pair. The WCEs are then denoised using the common

component removal technique. These denoised WCEs are used to find cosine similarity between

the sentences of the input pair. Finally, WMD and cosine scores are added, and top k similar

sentences in an RP for a citance are retrieved.

on the CL-SciSumm training dataset that consists of 40 manually annotated articles and 1000
automatically annotated articles.
2) Advancing the state-of-the-art (SOTA) to identify cited text span by over 15%.
3) Empirically validating the advantage of using the semantic and syntactic structure for CTSR.

3.3 Method

We formulate this task of CTSR as finding semantic textual similarity between a citance
and all the sentences of an RP, i.e., to find the cited text span for a given citance, we pick
the top k similar sentences in the RP. We refer to a <citance, a sentence in the RP> pair as
an input pair. As shown in Figure 3.1, an input pair is first pre-processed by lowercasing the
tokens, removing the stop words, and removing the special characters. Then to find the final
similarity scores, CitRet employs a mix of cosine scores using weighted contextual embeddings
(contextual distance) and Word Movers Distance scores (non-contextual distance) using pre-
trained non-contextual embeddings. Now, we explain each component of the pipeline in detail.

3.3.1 Background

3.3.1.1 SBERT

Sentence-BERT (SBERT) [103] , is a modification of the pre-trained BERT (Bidirectional En-
coder Representations from Transformers) [32] model. BERT is a popular attention mechanism-
based model that takes a sentence (an arbitrary sequence of tokens) as an input and learns con-
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textual embeddings for each token in the sentence. Though BERT has achieved state-of-the-art
performance in a wide variety of NLP tasks, its design renders it inappropriate for semantic
similarity search and unsupervised tasks because BERT doesn’t compute independent sentence
embeddings and instead learns embeddings for each token of the sentence.

To overcome this problem, SBERT builds over the BERT’s innovation of using a bidirectional
encoder. SBERT leverages BERT-based siamese network architecture to embed sentences into
a fixed-length vector by adding a pooling layer on top of the BERT layer. The SBERT siamese
network architecture can be fine-tuned using different losses such as triplet loss, contrastive
loss, and cosine similarity loss. Moreover, SBERT is computationally inexpensive compared to
BERT [103].

3.3.1.2 Word Mover’s Distance

Given pre-trained embeddings for the words, Word Mover’s Distance (WMD) [60] measures
the distance between a pair of sentences (sequence of words). It exploits the underlying ge-
ometry of the word embeddings to represent a sentence as a weighted point cloud in the word
embedding space. It formulates the problem of finding the distance between two sentences
as a transportation problem based on Earth Movers Distance. It defines the dissimilarity be-
tween two sentences as the minimum amount of work (distance traveled) required to transport
words from one sentence to the words of another sentence in the word embedding space. This
minimum cumulative travel cost between words of two sentences is calculated by solving the
following linear optimization problem.

min
T≥0

n∑
i,j=1

Tijc(i, j)

subject to:
n∑

j=1

Tij = si ∀i ∈ {1, ..., n}

n∑
i=1

Tij = s′j ∀j ∈ {1, ..., n}

Here, s and s′ are the normalized bag-of-words representation of two sentences. T is a flow
matrix, where the Tij ≥ 0 entry indicates how much of word i in sentence s travels to word j in
sentence s′. The total outgoing flow from a word i in sentence s to all the words j in sentence
s′ equals to the normalized frequency of word i, i.e. (

∑
ij Tij = si ). The distance between

two words in the embedding space is given by c(i, j) and calculated using Euclidean distance
between the word embeddings. The final distance between two sentences is

∑
ij Tijc(i, j).
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3.3.2 Contextual Distance

Contextual distance between the sentences is calculated using contextual sentence embed-
dings. The proposed model uses finetuned SBERT to learn these contextual embeddings for an
input pair. SBERT returns a fixed-length dense vector for an input sentence (sentence embed-
ding), irrespective of the length of the input sentence. To yield the final sentence embeddings,
CitRet follows three steps: 1) Finetuning the SBERT, 2) Finding the weighted contextual em-
beddings for each sentence pair, and 3) Denoising the embeddings. We explain each step in
detail below.

3.3.2.1 Finetuning the SBERT

To finetune SBERT siamese networks, we use cosine similarity loss. As training examples,
we pass sentence pairs annotated with cosine similarity scores on a scale of 0 to 1. For each
citance, we pass 5 sentence pairs of 3 different types, i.e., one pair with the actual cited text
having a similarity score of 1, two pairs with randomly selected sentences from other RP having
a similarity score of 0, and two pairs with randomly selected sentences belonging to the same
RP having similarity score of 0.3. This helps us model relations between the sentences of the
same documents and sentences of different documents.

3.3.2.2 Weighted contextual embeddings

When an RP is cited, the information that can be extracted from a citance about the RP
depends upon the intention, and the opinion of the citing author(s) [139]. However, when the
cited sentences are referred to, some key ideas and keywords are preserved, as depicted in Figure
2. CitRet exploits this characteristic of the scientific documents to find weighted contextual
embeddings for the input pair.

Figure 3.2: n-gram intersection of two sentences

SBERT takes the mean of all the word embeddings to calculate the sentence embedding.
After fine-tuning SBERT on domain-specific data, it is able to learn contextual embedding for
a sentence. To leverage this contextual learning capability of SBERT and to find weighted
contextual embeddings (WCEs) for the sentences, we use a very simple and intuitive strategy
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of concatenating the common keywords to the input pair before passing it to the SBERT (we
concatenate the keyword to both the sentences of the pair). These keywords are extracted by
finding common n-gram intersections between the sentences of the input pair. In the example
shown in Figure 3.2, maximum entropy is the common keyword (bigram). Concatenating these
n-grams results in the common keywords having more weight in the sentence embeddings due
to the mean pooling operation. Therefore, the sentence embedding vectors of the pair come
closer in the dense vector space if they share some keywords. Here, number n can be optimized
empirically, and in our tests, we get the best results for bigrams.

3.3.2.3 Denoising

We further modify the WCEs that we get from the previous step by using a denoising tech-
nique adapted from piecewise common component removal method proposed in [35]. Here, the
common components refer to the common topics (discourse themes) that exist throughout the
document (RP and CP) and can be considered as noise. Thus, removing these common compo-
nents can be understood as downgrading the unimportant components (common discourse) and
focusing on the components that have more discriminatory power. This helps in denoising the
embeddings [8]. Since cosine-similarity treats all dimensions equally denoising becomes critical
in making it more focused. Consequently, the cosine similarity scores calculated using denoised
embeddings become more relevant

ṽ = v −
m∑
i

λi projpci v , where λi =
σ2
i∑m

j=1 σ
2
j

These common discourse vectors are estimated as the principal components for a set of WCEs.
These principal components are calculated by singular value decomposition of Al×d matrix,
where l is the number of sentences in the document (RP and CP), and d is the dimension of
the WCEs. To get the final denoised sentence vector ṽ, we subtract from the original sentence
vector v, the weighted sum of the projections of the vector v on the first m(= 3) principal
components pci..m. The projections projpci v are weighted by λi, where λi is the proportion of
variance σi (singular value) captured by the principal component pci.

3.3.3 Non-contextual Distance

CitRet uses both supervised and unsupervised techniques to calculate the final similarity
scores to generalize well over unseen datasets. It augments contextual distance calculated
using mildly-trained SBERT with non-contextual distance calculated using unsupervised WMD
technique Figure 3.3 demonstrates WMD’s ability to capture relations in the general domain
setting. The arrows represent the flow between two words of an input pair. It may be observed
how models flows to frameworks and popular to favoured. It can be noted that the words
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Figure 3.3: Flow between 2 sentences S0 and S1 using WMD

popular and favoured are general domain words (non-scientific terms) and might not appear
very frequently in a scarce domain-specific dataset. Hence, the semantic relationships between
these general domain words are better captured by WMD.

3.4 Detailed Experimental Setup and Analysis

We demonstrate the performance of the proposed method on CL-SciSumm shared task [54,
21, 20] task 1(a), where for each citance, we need to identify the spans of text (cited text spans)
in the RP that most accurately reflect the citance. These cited text spans are of the granularity
of a sentence fragment, a full sentence, or several consecutive sentences (no more than 5). For
this, we pick top k (we picked k = 3) semantically similar candidate cited sentences for a
given citance by sorting their similarity scores. We evaluate the predictions against gold label
annotations using F1 score.

We compare the performance of the proposed model CitRet, with the best 3 systems (of
each category) submitted by NaCTeM-UoM [138] and the best 2 systems submitted by team
NLP-PINGAN-TECH [19], over CL-SciSumm test set.

The systems submitted by NaCTeM-UoM are based on BERT. Along with BERT 2018/19
OV + 2018 FT (a BERT model fine-tuned on the CL-SciSumm 2018-2019 dataset), they
submitted models ACL 2018 and SciBERT 2018. Both these models are first trained on
significantly large domain-specific corpora and then fine-tuned on CL-SciSumm dataset. ACL
2018 is trained ACL-ARC [99] whereas SciBERT 2018 is based on SciBERT model [14], which
is pre-trained on a collection of 1.14M documents from Semantic Scholar [6].

NLP-PINGAN-TECH team also centered their approach around fine-tuning BERT-based
models using larger domain-specific datasets. Their best-performing system SciBERT-SemBERT
is an ensemble of SciBERT, SemBERT [141] based on SciBERT, Sci-BERT-fake-token (tokens
for position and section details like [method][sid=xx][ssid=xx] are added as prefixes to the sen-
tences) and SciBERT-special-token (tokens for position and section details like [method],[sid=1],
etc. are added to the SciBERT dictionary to avoid split during tokenization). The other method
SciBer-ACLBERT, submitted by the NLP-PINGAN-TECH team that achieved a high score,
also leverages SciBERT and ACL corpora.
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In comparison, the proposed model is trained only on the CL-SciSumm training dataset that
consists of 40 manually annotated articles, which were used in the 2018 CL-SciSumm challenge
as well, and 1000 document sets that were automatically annotated using neural networks.
These 1000 document sets were introduced in 2019 and are of lower quality compared to the
manually annotated dataset. Also, we do not use any external corpora to fine-tune our model.

3.5 Results

We demonstrate the performance of the proposed method on CL-SciSumm shared task [54,
21, 20] task 1(a), where for each citance, we need to identify the spans of text (cited text spans)
in the RP that most accurately reflect the citance. These cited text spans range from the
granularity of a sentence fragment to several consecutive sentences. We pick top k = 3 similar
candidate cited sentences for a given citance. CitRet is trained only on the CL-SciSumm training
dataset that consists of 40 manually annotated articles and 1000 low-quality document sets that
were automatically annotated using neural networks. We do not use any external corpora to
fine-tune our model. We evaluate our model’s performance against gold label annotations for
the CL-SciSumm test set of 20 documents.

We consider the SOTA models of 2019 and 2020 CL-SciSumm tasks as baselines. Table 3.1
shows that CitRet performs the best in quantitative metrics (F1 and Precision) and outperforms
2019 SOTA (ACL 2018 ) by over 57% and 2020 SOTA (SciBERT-SemBERT ) by over 15%
on F1 score evaluation. It can be noted that using just the SBERT + WCE component
outperformed all the baseline SOTA models that use much larger datasets (exceeding 1 million)
for finetuning3. This empirically validates that using the semantic and syntactic structure for
CTSR can significantly improve the results.

Moreover, as evident from the ablation study, individual components of our pipeline also
help in increased performance. The most significant improvement, of 30% over fine-tuned
SBERT, was achieved by weighted contextual embeddings (SBERT + WCE). It can be noted
from Table 3.1 that using just SBERT + WCE component of our pipeline outperformed all the
SOTA models. This empirically validates that utilizing the unique structural characteristics of
scientific documents can significantly improve the results. Further denoising the weighted con-
textual embeddings (SBERT + WCE + D) for m = 3 improved the performance by around 5%.
Moreover, augmenting the contextual embeddings-based similarity scores with WMD achieved
a new SOTA by advancing the results of SBERT + WCE + D by over 9%.

We also performed experiments to check how the performance of the model varies with
the train and test sets’ size. The proposed method showed improvement when we used 1000
document sets that were automatically annotated using neural networks along with the 40

3Please refer to Appendix 3.4 for details of the experimental setup of the baseline models and ablation study

analysis.
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Method Recall Precision F1

ACL 2018 - - 0.126

BERT 2018/19 OV+2018FT - - 0.120

SciBERT 2018 - - 0.078

SciBERT-SemBERT 0.2459 0.1318 0.1716

SciBer-ACLBERT 0.2265 0.1244 0.1606

SBERT† 0.1879 0.1023 0.1325

SBERT + WCE† 0.1815 0.1647 0.1727

Denoising (SBERT+WCE+D)† 0.1901 0.1724 0.1808

CitRet (SBERT+WCE+D+WMD)† 0.2080 0.1888 0.1979

Table 3.1: Performance comparison of our model with the baseline models. The last four rows

show the ablation study of our model marked with †. D denotes the denoising step.

manually annotated documents. We obtained 0.17790 F1 (0.1869 Recall and 0.1697 Precision)
when we trained with just the manually annotated dataset that contained only 40 documents.
We also experimented with the 1000 noisy training samples by randomly splitting them into the
train (80%) and test (20%) sets and obtained 0.2779 F1 (0.4836 Recall and 0.195 Precision).

3.6 Discussion

As can be observed from Table 3.1, the proposed method significantly improves the F1 score
(+15%) and Precision(+43%) with some loss in Recall(15%). Our approach focuses on Precision
(a measure of the quality of retrieval) over Recall (a measure of quantity) because, for the given
task, the probability of getting false positives is very high. Hence, a higher precision results in
a more concise and accurate summarization.

The proposed approach is in line with the recommendation made by the task organisers to
exploit the structural and semantic characteristics that are unique to scientific documents to
enrich the embeddings. The chapter proposes a simple and computationally inexpensive alter-
native to the current state-of-art model in the form of CitRet. It leverages both contextual and
non-contextual embeddings. CitRet also combines a supervised model and an unsupervised
model. This hybrid architecture provides performance and robustness against noisy training
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samples. The components of the model are lightweight (do not require extensive fine-tuning),
faster, explainable, and intuitive. This highlights how other statistical machine learning tech-
niques can be leveraged along with modern deep neural network architectures to compensate
for the lack of quality training data and outperform computationally expensive architectures.

It may also be noted that while our method beats the baselines by large margins and achieves
a new SOTA, the absolute values are still rather low because of the non-triviality of the task.
The task becomes particularly challenging because of the low-quality training data and subjec-
tivity of the annotators. Hence, we believe that there is a scope for further improvement, and
the problem demands greater exploration.

3.7 Implementation details

We use the PyTorch framework to implement our NER model. We use the pre-trained
SciBERT tokenizer and embeddings as input to a dropout layer with a dropout probability of
0.5 to prevent overfitting. We use a learning rate of 1e-5 and train all models for 10 epochs.
We pass the output from the dropout layer through a linear layer with an input dimension the
same as the hidden dimension of SciBERT embeddings (768), and an output dimension the
same as the number of labels (4). For Sentence-BERT,we use pre-trained models available in
Pytorch.
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Chapter 4

Transformer Based Architectures for Complex NER in English

4.1 Overview

In this chapter, we investigate the task of complex NER for the English language. The task is
non-trivial due to the semantic ambiguity of the textual structure and the rarity of occurrence
of such entities in the prevalent literature. Using pre-trained language models, we obtain a
competitive performance on this task. We qualitatively analyze the performance of multiple
architectures for this task. All our models are able to outperform the baseline by a significant
margin. Our best-performing model advances the baseline F1-score by over 9%.

4.2 Introduction

Named Entity Recognition is an Information Extraction task that aims to detect entities
from unstructured text and classify them into predefined categories. Although the task of NER
has been investigated adequately by previous research work [87, 94, 62, 39, 105], the detection
of named entities in a multilingual setting is non-trivial. Furthermore, the introduction of
additional layers of complexity - in the form of semantic ambiguity and a lower amount of con-
textual availability poses further challenges. NER in low-resource languages further enhances
the difficulty of such tasks due to the scarcity of available data. Recently, deep learning models
have gained popularity for NER [133, 67, 45]. However, these approaches are data-intensive and
become ineffective when there is a lack of labeled data. Hence, the NER task for low-resource
languages becomes further challenging.

To foster research in this area, the SemEval MultiCoNER challenge [85] was introduced
that deals with multiple low-resource language NER with semantically ambiguous entities. In
this chapter, we describe our approach to tackle this task using state-of-the-art deep learning
models and introduce a simple neural network architecture that builds on top of pre-trained
language models. Our approach beats the baseline by a significant margin. We compare
multiple architectures on the test and validation set of the shared task. All our models beat
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the baseline by a significant margin. We provide the formal task description in Section 4.3,
the dataset details in Section 4.5, the method and the model architecture in Section 4.5. We
provide details about the experimental implementation in Section 4.6. We discuss the results
obtained and error analysis in Sections 4.7 and 4.8, respectively.

4.3 Task Description

The objective of this shared task is to build complex Named Entity Recognition systems for
multiple languages such as English, Spanish, Chinese, Hindi, Bangla, etc. The task presents
a unique challenge in the form of detecting the entities in semantically ambiguous and low-
context settings. Moreover, the shared task also tests the generalization capability and domain
adaptability of the proposed systems by testing the system over additional (low-context) data
sets containing questions and short search queries, such as Google Search queries.

For this task, the systems had to identify the B-I-O format [102] (short for beginning, inside,
outside) tags for six NER-tags classes, namely Person, Product, Location, Group, Corporation,
AND Creative Work.

Earlier works have also tried to address the problem of NER, but usually, the datasets con-
sisted of well-formed texts of easy entities [9], and little has been done to tackle the problem
of identifying semantically and syntactically ambiguous entities like Creative Works. For exam-
ple: Eternal Sunshine of the Spotless Mind and Among Us are complex entities that may be
considered as Named Entities in some very selective contexts for e.g. Among Us is not a NE in
"There is not much disagreement among us," but a CW in " Among Us is a super fun game to
play." This task also aims at tackling such problems.

4.4 Dataset

The MultiCoNER dataset [82] introduced consists of labelled complex Named Entities. For
the monolingual track, the participants have to train a model that works for one language only.
For training and validation purposes, train and dev set is provided with labelled entities. The
monolingual model trained needs to be used for the prediction of named entities in the test
set. The labels from the test set are not provided directly. In this system description for the
monolingual track, we have considered the English NER dataset for our task. The dataset
follows a BIO tagging scheme and there are 6 entity types in the label space. The statistics for
the English dataset in the monolingual track for the train and dev set are provided in Table
4.1 and the description of the label space in Table 4.2.
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Figure 4.1: BERT-based architecture

4.5 Models

This section describes our approach to designing a system to solve the problem of classifying
the tokens of a given sentence into one of the six NE categories. We also briefly describe the
BERT model architecture employed in our system.

As is the case with most of the NLP tasks, the performance of the model boils down to
learning the best-distributed representation for the tokens. With the advent of transformer-
based models, the whole domain of NLP has been revolutionized because they provide us with
some of the most feature-rich embeddings. Contextual embeddings learned using transformer-
based models give better performance than embeddings learned using traditional methods such
as TF-IDF, word2vec, etc., for downstream tasks such as NER, since such tasks require greater
contextual awareness.
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We also adopted the simple strategy of finetuning various architectures based on pre-trained
language models such as Bert on our task-specific data.

BERT+CRF : We use a pre-trained BERT model to obtain the token embeddings. These
embeddings are passed to a token-level classifier followed by a Linear-Chain CRF. The CRF
produces a probability distribution over the entire label space for each token among the sequence
of tokens. More formally: 1) For a sequence of tokens x = (x1, x2, x3, ..., xm), where xi is the ith
token among the sequence of tokens, we obtain a low-dimensional dense embedding, xi ∈ Rd

where d is the embedding dimension. 2) This embedding is mapped to a lower dimensional
space xi ∈ Rk where k is the total number of labels. 3) The output scores from the linear layer
are obtained as P ∈ Rm×k, where m is the number of tokens. These scores are passed to the
CRF layer, whose parameters are A ∈ Rk+2×k+2. Each element Aij signifies the transition score
from the ith label to the jth label. The 2 additional states in A are the start and the end state
of a sequence. For a series of tokens x = (x1, x2, x3, ..., xm) we obtain a series of predictions
y = (y1, y2, y3, ..., ym). As described in [63], the score of the entire sequence is defined as :

s(x, y) =

m∑
i=0

Ayi,yi+1 +

m∑
i=1

Pi,yi

The model is trained to maximize the log probability of the correct label sequence:

log(p(y|x)) = s(x, y)− log

 ∑
ỹ∈YX

es(x,ỹ)


where YX are all possible label sequences.
BERT+BiLSTM+CRF : We use a pre-trained BERT model to obtain the contextual em-

beddings from the sentences. These embeddings are passed to the BiLSTM layer. The BiLSTM
layer captures these into a hidden state representation. This representation is passed to a CRF
layer that obtains the probability distributions across the labels. Specifically, the pre-trained
language model is used to map the tokens in each sentence to a distributed representation. This
is used as the word embedding layer of the BiLSTM-CRF model. The BiLSTM-CRF layer is
used to sequence label the sentence, and the predicted labels are obtained. The supervised
learning algorithm iterates to improve its predicted label accuracy over every iteration. More
formally, the process can be described as follows : 1) The target sentence comprising of m

tokens, is represented as x = (x1, x2, x3, ..., xm), where xi represents the ith token of the entire
target sentence. 2) xi is mapped to a low dimensional dense vector, xi ∈ Rd using the pre-
trained BERT embeddings, where d is the dimension of dense embedding. 3) The sequence of
tokens x is taken as an input to the BiLSTM in each time step, and the forward hidden states
−→
hf = (

−→
h1,
−→
h2,
−→
h3, ...,

−→
hm) and the backward hidden states

←−
hb = (

←−
h1,
←−
h2,
←−
h3, ...,

←−
hm) are concate-

nated to form the combined hidden state representation h = [
−→
hf ,
←−
hb]. 4) The combined hidden

state representation h ∈ Rm×n is reduced to a k dimensions using a linear layer, where k is
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Train Dev

# sentences 15300 800

Table 4.1: Total sentences in English monolingual track

Label Description

PER Person

LOC Location

GRP Group

CORP Corporation

PROD Product

CW Creative Work

Table 4.2: Entity types in the label space

BERT+Linear BERT+CRF BERT+BiLSTM-CRF

Class Label Prec Rec F1 Prec Rec F1 Prec Rec F1

LOC 0.9304 0.9145 0.9224 0.903 0.9145 0.9087 0.9025 0.9103 0.9064

PER 0.9659 0.9759 0.9708 0.936 0.9586 0.9472 0.8882 0.9586 0.9221

PROD 0.7365 0.8367 0.7834 0.7785 0.7891 0.7838 0.7372 0.7823 0.7591

GRP 0.8923 0.9158 0.9039 0.8341 0.9000 0.8658 0.8466 0.8421 0.8443

CW 0.7955 0.7955 0.7955 0.7963 0.733 0.7633 0.7353 0.7102 0.7225

CORP 0.893 0.8653 0.8789 0.8877 0.8601 0.8737 0.8837 0.7876 0.8329

Average 0.8689 0.8839 0.8758 0.8559 0.8592 0.8571 0.8322 0.8318 0.8312

Table 4.3: Results of our models on validation dataset

the number of labels to distribute the probabilities across. 4) Finally, the CRF layer is used to
obtain the probability distribution across all the labels to obtain the final prediction.

BERT+Linear: The token sequence is mapped to a lower dimensional space using pre-
trained BERT embeddings. These embeddings are then passed to a linear layer that maps
these embeddings to a lower dimension of label space. The output scores are then softmaxed
to provide a probability distribution across all labels.
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4.6 Implementation Details

We implement all our transformer-based models using Pytorch and Huggingface libraries.
We implemented 3 models, BERT+Linear, BERT+CRF and BERT+BILSTM+CRF. WE also
tried adding POS embeddings as extra features to the models and compared the results. We
use a dropout from 0.2 to 0.5 in all models, and found that 0.3 gave the best results throughout.
We used 2 linear layers in the BERT+Linear model. We added a softmax layer to obtain
the probability distribution across all the labels. For the BERT+Linear model, we run our
experiments across 1-20 epochs. We find that the model starts to overfit after 10 epochs, and
the best results are obtained after 5 epochs of training. For BERT+CRF, we experiment across
1-100 epochs. We find the model gives the most optimal result at the 20th epoch, after which
it starts to overfit. We use a learning rate of 1e−4 for all the models. WE validate the results
of all models using our dev set.

4.7 Results

We compare the performance of our models in the validation set against the baseline. We
use the best-performing model for the final submission in the evaluation phase. We provide
details of the performance of the best performing over the blind test dataset provided in the
evaluation phase. We provide a detailed comparison of the performance of our models across all
the class labels in the validation dataset in Table 4.3. We observe that the simple BERT+Linear
model performs the best as compared to other larger models. We attribute this to the limited
number of samples in the training dataset. The lack of a sufficient number of training samples
limits the ability of larger models to generalize properly over the entire training set. We notice
that the performance of the BERT+Linear model is consistent across all class labels except for
PRODUCT.

Precision Recall F1-Score

Baseline System 0.773 0.780 0.776

BERT + CRF 0.855 0.859 0.857

BERT+BiLSTM-CRF 0.832 0.831 0.831

BERT + Linear 0.868 0.883 0.875

Table 4.4: Comparison of model performances with the baseline on the validation dataset
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BERT+Linear

Class Label Precision Recall F1-Score

LOC 0.7292 0.7614 0.7449

PER 0.8776 0.8922 0.8848

PROD 0.7079 0.6460 0.6755

GRP 0.7699 0.6600 0.7107

CW 0.5527 0.6299 0.5888

CORP 0.7253 0.6759 0.6998

Average 0.7271 0.7109 0.7174

Table 4.5: Performance of model on test dataset

4.8 Error Analysis

We perform error analysis for all 3 different model performances on the validation dataset.
We find that for all 3 models, each model has the highest difficulty in accurately predicting the
CW (Creating Work) label. This can be attributed to the higher degree of ambiguity when it
comes to CW named entities, as these often share similar type of textual structure as normal
non-named entity text tokens. It can be inferred that all 3 models are memorizing entity names
from the training data to some extent. It is most prevalent in BERT+BiLSTM+CRF model,
as we can see that it has the least amount of prediction accuracy among other models. This is
consistent with our reasoning that heavier models tend to overfit the dataset faster. Hence, we
deduce that named entity memorization can be attributed to a type of overfitting behavior by
the model in question. The BERT+Linear model, which is the lightest model with the least
amount of trainable parameters among all 3, is found to be significantly less prone to memorize
entity names.

We perform error analysis for all 3 different model performances on the validation dataset.
We find that for all 3 models, each model has the highest difficulty in accurately predicting the
CW (Creating Work) label. This can be attributed to the higher degree of ambiguity when it
comes to CW named entities, as these often share a similar type of textual structure as normal
non-named entity text tokens. It can be inferred that all 3 models are memorizing entity names
from the training data to some extent. It is most prevalent in BERT+BiLSTM+CRF model,
as we can see that it has the least amount of prediction accuracy among other models. This is
consistent with our reasoning that heavier models tend to overfit the dataset faster. Hence, we
deduce that named entity memorization can be attributed to a type of overfitting behavior by
the model in question. The BERT+Linear model, which is the lightest model with the least

35



amount of trainable parameters among all 3, is found to be significantly less prone to memorize
entity names.

Furthermore, upon qualitative analysis,we found that our models often have difficulty in
recognizing longer-named entities (entities comprising 5 or more tokens). This can be attributed
to the lack of such entities in the training dataset. The models are majorly exposed to a shorter
set of entity spans and texts that occur out of the BIO tag and are non-named entities. Due to
the lack of exposure of the models to adequate training instances of longer spans, the models
are often unable to predict such longer entity spans.
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Chapter 5

Complex NER in Semantically Ambiguous Settings for Low

Resource Languages

5.1 Overview

In this chapter, we leverage pre-trained language models to solve the task of complex NER
on 2 low-resource languages- Chinese and Spanish. We use the technique of Whole Word
Masking (WWM) to boost the performance of Masked Language Modeling objective on large,
unsupervised corpora. We experiment with multiple neural network architectures, incorporat-
ing CRF, BiLSTMs and Linear Classifiers on top of pre-trained BERT embeddings. All our
models outperform the baseline by a significant margin and our best performing model obtains
a competitive position on the evaluation leaderboard for the blind test set. We hope this work
facilitates further research in the challenging domain of ambiguous, low-resource, complex NER.

5.2 Introduction

We investigate the task of complex, semantically ambiguous, and low-resource NER [85].
The most popular NER task in the English language is CoNLL [11], which is widely used as
a benchmark for most NER models. Multiple models have been able to obtain sufficiently
high performances in this task setting [126, 142, 75, 110, 136, 134, 127]. The CoNLL training
set consists of 14,987 train sentences comprising 203,621 tokens for English data. The entity
space consists of 4 different types of entity type labels (locations, persons, organisations and
miscellaneous) to classify each named token. The English data was taken from the Reuters
Corpus, which comprises of Reuters News Stories for 1 year. The training data source, and by
extension, the labelled named entities comprises of majorly popular entities found in the general
English textual content prevalent in the media. Hence, these entities were easier to classify into
the correct tokens due to the large prevalence of training data. With the use of pre-trained
transformer-based language models, which are already trained on a large unlabelled corpus of
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English text, this task became even less challenging, as the nature of textual structure in these
corpora largely overlaps with that of CoNLL.

However, there is a multitude of varieties of named entities possible, ones that comprise of
complex, ambiguous textual structural content. Such named entities are harder, in general, to
predict for language models due to the semantically ambiguous nature of the textual structure of
the named entities and the lower amount of occurrence of such entity types in general English
text. The shared task of MultiCoNER (which stands for multilingual, complex NER) adds
additional challenges by introducing rarer label types (like creative work, products, etc.).

Another way to increase the difficulty of NER tasks is to perform them in low-resource
languages. There is a significant dearth of both labeled and unlabelled data for such languages.
The complexity is further enhanced by using rarer entity types in such languages. Combined
with a lack of unlabelled data, the lack of occurrence of rarer entity token types becomes
even harder for the fine-tuned language models to overcome. The shared task of MultiCoNER
introduces datasets in multiple low-resource languages.

We leverage large pre-trained language models trained in low-resource language corpora to
obtain competitive performances in the low-resource, complex NER setting. We show that
simpler architectures successfully outperform other heavier counterparts. We use standard
BERT-CRF based models to obtain high performances in the evaluation set. We experiment
on two low-resource dataset: Spanish and Chinese.

Our approach beats the baseline by a significant margin. We compare multiple architectures
on the test and validation set of the shared task. All our models beat the baseline by a
significant margin. We provide the formal task description in Section 5.3, the dataset details in
Section 5.5, the method and the model architecture in Section 5.5. We provide details about the
experimental implementation in Section 5.6. We discuss the results obtained and error analysis
in Sections 5.7 and 5.8, respectively.

5.3 Task Description

The objective of this shared task is to build complex Named Entity Recognition systems for
multiple languages such as English, Spanish, Chinese, Hindi, Bangla, etc. The task presents
a unique challenge in the form of detecting the entities in semantically ambiguous and low-
context settings. Moreover, the shared task also tests the generalization capability and domain
adaptability of the proposed systems by testing the system over additional (low-context) data
sets containing questions and short search queries, such as Google Search queries.

For this task, the systems had to identify the B-I-O format [102] (short for beginning, inside,
outside) tags for six NER-tags classes, namely Person, Product, Location, Group, Corporation,
and Creative Work.
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Earlier works have also tried to address the problem of NER, but usually, the datasets con-
sisted of well-formed texts of easy entities [9], and little has been done to tackle the problem
of identifying semantically and syntactically ambiguous entities like Creative Works. For exam-
ple: Eternal Sunshine of the Spotless Mind and Among Us are complex entities that may be
considered as Named Entities in some very selective contexts for eg. Among Us is not a NE in
"There is not much disagreement among us", but a CW in " Among Us is a super fun game to
play". This task also aims at tackling such problems.

5.4 Dataset

The MultiCoNER dataset [82] consists of multiple low-resource languages. We consider
Chinese and Spanish languages in this work. For the monolingual track, the participants must
train a model that only works for one language. We train the language model on the train set
to obtain predictions for dev and test sets. The labels from the blind test set are not provided
directly. The dataset follows a BIO tagging scheme with 6 entity types in the label space. The
statistics for the Chinese and Spanish datasets in the monolingual track for the train and dev
set are provided in Table 5.1 and the description of the label space in Table 5.2.

5.5 System Overview

At first, we pre-train the BERT language model on unlabelled corpora for the target low-
resource language. For Chinese, we use the strategy outlined by [28]. BERT uses the WordPiece
tokenizer [131] to split tokens into smaller fragments. It is easier for the Masked Language Model
to predict these masked fragments. However, for the Chinese textual texture, the Chinese
characters are not formed by alphabet-like symbols, so the WordPiece tokenizer is unable to
split the words into small fragments. Hence, we use the Chinese Word Segmentation (CWS)
tool to split the text into separate words and then use the Whole Word Masking strategy for
the Masked Language Model objective. This removes the drawback of masking small fragments,
making it harder for the model to predict whole masked words.

For the Spanish variant, we adopt the strategy outlined by [18]. Similar to [28], they use
the strategy of whole word masking for pre-training the BERT language model on unlabelled
Spanish corpus.

We adopt the strategy of finetuning these pre-trained BERT models on the downstream
NER task for each language, respectively.

BERT+CRF: We obtain token-level dense representations using BERT-based pretrained
embeddings. We pass these embeddings to the CRF layer to obtain the probability distribution
across the label space. For a sequence of tokens x = (x1, x2, x3, ..., xn), we obtain the ith token
representation xi of dimension d, which is the dimension of the dense vector representations
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of the BERT-based embeddings obtained from the pre-trained language model. The token
embedding xi is passed to a dense linear layer to transform the representation from d to k

dimensional space, where k is the number of labels. The output scores, obtained from the
linear layer as P ∈ Rm×k, are passed to the CRF layer whose parameters are A ∈ Rk+2×k+2.
Element Aij denotes the transition score from the ith to the jth label. 2 additional states are
added to the start and end of the sequence. For a series of tokens x = (x1, x2, x3, ..., xn) we
obtain a series of predictions y = (y1, y2, y3, ..., yn).

As described in [63], the score of the entire sequence is defined as :

s(x, y) =
m∑
i=0

Ayi,yi+1 +
m∑
i=1

Pi,yi

The model is trained to maximize the log probability of the correct label sequence:

log(p(y|x)) = s(x, y)− log

 ∑
ỹ∈YX

es(x,ỹ)


where YX are all possible label sequences.
BERT+BiLSTM+CRF : We obtain token-level contextual dense representations using

BERT-based pre-trained embeddings. These embeddings are passed to a BiLSTM layer, which
obtains the hidden-state representation of these tokens. We pass these hidden states to the
CRF layer to obtain the probability distribution across the label space. We use the pre-trained
language model to map the tokens in each sentence to a dense embedding representation. The
BERT-based dense embeddings are passed to the BiLSTM-CRF layer, which is used to obtain
the predicted labels for each token in the entire sequence. More formally, For a sequence of
tokens x = (x1, x2, x3, ..., xn), we obtain the ith token representation xi of dimension d, which
is the dimension of the dense vector representations of the BERT-based embeddings obtained
from the pre-trained language model. The token embedding xi is passed to a dense linear layer
to transform the representation from d to k dimensional space, where k is the number of labels.
The sequence of tokens x is taken as an input to the BiLSTM in each time step, and the forward
hidden states

−→
hf = (

−→
h1,
−→
h2,
−→
h3, ...,

−→
hn) and the backward hidden states

←−
hb = (

←−
h1,
←−
h2,
←−
h3, ...,

←−
hn)

are concatenated to form the combined hidden state representation h = [
−→
hf ,
←−
hb]. The combined

hidden state representation h ∈ Rm×n is transformed to a k dimensional space using a linear
layer, where k is the number of labels to distribute the probabilities across. Finally, the CRF
layer outputs the probability distribution for each token across the label space.

BERT+Linear: The token sequence is mapped to a lower dimensional space using pre-
trained BERT embeddings. These embeddings are then passed to a linear layer that maps
these embeddings to a lower dimension of label space. The output scores are then softmaxed
to provide a probability distribution across all labels.

40



Train Dev

# sentences 15300 800

Table 5.1: Total sentences in Chinese and Spanish monolingual track

Label Description

PER Person

LOC Location

GRP Group

CORP Corporation

PROD Product

CW Creative Work

Table 5.2: Entity Types in the label space

BERT+CRF BERT+Linear BERT+BiLSTM-CRF

Class Label Prec Rec F1 Prec Rec F1 Prec Rec F1

LOC 0.8368 0.8796 0.8577 0.8194 0.8613 0.8399 0.8219 0.8759 0.8481

PER 0.9065 0.9028 0.9047 0.8933 0.9150 0.9040 0.9177 0.9028 0.9102

PROD 0.6970 0.7468 0.7210 0.6864 0.7532 0.7183 0.7278 0.7468 0.7372

GRP 0.7952 0.7857 0.7904 0.8061 0.7917 0.7988 0.7751 0.7798 0.7774

CW 0.7965 0.7135 0.7527 0.8107 0.7135 0.7590 0.7654 0.7135 0.7385

CORP 0.8657 0.8227 0.8436 0.8529 0.8227 0.8375 0.8397 0.7801 0.8088

Average 0.8163 0.8085 0.8117 0.8115 0.8096 0.8096 0.8079 0.7998 0.8034

Table 5.3: Results of our models on validation dataset for the Spanish language.
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BERT+CRF BERT+Linear BERT+BiLSTM-CRF

Class Label Prec Rec F1 Prec Rec F1 Prec Rec F1

LOC 0.9239 0.9312 0.9275 0.9186 0.9259 0.9223 0.9465 0.9365 0.9415

PER 0.8971 0.9457 0.9208 0.8955 0.9302 0.9125 0.8497 0.9225 0.9084

PROD 0.8662 0.8504 0.8582 0.8593 0.8248 0.8417 0.8867 0.8285 0.8566

GRP 0.7727 0.6538 0.7083 0.6923 0.6923 0.6923 0.7500 0.6923 0.7200

CW 0.8556 0.8191 0.8370 0.8370 0.8191 0.8280 0.8265 0.8617 0.8437

CORP 0.8808 0.8854 0.8831 0.8883 0.8698 0.8789 0.8615 0.8750 0.8682

Average 0.8660 0.8476 0.8558 0.8485 0.8437 0.846 0.8610 0.8527 0.8564

Table 5.4: Results of our models on validation dataset for the Chinese language.

5.6 Implementation Details

We implement all our transformer-based models using Pytorch and Huggingface libraries.
The Chinese language model with the Whole Word Masking (WWM) objective is trained on
the Chinese Wikipedia unlabelled text corpus. We use the same training corpus as [18] to pre-
train the BERT language model on Spanish data. We implement 3 models: BERT-BiLSTM-
CRF, BERT+Linear, and BERT+CRF for our low-resource NER task setting. We run our
experiments between 1-100 epochs. We find that the best results are obtained after 10 epochs
of training for each model, after which the model starts to overfit. We use a cyclic learning rate
between 1e−4 to 1e−6. We use a dropout from 0.2 to 0.5 for all models. We validate the results
of all models using our validation dataset.

5.7 Results

We compare the performances of all models in the low-resource language setting for both
languages. We observe that the BERT+CRF model performs the best across both languages.
We choose the best-performing model to evaluate our results on the blind test set. Our approach
beats the baseline by a significant margin and outperforms multiple models in the competition.
We provide detailed comparisons of all 3 models in Tables 5.3 and 5.4 for Spanish and Chinese
languages, respectively. We also compare the results between the baseline and our models for
the validation dataset in Tables 5.5 and 5.6.

We observe the BERT+CRF model beats BERT+Linear by a slender margin. This can
be attributed to the addition of the CRF layer, which has been popularly used for sequence
labeling tasks by various neural architectures. The BERT+BiLSTM+CRF model is much
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BERT+CRF

Class Label Prec Rec F1

LOC 0.5768 0.6571 0.6144

PER 0.7641 0.7739 0.7690

PROD 0.6292 0.5141 0.5659

GRP 0.5727 0.5560 0.5642

CW 0.5331 0.5257 0.5294

CORP 0.6605 0.6005 0.6291

Average 0.6227 0.6046 0.6120

Table 5.5: Performance of the Spanish model on the test dataset.

heavier with a larger number of parameters and overfits the training dataset due to the smaller
number of training instances.

5.8 Error Analysis

We perform error analysis on all 3 different models. We qualitatively analyze the predictions
on the validation dataset for both languages. As the final evaluation test set in blind, we are
unable to perform analysis on the same.

We find that the labels GRP (Group), PROD (Product), and CW (Creative Work) are the
most inaccurately predicted labels for the Spanish models. This conforms to our hypothesis
that the long-tailed nature of these entities (which means the frequency of occurrence of such
entity types in the general literature of the target language is rare). Hence, the model has
the most difficulty in recognising these entities from the contextual sentences. The other label
types are more common and were present in the CoNLL dataset as well. We also notice that the
BERT+Linear does marginally better than BERT+CRF on predicting such labels, despite
it not being the best performing model overall. This can be attributed to it being a lighter
model, imparting it the capability of generalising better while training on a relatively lower
amount of training instances. The other 2 models have a larger number of parameters, leading
them to overfit due to label scarcity. For the Chinese language as well, we notice a similar
phenomenon for the GRP label.

We perform error analysis for all 3 different model performances on the validation dataset.
We find that for all 3 models, each model has the highest difficulty in accurately predicting the
CW (Creating Work) label. This can be attributed to the higher degree of ambiguity when it
comes to CW named entities, as these often share a similar type of textual structure as normal
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BERT+CRF

Class Label Prec Rec F1

LOC 0.6930 0.7955 0.7407

PER 0.7952 0.6377 0.7078

PROD 0.6853 0.7232 0.7038

GRP 0.7254 0.4608 0.5636

CW 0.5520 0.6798 0.6093

CORP 0.6526 0.7361 0.6918

Average 0.6839 0.6722 0.6695

Table 5.6: Performance of the Chinese model on the test dataset.

non-named entity text tokens. It can be inferred that all 3 models are memorizing entity names
from the training data to some extent. It is most prevalent in BERT+BiLSTM+CRF model,
as we can see that it has the least amount of prediction accuracy among other models. This
is consistent with our reasoning that heavier models tend to overfit the dataset faster. Hence,
we deduce that named entity memorization can be attributed to a type of overfitting behavior
by the model in question. The BERT+Linear model, which is the lightest model with the
least amount of trainable parameters among all 3, is found to be significantly less prone to
memorizing entity names.

Furthermore, upon qualitative analysis,we found that our models often have difficulty in
recognizing longer-named entities (entities comprising 5 or more tokens). This can be attributed
to the lack of such entities in the training dataset. The models are majorly exposed to a shorter
set of entity spans and texts that occur out of the BIO tag and are non-named entities. Due to
the lack of exposure of the models to adequate training instances of longer spans, the models
are often unable to predict such longer entity spans.

44



Chapter 6

Conclusion and Future Work

6.1 Conclusion

• In Chapter 3, we have introduced CitRet, a novel model for cited text span retrieval.
CitRet outperforms the current SOTA models by significant margins (15% F1). The
proposed model is quite simple, computationally inexpensive, improves generalization,
and does not require any large external datasets to fine-tune. However, considering the
non-triviality of the task, we propose a new approach for further exploration of the task.

• In Chapter 4, we experimented with 3 model architectures for a novel dataset introduced
for the shared task of detecting complex NER. Our best-performing model comprises of a
simple linear classifier on top of BERT based pretrained language model. We find that this
simple approach performs competitively as compared to its heavier counterparts. It also
beats numerous teams in the performance in the final evaluation dataset. Upon analysis,
we attribute this observation to the scarcity of labeled training data. We find this simpler
approach to give a higher performance as it can utilize the contextual information from a
sequence of tokens to accurately predict the named entity tokens. It can optimally avoid
overfitting to a more significant extent and hence performs better than other heavier
models.

• In Chapter 5, we have introduced vital improvements over the baseline for the shared
task of complex NER for low-resource languages. We leverage the Whole Word Masking
objective to perform better in this low-resource setting. We perform extensive experiments
and find that simple BERT-CRF-based models perform strongly against other heavier
models even in such low resource semantically ambiguous settings as evidenced by the
final evaluation rankings. We also conduct qualitative error analysis and describe our
findings.
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6.2 Future Work

In addition to advancing the current research directions, our future work plans involve explor-
ing the integration of Cited Text Span Retrieval (CTSR) and Named Entity Recognition (NER)
into broader applications, such as question-answering, summarization, and retrieval-augmented
generation. These extensions aim to leverage the foundational capabilities developed in CTSR
and NER to enhance diverse aspects of information retrieval and comprehension.

• Addressing Label Scarcity in Low-Resource Languages: To overcome label scarcity
challenges in low-resource languages, we plan to leverage data augmentation and distant
supervision techniques. Our future work will focus on utilizing additional data augmen-
tation methods and distant supervision to create clean silver labels, thereby increasing
training instances. We believe that this approach will enable us to leverage larger models
for training, enhancing the performance of our systems.

• Question Answering (QA) Systems: Integrating CTSR and NER into QA systems
holds the potential to enhance the accuracy and depth of responses. By efficiently iden-
tifying relevant cited text spans and recognizing named entities within these spans, QA
models can provide more precise and contextually rich answers to user queries.

• Summarization Techniques: Our future work plans include exploring how CTSR and
NER can contribute to the improvement of summarization techniques. Extracting key
information from cited text spans and accurately recognizing named entities can aid in
generating concise and informative summaries of scientific documents.

• Retrieval-Augmented Generation: Extending our models into retrieval-augmented
generation frameworks can enhance the generation of informative content. By incorporat-
ing the context retrieved through CTSR and enriching it with identified named entities,
the generated content can be more contextually relevant and coherent.

• Knowledge Graph Integration: In our future work, we aim to explore the construction
and maintenance of knowledge graphs from extracted entities and their relationships. This
structured representation of scientific knowledge could facilitate more advanced analysis
and visualization.

• Evaluation in Real-World Scenarios: Our future work plans involve deploying and
evaluating CTSR and NER in real-world scenarios. Collaborating with researchers and
institutions will help us understand the practical impact of our models on their literature
review processes.

• Interdisciplinary Applications: Exploring the application of CTSR and NER beyond
traditional academic literature to interdisciplinary domains is an exciting avenue for future
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research. Adapting the models to diverse fields and knowledge contexts will broaden the
impact of our work.

• Ethical Implications and User Feedback: Continual attention to ethical considera-
tions and gathering user feedback will be integral to our future work plans. This involves
addressing potential biases, ensuring model transparency, and refining the models based
on insights from users in the academic community.

By integrating CTSR and NER into these broader applications, we plan to provide re-
searchers with powerful tools that not only facilitate literature review but also enhance their
ability to engage with and extract knowledge from scholarly documents efficiently. For future
work, we aim to leverage data augmentation and distant supervision techniques to circumvent
the label scarcity problem in low-resource languages. Additionally, we plan to explore other
data augmentation techniques and distant supervision to create clean silver labels, believing
that this would enable us to leverage larger models for training purposes.
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