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ABSTRACT

The localization of acoustic sources is a parameter estimation
problem where the parameters of interest are the direction of
arrivals (DOAs). The DOA estimation problem can be for-
mulated as a sparse parameter estimation problem and solved
using compressive sensing (CS) methods. In this paper, the
CS method of sparse Bayesian learning (SBL) is used to find
the DOAs. We specifically use multi-frequency SBL lead-
ing to a non-convex optimization problem, which is solved
using fixed-point iterations. We evaluate SBL along with tra-
ditional DOA estimation methods of conventional beamform-
ing (CBF) and multiple signal classification (MUSIC) on var-
ious source localization tasks from the open access LOCATA
dataset. The comparative study shows that SBL significantly
outperforms CBF and MUSIC on all the considered tasks.

Index Terms— DOA estimation, MUSIC, Compressive
sensing, Sparse Bayesian learning, LOCATA challenge.

1. INTRODUCTION

Sound source localization and tracking using sensor arrays
has applications in many areas including advanced driver as-
sistant systems, hearing aids, smart home appliances, drones
for rescue operations, etc. Various DOA estimation algo-
rithms have been proposed in the literature such as conven-
tional beamforming (CBF [1]), minimum variance distor-
tionless response (MVDR [2]), generalized cross correlation
phase transform (GCC-PHAT [3]), and multiple signal classi-
fication (MUSIC [4]) along with their multiple variants. CBF
is robust to noise but has poor resolution and hence can fail
to localize closely spaced sources. Though MUSIC is a high
resolution method, it requires large number of snapshots. In
environments posing challenges such as noise and reverbera-
tion, it is desired to have high resolution methods which work
with fewer snapshots.

Compressive sensing (CS) or sparse signal processing is
a technique to solve sparse problems by using fewer mea-
surements [5]. Basis pursuit (BP) [6], orthogonal matching
pursuit (OMP) [7] and focal underdetermined system solver
(FOCUSS) [8] are some of the popular convex optimization
based CS methods. Sparse Bayesian learning (SBL [9, 10])
is a CS method derived within Bayesian framework which
gives fast solution to a non-convex optimization problem us-
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ing fixed-point iterations. Its probabilistic formulation allows
simultaneous processing of multiple snapshots [11] as well as
multiple frequencies [12]. For localization of audio sources
which have a rich frequency spectrum, it is advantageous to
use multi-frequency SBL [13, 14].

The IEEE-AASP Challenge on sound source localization
and tracking (LOCATA [15,16]) provides an open-access data
corpus of indoor multi-channel audio recordings in presence
of multiple mobile sources and their ground truth for perfor-
mance evaluation. Since its release, various methods for lo-
calization have been applied on this dataset (see review [17].
None of the methods have explored CS based processing for
DOA estimation.

In this paper, we demonstrate that SBL is a promising
method for DOA estimation task using LOCATA dataset. Es-
timation challenges in the dataset include near-field effects,
reverberation, and multiple moving sources and arrays. We
implement DOA estimation techniques of CBF, MUSIC, and
SBL. The algorithms are evaluated for Tasks 1, 3, 4, and 5,
using 3 different microphone arrays. Both azimuth and el-
evation directions are estimated. The paper organization as
follows: In Section 2 details of localization algorithms are
given, in Section 3 localization results on LOCATA dataset
are reported followed by conclusions in Section 4.

2. DOA ESTIMATION

2.1. CBF

Conventional beamforming [1] is one of the simplest DOA
estimation method. The angular power spectrum for CBF is

PCBF(97¢) = aH(07¢) Sy a(97¢)5 (1)

where a(6, ¢) is the array steering vector corresponding to a
source located at azimuth ¢ and elevation §. Sy, = $YY#
is the sample covariance matrix computed using L snapshots
arranged column-wise in the matrix Y = [y1,...,yz]. For
an array with N sensors, the [th snapshot y; is an N length
complex vector. While processing multi-frequency data, the
angular power spectrum is averaged across the frequencies.

2.2. MUSIC

MUSIC [4] is a high resolution method for source DOA esti-
mation. It decomposes the signal covariance matrix (Sy) into
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two orthogonal subspace: signal subspace (E;) and noise sub-
space (E,,). The MUSIC spectrum is then given by

1
afl(0,0)E,Effa(0, ¢)

P (‘97 (b) = 2
When a” (6, ¢) is orthogonal with columns of E,,, the value
of the denominator is zero (or close to zero when noise is
present) and P,,,, (6, ¢) shows a peak corresponding to source
DOA:s.

Eq. (1) and (2) provide expressions for narrowband CBF and
MUSIC spectrum. While processing multi-frequency data,
the spectra are averaged across the frequency range.

2.3. SBL

For fth frequency, the [th snapshot can be expressed as
Yr = Ajsxy + ny where the dictionary matrix Ay has
columns consisting of steering vectors as(f, ¢) and (6, ¢)
range over the 2D search grid in azimuth and elevation. The
source amplitudes xy; are assumed sparse and ny; models
the zero-mean complex Gaussian noise with covariance UJ%I.
The multi-snapshot observationis Yy = AfX; + Ny, f =
1,..., F. Under assumptions of independence across snap-
shots and frequencies, likelihood is given as

L
:HH (ysilxp)- 3)
f=11=1

In multi-snapshot, multi-frequency, SBL formulation [11,12],
the source amplitudes x s; are modeled as independent, zero-
mean, complex Gaussian vectors with same diagonal covari-
ance I' = diag(vy) = diag([y1,. . .,vm]) giving the prior

p(X1.r) H =TT IIpxs)- )

f=1i=1
The sparsity of source amplitude vectors is related to the spar-
sity of the parameter vector ~y. As prior and likelihood are as-
sumed to be Gaussian, the evidence p(Y1.r) is also Gaussian

F F L
p(Yirp) = H =fHZHCN(yﬂ;0,Ef), 5)
f=1 =11l=1

where 3y = 071 + A;TAY and CN/() denotes complex
Gaussian density function. The SBL method estimates the
unknown parameter v by maximizing the evidence p(Y1.r)

F
= [ p(Y/I1Xy)
F=1

p(Yl:F|X1:F)

4 = argmax p(Y1.r) 6)
v

F L
—argmin 3 (ygzglyﬂ _ 1og|2f|). )
T of=11=1

To find the minimum of this non-convex objective function,
we differentiate with respect to v and equate to zero. For
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Fig. 1: Spectrum of CBF, MUSIC, and SBL for eigenmike
and robot-head (Task 1, recording 1, 24th block).

details about this procedure see [11, 12]. The resulting fixed-
point update equation we obtain is

F L —1

new __ _old Zle Zl:l |yJIc—Ilzf afm|2

’Vm _,Ym a H 1 ’ (8)
D1 A2y agm

where 7, is the mth element of v and a t,,, is the mth column
of the dictionary matrix A ;. At convergence, the estimate <
is sparse [11, 12] which in turn enforces source amplitudes
x f1 to be sparse. The noise variance is estimated using maxi-
mum likelihood approach [11,12]. As 7, is the source power
corresponding to mth DOA, 4 is called the SBL power spec-
trum.

The power spectrum computed by CBF, MUSIC, and SBL
for eigenmike and robot-head arrays are shown in Fig. 1. The
spectrum are normalized to have a maximum value of 1 and
plotted in log scale. For multi-frequency processing using
CBF and MUSIC, an average across frequencies of their indi-
vidual narrowband spectrum is performed. Since eigenmike
has smaller aperture than robot-head, it shows broader peak
regions. The figure clearly illustrates the resolution differ-
ence of the DOA estimation methods. CBF has a very wide
peak region spread around the true DOA which reduces its re-
solving ability. MUSIC provides better resolution than CBF
whereas SBL has the best resolution. Since SBL peak region
is concentrated near true DOA, it can localize multiple near
by sources with lesser ambiguity.

3. RESULTS

3.1. LOCATA dataset

The LOCATA [15] development dataset is used for perform-
ing localization. The LOCATA recordings have challeng-
ing scenarios such as near-field sources, reverberation, and
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Fig. 2: DOA estimates of azimuth and elevation angles using
robot-head, Task 5, recording 1.

ambient noise (from a road in front of the building). Fur-
ther details and assumptions about the LOCATA dataset can
be found in [15-17]. We consider a 12-microphone pseudo-
spherical array named robot-head, 32-microphone spherical
array named eigenmike and a 15-microphone non-uniform
array named dicit. The arrays are non-planar and data is col-
lected indoors. Task 1 consists of recordings of a single sta-
tionary talker, Task 3 for a moving talker, Task 4 for multiple
moving talker and Task 5 for a single moving talker where the
microphone array is moving as well. While processing data
the following parameter values are used: FFT size of 1024,
frequency range of [800, 2800] Hz, snapshot duration of 0.03
s, each block consists of 100 snapshots with 90% overlap.

3.2. Performance metrics

The DOAs are estimated as the peak location of the power
spectrum computed by localization algorithms for each block.
We compute spectrum with 1° resolution both in azimuth and
elevation. The error between estimated and true DOAs are
computed at block level during voice activity periods [18].
We compute mean absolute error, root mean square error
(RMSE), and standard deviation of the estimates. All errors
are averaged over all the recordings for each of the tasks.

We also compute probability of detection (Py) for local-
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Fig. 3: Probability of detection (Py) vs cutoff (.
. . . N .
ization algorithms as P;(¢) =1 — L(IC) where Nyigs(€) is

total

the number of misdetections (over all the recordings in each
task) and Ny, 18 total number of blocks. A source is said to
be misdetected if the estimated DOA is more than (° away
from the true DOA.

3.3. Results for robot-head array

Task 1: Localization of single stationary talker is sim-
plest of the tasks and all algorithms give relatively low error
as seen from Table 1. The computed errors are least for SBL,
followed by that of MUSIC and CBF. The probability of de-
tection is similar for SBL and MUSIC and increases to 100%
sharply (Fig. 3). In case of Task 1 using SBL, 97% of sources
are detected within 10° of true DOA for robot-head.

Task 3: For Task 3, the moving talker causes its dis-
tance from the stationary microphone array to change and
has poorer DOA estimation performance compared to Task
1. SBL outperforms both CBF and MUSIC in terms of local-
ization errors as seen from Table 1. In terms of probability
of detection SBL performs significantly better than CBF and
MUSIC for low values of ¢ (Fig. 3).

Task | Method Mean RMSE Std Dev
az el az el az el
CBF 448 | 10.0 | 527 | 122 | 0.04 | 0.12
Tl MUSIC | 1.96 | 3.94 | 220 | 591 | 0.01 | 0.06
SBL 1.10 | 3.57 | 1.25 | 3.72 | 0.01 | 0.01
CBF 437 | 6.09 | 837 | 123 | 0.12 | 0.18

T3 MUSIC | 8.70 | 10.6 | 15.8 | 16.5 | 0.23 | 0.21
SBL 382 | 316 | 637 | 545 | 0.08 | 0.07

CBF 15.7 | 11.7 | 36.7 | 18.6 | 0.58 | 0.25
T5 MUSIC | 836 | 9.85 | 234 | 172 | 0.58 | 0.24
SBL 298 | 393 | 105 | 7.57 | 0.17 | 0.11

Table 1: Error performance of robot-head array for Tasks 1,3,
and 5 (averaged over all recordings, in degrees)

4672

Authorized licensed use limited to: INTERNATIONAL INSTITUTE OF INFORMATION TECHNOLOGY. Downloaded on July 31,2021 at 06:57:34 UTC from IEEE Xplore. Restrictions apply.



60 .
EEICBF [IMUSIC EMSBL| azimuth
40 - ]
S 20 — ]
[}
[0}
$ | mmm i n
2 15
© elevation
_
e 10 o 4
|| |
: []
Task 1 Task 3 Task 5

Fig. 4: Azimuth and elevation error using eigenmike for Task
1, 3 and 5 averaged over all recordings.

Task 5: In Task 5 the talker is moving as well as the mi-
crophone arrays installed on the platform are moving. The
DOA estimates from a robot-head recording are shown in
Fig. 2. The CBF and MUSIC estimates are often far from
ground truth, whereas SBL estimates are closely aligned with
the ground truth and result in lower errors (see Table 1).

3.4. Results for eigenmike array

The mean absolute error for Task 1, 3, and 5 using eigen-
mike is shown in Fig. 4. Due to rotations of the eigenmike
within the shockmount, it is highly sensitive to scattering ef-
fects [17] which results in high azimuth error (Fig. 4, note that
the two plots have different vertical range). The estimates of
azimuth and elevation for an eigenmike recording from Task
3 are shown in Fig. 5. The estimates obtained from SBL are
much closer to ground truth compared to CBF and MUSIC
when voice activity is present (denoted by 1 in VAD plot).

3.5. Results for dicit array

We show results of localizing multiple sources from Task 4
recordings using dicit array. A 5-sensor linear subarray of
dicit with 8 cm spacing is considered. The azimuth estimates
for two moving sources are shown in Fig. 6. Overall, SBL es-
timates for both sources are more accurate compared to CBF
and MUSIC for active voice period (VAD not shown). We
also observe that CBF gives better estimates than MUSIC for
dicit array. To avoid spatial aliasing, we processed 25 fre-
quencies between 800-2100 Hz. It can be seen that dicit gives
comparably higher error than robot-head and eigenmike.

4. CONCLUSIONS

In this paper, we have considered DOA estimation as com-
pressive sensing problem and solved using sparse Bayesian
learning algorithm. We show DOA estimation results for
Tasks 1,3,4, and 5 of LOCATA dataset using three array
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Fig. 5: Azimuth and elevation DOA estimates of single target
using eigenmike array, Task 3, recording 2.
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Fig. 6: Azimuth DOA estimates of two moving sources using
dicit array, Task 4, recording 2.

structures. We have compared the performance of CBF, MU-
SIC, and SBL using various metrics. Results show that CBF
and MUSIC work well for a stationary or slow moving source
but are error prone in challenging tasks where source and/or
array is moving. Multi-frequency SBL was observed to be
robust to these challenges and performs well in all the tasks.
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