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Abstract

Recent works have proposed several long term track-

ing benchmarks and highlight the importance of moving

towards long-duration tracking to bridge the gap with ap-

plication requirements. The current evaluation methodolo-

gies, however, do not focus on several aspects that are cru-

cial in a long term perspective like Re-detection, Recovery,

and Reliability. In this paper, we propose novel evaluation

strategies for a more in-depth analysis of trackers from a

long-term perspective. More specifically, (a) we test re-

detection capability of the trackers in the wild by simulating

virtual cuts, (b) we investigate the role of chance in the re-

covery of tracker after failure and (c) we propose a novel

metric allowing visual inference on the ability of a tracker

to track contiguously (without any failure) at a given accu-

racy. We present several original insights derived from an

extensive set of quantitative and qualitative experiments.

1. Introduction

Visual tracking is a fundamental problem in computer

vision and has rapidly progressed in the recent past with

the onset of deep learning. However, progress is still far

from matching practitioner needs, which demands consis-

tent and reliable long-duration tracking. Interestingly, most

existing works evaluate their performance on datasets con-

sisting of multiple short clips. For instance, the most com-

monly used OTB dataset has an average length of about 20

seconds [34] per clip. Work by Moudgil and Gandhi [23]

observed a sharp performance drop when the trackers were

evaluated on long sequences. Following works [10, 32, 21]

also make similar observations and suggest that we need

alternate ways to evaluate and analyze long term tracking

performance.

Based on these works [23, 10, 32, 21] we hypothesize

that three properties are crucial for an improved long term

tracking performance. First is the ability to re-detect the tar-

get if it is lost. Re-detection is crucial to handle situations

where the target object goes out of the frame and reappears.

Figure 1. A typical example of a chance based recovery in Alladin

sequence from TLP [23] dataset. SiamRPN (green) is tracking the

incorrect object and has zero overlap with the target (red) in the

start. It switches to tracking the target when they pass through

each other. We study such chance based recoveries in long-term

setting both qualitatively and quantitatively. Best viewed in colour.

It is also essential to re-initiate tracking when the target ob-

ject is lost due to occlusions or momentary tracking fail-

ures. The second key aspect is the ability of the tracker to

distinguish between the actual target and distractor or back-

ground clutter. This aspect is vital for consistency in track-

ing as well as for recovery from failures. Figure 1 illustrates

an example where chance plays a crucial role in recovery.

We believe that scrutinizing the nature of failures and re-

coveries will aid improved tracking performance. The third

key aspect is Reliability, which connects to the ability for

consistent and contiguous tracking. Contiguity suggests the

ability of the tracker to track for a long duration without any

failure. Consistency indicates the accuracy of tracking over

time. Tracking in the long-duration video allows us to study

factors like a slow accumulation of error which is difficult to

observe in short sequences. Several applications like video

surveillance or virtual camera simulation from static cam-

era [12] require precise tracking for long time. Surprisingly,

none of the current evaluation strategies focus on these three
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crucial aspects of Re-detection, Recovery, and Reliability.

For instance, the most prevalent metrics are Success and

Precision plots, which measure the number of frames with

Intersection Over Union (IoU) greater than a threshold and

the mean distance from the center of the ground truth re-

spectively. Both these metrics do not reflect anything spe-

cific about the 3R’s. Recent work by Lukezic et al. [21]

studied the efficacy of the search region expansion strategy

of different trackers. However, the evaluation is performed

in a synthetic experimental setup (designed by padding with

gray values) and may not be an indicator of performance

in real-world scenarios. Valmadre et al. [32] improves the

evaluation strategy by explicitly handling the cases where

the target is not visible/absent from the frame. Other re-

cent efforts [23, 10] identify the aforementioned key issues,

but they do not provide any way to evaluate these properties

comprehensively.

In this work, we propose two novel evaluation metrics

focused on the re-detection ability and the aspect of contin-

uous and consistent long term tracking. Furthermore, we

present more in-depth insights into the failure and recov-

ery of different trackers, explicitly addressing the role of

distractors. Since shorter sequences are inappropriate to ad-

dress these concerns, we use the Track Long and Prosper

(TLP) [23] dataset for the experiments. The main advan-

tage of TLP is that the average sequence length is longest

among other densely annotated datasets [14, 10, 21]. Long

duration videos present cases of multiple failures and re-

coveries for each video, which allows for a deeper analysis.

Our contributions include:

1. We propose a novel way to quantitatively evaluate the

re-detection abilities of a tracker by simulating cuts (an

abrupt transition from a frame to another) in original

videos. We propose a method to search challenging

locations for placing the cut by maximizing the dis-

tance between the ground truth bounding boxes in the

frame before and after the cut. Different trackers are

then evaluated on their ability to recover/re-detect, and

the time they take to recover.

2. We formally study the chance factor in recoveries post-

failure. We analyze the role of distractors in fail-

ures and recoveries and the co-incidences which aid

tracking. For example, it often happens in long se-

quences that tracker loses the target at some location

and freezes there. If by chance the target passes the

same location (after a while), the tracker starts track-

ing it again. Our study aims to quantify such behavior.

3. We propose 3D Longest Subsequence Measure (3D-

LSM), as a novel metric for quantifying tracking per-

formance. It measures the longest contiguous se-

quence successfully tracked at a given precision and

allowed failure tolerance. The 3D-LSM allows for a

direct visual interpretation of tracking results in the

form of a 2D image.

2. Related Work

Tracking Datasets: There are a large variety of datasets

for object tracking. Most commonly used datasets are

OTB50[34] and OTB100[33]. They consist of short videos

from generic real-world scenarios. ALOV300[30] in-

creased diversity by including 300 short sequences. The

average video length in ALOV dataset is only 9 sec-

onds. NFS[11] dataset included sequences recorded at

high frame rate (240fps). UAV[24] introduced a dataset

from sequences shot from an aerial vehicle. Moudgil and

Gandhi[23] TLP dataset with 50 sequences, focusing on

long-duration tracking (significantly increasing length of in-

dividual sequences). LTB35[21] and OxUvA[32] then fol-

lowed emphasizing the need to focus on long term tracking.

LaSOT[10] significantly increased the size of the dataset

with over 1000 sequences. GOT10k[14] then followed by

proposing a dataset with 10000 sequences, including ob-

jects from 563 different classes.

Tracking Methods: We list some notable attempts

which led to significant progress in long term tracking.

Collins et al. [6] proposed the idea of using the neigh-

borhood around the ground truth for discriminative feature

learning. This idea was later formalized into tracking by

detection frameworks [1]. Kalal et al. [15] proposed TLD

framework of learning detector from initial tracking, main-

taining the confidence of local tracking based on feature

point tracks, and switching to detection in low confidence

scenarios. TLD tracker was one of the first attempts to ele-

gantly handle the re-detection problem, which is crucial for

long term tracking. The consistency aspect was then im-

proved by employing an ensemble of classifiers [36]. These

methods maintain several weak classifiers, often initiated at

different checkpoints to account for appearance variations

of the target.

Another popular direction is Discriminative Correlation

Filter (DCF) based tracking [4, 9]. These methods exploit

the properties of circular correlation (efficiently performed

in Fourier domain) for training a regressor in a sliding-

window fashion. Recent progress in DCF’s is driven by in-

tegrating multi-resolution shallow and deep features maps

to learn the correlation filters [8, 3, 31]. Another fundamen-

tal contribution is the use of Siamese networks for visual

object tracking [2, 13]. The GOTURN tracker [13] uses the

Siamese architecture to directly regress the bounding box

locations given two cropped images from previous and cur-

rent frames. The SiamFC tracker [2] transforms the exem-

plar image and the large search image using the same func-

tion and outputs a map by computing similarity in the trans-

formed domain. These efforts [2, 13] do not include any on-
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Figure 2. A cut is introduced by removing a set of contiguous frames from a tracking sequence. This introduces a sudden change of position

of the ground truth object as shown in the left diagram. The red bounding box shows the position of the target object, before and after the

cut. We maximize the amount of target shift by minimizing the distance between these bounding boxes. We evaluate the trackers ability to

re-detect the object after the cut. Few more examples from TLP dataset with simulated cuts are shown on the right.

line updates and are extremely efficient in terms of compu-

tation. The Siamese framework was further augmented by

employing Region Proposal Networks (RPN)[18, 19] which

significantly improves the accurate prediction of scale and

aspect ratio of the bounding boxes.

Another pioneering effort came from Nam et al. [25],

who introduced the idea of treating the tracking problem as

classifying candidate windows sampled around the previous

target region. Several recent efforts have explored the varia-

tions of the Tracking Learning Detection (TLD) framework.

Nebehay et al. [26] proposed a mechanism to drift by filter-

ing outlier correspondences. A combination of short term

CF tracker with additional components (e.g., an explicit

re-detection module) have been explored [20, 22]. Zhang

et al. [37] employed an offline trained regression network

as the short-term component and an online-trained verifica-

tion network to detect tracking failure and start image wide

detection. Yan et al. [35] show significant computational

improvements by replacing the online verification network

with an offline trained Siamese verification network.

Tracking Metrics: Early works relied on the preci-

sion metric[1, 34] for quantifying the tracking performance,

which computes the pixel distance between the center of the

ground truth and the prediction. This was convenient since

it required only annotating the center of the target and not

the whole bounding box. However, since this does not ac-

count for the scale and aspect ratio, the success metric[34]

was introduced. It measures the percentage of frames where

the Intersection Over Union (IoU) of the predicted and

ground truth bounding boxes is more than a threshold. Fail-

ure rate [16] was then introduced to address the continuity

and consistency aspect of tracking. In failure rate measure,

a manual operator reinitializes the tracker upon every fail-

ure. The number of required manual interventions per frame

is recorded as the quantitative measure. However, due to the

need of manual interventions, it is unscalable for long se-

quences (in large datasets). For a more detailed review and

analysis of metrics for short-term tracking, we would refer

the reader to work by Cehovin et al. [5].

A few evaluation metrics have been proposed targeting

long-duration tracking. Valmadre et al. [32] introduced

True Positive Rate(TPR), True Negative Rate(TNR) and

took their geometric mean. To have a single representa-

tive metric accounting for the trackers which do not predict

absent labels, they proposed a modified metric called maxi-

mum geometric mean metric. However, the metric is biased

towards the ability of a tracker to predict absent labels.

Lukezic et al. [21] introduced tracking recall and pre-

cision and used this to give a tracking F1 score. However,

their definition of a long term tracker is limited to the ability

of a tracker to predict absence, and the proposed metric does

not focus on the continuity and consistency aspect of track-

ing. We believe the ability to track for long-duration consis-

tently even when the target object is always present has been

overlooked in these previous efforts [21, 32]. Lukezic et

al. also proposed an experiment to quantify the re-detection

ability of a tracker. However, their experiment mainly fo-

cuses on the search strategy with no appearance changes.

Here, we seek to quantify the re-detection ability in the

wild. Moudgil and Gandhi [23] proposed the Longest Sub-

sequence Measure (LSM), which quantifies the longest con-

tiguous segment successfully tracked in the sequence. Here,

we propose an extension of it called 3D-LSM, which allows

comparing trackers visually.

1013



3. Re-detection in the Wild

This experiment is designed to quantify a tracker’s abil-

ity to re-detect the object after it is lost (either because the

target goes of the view or due to momentary failures).

Setup: We select a segment from a sequence, and delete

it, thereby introducing a cut (illustrated in Figure 2). We

evaluate the tracker’s performance on the segment after the

cut to evaluate the re-detection ability of the tracker. For

each sequence from the TLP dataset, we cut a segment that

maximizes the L2 norm of the center locations between the

target bounding boxes before and after the cut. The du-

ration of the cut is fixed to 300 frames. We empirically

find that 300 frames allow the target to move far away from

the tracker’s search region without significantly varying the

other aspects in the scene. Keeping a similar context around

the target helps to keep the focus on the re-detection ability

(the context can change dramatically in long sequences if

the length of the omitted sequence is large). The proposed

re-detection scheme is quite general and can be applied even

on datasets that do not have target disappearances at all.

Evaluation: In all the experiments the tracker is ini-

tialized 100 frames before the cut. We choose 100 frames

so that the tracker starts stable tracking before the cut. It

also allows trackers with online updates to build a reason-

able representation of the target object. We also make sure

that there are no critical challenges in this duration of 100

frames such as heavy occlusion, clutter, etc. to avoid tracker

failure in these 100 frames. After the cut, the tracker is con-

tinued to run on the sequence for another 200 frames and its

performance on this segment is evaluated. We define “re-

covery” when the IoU of the tracker with the target reaches

0.5. To make a relative comparison of the trackers on the

re-detection task, we report the following metrics.

1. Total number of sequences (out of the total 50 TLP

sequences) in which a tracker is able to recover within

the remaining 200 frames.

2. Total number of sequences where the recovery is

“quick,” i.e., the recovery happens within 30 frames

(1 second).

3. Average number of frames a tracker takes to recover

successfully.

We perform this experiment on TLP dataset with

the following trackers: SPLT [35], MBMD [37], Fu-

CoLoT [20], ATOM [7], MDNet [25], SiamRPN [19],

ECO [8], CMT [26], LCT [22], and TLD [15]. SPLT,

MBMD, FuCoLoT, CMT, LCT and TLD are long-term

trackers with explicit re-detection ability; ATOM is the cur-

rent top performing tracker on the long-term benchmark La-

SOT, while MDNet, SiamRPN and ECO are the top per-

forming trackers on other benchmarks [23, 33, 17]. This se-

Tracker
Quick

recoveries ↑

Total

recoveries ↑

Avg. recovery

length (# frames) ↓

SPLT [35] 20 36 19

FuCoLoT [20] 10 33 55

MBMD [37] 15 27 28

ATOM [7] 12 25 34

CMT [26] 9 14 22

TLD [15] 6 10 8

MDNet [25] 5 13 48

ECO [8] 4 7 28

SiamRPN [19] 2 7 39

LCT [22] 2 7 143

Table 1. Results for the re-detection experiment (out of 50 se-

quences).

Figure 3. The figure illustrates a simulated cut in the

Bharatanatyam sequence from TLP dataset. The cut can be seen as

a representation of a situation where the performer exits the stage

and enters from another end. None of the 6 trackers was able to

recover in this sequence, even with the exact same background and

a single target object.

lection presents all the prevalent tracking approaches: cor-

relation filter based trackers [8, 22, 20], end to end clas-

sification with online updates [25], offline trained Siamese

trackers with region proposals [19], low level feature track-

ing with online learned detector [15, 26] and combination

of multiple offline/online trained components [7, 37, 35].

The same set of trackers are used in all the following exper-

iments as well.

Results and Discussion: Our results are summarized

in Table 1. SPLT gives the best results, followed by Fu-

CoLoT and MBMD. Since the base framework of SPLT

and MBMD is the same as SiamRPN, the significant im-

provements (from SiamRPN to SPLT) can be attributed to

the additional verification and re-detection module. An ex-

plicit re-detection module also improves CF-based track-

ers (as seen in FuCoLoT). CMT and TLD dominate in re-

detection experiments studied in previous works [21]; how-

ever, they give poor results in our experiment. We empir-

ically observe that CMT and TLD fail to adapt to appear-

ance changes that occur before and after the cut, possibly

because of the weak appearance model used in the detec-

tor. Adapting to appearance changes during re-detection is

essential in real-world settings and previous synthetically

designed experiments [21] do not account for this aspect.

Other trackers like ECO, MDNet, and SiamRPN are limited

by their search range and only recover if the target object
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Figure 4. An example from TLP [23] Kinball1 sequence where

the tracking target is black ball. Both SiamRPN and ATOM end

up tracking objects of totally different class i.e. human which is

also significantly different in appearance from the given target.

comes within their search range after the cut. ATOM, on

the other hand, uses a larger search area (25 times the area

of target object bounding box) and hence recovers more of-

ten. Qualitatively, we observe sequences with background

clutter or with distractors prove to be the most challenging

for all the trackers. Re-detection results are also poor on

targets that are small in size.

4. Recovery by Chance

In this section, we investigate the role of chance in

tracker recovery post-failure. Interestingly, most of the

evaluation metrics [21, 17, 33] do not take this into account,

and we believe that to design better long-term trackers, it is

essential to scrutinize the nature of recovery. More specifi-

cally, we analyze two scenarios that frequently occur in long

sequences (a) the tracker starts tracking an alternate object

and recovers back when it interacts with the target and (b)

tracker freezes somewhere in the background and resumes

tracking when the target passes through it.

4.1. Recovery by Tracking Alternate Object

We first investigate the cases when the recovery occurs

while tracking an alternate object (distractor). We consider

distractors of both the same class as well as other classes.

The recovery here occurs only because of the interactions

between the objects in the scene. An example of this kind

of recovery is illustrated in Fig 1.

However, directly evaluating the role of distractors is

challenging because single object tracking benchmarks [33,

23, 17] do not have annotations for multiple objects. We

exploit the effectiveness of modern object detectors to re-

solve this concern. While an object detector would not be

accurate enough to be treated as ground truth for bounding

boxes for alternate objects, it would still allow us to draw

useful insights. Moreover, the results may vary when a dif-

ferent object detector is being used. Hence, the evaluation

presented in this section is not intended to serve as a metric.

Nonetheless, it presents important insights into the role of

distractors in tracking performance, which is further high-

lighted by qualitative results presented in the supplementary

material.

We select 16 out of the 50 sequences from the TLP

dataset where distractors are present, and the target interacts

with them. We run YOLOv3 [28, 27] on these sequences to

obtain all object annotations. We compute and study the

following aspects:

• The percentage of frames where the tracker is track-

ing (IoU ≥ 0.5) an alternate object and has zero over-

lap with the target (averaged over the selected 16 se-

quences).

• The recoveries that occur while the tracker is tracking

an alternate object (IoU with alternate object ≥ 0.5).

We define recovery if the IoU with the ground truth

becomes nonzero and maintains a non zero value for

the next 60 frames. We present the number of recover-

ies per sequence for each tracker.

• The performance drop that occurs if we zero out the

performance after the first instance of such a recovery.

Results and Discussion: The results are shown in Ta-

ble 2. SPLT, MBMD, ATOM, and SiamRPN track an incor-

rect object for more than 13% of the frames on average in

a sequence, which is an exceedingly high number. The be-

havior possibly stems from the nature of their design which

looks for “objectness” i.e., the potential bounding boxes

in the neighborhood. SPLT and ATOM despite employing

hard negative mining strategies while training are prone to

tracking alternate objects. Most trackers are highly suscep-

tible to intraclass variations like the color, pose, clothing,

etc. and keep on confusing on cases like two boxers in a

ring or two nearby cars on a highway. The confusion among

different classes is also observed (Fig 4). Interestingly, the

trackers which perform online model updates (MDNet, Fu-

ColoT, ECO, CMT and TLD) are less susceptible to track

an alternate object.

In the last two columns of Table 2 we present the suc-

cess metric of the listed trackers on the selected 16 se-

quences and the reduced performance computed by setting

the IoU scores to zero after the first chance-based recovery.

The reduced performance is indicative of the worst-case

performance, i.e., if a chance-based recovery never hap-

pened. We observe a significant drop in the case of SPLT,

MBMD, ATOM, and SiamRPN. The performance drop for

other trackers is also significant in the context of their over-

all tracking performance (for example, TLD’s performance

drops by more than 35%).
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Tracker

Mean % of frames where

alternate object was

tracked

Avg. no. of

Recoveries

Original

Performance

(Success Metric)

Reduced

Performance

(Success Metric)

SPLT [35] 20.99% 8.43 35.99 18.16

MBMD [37] 19.08% 6.0 32.79 15.35

ATOM [7] 13.76% 5.5 31.30 18.59

SiamRPN [19] 14.95% 5.18 43.69 25.15

FuCoLoT [20] 1.61% 1.12 23.14 19.18

MDNet [25] 1.58% 0.68 40.62 38.33

CMT [26] 2.78% 0.56 8.72 7.97

ECO [8] 3.81% 1.5 22.25 19.59

LCT [22] 1.39% 0.75 11.12 10.33

TLD [15] 0.58% 0.18 6.94 4.21

Table 2. Results for the analysis of distractor enabled recoveries.

Tracker
Avg. no. of

recoveries

Avg. no.

of chances

Sequences with

static recoveries

Performance on

sequences with

static recoveries

(Success Metric)

Reduced performance

on sequences with

static recoveries

(Success Metric)

SPLT [35] 0.26 1.24 5 29.53 5.00

MBMD [37] 0.18 1.24 4 15.62 10.18

ATOM [7] 0.94 7.98 11 20.27 10.53

SiamRPN [19] 0.64 2.28 9 39.90 21.18

MDNet [25] 3.14 15.66 13 15.05 10.58

FuCoLoT [20] 2.7 6.1 17 10.60 4.25

CMT [26] 5.26 10.78 21 8.61 5.57

ECO [8] 3.88 24.62 20 9.70 6.42

LCT [22] 3.34 7.14 20 10.05 7.44

TLD [15] 2.54 5.26 16 7.25 2.34

Table 3. Results for the analysis of static recoveries.

Figure 5. An example of a recovery where the tracker does not

move at all, but the ground truth (red) falls right into the tracker’s

(yellow) prediction

4.2. Recovery With No Motion

The second type of recoveries we study is when the

tracker is stationary, and the target passes through it, and

then the tracking resumes. An example of such a recov-

ery is illustrated in Figure 5. Here, the recovery can be at-

tributed to chance, because the target, fortunately, moved

into the tracker (the tracker recovers even though it had no

idea where the target was).

We first formalize the notion of the tracker being “sta-

tionary.” A tracker is said to be stationary if the IoU of the

current prediction (at time t) is more than 0.5 with each of

the previous 200 predictions and the IoU with the target is

zero. This definition ensures that the tracker is frozen some-

where in the background, after accounting for minor noisy

movements. We further define “static recovery,” i.e. the re-

covery which happens when the tracker is stationary (IoU

between the tracker and target goes from zero to non-zero

and remains non-zero for next 60 frames). We then compute

the following:

• The average number of static recoveries per sequence

in the dataset.

• The average number of chances i.e., number of times

when the tracker was stationary, and the target came

towards it leading to a non zero IoU (even for a single

frame).

• The impact of static recoveries on the tracking per-

formance i.e., the reduced success metric by ignoring

the performance after the first static recovery in each

sequence. However, here we report the performance

drops only on the sequences where static recovery oc-

curs (which differs for each tracker). The point of re-

porting these performance drops is not to give a metric,

but to understand the worst-case impact of such recov-

eries on the tracking performance.
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Figure 6. 3D-LSM visualizations for the evaluated trackers. 3D-LSM metric is also reported for each tracker (on top).

Results and Discussion: The results are summarized in

Table 3. The first two columns present the average number

of static recoveries per sequence and the number of chances

it got (averaged over all 50 sequences). The third column

presents the number of sequences for each tracker which

have static recoveries (the experiments are performed on all

50 sequences of the dataset; however, not all sequences have

static recoveries). The last two columns present the success

metric before and after accounting for the chance based re-

coveries (averaged only over the sequences with static re-

coveries, which is different for each tracker). Our observa-

tions are as follows:

1. Trackers that perform online model updates (ECO,

CMT, TLD) are prone to freezing very often. This

occurs even in the case of trackers like MDNet and

FuCoLoT, which only perform conservative model up-

dates (when confident). Model updates could enable

the tracker to adapt to the background and hence caus-

ing the tracker to freeze.

2. The experiment is quantifying cases when the tracker

has failed, and the tracker predictions have frozen en-

tirely. Despite having a very strict definition that gives

the benefit of the doubt to the trackers, we still observe

that a lot of trackers freeze.

3. We observe a complementary nature of recoveries.

Predominantly offline trained trackers tend to look for

objectness and can track an alternate object altogether.

Due to the interactions between the objects, the tracker

recovers. The second class of trackers which perform

online model updates can sometimes lose the discrim-

inative ability between the target and background and

can freeze while tracking the background. The recov-

ery occurs when the target passes through the tracker.

4. The performance drop in SPLT, MBMD, ATOM and

SiamRPN is significant after accounting for the per-

formance due to chance. This also indicates that they

make good use of the chances they get.

5. Reliability in Long-term Tracking

Practically, trackers are reliable to use in long-term ap-

plications if the human effort to fix the incorrect tracker pre-

dictions is minimal. The human effort is a function of the

precision required for the application at hand. A tracker

which gives contiguous segments of precise tracking would

be easier to correct by re-initializing on failures. However,

it will take a lot of mental burden to correct a tracker whose

IoU fluctuates intermittently. Moudgil and Gandhi [23]

made an effort to quantify the reliability aspect and pro-

posed the Longest Subsequence Measure (LSM) metric. In

this section, we address some of limitations of LSM metric

and extend it in a more general sense. We also present a

visual interpretation of trackers which could aid the practi-

tioner to pick appropriate trackers conditioned on their spe-

cific needs.
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Tracker Success Metric at IoU 0.5

SPLT [35] 52.74

SiamRPN [19] 51.52

MBMD [37] 48.12

ATOM [7] 47.51

MDNet [25] 42.27

FuCoLoT [20] 21.99

CMT [26] 20.81

ECO [8] 21.94

TLD [15] 13.90

LCT [22] 8.75

Table 4. Success Metric for the trackers on entire TLP dataset.

Preliminaries: LSM [23] computes the ratio of the

length of the longest successfully tracked continuous subse-

quence to the total length of the sequence. A subsequence

is marked as successfully tracked, if x% of frames within it

have IoU > 0.5, where x is a slack parameter. A representa-

tive LSM score per tracker is computed by fixing the slack

parameter x to 0.95 (tracking 95% of the sub-sequence suc-

cessfully).

We believe that the choice of thresholds for IoU (0.5)

and slack x (0.95) in LSM does not provide a fair and

complete perspective. For example, a tracker that has IoU

slightly lesser than 0.5 would be penalized harshly due to

binary IoU thresholding at 0.5. Prior work [29] has also

shown that human annotators cannot often distinguish be-

tween IoU scores of 0.3 and 0.5. In [23], the authors also

present LSM plots by fixing IoU to 0.5 and varying the

slack. However, such plots fails to give a holistic perspec-

tive on the simultaneous effect of changing both the IoU and

the slack.

Extending LSM: We present a 3D-LSM metric, which

captures the effect of both precision (IoU) and failure tol-

erance in a connected manner. The 3D-LSM metrics is the

mean of a matrix, computed by varying both the slack and

the IoU parameters. Each entry in the matrix measures the

longest contiguous sub-sequence (normalized) successfully

tracked by fixing the IoU and slack parameters (for instance

if the slack is 0.95 and IoU is 0.3, then we find the longest

sub-sequence where 95% of the frames are tracked with IoU

greater than 0.3). Basically, each entry in the matrix is the

LSM value computed at a specific slack and IoU threshold.

In current experiment we vary both slack and IoU thresh-

olds at a rate of 0.05 from 0.05 to 1, resulting in a 20×20

matrix. One major benefit of the proposed metric is that it

can be visualized as an image and makes way for a direct

visual interpretation. It would aid non-expert practitioners

to compare several trackers by visual inference.

Results and Discussion: The 3D-LSM visualization re-

sults for the evaluated trackers on the TLP dataset are shown

in Figure 6. SiamRPN, ATOM, SPLT, MDNet, and MBMD

give better performance in comparison to the other five

trackers. SPLT and MBMD are built upon the SiamRPN

as the base network, and though they improve other aspects

like re-detection, the reliability aspect reduces marginally.

Another interesting observation is that while ECO outper-

forms SiamRPN on short term benchmarks like OTB100,

it performs significantly worse in the presented long term

setting. The reliability aspect of trackers like CMT is quite

low, possibly due to drift in feature tracks. FuCoLoT was

designed as a long term tracker; however, it performs poorly

on the reliability aspect. MDNet performs well on the reli-

ability aspect owing to its online updates.

The 3D-LSM plots allow direct visual inferences: (a)

brighter plots indicate better performance. We can observe

how the images get darker when moving from SiamRPN to

ECO. (b) Contours formed in more reliable trackers tend to

stretch towards the bottom right corner. Compare SiamRPN

and ECO, for instance; we can see that the shape of the con-

tour inverts. (c) The practitioners need lies in the bottom

right corner (i.e., low failure tolerance and high IoU), and

most trackers are pitch black in the area. This highlights

the significant challenges and opportunities which lie ahead

in the area of visual object tracking to meet the application

requirements.

6. Summary and Conclusion

In this paper, we touch upon the three crucial aspects of

Re-detection, Recovery, and Reliability (3R’s) for long term

tracking. These aspects are not explicit in existing evalua-

tion metrics, which makes it difficult to reason out the poor

or effective performance of a particular tracker in the long

term setting. The 3R analysis is aimed to bridge this gap

and can categorically highlight the shortcomings of differ-

ent tracking algorithms. It helps us reason out the overall

performance of the tracker as well (Table 4). For instance,

trackers like CMT and FuCoLoT are specifically designed

for long term setting and have an explicit re-detection mod-

ule; however, they lack reliability and end up giving a poor

overall performance.

Hence, definitions that restrict long term trackers to only

the algorithms with re-detection capabilities [21] are lim-

ited and ignore the Recovery and Reliability aspects. Even

trackers like MDNet (without explicit re-detection) give a

reasonable overall performance in long term context, owing

to high reliability. Recently proposed SPLT tracker gives

the best overall performance (Table 4); however, it only

gives a marginal improvement over the base SiamRPN net-

work. 3R analysis shows that SPLT improves on the re-

detection aspect; however, compromises on reliability and

also ends up tracking an alternate object often. Similar, spe-

cific insights can be drawn for other trackers as well and

can aid in studying their strengths and weaknesses. Overall

we believe 3R analysis paves the way for designing better

tracking algorithms in the future.

1018



References

[1] B. Babenko, M.-H. Yang, and S. Belongie. Visual tracking

with online multiple instance learning. In 2009 IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

983–990. IEEE, 2009. 2, 3

[2] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and

P. H. Torr. Fully-convolutional siamese networks for object

tracking. In European conference on computer vision, pages

850–865. Springer, 2016. 2

[3] G. Bhat, J. Johnander, M. Danelljan, F. Shahbaz Khan, and

M. Felsberg. Unveiling the power of deep tracking. In Pro-

ceedings of the European Conference on Computer Vision

(ECCV), pages 483–498, 2018. 2

[4] D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M.

Lui. Visual object tracking using adaptive correlation filters.

In 2010 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, pages 2544–2550. IEEE,

2010. 2
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