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Abstract
Automatic detection and assessment of voice disorders is im-
portant in diagnosis and treatment planning of voice disorders.
This work proposes an approach for automatic detection and
assessment of voice disorders from a clinical perspective. To
accomplish this, a multi-level classification approach was ex-
plored in which four binary classifiers were used for the as-
sessment of voice disorders. The binary classifiers were trained
using support vector machines with excitation source features,
vocal-tract system features, and state-of-art OpenSMILE fea-
tures. In this study source features namely, glottal parameters
obtained from glottal flow waveform, perturbation measures
obtained from epoch locations, and cepstral features obtained
from linear prediction residual and zero frequency filtered sig-
nal were explored. The present study used the Saarbucken
voice disorders database to evaluate the performance of pro-
posed approach. The OpenSMILE features namely ComParE
and eGEMAPS feature sets shown better performance in terms
of classification accuracies of 82.8% and 76%, respectively for
voice disorder detection. The combination of excitation source
features with baseline feature sets further improved the perfor-
mance of detection and assessment systems, that highlight the
complimentary nature of exciting source features.
Index Terms: Clinical perspective, Detection and assessment,
Excitation source features, Voice disorders.

1. Introduction
Speech is the natural mode of communication for human be-
ings. Speech production requires airflow from the lungs to be
phonated through vocal folds of the larynx and resonated in
the vocal cavities shaped by the tongue, jaw, soft palate, lips,
and other articulators. Phonation is a process by which the
vocal folds produce certain sounds through quasi-periodic vi-
bration, also known as voicing. Any abnormality in the larynx
that affect voicing in speech production, refers to as voice dis-
order. From auditory-perceptual point of view, voice disorder
affect voice quality, pitch, and loudness [1]. Compare to in-
vasive methods of voice disorder detection, non-invasive meth-
ods which utilize acoustic information, received great attention.
Non-invasive voice disorder detection uses perceptual and ob-
jective assessment approaches. Perceptual assessment is reli-
able but challenging, as speech language pathologists (SLPs)
need to evaluate the abnormalities in voicing by listening to pa-
tients [2]. On the other hand, objective assessment or automatic
detection of voice disorder relies on acoustic features extracted
from speech using signal processing techniques [3]. Objective
assessment methods are effective, and requires less time, more-
over the acoustic features used in these methods are highly cor-
related to perceptual measure, so these methods are most widely
explored for voice disorder detection [4, 5, 6].

Effect of voice disorders can be seen as irregularity in vocal

fold vibration, so perturbation measures like jitter and shim-
mer [7, 8, 9], harmonic to noise ratio (HNR) [10, 11, 12], signal
to noise ratio (SNR) [13, 14], and glottal to noise excitation
(GNE) [4, 15] were used to capture irregularity characteristics
of vocal fold vibration. The studies by Sudarsana et al. [16],
found glottal source feature as good measure to differentiate the
pathological voice from normal voice. In the literature, widely
used system features such as the Mel frequency cepstral co-
efficient (MFCC), perceptual linear prediction (PLP), and lin-
ear prediction cepstral coefficient (LPCC) have been shown as
reliable acoustic measures of voice impairment [17, 18]. The
studies on filter bank based analysis of voice disorders [19, 20],
have revealed that the characteristics of voice disorders can be
found better in some frequency bands compare to other fre-
quency bands. Recently, some authors used machine learn-
ing approaches for pathological voice detection [21, 22]. In
all the above mentioned approaches, voice disorder detection
was seen as two class problem which discriminate pathological
voice from healthy voice. On the other hand, clinicians examine
voice disorder in different way, first they detect the presence of
voice disorder, later they perform differential diagnosis to iden-
tify the type of voice disorder such as structural, neurogenic,
functional or psychogenic [23].

To the best of our knowledge, this is the first study, which
assess the voice disorder from clinical point of view. In this
study, firstly voice disorders are classified from the healthy
voice. Then voice disorder problem is further classified as
two class problem to know whether disorder is organic or non-
organic. Organic disorders are further classified into struc-
tural or neurogenic. In the same way non-organic disorders
are classified as functional or psychogenic. This study used the
Saarbruecken voice disorder (SVD) database for assessment of
voice disorders [24]. In this regard, this study explores different
source features and compares them with state-of-art vocal-tract
system features and OpenSMILE features.

Rest of the paper is organised as follows. Section 2 de-
scribes clinical perspective of voice disorder classification, Sec-
tion 3 presents experimental setup with details of database, ex-
traction of excitation source evidence, feature extraction and
classifier. Results and discussion of the voice disorder detection
and assessment system are presented in Section 4. Finally, sum-
mary and conclusion of this work are discussed in Section 5.

2. Clinical perspective of voice disorder
classification

This section discuss about classification of voice disorders from
a clinical point of view, which is used to plan the experi-
ments. According to American Speech-Language-Hearing As-
sociation, voice disorders are broadly characterized into organic
and non-organic [25]. Organic voice disorders are physiolog-
ical in nature, result from vocal cord paralysis, lesion of the



larynx, problems with nervous system innervation to the lar-
ynx [26]. Organic voice disorders such as cyst, polyp, laryn-
gitis and vocal nodules are due to the physical abnormality of
the larynx, referred to as structural voice disorders [27]. On
the other hand, voice disorders like, Parkinson’s, recurrent la-
ryngeal nerve palsy, spasmodic dysphonia, and asymptomatic
lateral sclerosis are caused by the damage of recurrent laryn-
geal nerve or the problems in the central nervous system, re-
ferred to as neurological voice disorders [27]. In contrast to
the organic voice disorders, the non-organic voice disorders are
caused by ineffective use of the vocal mechanism or poor mus-
cle control in subjects with normal physical structure, called as
functional voice disorders such as muscle tension dysphonia,
ventricular phonation, and vocal fold bowing [28]. Sometimes
voice quality may degrade due to psychological factors, which
in turn leads to psychological disorders such as psychogenic
dysphonia (PD) and aphonia [28].

3. Experimental setup
This section describes details of database, extraction of exci-
tation source features along with state-of-art openSMILE and
vocal-tract-system features for voice disorder detection and as-
sessment system. It also describes classifier and it’s parameters
used in our study.

3.1. Database

The database used in this experiment is saarbruecken voice
disorder dataset which is freely available on http://www.
stimmdatenbank.coli.uni-saarland.de/ [24]. It
contains more than 2000 voice recordings sampled at 50 kHz,
out of which, 687 are collected from healthy subjects (428 fe-
males and 259 males) and 1356 are collected from subjects (629
males and 727 females) with voice disorders. This database
contains 71 different voice disorders. Each recording session
consists of a German sentence (“Guten Morgen, wie geht es
Ihnen?”) and vowels of /a/, /i/, and /u/ in normal, high, low
and rising-falling pitch. In this work, the voice disorders which
have more than 30 voice recordings are considered for the as-
sessment. Based on our discussion in Section 2, voice disorders
are categorized into different categories, as shown in Table 1.
In this study, for the assessment of voice disorders, the vowels
/a/, /i/, and /u/ in normal, high, low and rising-falling pitch are
considered.

Table 1: Details of the voice disorders used in our experiment
from SVD database. Here, SD: Spasmodic dysphonia, RLNP:
Recurrent laryngeal nerve palsy, FD: Functional dysphonia,
and PD: Psychogenic dysphonia.

Disorder Type Disorder name #Samples

Organic
Structural

Laryngitis 30
Leukoplakia 41

Polyp 45

Neurogenic SD 30
RLNP 188

Non-organic Functional FD 254
Psychogenic PD 91

3.2. Extraction of excitation source evidences

The present study explored the glottal flow waveform, zero fre-
quency filtered signal and linear prediction residual to estimate

the source information that can characterize the functioning of
vocal mechanism. In this regard, two state-of-art signal pro-
cessing techniques, called quasi-closed-phase (QCP) analysis
and zero frequency filtering techniques, have been used to ex-
tract the glottal flow waveform, and zero frequency filtered sig-
nal, respectively. Extraction of excitation source evidences is
discussed as follows:

• Quasi-Closed-Phase analysis is a state-of-art technique
to estimate the glottal flow waveform [29]. The QCP
method is based on closed phase analysis in which vocal
tract model was estimated from speech samples in closed
phase of glottal cycle [30]. On the other hand, QCP esti-
mates vocal tract model from all speech samples by us-
ing a weighted linear prediction analysis. The attenuated
main excitation (AME) waveform was used as a weight-
ing function attenuates the samples of open phase region
compared to the close phase samples of glottal cycles,
which results in the better estimate of vocal tract model.
Finally, glottal flow waveform was estimated by inverse
filtering the speech signal with vocal tract model.

• Zero Frequency Filtering is an epoch extraction tech-
nique in which speech signal is passed through a fourth
order zero frequency resonator [31]. This process at-
tenuates the higher order harmonics corresponding to
vocal-tract system and emphasises the excitation source
characteristics. The resonator output grows/decays with
polynomial degree of order three [32]. The trend in the
resonator response is removed by subtracting the local
average of it. The trend removed response is referred
to as zero frequency filtered (ZFF) signal. The positive
to negative zero crossings in the ZFF signal are referred
to as epoch locations. The knowledge of epoch locations
was used to estimate the intonation features (discussed in
Subsection 3.3.2). Moreover in this study, the ZFF sig-
nal is considered as an approximate of glottal waveform,
and computed the cepstral features from ZFF signal as
in [33].

• Linear Prediction (LP) analysis is a source-filter model
separates the excitation source and vocal-tract system
components from speech. The LP-coefficients and LP-
residual obtained from the speech signal are considered
as vocal-tract parameters and glottal excitation, respec-
tively. To compute the LP-residual, 12th order LP-
analysis was performed on speech segments with 20ms
frame size and 10 ms frame shift. In this study, LP-
residual is computed to obtain the excitation source fea-
tures by using the cepstral analysis.

3.3. Feature Extraction

3.3.1. Glottal features

The glottal flow waveform which is estimated from the QCP
analysis (discussed in Subsection 3.2) is used to compute glot-
tal parameters as in [34]. The glottal parameters include time-
domain features, namely open quotients (OQ1, OQ2), close
quotient (CQ,CQa), speed quotient (SQ1,SQ2), and amplitude
quotients (AQ, NAQ, QOQ). Amplitude difference of 1st and
2nd glottal harmonics (H1-H2), parabolic spectral parameter
(PSP), and harmonic richness factor (HRF) are frequency do-
main parameters calculated from the spectrum of the glottal
waveform to obtain voice quality in spectral domain. A 192-
dimensional glottal-feature vector (16*12=192) is obtained for
each utterance in the database by computing the 16 statistics of
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12-dimensional glottal parameters. More details of the glottal
features can be observed in [16, 34].

3.3.2. Intonation feature

Knowledge of epoch locations is important to obtain the pertur-
bation measures corresponding to the vocal fold vibration. In
this work, epoch locations are obtained from speech using zero-
phase zero frequency filtering technique [32]. This study used
the epoch locations to find fundamental frequency (F0) contour,
strength of excitation (SoE) contour, and energy of excitation
(EoE) contour. The F0, SoE, and EoE contours have been used
to obtain 76 dimensional feature vector which is referred to as
intonation feature vector (as in [35]) in this work. Intonation
feature vector includes 5 statistics of F0, 66 perturbation pa-
rameters (22 jitter parameters of F0, 22 shimmer parameters of
SoE, and 22 shimmer parameters of EoE), 4 harmonic-to-noise-
ratio parameters and a pitch perturbation entropy measure.

3.3.3. Mel frequency cepstral coefficients of LP-residual, and
ZFF signal

The studies in [33], revealed that Mel frequency cepstral coef-
ficients of excitation source components are useful to identify
the phonation type. Hence this study explored Mel frequency
cepstral coefficients of LP-residual (MFCC-Residual) and ZFF
signal (MFCC-ZFF) for the assessment of voice disorders. The
MFCC-residual and MFCC-ZFF features were obtained from
segments of LP-residual and ZFF signal, respectively with a
frame-length of 20 ms and a frame-shift of 5 ms. They are 39
dimensional cepstral coefficients consisting in 13 static coeffi-
cients, and their first and second order derivatives. Finally, 4
statistics, namely mean, standard deviation, kurtosis and skew-
ness were calculated, resulting 156 dimensional MFCC-residual
and MFCC-ZFF feature vectors.

3.3.4. Vocal-tract system features

Conventional Mel frequency cepstral coefficients (MFCC) and
perceptual linear prediction (PLP) coefficients obtained from
speech, capture the vocal-tract system information. In this
work, the MFCC and PLP features are computed using speech
segments of 20 ms frame size with a 5 ms frame shift. First
13 dimensional static features and corresponding delta, and
delta-delta features were computed resulting in 39-dimensional
MFCC and PLP features. Further, 156 dimensional MFCC and
PLP feature vectors obtained by computing the statistics as dis-
cussed in Subsection 3.3.3.

3.3.5. OpenSMILE features

The OpenSMILE is publicly available toolkit for audio and mu-
sic application designed for extracting acoustic features [36]. In
our experiment, two feature sets of this toolkit are used, namely
ComParE feature set [37] and eGeMAPS feature set [38]. The
2013 Interspeech Computational Paralinguistics Challenge
features set (ComParE) is a brute-forced acoustic feature set
contains 6373 features, whereas, extended Geneva Minimal-
istic Acoustic Parameter Set (eGeMAPS) is a 88-dimensional
features vector designed to extract paralinguistic information
from speech.

Details about the feature extraction and corresponding
MATLAB implementations are provided in the follow-
ing link: https://github.com/gurugubelllik/
IS20-Supporting-material.git.

3.4. Classifier

Support vector machine (SVM) classifier is the most widely
used classifier in voice disorder detection as it gives consistence
performance even on small dataset [39]. The present study used
the SVM classifier for the detection and assessment of voice dis-
orders. This study performed classification by using different
other classifiers like decision tree, logistic regression, k-nearest
neighbour, and ensemble classifier. Among all these classifiers,
SVM classifier outperforms for most of the tasks. Moreover,
different kernel functions like linear, polynomial and radial ba-
sis functions were also explored. Best performance was ob-
served with polynomial kernel of order 2. Further, grid search
approach is explored to select best parameters for quadratic ker-
nel. In this regard, kernel parameter (box constraint level) is
changed from 0.1 to 1000 with multiples of 10 and the kernel
parameters for which the classifier has the best classification
accuracy are considered for further analysis. The experiments
were conducted with five fold cross validation and the average
classification accuracy of all folds is referred to as the perfor-
mance of the system.

4. Results and discussion
The main objective of this work is to assess the voice disorders
in clinical approach. This study explored the excitation source
features (MFCC-Residual, MFCC-ZFF, Glottal, and Intonation
features) for the assessment of voice disorders and compared
their performance with baseline features, namely vocal-tract
system features (MFCC and PLP) and OpenSMILE features
(ComParE and eGeMAPS) discussed in Subsection 3.3. In this
regard, classification systems for the detection and assessment
of voice disorders are developed by using support vector ma-
chine classifier (discussed in Subsection 3.4) with individual
excitation source feature sets and baseline feature sets. Further,
to investigate the complementary nature of excitation source
features and baseline feature sets, experiments have been per-
formed using combinations of feature sets.

Table 2: Performance of voice disorder detection and assess-
ment systems in terms of classification accuracy (in %) for indi-
vidual feature set on SVD database. Here, Exp. 1: classification
of healthy and voice disorder, Exp. 2: classification of organic
and non-organic voice disorders, Exp. 3: classification of struc-
tural and neurogenic voice disorders, and Exp. 4: classification
of functional and psychogenic voice disorders.

Feature type Exp. 1 Exp. 2 Exp. 3 Exp. 4
ComParE 82.8 71.7 74.3 65.3
eGeMAPS 76.0 70.1 67.3 57.5
MFCC 74.4 72.4 67.8 63.4
PLP 74.2 72.7 70.5 64.1
Glottal 67.4 64.8 59.9 58.3
Intonation 69.3 66.0 60.2 52.8
MFCC-Residual 67.4 70.8 64.3 61.0
MFCC-ZFF 68.5 69.2 66.4 64.2

In this study, five fold cross validation is used so that the
recordings correspond to 80% and 20% of total speakers were
used as training and testing data, respectively. A total of four ex-
periments were conducted in speaker independent approach us-
ing SVD database (discussed in Subsection 3.1). Experiment 1
is carried out to classify voice disorders from healthy class. Ex-
periment 2 classifies organic voice disorder from non-organic

https://github.com/gurugubelllik/IS20-Supporting-material.git
https://github.com/gurugubelllik/IS20-Supporting-material.git


Table 3: Performance of voice disorder detection and assessment systems in terms of classification accuracy (in %) for combination
of feature sets on SVD database. Here, Exp. 1: classification of healthy and voice disorder, Exp. 2: classification of organic and non-
organic voice disorders, Exp. 3: classification of structural and neurogenic voice disorders, and Exp. 4: classification of functional and
psychogenic voice disorders.

Feature type Exp. 1 Exp. 2 Exp. 3 Exp. 4
Glottal + ComParE 85.2 72.7 73.1 59.2
Glottal + eGeMAPS 79.0 70.8 65.5 60.1
Glottal + MFCC 74.4 71.2 66.7 64.1
Glottal + PLP 78.0 71.5 67.8 63.0
Intonation + ComParE 84.9 72.8 74.9 60.3
Intonation + eGeMAPS 81.5 68.5 68.1 60.1
Intonation + MFCC 77.5 75.0 65.2 64.4
Intonation + PLP 77.6 72.7 69.3 62.4
MFCC-Residual + ComParE 84.1 73.0 76.0 65.0
MFCC-Residual + eGeMAPS 84.3 70.9 62.6 63.3
MFCC-Residual + MFCC 73.1 74.6 69.6 66.2
MFCC-residual + PLP 74.2 73.0 68.4 65.3
MFCC-ZFF + ComParE 84.5 72.3 74.0 67.3
MFCC-ZFF + eGeMAPS 84.3 71.8 67.5 62.1
MFCC-ZFF + MFCC 71.7 72.3 68.7 63.6
MFCC-ZFF + PLP 74.4 70.1 70.5 65.9
Glottal + Intonation + MFCC-Residual + MFCC-ZFF 75.6 72.4 67.0 70.0

voice disorder. In our 3rd experiment structural disorder is clas-
sified from neurogenic disorder. Finally in experiment 4, psy-
chogenic disorder is classified from functional disorder. In all
the experiments, binary classification systems are trained with
different feature sets and corresponding results are tabulated in
Table 2 and Table 3.

From Table 2, it is observed that among all individual fea-
tures sets ComParE feature set shows best performance in ex-
periments 1, 3 and 4. PLP feature produced best performance in
experiment 2 than all other individual features. The source fea-
ture sets, namely MFCC-ZFF (69.2% and 64.2%) and MFCC-
Residual (70.8% and 61%) shown comparable results in exper-
iments 2 and 4. However, in experiment 1 performance of ex-
citation source features was shown to be lower than the base-
line features. Further, the performance of voice disorder detec-
tion and assessment systems with the combination of features
sets can be observed from Table 3. In voice disorder detection,
ComParE with glottal feature combination produced best clas-
sification accuracy of 85.2%. Intonation features with MFCC,
MFCC-Residual with ComParE, and combination of all excita-
tion source feature sets produced best classification accuracies
75%, 76% and 70% in experiments 2, 3 and 4, respectively.

Among all the source features intonation features gave best
classification accuracy of 69.3% for voice disorder detection.
From this it is anticipated that perturbation parameters captures
voice disorder information in better way. On the other hand,
MFCC-Residual features shown better performance than other
source related features in the classification of organic and non-
organic voice disorders. For experiment 4, when all source fea-
tures were combined, functional and psychogenic voice disor-
der classification system outperforms with a classification accu-
racy of 70%. Among the individual features, ComParE feature
set shown best performance in most of the experiments. How-
ever it is brute-forced acoustic feature set which has very high
dimension (6373) compared to the other feature sets. In most
of the experiments, combination of baseline features (Com-
ParE, eGeMAPS, PLP and MFCC feature sets) with excitation
source feature sets shown significant improvement in perfor-

mance of assessment systems trained with individual baseline
feature sets. It indicates that excitation source features capture
the complementary information about voice disorders compare
to baseline features. Results of the present study reveals that the
detection of voice disorder has a higher classification accuracy
compared with the assessment of voice disorders. Moreover,
the classification of functional and psychogenic voice disorders
is more challenging compared to classification of structural and
neurogenic voice disorders.

5. Summary and conclusion
This study proposed a multi-level classification approach us-
ing excitation source features for automatic detection and as-
sessment of voice disorders from a clinical perspective. More
detailed analysis of voice disorders was performed to know
whether the disorder is structural, neurogenic, functional or psy-
chogenic. All the experiments were performed on Saarbruecken
voice disorder database using support vector machine classifier.
Excitation source feature used in this experiments are intonation
features, glottal features, MFCC-Residual and MFCC-ZFf. Ex-
citation source features were compared with state-of-art MFCC,
PLP, ComParE and eGeMAPs features. Results of experiments
showed that OpenSMILE ComParE features outperformed for
voice disorder detection system, and the combination of all
excitation source features showed comparable performance in
terms of classification accuracy. Experiments showed that ex-
citation source features when combined with baseline features
improved the performance of detection and assessment systems,
indicates the complementary nature of source features. It was
also observed that classification of functional from psychogenic
class was more challenging.

In our future work, we intended to analyze the features
which can improve the performance and efficiently classify
voice disorder with more specific details, so it will become easy
from clinical point of view. Moreover, we want to explore dif-
ferent neural network approaches for detection and assessment
of voice disorders.
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