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Prediction of river water temperature using machine

learning algorithms: a tropical river system of India

M. Rajesh and S. Rehana
ABSTRACT
Machine learning (ML) has been increasingly adopted due to its ability to model complex and non-

linearities between river water temperature (RWT) and its predictors (e.g., Air Temperature, AT). Most

of these ML approaches have been applied using average AT without any detailed sensitivity analysis

of other forms of AT (e.g., maximum and minimum). The present study demonstrates how new ML

approaches, such as ridge regression (RR), K-nearest neighbors (KNN) regressor, random forest (RF)

regressor, and support vector regression (SVR), can be coupled with Sobol’ global sensitivity analysis

(GSA) to predict accurate RWT estimates with the most appropriate form of AT. Furthermore, the

proposed ML approaches have been combined with the Ensemble Kalman Filter (EnKF), a data

assimilation (DA) technique to improve the predicted values based on the measured data. The

proposed modelling framework’s effectiveness is demonstrated with a tropical river system of India,

Tunga-Bhadra River, as a case study. The SVR has been noted as the most robust ML model to predict

RWT at a monthly time scale compared with daily and seasonal. The study demonstrates how ML

methods can be coupled with a global sensitivity algorithm and DA techniques to generate accurate

RWT predictions in river water quality modelling.

Key words | Ensemble Kalman Filter, K-nearest neighbors, random forest, river water temperature,

Sobol’ sensitivity analysis, support vector regression
HIGHLIGHTS

• Machine learning models coupled with global sensitivity analysis to predict RWT.

• Ridge regression, KNN, random forest, SVR, along with Sobol’ sensitivity analysis were explored.

• Maximum AT as the most sensitive variable in RWT prediction.

• The SVR as the most robust ML model to predict RWT at monthly time scale.

• Application on a tropical river system of India.
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INTRODUCTION
The river water temperature (RWT) directly affects the

river’s physical, biological, and chemical characteristics
and determines the fitness and life of all aquatic organisms.

The RWT is of particular significance as (i) the discharge of

excess heat from industries and municipal effluents can

affect the aquatic ecosystem, (ii) temperature influences

both biological and chemical reactions, and (iii) tempera-

ture fluctuations affect the density of water and hence the

transport of water (Thomann & Mueller ). For many
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environmental, hydrology, and ecology applications, accu-

rate prediction and assessment of RWT have become the

key problem (Zhu et al. b, c). In this context,

process-based RWT models have been evolved based on

heat advection-dispersion transport equations (Stefan &

Sinokrot ) and net heat transfer processes at the sur-

face based on thermal equilibrium concepts (Mohseni

et al. ; Rehana & Mujumdar ). Although such

process-based models give exact results, a large amount

of detailed and computationally intensive data is required.

Due to the simplicity of implementation, regression

models have been improved using the relationship between

air and water temperatures (e.g., Stefan & Preud’homme

; Pilgrim et al. ; Erickson Troy & Stefan Heinz

; Neumann David et al. ; Rehana & Mujumdar

). The usual illustrations are linear regression models

(Morrill et al. ; Krider et al. ), non-linear regression

models (Mohseni et al. ; van Vliet et al. ), stochas-

tic regression models (Ahmadi-Nedushan et al. ; Rabi

et al. ), and hybrid statistical-physical based models

(Gallice et al. ; Toffolon & Piccolroaz ; Piccolroaz

et al. ) have been developed successfully for data relat-

ing to different time scales in the past years. Artificial

neural networks (ANNs) have proven to be a promising

mathematical tool for predicting the non-linear relation-

ships and their applications in RWT predictions (Chenard

& Caissie ; Sahoo et al. ; DeWeber & Wagner

; Hadzima-Nyarko et al. ; Piotrowski et al. ;

Rabi et al. ; Temizyurek & Dadaser-Celik ; Zhu

et al. , d, e). In recent years, Zhu et al. (,

a, b) and Graf et al. () developed the wavelet

neural networks (WT-ANN), decision tree (DT), feedfor-

ward neural network (FFNN), Gaussian process

regression (GPR), and extreme learning machine (ELM)

based models to estimate RWT, and these models are

very effective to a linear model and a non-linear model.

However, support vector regression (SVR), which is

based on structural risk minimization to avoid overfitting

(Vapnik et al. ), has been adopted over ANN for

RWT predictions due to the uniqueness and globalization

of the solution (Rasouli et al. ; Wang et al. ;

Huang et al. ; Heddam & Kisi ; Komasi et al.

; Rehana ). Random forest (RF) models have

been used extensively in hydrology (Balk & Elder ;
om http://iwaponline.com/jh/article-pdf/23/3/605/892611/jh0230605.pdf

er 2021
Tehrany et al. ; Li et al. ), and few researchers

have applied for RWT modelling (Lu & Ma ). The K-

nearest neighbors (KNN) approach has been used in

many hydrology applications (Souza & Lall ; Beersma

& Buishand ; Leander et al. ) and can be a proper

choice for RWT predictions (Muluye ; Antunes et al.

; Gavahi et al. ).

In this context, the robustness of any such data-driven

ML algorithms depends on the feature vector (predictors)

under consideration in the prediction of RWT. Few studies

have tried to model RWT by considering multiple factors,

such as river flow discharge (Webb et al. ; Laanaya

et al. ), solar radiation (Sahoo et al. ), riparian

shade (Johnson et al. ), landform attributes, and forested

land cover (DeWeber & Wagner ). However, the

inclusion of air temperature (AT) as the sole variable in pre-

dicting RWT has gained much popularity in the research

community due to the ready availability of temperature vari-

ables (e.g., Caissie ; Rehana & Mujumdar ). To this

end, many studies have used average AT as the promising

variable in RWT estimation using data-driven algorithms

and hybrid algorithms due to the direct and linear relation-

ships between average air and water temperatures

(Piccolroaz et al. ; Rehana & Dhanya ; Zhu et al.

, c; Graf et al. ; Rehana ). However, at maxi-

mum ATs, which are prevailing under seasonal temperature

variations, the atmosphere’s moisture-holding capacity

increases, and the rate of evaporative cooling also increases,

and therefore, the RWT no longer increases linearly with

average AT (Mohseni et al. ; Bogan et al. ). There-

fore, a thorough sensitivity analysis must be performed to

identify the most influencing AT variable (average, maxi-

mum, and minimum) to predict the RWT before applying

any data-driven algorithm. Given that several studies

focused on average AT as the only variable to predict

RWT using various ML algorithms, selecting an appropriate

AT variable (average, maximum, and minimum) has not

been intensively studied in the literature. To the author’s

best knowledge, none of the studies applied sensitivity analy-

sis to select the best suitable and effective AT variable

among maximum, minimum, and average and tested various

ML models in the prediction of RWT. The present study

assessed the ML model’s capability with a global sensitivity

analysis (GSA) to better predict RWT. The present study
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proposed a GSA algorithm variance based on the Sobol’

method (Sobol ; Sobol0 ) to predict more influen-

cing AT variables in the prediction of RWT. Although the

Sobol’ method has been used in many fields of science

and engineering, it has been very limited in hydrology appli-

cations (Tang et al. ; Cloke et al. ; Pappenberger

et al. ; van Werkhoven et al. ; Cibin et al. ;

Yang ). The present study made efforts to use the

Sobol’ method to select highly sensitive features in RWT

prediction.

One of the major limitations of ML algorithms includes

the difficulty of incorporating existing physical knowledge

(Boukabara et al. ). The most appropriate way forward

is to combine the best of the two approaches: theory-

driven and understanding-rich processes with data-driven

discovery processes (Babovic ). Recent progress in ML

inspires the idea of learning data assimilation (DA) models

directly from the real observations – these are uncertain,

sparsely sampled, and only indirectly sensitive to the pro-

cesses of interest (Geer ). DA is a methodology that

uses observational data and combines it with (or assimilates

it into) numerical models (Babovic et al. ). The DA

method can be categorized into four groups (WMO ;

Babovic ): (i) updating input parameters, (ii) updating

model parameters, (iii) updating state variables, and (iv)

updating output variables. The fourth type updates output

directly, and the possibility of forecasting these errors and

superimposing them to the simulation model forecasts

usually gives a good performance (Babovic et al. ).

DA has been used to enhance simulation accuracy in

many engineering applications. One of the most efficient

and sequential DA methods is the Kalman filter (KF) devel-

oped by Kalman (), and its applications in hydrology

are also very impressive (Liu et al. ; Li et al. ; Wang

& Babovic ; Wang et al. , ; Mehrparvar &

Asghari ). In RWT forecasting, only a few studies

addressed the use of DA (Morrison & Foreman ;

Yearsley ; Pike et al. ; Ouellet-Proulx et al. ).

Besides, to the author’s knowledge, a limited systematic DA

method combined with ML has ever been applied in the con-

text of RWT forecasting. Hence, this study presents an

attempt to use an Ensemble Kalman Filter (EnKF) DA

method to update and balance the ML model estimates by

available observed historical data in RWT forecasting. This
://iwaponline.com/jh/article-pdf/23/3/605/892611/jh0230605.pdf
paper proposed an integrated modelling framework with

ML and DA approach to improving the predicted values

based on the measurement data. The proposed algorithm

has been demonstrated with a river gauging station daily

temperature data of the Shimoga station along the Tunga

River, a tributary of the Tunga-Bhadra River, a major tribu-

tary of the Krishna River, India. In summary, the objectives

of the present study are to (i) identify the most influencing

AT variable by the GSA algorithm; (ii) apply various ML

models (ridge regression (RR), KNN regressor, RF regressor,

and SVR) with the best selected AT for RWT prediction; (iii)

apply the EnKF with each ML model; and (iv) compare the

performance of four advanced ML algorithms by coupling

the GSA and EnKF algorithms when applied on a tropical

river system of India.
STUDY AREA AND DATA

The river location considered for the modelling of RWT is

Shimoga along the Tunga River, which confluences with

the Bhadra River to form the Tunga-Bhadra River, a major

tributary of the Krishna River basin, India (Figure 1). A sto-

rage dam is situated about 15 km upstream from Shimoga at

Gajanur across the river Tunga. The monthly mean dis-

charge at the Shimoga station is about 166.95 m3/s. The

observed minimum, maximum, and average air (water)

temperature mean were noted as 19.66, 29.74, and

24.78 �C (27.54 �C) and standard deviation as 3.48, 3.47,

and 2.77 �C (2.66 �C), respectively. A significant decrease

of discharge has been noted about 3.1% at Shimoga along

the Tunga River compared from 1971–1991 to 1992–2006

(Rehana & Mujumdar ). The Tunga River location

receives the waste load from the Shimoga city municipal

effluent. The daily average RWT data and average, maxi-

mum and minimum AT data from 1 January 1989 to 1

January 2004 recorded at the Shimoga station were obtained

from Central Water Commission (CWC), Bangalore, Karna-

taka, India, and Advanced Centre for Integrated Water

Resources Management (ACIWRM), Karnataka, India.

The frequency of water quality data collection, i.e., water

temperature, is ten times a day. The measurement of water

temperature data is mean daily of ten samples (Central

Water Commission ). To create a complete time-series



Figure 2 | Architectural flow diagram for ML regression models.

Figure 1 | Location map of the Tunga-Bhadra River and the Shimoga station, India.
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dataset, the na.interp() function within the R’s forecast pack-

age was used to interpolate data between missing time-series

values (Hyndman et al. ). For seasonal data, na.interp

uses STL (Seasonal and Trend decomposition using Loess)

for this interpolation.
METHODOLOGY

The overview of the proposed modelling framework is

shown in Figures 2 and 3. The first step is to apply sensi-

tivity analysis to select the most appropriate form of AT

variable to predict the RWT. Various ML approaches

such as RR, KNN, RF, and SVR were applied to the

study location to predict RWT at a daily time scale. Figure 2

shows the architectural flow diagram proposed for the pre-

diction of RWT using sensitivity and ML. Figure 3 shows

the ML model and the EnKF DA method’s architectural

flow diagram to improve the ML model’s efficiency in

each simulation step.
om http://iwaponline.com/jh/article-pdf/23/3/605/892611/jh0230605.pdf

er 2021
Sensitivity analysis

Sensitivity analysis (SA),which is often used as a powerful tech-

nique to measure the strength of relationships between model

inputs and outputs, is an important assessment of any model-

ling, including environmental modelling (Nossent et al. ).

SA is crucial in hydrologic andwater qualitymodels due to var-

ious aspects involved in modelling processes, such as

spatiotemporal scales and complexity, requiring an assessment

of parameters influence on the model’s prediction (Yuan et al.

). In recent years, various SA environmental models are

available in the literature (Saltelli et al. ; Yang ),

based on variance decomposition. The variance-based Sobol’

method is an SA method that is very common in many fields

(Sobol ). In general, SA methods aim to measure the

amount of variance that each parameter adds to the uncondi-

tional variance of the model output, these amounts are

expressed as (Sobol’) sensitivity indices (SIs).



Figure 3 | Architectural flow diagram of ML model and EnKF data assimilation method.
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Sobol’ SA method

The method of Sobol’ is an advanced, global, model-inde-

pendent SA method that is based on variance

decomposition. It can handle non-linear and non-mono-

tonic functions and models. Considering a mathematical

model, Y ¼ f(X), delivering the outputs of a physical

system that presumably depends on M-uncertain input par-

ameters X ¼ (X1, . . . , XM). For further developments,

fXi (xi) and fx ¼ ΠM
i¼1fXi (xi) refer to their marginal probability

density function (PDF) and the corresponding joint PDF of a

given set. The sensitivity model can be defined as:

Y ¼ f(X) ¼ f(X1, . . . , XM) (1)

where Y is the objective function and X ¼ (X1, . . . , XM) is

the input parameter set. Sobol’ proposed the decomposition

of the function f into sums of increasing dimensionality:

f(X1, . . . , XM) ¼ f0 þ
XM
i¼1

fi(Xi)þ
XM
i¼1

XM
j¼iþ1

fij(Xi, Xj)

þ � � � þ f1,...,M(X1, . . . , XM) (2)

If the input factors are independent of each term in

Equation (2) is chosen with zero average and is square-

integrable, then f0 is a constant, equal to the output expec-

tation value, and the quantities are mutually orthogonal.
://iwaponline.com/jh/article-pdf/23/3/605/892611/jh0230605.pdf
The total unconditional variance can be described as:

V(Y) ¼
ð
ΩM

f2(X)dX� f20 (3)

with ΩM representing the M-dimensional unit hyperspace

(i.e., the ranges of parameters are scaled between 0 and 1).

The partial variances, which are the components of the

total variance decomposition, are computed from each of

the terms in Equation (2) as:

Vi1...is ¼
ð1
0
. . .

ð1
0
f2i1 ...is (Xi1 , . . . , Xis )dXi1 . . .dXis (4)

where 1 � i1 � � � � � is � M and s ¼ 1, . . . , M. Assuming

that the parameters are mutually orthogonal, Equation (5)

results for the variance decomposition.

V(Y) ¼
XM
i¼1

Vi þ
XM�1

i¼1

XM
j¼iþ1

Vij þ � � � þ V1,...,M (5)

In this way, the variance contributions to the total

output variance of individual parameters and parameter

interactions can be determined. These contributions are

characterized by the ratio of partial variance to the total



Table 1 | Sensitivity index categories (Lenhart et al. 2002)

Index Sensitivity

0:00 � j Index j< 0:05 Small to negligible

0:05 � j Index j< 0:20 Medium

0:20 � j Index j< 1:00 High

j Index j � 1:00 Very high
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variance, the Sobol’ sensitivity indices:

First� order SI: Si ¼ Vi

V
(6)

Second� order SI: Sij ¼
Vij

V
(7)

Total SI: STi ¼ Si þ
X
j≠i

Sij þ . . . (8)

The first order index, Si, is a measure for the variance

contribution of the individual parameter Xi to the total

model variance. The partial variance Vi in Equation (6) is

given by the variance of the conditional expectation

Vi ¼ V [E(Y jXi)] and is also called the ‘main effect’ of Xi

on Y . It can be defined as the fraction of the model

output variance that would disappear on average when Xi

would be fixed to a value in its range (because

V(Y) ¼ E[V(Y jXi)]þ V [E(Y jXi)]). The effect on the model

output variance of the interaction between parameters Xi

and Xj is given by Sij and STi is the result of the main

effect of Xi and all its interactions with the other par-

ameters (up to the Mth order).

The calculation of STi can be based on variance V~i that

results from the variation of all parameters, except Xi

(Homma & Saltelli ).

STi ¼ 1� V~i

V
(9)

For additive models and assuming orthogonal input fac-

tors, STi and Si are equal and the sum of all Si (and thus, all

STi) is 1. For non-additive model’s interactions exist: STi is

greater than Si and the sum of all Si is less than 1. On

the other hand, the sum of all STi is greater than 1. By ana-

lysing the difference between STi and Si, the effect of

interactions between parameter Xi and the other par-

ameters can be calculated.

To compute the variances to obtain the sensitivity

measures, Sobol’ proposed a shortcut in the calculations,

based on the assumption of mutually orthogonal sum-

mands in the decomposition. The shortcut is attained by

transforming the double-loop integral of Equation (4) into

an integral of the product of f(Xj1 , . . . , Xjk�s0Xi1 , . . . , Xis )

and f(X0
j1
, . . . , X0

jk�s0Xi1 , . . . , Xis ). Because environmental

models are mostly complex and non-linear, it is almost
om http://iwaponline.com/jh/article-pdf/23/3/605/892611/jh0230605.pdf

er 2021
impossible to calculate the variances using analytical inte-

grals. The SIs can be calculated by performing Monte-

Carlo simulations.
The evaluation of the SA

Due to its advantageous properties and the drawbacks of

the qualitative results of the one-factor-at-a-time (OAT)

(Yang ) sensitive analysis approach, in this study, an

attempt has been made to identify the most sensitive par-

ameters using the Sobol’ method. To analyse sensible

parameters, the maximum, minimum, and average AT

parameters are selected for the Sobol’ sensitivity analysis

of the model. One thousand independent samples of the

parameter sets are generated from the Sobol sequence

using the SALib module (Herman & Usher ) to

assess the second-order sensitivity indices and total sensi-

tivity effects. For the second-order effect, the Saltelli

(Saltelli et al. ) method of the cross-sampling

scheme creates a total of N * (2D þ 2) parameter sets,

where D is the number of input parameters and N is

the number of independent samples of the parameter

sets. Since no prior knowledge is available on the par-

ameters, the SA’s input parameter values were sampled

from a uniform distribution (Sobol ). The different

parameter ranges were scaled between 0 and 1 with nor-

malization. Mean from ±10% changes of AT parameters

as the input values to compare the shift in mean response

and changes in the entire range of simulated river temp-

eratures. For assessment and comparison purposes,

sensitivity indices can be ranked into the four classes

found in Table 1 as defined by Lenhart et al. (). Nor-

malized SIs for RWT model inputs parameters are listed

in Table 4.
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Ridge regression

The method of RR was proposed by Hoerl & Kennard

(). RR is a linear regression extension where the loss

function is modified to minimize the model’s complexity

(Equation (11)). This adjustment is done by adding a penalty

parameter equivalent to the square of the magnitude of the

coefficients (2-norm or L2 norm (squared)) to avoid overfit-

ting. Equation (10) represents the 2-norm or L2 norm.

jwj jj2 ¼ (w2
1 þw2

2 þ � � � þw2
N)

1
2 (10)

In this study, an RR model is developed on a daily scale

to predict the RWT for the Tunga-Bhadra River with mini-

mum and maximum AT as predictor variables. RR

optimizes the following:

Objective ¼ RSS (Residual Sumof Squares)

þ λ � (sumof the square of coefficients)

Loss ¼ Error(y, ŷ )þ λ
XN
i¼1

w2
i (11)
KNN regressor

KNN is a simple algorithm (Cover & Hart ), and the

input consists of the k-closest training samples in the feature

space. KNN is to calculate the average of the numerical

target of the KNN:

Euclidean distance ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
i¼1

(xi � yi)
2

vuut (12)
In this study, the KNN model is developed on a daily

scale to predict the RWT with minimum and maximum

AT as predictor variables. The tuning parameter choices

were five neighbors to fit the model.

Support vector regression

Dibike et al. () firstly applied the support vector

machines (SVMs) approach for accurate simulation of rain-

fall-runoff processes in hydrology. The SVM is a kernel
://iwaponline.com/jh/article-pdf/23/3/605/892611/jh0230605.pdf
function learning machine, which follows the structural

risk principle (Vapnik et al. ). When the training data

of {(x1, y1), . . . , (xn, yn)} with n patterns, a function f(x)

will be identified with the consideration of the deviation

from the actually observed target variables yi for all the

training data (Lima et al. ). The input variable, X, will

be mapped into a higher-dimensional feature space using a

non-linear mapping function φ.

f(x; w) ¼ 〈W , φ(x)〉þ b (13)

where <,> denotes the inner product, and W and b are the

regression coefficients, which can be estimated by minimiz-

ing the error between f(x) and the observed values of y. The

SVR uses the ∈-insensitive error to measure the error

between f(x) and the observed values of y.

j f(x; w)� yj∈ ¼ 0, ifj f(x; w)� y j < ∈ ,
j f(x; w)� yj� ∈ , otherwise,

�
(14)

where∈ is the hyper-parameter.

Using the training data of (xi, yi), the values of w and b

are estimated by minimizing the objective function:

F ¼ C
N

Xn
i¼1

jf(xi, w)� yij∈ þ 1
2
jwj jj2 (15)

where C and∈ are the hyper-parameters. The minimization

of the objective function, F, uses the Lagrange multiplier

method, and the final regression equation with kernel func-

tion K(X, X0) can be in the form:

f(X) ¼
X
i

K(X, Xi)þ b (16)

Based on previous studies (Dibike et al. ; Rehana

), Radial Basis Function (RBF) was chosen as the

kernel function to measure the performance of the model

for the RWT. A detailed introduction to the SVR method

may be found in Dibike et al. ().
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RF regressor

RF is designed to produce output by the majority vote (for

classification) and the average of the single-tree method

(for regression) (Breiman ). Each tree creates a set of

response predictor values associated with a group of inde-

pendent values. After that, each independent variable data

is splitting into several split points. And the sum of squared

error (SSE) has been calculated for each split point between

the actual values and the predicted values. This process will

recursively continue until the entire data is being covered.

There is no interaction between these trees while building

the trees. The trees in RFs are run in parallel. The model

can be written as:

f(x) ¼ f0(x)þ f1(x)þ f2(x)þ � � � (17)

where the final model f is the sum of simple base models fi.

and each base regressor portion is the simple decision tree.
Ensemble Kalman filter

The Kalman filter (KF) (Kalman ) technique is one of

the DA methods rooted from the Monte-Carlo and Bayesian

approaches. EnKF is a variant of KF that can be used for

the non-linear filtering problem. The EnKF process is a

sequentially based DA method from recent DA research

(Evensen ). The mathematics involved in EnKF is as

follows: Xb
t stands for the prior state estimate ensemble

{Xb
t,1, X

b
t,2, . . . , X

b
t,n} at time t; Xa

t stands for the posterior

state estimate ensemble {Xa
t,1, X

a
t,2, . . . , X

a
t,n} at time t; and

n is the ensemble size. The non-linear process and measure-

ment are expressed as:

Xtþ1 ¼ F(Xt)þWt(N(0, Q)) (18)

Yt ¼ H(Xt)þ Vt(N(0, R)) (19)

where F is a non-linear function that related state Xt at time t

to state Xtþ1 at time tþ 1; H is the measurement function

that converts state to observation; Wt(N(0, Q)) and

Vt(N(0, R)) represent process and measurement noise,

respectively; Wt and Vt are assumed to be independent

white noise and white noise with normal probability distri-

butions, and Q and R are processed noise covariance and
om http://iwaponline.com/jh/article-pdf/23/3/605/892611/jh0230605.pdf

er 2021
observation noise covariance matrices, respectively, and

are assumed to be constant.

The EnKF algorithm includes two steps: predicting and

updating. The prior state estimate is calculated from the pos-

terior estimation in the previous time step in the predicting

step. Based on this, the state prior mean and covariance

can be calculated as follows:

Xb
tþ1 ¼ F(Xa

t )þWt (20)

Pb
tþ1 ¼ E[(Xb

tþ1 � �Xb
tþ1)(X

b
tþ1 � �Xb

tþ1)
T
] (21)

where Pb
tþ1 represents the prior estimate of covariance, �Xb

tþ1

represents the state ensemble mean, T represents matrix

transposition, and E is the expectation operator. �Xb
tþ1 is

used as the best initial estimate as in Equation (21), and

the error covariance is the directly calculated error covari-

ance of the best estimate.

In the updating step, the field observations are treated as

a random variable. In order to do this, a sample of obser-

vations is generated from a distribution with the mean

equal to the field observation and the variance equal to

the observation variance R. Using D to stand for the

measurement sample matrix, the equations are

Xa
tþ1 ¼ Xb

tþ1 þK(D�HXb
tþ1) (22)

Pa
tþ1 ¼ E[(Xa

tþ1 � �Xa
tþ1)(X

a
tþ1 � �Xa

tþ1)
T
] (23)

K ¼ Pb
tþ1H

T (HPb
tþ1H

T þ R)�1 (24)

where (D�HXb
tþ1) is called the residual or measurement

innovation. The Kalman gain K in Equation (24) defines

the weight to be applied to the actual measurements. In

this study, X refers to the temperature parameters, F is the

ML model, and D means the water temperature measure-

ments. Measurement error covariance R is determined by

the observed dataset D and H as the observation operator.

EnKF model development

In this study, EnKF as a DA technique is implemented to

improve the efficiency of ML models in each simulation

step. The proposed approach is presented to enhance the

performance of the integration of the ML model and
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EnKF. For developing the ML model to predict or simulate

RWT, EnKF is implemented to update and optimize ML

model predictions. Figure 3 shows the ML and DA architec-

tural flow diagram.

In Figure 3, Yp is the result of ML model prediction, YF

is the data blended by updating the ML model prediction

results with the RWT observations Ym using the EnKF tech-

nique. The steps of this model as follows:

1. The ML model is trained with the observed data at t� 1

to form the model.

2. The subsequent observations are used to predict the RWT

at t.

3. This step updates the predicted data Yp with the available

RWT measurements Ym using the EnKF technique, and

then the updated data YF are used as inputs to update

the ML model if the error is less than the previous simu-

lation step. The process then returns to step (1) for the

next prediction until there are no new data.
MODEL EVALUATION

The accuracy of the applied ML models was evaluated using

various goodness-of-fit measures, such as (Chadalawada &

Babovic ) the coefficient of determination (R2; Equation

(25)), the mean squared error (MSE; Equation (26)), the

root-mean-squared error (RMSE; Equation (26)), RMSE-

observations standard deviation ratio (RSR; Equation (27);

Moriasi et al. ), Nash–Sutcliffe efficiency (NSE;

Equation (28); Nash & Sutcliffe ), the mean absolute

error (MAE; Equation (29)), and Kling–Gupta efficiency

(KGE; Equation (30); Kling et al. ). For assessment

and comparison purposes, RSR and NSE can be ranked

into the four classes found in Table 2 as defined by Moriasi
Table 2 | RSR and NSE performance ratings (Moriasi et al. 2007)

Performance rating RSR NSE

Very good 0:00 � RSR � 0:50 0:75 <NSE � 1:00

Good 0:50 < RSR � 0:60 0:65 <NSE � 0:75

Satisfactory 0:60 < RSR � 0:70 0:50 <NSE � 0:65

Unsatisfactory RSR > 0:70 NSE � 0:50

://iwaponline.com/jh/article-pdf/23/3/605/892611/jh0230605.pdf
et al. ().

R2 ¼ 1�
P

(Twpred
� Twobs )

2P
(Twobs � Twmean )

2 (25)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffi
MSE

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

(Twpred
� Twobs )

2

n

vuuut
(26)

RSR ¼ RMSE
STDEVobs

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

(Twobs � Twpred
)2

s" #
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

(Twobs � Twmean )
2

s" # (27)

NSE ¼ 1�

Pn
i¼1

(Twobs � Twpred
)2

Pn
i¼1

(Twobs � Twmean )
2

2
6664

3
7775 (28)

MAE ¼ 1
N

Xn
i¼1

(Twpred
� Twobs ) (29)

KGE ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� r)2 þ (γ � 1)2 þ (β � 1)2

q
(30)

β ¼ μs
μ0

γ ¼ σs

μs
=
σ0

μ0

� �

where Twpred is the predicted daily RWT at time step i in �C;

Twobs is the observed daily RWT at time step i in �C; Twmean is

the average daily RWT at time step i in �C; STDEVobs is the

standard deviation of the observed daily RWT; r is the corre-

lation coefficient between simulated and observed water

temperature; β is the bias ratio (the ratio between simulated

mean and observed mean), γ is the variability ratio (the ratio

between simulated variance and observed variance), μ is the

mean; σ is the standard deviation; and n is the number of

data pairs in comparison.



Table 4 | Normalized sensitivity indices for RWT model input parameters

Input parameter Sensitivity indices

Minimum air temperature 0.05

Maximum air temperature 0.95

Average air temperature 0.00

Table 3 | Seasonal period Spearman’s correlation coefficients between various air and

water temperature variables

Season
RWT –

maximum AT
RWT –

minimum AT
RWT –

average AT

Monsoon (Jun–
Sep)

0.90 0.18 0.71

Post-monsoon
(Oct–Nov)

0.77 0.26 0.59

Winter (Dec–Feb) 0.84 0.20 0.62

Summer (Mar–
May)

0.77 0.55 0.76

Annual 0.84 0.31 0.70
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RESULTS AND DISCUSSION

The data used in this paper consist of daily water tempera-

ture and corresponding daily minimum, maximum, and

mean AT for the period from 1 January 1989 to 1 January

2004. The observed minimum, maximum, and average air

(water) temperature mean were noted as 19.66, 29.74, and

24.78 (27.54 �C) and standard deviation as 3.48, 3.47, and

2.77 �C (2.66 �C), respectively. To study the statistical
Figure 4 | Time series of daily maximum air temperatures, water temperatures (1989–2004) o

om http://iwaponline.com/jh/article-pdf/23/3/605/892611/jh0230605.pdf
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dependency between various air and water temperature

variables, Spearman’s correlation coefficients have been

estimated from 1 January 1989 to 1 January 2004. Spear-

man’s correlation coefficients between RWT and

maximum, minimum, and average ATs were calculated. It

is observed that RWT is highly significant with the maxi-

mum, minimum, and average ATs (p-value< 0.001)

(Table 3). Based on the statistical dependency measures,

the maximum AT was positively correlated with daily

RWT for the case study.

Furthermore, based on the SA (Table 4), it is observed

that the maximum AT is highly sensitive, with a sensitivity

index of 0.95 in the prediction of RWT compared with the

minimum and average ATs. The SA also supports the use

of maximum AT as the most important independent variable

to be considered in the prediction of RWT. To show the

variability of maximum AT with RWT, the daily data from

1 January 1989 to 1 January 2004 have been compared, as

shown in Figure 4. Most of the earlier studies considered

the average AT as the independent variable in RWT predic-

tion. For example, Rehana & Mujumdar () evaluated the

average AT to predict the RWT for the Tunga-Bhadra River

at the Shimoga station with the coefficient of determination

(R2) value as 0.53 with discharge as another independent

variable. As the present study’s main objective is to select

an appropriate AT among average, maximum, and minimum

to model RWT, the study has not used river discharge in the

RWT prediction.

Furthermore, the improved performance in the predic-

tion of RWT with consideration of maximum AT and the
f the Tunga-Bhadra River at the Shimoga station, India.
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average AT was compared with the linear regression model.

The resulting R2 value in RWT prediction was obtained as

0.58 and 0.83 with the average and maximum ATs, respect-

ively. Such improved performance of the RWT prediction

model was convincing with an earlier study by Rehana &

Mujumdar (), which used average AT as the predictor

variable in RWT modelling.

To understand the variability of air and water temp-

erature changes for long-term periods, the study

estimated the linear trends of both variables (Figure 7(a)

and 7(b)). As can be observed, the long-term maximum

AT and the RWT are varied during the period from

1989 to 2004 (Figure 5). The monthly seasonal dynamics

of RWT and maximum AT based on 15 years averages

at the Shimoga station (1989–2004) are presented in

Figure 6. It is shown that RWT and maximum AT give a

strong seasonal pattern with larger values in summer

and lower values in winter. As shown in Figure 7, the

long-term AT and the water temperature increased
Figure 5 | Time series of monthly mean maximum air temperature and water temperature fo

Figure 6 | Monthly mean maximum air temperature and water temperature based on 15 yea

://iwaponline.com/jh/article-pdf/23/3/605/892611/jh0230605.pdf
during the period 1989–2004 at the Shimoga station. AT

has been increased about 0.077 �C year–1, while RWT

increased about 0.062 �C year–1. Such increasing trends

of RWT have been investigated in many parts of the

world. For example, the observed RWT has shown a grow-

ing trend of about 0.029–0.046 �C year–1 over China

(Chen et al. ), over the USA of about 0.009–0.077
�C year–1 (Isaak et al. ; van Vliet et al. ; Rice &

Jastram ) and Europe as 0.006–0.18 �C year–1 (Albek

& Albek ; Orr et al. ; Hardenbicker et al. ).

AT increased by 1.0 �C over the 15-year interval from

the plot, while the water temperature increased by

0.8 �C. Such increasing air and water temperature trends

agreed with the case study’s earlier research findings

(Rehana & Mujumdar ). Furthermore, there is strong

evidence of climate change’s impact on the river water

quality due to the increase of RWTs and decrease of

stream flows for the river of interest (e.g., Rehana &

Mujumdar ; Rehana & Dhanya ).
r the period 1989–2004.

rs average at the Shimoga station (1989–2004).



Figure 7 | Time series of annual average (a) maximum air temperatures and (b) water temperatures for 1989–2004.
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ML model performance

The next step in the prediction of RWT is to use appropriate

ML, which can work accurately in terms of calibration and

validation with a comparison of acceptable performance

measures, as shown in Figure 2. To utilize the data better,

assessing the effectiveness of the model and avoid overfit-

ting, the cross-validation (CV) technique was applied.

When dealing with time-series data, traditional CV (like k-

fold) cannot be used since the adjacent data points are

often highly dependent, so standard CV will fail. To over-

come these issues, the time-series splits CV technique was

used in the present study (Pedregosa et al. ; Scavuzzo

et al. ). This CV was performed chronologically, started

with a small subset of data for training purposes, estimated

the last data points, and then checked the accuracy for the

calculated data points. The same estimated data points are

then included as part of the next training dataset, and sub-

sequent data points were estimated. This CV procedure

provides an almost unbiased estimate of the true error

(Varma & Simon ). The error on each split is averaged

in order to compute a robust estimate of model error, as
om http://iwaponline.com/jh/article-pdf/23/3/605/892611/jh0230605.pdf
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shown in Figure 2. While fitting a model on a dataset, all

the possible combinations of parameter values are evaluated

using the GridSearchCV python library module (Pedregosa

et al. ), and the best combination is taken to make the

model performant.

The results of the ML approaches (Ridge, KNN, RF, and

SVR) for the prediction of RWT were evaluated using sev-

eral goodness-of-fit statistics (MSE, MAE, RMSE, RSR,

NSE, and R2), and graphical tools (seasonal plots and box

plots). The experiment results showed a good trade-off

between training and validation performance, confirming

the stable generalization capacity of ML approaches. The

developed models were able to predict RWT using AT as

input successfully. Figure 8 shows the box plot for observed

and predicted RWT using Ridge, KNN, RF, and SVR

models, and it is observed that the minimum RWT is

21 �C and max RWT is 31 �C for the observed data while

the lower and quartile range between 24 and 28 �C with

median RWT of 26 �C. According to Figure 8, all the four

models performed almost comparable predictions with a

difference of 1 �C based on the median, and there is a

clear resemblance between the observed RWT and the



Figure 8 | Box plots of observed and calculated RWT (�C) in the validation phase with the four ML models.
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predicted value, in addition the lower and the upper quartile

ranges predicted using these models were marginally varied

compared with the observed data.

The performance of the Ridge, KNN, RF, and SVR

models for daily data at the Shimoga station is provided in

Table 5 and Figure 9. Results showed that the seasonal vari-

ations of predicted RWT are almost synchronous and

comparable with the observed values (Figure 9), but the
Table 5 | Performances of different models in the prediction of RWT for the period of 1989–2

Data Model R2 KGE

Daily Ridge 0.76 0.87
KNN 0.82 0.87
RF 0.83 0.87
SVR 0.84 0.86

Monthly Ridge 0.79 0.87
KNN 0.85 0.85
RF 0.87 0.94
SVR 0.88 0.88

Season (Jan–Apr) Ridge 0.64 0.72
KNN 0.76 0.90
RF 0.80 0.89
SVR 0.82 0.92

Season (May–Aug) Ridge 0.84 0.88
KNN 0.86 0.89
RF 0.87 0.86
SVR 0.87 0.95

Season (Sep–Dec) Ridge 0.52 0.86
KNN 0.50 0.70
RF 0.53 0.72
SVR 0.61 0.74

://iwaponline.com/jh/article-pdf/23/3/605/892611/jh0230605.pdf
Ridge model performed poorly with overestimated values

in high water temperature period and performance statistics

(R2, MSE, RMSE RSR, NSE, and MAE) can be found in

Table 5. From Table 5, the SVR (R2¼ 0.84, KGE¼ 0.86,

MSE¼ 0.99, RMSE¼ 0.99, RSR¼ 0.40, NSE¼ 0.84, and

MAE¼ 0.77) model has performed slightly better than

KNN (R2¼ 0.82, KGE¼ 0.87, MSE¼ 1.11, RMSE¼ 1.05,

RSR¼ 0.42, NSE¼ 0.82, and MAE¼ 0.84), RF (R2¼ 0.83,
004

MSE RMSE RSR NSE MAE

1.44 1.01 0.31 0.76 0.90
1.11 1.05 0.42 0.82 0.84
1.05 1.03 0.41 0.83 0.81
0.99 0.99 0.40 0.84 0.77

1.02 1.00 0.35 0.79 0.74
0.87 0.93 0.38 0.84 0.74
0.71 0.84 0.39 0.87 0.67
0.61 0.78 0.39 0.88 0.57

1.93 1.38 0.30 0.64 1.06
1.42 1.19 0.35 0.76 0.97
1.15 1.07 0.36 0.80 0.86
1.00 1.00 0.36 0.82 0.80

1.42 1.19 0.27 0.84 0.88
1.30 1.14 0.28 0.85 0.86
1.17 1.08 0.28 0.87 0.82
1.18 1.08 0.28 0.86 0.76

0.71 0.84 0.56 0.52 0.68
0.77 0.88 0.53 0.49 0.69
0.73 0.85 0.53 0.52 0.68
0.61 0.78 0.58 0.60 0.60



Figure 9 | Comparison between the daily predicted values and observed values of RWT (�C) in the validation phase, with the four ML models.
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KGE¼ 0.87, MSE¼ 1.05, RMSE¼ 1.03, RSR¼ 0.41,

NSE¼ 0.83, and MAE¼ 0.81), and Ridge (R2¼ 0.76,

KGE¼ 0.87, MSE¼ 1.44, RMSE¼ 1.01, RSR¼ 0.31,

NSE¼ 0.76, and MAE¼ 0.90) for daily time scale. The accu-

racy for the ML approaches showed excellent performance

in terms of NSE (NSE >0.75) and RSR (RSR <0.50)

(Moriasi et al. ; Table 2) with lower values of MSE

and RMSE. The relationship between daily RWT and maxi-

mum AT at the Shimoga station has a relatively strong

correlated value for all four models (R2 values). The

RMSE values for the Shimoga station range from 0.99 to

1.05 for all the four ML models (Table 5) for daily data,

which are reasonable compared with Jackson et al. ()

(1.57) and Sohrabi et al. () (1.25), and far better than

that of Temizyurek & Dadaser-Celik () (2.10–2.64).

Based on RSR and NSE performance ratings (Moriasi

et al. ; Table 2), the best performing model was noted

as the SVR (NSE¼ 0.84; KGE¼ 0.86; R2¼ 0.84; RSR

<0.50) for RWT prediction based on the performance

measures (Table 5) for daily time scale. The superiority of

SVR in the prediction of RWT as revealed in the present

study was found to agree with the study of Rehana ()

for the same case study. However, it can be noted that the

study by Rehana () used the average AT as the indepen-

dent variable without testing for the most influencing AT

variables in the prediction of RWT, as demonstrated in the

present study. Furthermore, it can also be noted that the

model performance has improved using the SVR with maxi-

mum AT (NSE: 0.84 and RMSE: 0.99) as an independent
om http://iwaponline.com/jh/article-pdf/23/3/605/892611/jh0230605.pdf
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variable compared with the average AT (NSE: 0.61 and

RMSE: 1.69) (Rehana ) for the same case study at

daily time scale.

A summary of the Ridge, KNN, RF, and SVR model per-

formances for monthly data is illustrated in Table 5 and

Figure 10. ML results showed that the seasonal variations

of predicted RWT are almost synchronous and comparable

with the observed values (Figure 10), but the Ridge model

performed poorly with overestimated values in high water

temperature period and performance statistics are given in

Table 5. Compared with the four ML models, the SVR

(R2¼ 0.88, KGE¼ 0.88, MSE¼ 0.61, RMSE¼ 0.78, RSR¼
0.39, NSE¼ 0.88, and MAE¼ 0.57) model performed

slightly better than KNN (R2¼ 0.85, KGE¼ 0.85, MSE¼
0.87, RMSE¼ 0.93, RSR¼ 0.38, NSE¼ 0.84, and MAE¼
0.74), RF (R2¼ 0.87, KGE¼ 0.94, MSE¼ 0.71, RMSE¼
0.84, RSR¼ 0.39, NSE¼ 0.87, and MAE¼ 0.67), and

Ridge (R2¼ 0.79, KGE¼ 0.87, MSE¼ 1.02, RMSE¼ 1.00,

RSR¼ 0.35, NSE¼ 0.79, and MAE¼ 0.74) for monthly

time scale. It can be noticed that performance coefficients

of monthly time scale were improved in terms of higher

R2, NSE, and lower RMSE and MAE values when com-

pared with daily time scale (Table 5). The ML model

accuracy has been increased with monthly data for RWT

predictions compared with daily data, with SVR (RSR¼
0.39; NSE¼ 0.88), RF (RSR¼ 0.39; NSE¼ 0.87), KNN

(RSR¼ 0.38; NSE¼ 0.84), and Ridge (RSR¼ 0.35; NSE¼
0.79) showed very good performance based on RSR and

NSE performance ratings (Moriasi et al. ; Table 2).



Figure 10 | Comparison between the monthly predicted values and observed values of RWT (�C) in the validation phase, with the four ML models.
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The performance of the Ridge, KNN, RF, and SVR

models for seasonal data (Jan–Apr, May–Aug, and Sep–

Dec) (Laizé et al. ; Zhu et al. c) is shown in

Figure 11. Results showed that the seasonal variations of

predicted RWT are almost in agreement with the observed

values (Figure 11), but the Ridge model performed poorly

with overestimated values in high water temperature periods

and performance statistics are given in Table 5. From

Table 5, the SVR model performed slightly better than

KNN, RF, and Ridge in all three seasons (Jan–Apr, May–

Aug, and Sep–Dec). It can be noticed that NSE and RSR

values were poor for the season (Sep–Dec) when compared

with the other two seasons, daily time scale and monthly

time scale values. Table 5 shows that the four models con-

structed in this paper may learn the RWT variation rules

from the historical data and reproduce the seasonal

dynamics of RWT. This case study demonstrates that inte-

grating the scientific knowledge into ML tools promises to

improve many important environmental variables

predictions.
ML-EnKF model performance

In the next step in the prediction of RWT, the EnKF DA

technique is implemented to improve the efficiency of ML

models in each simulation step. Table 6 shows the results

of the ML-EnKF model at different simulation steps with

the assimilated data. Table 6 shows that the blended data
://iwaponline.com/jh/article-pdf/23/3/605/892611/jh0230605.pdf
show the improved results from simulation-1 (1 January

2001 to 1 January 2002) to simulation-2 (1 January 2002 to

1 January 2003). These results demonstrate that the blended

data are best. It can be concluded that the ML-EnKF model

can do a better job with assimilated data in RWT prediction.

It dramatically enhances the direct ML models. If the simu-

lation steps continue, the ML-EnKF model is improved and

the simulation results are significantly improved, according

to Table 6. As the first section states, the ML-EnKF model

is designed to improve the ML model performance by a

combination of both ML models and a DA approach to

enhance the predicted values based on the measurement

data.
CONCLUSIONS

ML techniques represent a potentially disruptive force for

many scientific disciplines. The purpose of this study was

to assess the performance of a suite of ML models for

RWT prediction for the Tunga-Bhadra River, India, with

the aid of the minimum and maximum AT at daily, monthly,

and seasonal time scales. In this study, an attempt has been

made to identify the most sensitive AT variable (average,

maximum, and minimum) using the Sobol’ sensitivity analy-

sis method, which can serve as an input variable in the

prediction of RWT. The results indicated that the maximum

AT was the most important variable in the prediction of



Figure 11 | Comparison between the (a) Jan–Apr months, (b) May–Aug months, and (c) Sep–Dec months seasonal predicted values and observed values of RWT (�C) in the validation

phase, with the four ML models.
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Table 6 | Performances of different models with assimilated data in the prediction of RWT

Data Model R2 KGE MSE RMSE RSR NSE MAE

Simulation-1 (1 Jan 2001 to 1 Jan 2002) Ridge 0.829 0.807 0.829 0.910 0.413 0.829 0.759
KNN 0.855 0.925 0.699 0.836 0.379 0.855 0.667
RF 0.860 0.934 0.676 0.822 0.373 0.860 0.656
SVR 0.886 0.915 0.555 0.745 0.338 0.885 0.593

Simulation-2 (1 Jan 2002 to 1 Jan 2003) Ridge 0.867 0.843 0.841 0.917 0.363 0.867 0.710
KNN 0.855 0.883 0.921 0.959 0.379 0.856 0.764
RF 0.865 0.880 0.898 0.947 0.375 0.859 0.741
SVR 0.911 0.921 0.564 0.741 0.303 0.908 0.573
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RWT for the river location of interest. In general, it can be

concluded that the Sobol’ sensitivity analysis can be success-

fully applied for input variable fixing and prioritization of

any RWT model. Therefore, the Sobol’ sensitivity analysis

method can be considered as a robust and powerful sensi-

tivity analysis method for RWT prediction modelling.

Furthermore, each model’s configurable variable is opti-

mized, and the performances of various ML models are

analysed to test the applicability of the data-driven models

in the RWT being investigated. The study revealed that

ML model performance coefficients are improved in

monthly data compared with the daily time scale. The seaso-

nal time scale RWT prediction models also performed

poorly compared with daily and monthly time scale data.

Overall, the monthly time scale RWT prediction ML

models have performed better than daily and seasonal for

interest study location. The SVR has been noted as the

most robust ML model to predict RWT. Furthermore, the

EnKF DA algorithm with ML approaches improves the pre-

dicted values based on the measurement data. The ML-

EnKF model update of the prediction data with the observed

data using the DA method shows a better result. Generally,

the assimilation method is just considered to bring model

predictions close to the observations rather than improve

the model structure. Here, as the updated data are used to

train the ML model for the next prediction, it does enhance

the model and makes the model more practical in hydro-

logic applications. If the simulation steps continue, the

ML-EnKF model is improved and the simulation results

are significantly improved.

This case study demonstrated how a data-driven model-

ling framework could be scaled up and used for the

prediction of RWT. The DA methods can also combine
://iwaponline.com/jh/article-pdf/23/3/605/892611/jh0230605.pdf
with ML models to improve the predicted values based on

the measurement data. Overall, the data-driven modelling

framework presented in the study indicated that all ML

models were proven to be effective in RWT prediction.

This case study demonstrates that integrating scientific

knowledge into ML tools for improving predictions of

many important environmental variables and the applica-

bility of data-driven models in the field of the water sector.

Simultaneously, ML models architecture and the law of par-

ameter setting demonstrated in the present study can be

valuable for the river water quality management problems.

Despite the robustness of the modelling frameworks as

presented in the study, it has some caveats. One of the

major limitations of the study is consideration of the data

for the period from 1989 to 2004, which is the only long

period of data available along the river stretch with minimal

missing and erroneous data. The proposed modelling frame-

work of RWT prediction can always be implemented with

newly updated data as demonstrated in the present study,

which can be extended to other stations based on data avail-

ability. RWT prediction models should consider the spatial

dependency of air and water temperature variables when

the modelling framework is proposed to be implemented

with multiple stations of a river stretch. Furthermore, the

study demonstrated the modelling framework to consider

the most sensitive variables in predicting RWT using various

AT variables, such as average, maximum, and minimum.

However, there are several variables, which have a direct

impact on RWT, such as streamflow (Isaak et al. ;

Toffolon & Piccolroaz ; Sohrabi et al. ) and river

geometry (Gu & Li ), which need to be considered in

the sensitivity analysis and consequently in the ML algor-

ithms. Further research into the robust and hybrid
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approaches to RWT modelling is required, as an accurate

simulation of RWT plays an important role in water

resources management.
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