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ABSTRACT
In this paper, we address the problem of robust learning of multi-
label classifiers when the training data has label noise. We consider
learning algorithms in the risk-minimization framework. We define
what we call symmetric label noise in multi-label settings which
is a useful noise model for many random errors in the labeling of
data. We prove that risk minimization is robust to symmetric label
noise if the loss function satisfies some conditions. We show that
Hamming loss and couple of surrogates of Hamming loss satisfy
these sufficient conditions and hence are robust. By learning feed-
forward neural networks on some benchmark multi-label datasets,
we provide empirical evidence to illustrate our theoretical results on
robust learning of multi-label classifiers under label noise.
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1 INTRODUCTION
Traditionally classification algorithms are formulated to predict only
one class label for each input pattern. The underlying assumption is
that object categories are disjoint. However, there are many classifica-
tion scenarios where such an assumption is restrictive. For example,
in image annotation, each image may simultaneously belong to mul-
tiple classes [4]. In document classification, each document can
belong to multiple topics [31]. In gene classification, each gene may
belong to multiple function classes [35]. Such problems where the
classification algorithm is required to predict a set of labels (rather
than a unique label) are termed as multi-label problems. Multi-label
classifier learning is an interesting problem in current research [36].

Many of the algorithms learn a classifier assuming that class
labels in the training data are correct, which may not always be
true. Presence of incorrect labels in training data is referred to as
label noise. Robust learning of classifiers refers to the problem
of learning a classifier that generalizes well under the underlying
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(and unknown) noise-free distribution given training data with noisy
labels. This is an important and challenging problem [8]. Many times
labels of training data are corrupted due to insufficient information
available to expert labelers, unavoidable human errors, subjective
biases, or inherent noise in the data generation process. Label noise
in training data is more prevalent in recent times as many datasets are
prepared through crowd-sourcing. Such label noise is particularly
unavoidable in multi-label problems due to the inherent subjective
biases in deciding on which all labels are appropriate for a given
object.

In this paper, we study multi-label classification under label noise.
We define a uniform/symmetric label noise model in multi-label
settings. Symmetric label noise model described here is reasonable
and can capture many subjective biases or random human errors
while labeling. We then show that classifier learning through risk
minimization is robust to symmetric label noise if the loss func-
tion satisfies what we call a symmetry condition. We show that
the standard hamming loss and a classification calibrated surrogate
of hamming loss fulfill this condition. We also present experimen-
tal results to illustrate the robust learning of classifiers under such
symmetric losses.

2 RELATED WORK
There have been many methods proposed for robust learning of
classifiers in the presence of label noise. (Some recent surveys
are [8, 25]). However, almost all the methods are applicable only for
binary or multi-class classification problems. There are hardly any
robustness results for learning multi-label classifiers.

Some data processing methods rely on detecting and removing
(or correcting) noisy samples from training data, and many different
heuristics are proposed for this [1, 5, 37]. There are also some
methods which heuristically modify the existing algorithms to make
them robust to label noise [2, 14, 15]. In addition to training data
with noisy labels, we have some data with clean labels then one can
use techniques from semi-supervised learning. For example, such
a method is recently shown to be useful for learning with noisy
labels in a multi-label problem [12]. Another general approach that
is followed is to view the unknown ‘true’ class labels of training
examples as latent or hidden variables. Assuming probabilistic noise
models, one can estimate a generative or discriminative model for the
classification problem using an EM-type algorithm [3, 17, 20, 33].
Similar techniques are proposed for making deep neural networks
robust to label noise [24, 28]. In a multi-label setting, probabilistic
models for the corruption of labels have been used in conjunction
with a topic model for document classification [22]. While many of
these methods are reported to perform well under label noise, there
are no theoretical guarantees of robustness.

Recently, risk minimization techniques have been developed that
are effective in tackling label noise in training data [19]. These
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methods also provide theoretical guarantees about the robustness
of the learned classifier. Robustness of risk minimization depends
on the loss function used. It is shown, for binary classification case,
that risk minimization under 0–1 loss is robust to symmetric or
uniform label noise while that under any of the standard convex
losses is not [18, 19]. Interestingly, unhinged loss, a convex loss that
is not a convex potential, is robust to symmetric label noise [32].
Some of the robust risk minimization methods work as follows.
Given a loss function (satisfying some properties) they perform
risk minimization on a modified loss function which is provably
robust. For constructing the modified loss function, one needs noise
probabilities which are (implicitly or explicitly) estimated from
the training data [21, 23, 26]. The theoretical guarantees of the
robustness of these methods assume knowledge of the exact noise
probabilities. Another approach is to find some sufficient conditions
on the loss function so that risk minimization would be provably
robust. Such results are proved for the binary classification case
in [11] and for the multi-class case in [10]. In practice, many such
risk minimization approaches are seen to be quite useful in tackling
label noise in training data.

In the case of multi-label learning, robustness has multiple conno-
tations. As each example is labeled with a set of class labels, certain
combinations of class labels may rarely occur in the training set.
Thus, we may not learn the proper correlations among the multiple
labels. We may want classifier learning techniques that are robust in
the sense of taking care of such rarely occurring label combinations.
Recently some interesting approaches are proposed to tackle such
issues [6, 34]. However, to the best of our knowledge, there are no
theoretical results on the robustness to label noise in the multi-label
setting.

The rest of the paper is organized as follows. In Section 3, we
describe the problem setting of multi-label classification and risk
minimization and explain symmetric label noise model for multi-
label learning. In Section 4, we present our main theoretical result
regarding the robustness of risk minimization and show that ham-
ming loss is robust. In Section 5 we empirically demonstrate our
theoretical results on robust learning under label noise. We present
some discussion and conclusions in Section 6.

3 PROBLEM DESCRIPTION
Let X ⊂ Rd be the instance space or feature vector space and
let Y = [k] = {1, · · ·k} be the set of class labels. In multi-label
classification, labels associated with an instance are a subset of Y.
This label-set associated with each instance, x, can be represented
by a vector yx ∈ {0, 1}k where (yx)q , the qth component of yx, is 1
if and only if q is one of the labels associated with this instance.

In a multi-label classifier learning problem, we are given training
data, S = {(x1, yx1 ), . . . , (xN , yxN )} ∈ (X × {0, 1}k )N , drawn iid
according to an unknown distribution, D, over X× {0, 1}k . We need
to learn a classifier, h : X → {0, 1}k . We often represent a classifier
as h(x) = pred ◦ f(x) where f : X → C, C ⊆ Rk . (The classifier h
predicts the class label given f(x) ∈ Rk ). Here the function ’pred’
might be a simple rule such as thresholding each component of f(x).
Even though the final classification decision on a feature vector x is
pred ◦ f(x), we use the notation of calling f itself as the classifier.

Risk minimization is a popular strategy for learning a classifier.
Risk of a classifier f under loss function L is defined as

RL(f) = ED [L(f(x), yx)] = Ex,yx [L(f(x), yx)] (1)

where ED denotes expectation with respect to the underlying distri-
bution D. The risk depends on the loss function and hence, often
the above is called the L-risk of f(x). We want to learn a classifier
that has minimum L-risk, namely,

f∗ = arg min
f ∈F

RL(f) (2)

where F is a function class over which we are minimizing. The
classifier we learn through risk minimization depends on our choice
of a loss function.

When there is label noise, the learner does not have access to
the clean training data (represented by S above) which is drawn
according to distribution D. Instead, we have access only to noisy
data which is drawn according to a distribution Dη . Distribution
Dη is result of the underlying corruption process. Here we consider
what we call symmetric or uniform noise which we define now.

The noisy training data available to the learner would be denoted
by Sη = {(xn , ỹxn ),n = 1, · · · ,N } drawn according to distribution
Dη . Here ỹxn is the noisy label of xn . A noise model specifies how
the noisy labels relate to the true labels.

For multi label learning, we say noise is symmetric when:

(ỹxn )q =

{
(yxn )q with probability (1 − ηq )

1 − (yxn )q with probability ηq
(3)

where ηq ∈ [0, 1] is a constant, called the noise probability or noise
rate for the qth label. Under this noise model, each component of
the binary vector yx is independently corrupted with the corruption
probability for the qth component being ηq , q = 1, · · · ,k. We call
this symmetric because, under noise corruption, the binary value,
(yx)q , turning from 0 to 1 or 1 to 0 has the same probability. When
ηq = η ∀q then we call it a uniformly symmetric label noise. These
are simple noise models but they are reasonable for modelling many
random labelling errors in generating the training data. Since the
symmetric label noise allows for different noise rates for different
labels, it can handle cases where some categories are prone for higher
level of confusion.

In presence of label noise, we observe samples only from the
noisy distribution Dη and hence can only minimize L-risk with
respect to Dη . Let the L-risk of f under the noisy distribution be
denoted by R

η
L(f), which is defined by

R
η
L(f) = EDη [L(f(x), ỹx)] = Ex, ỹx [L(f(x), ỹx)] (4)

Let
f∗η = argmin

f ∈F
R
η
L(f) (5)

Given the noisy samples, Sη , we can only learn f∗η through risk
minimization.

Thus, the problem is to learn a classifier which minimizes risk
under distribution Dη to have same performance to a classifier which
minimizes risk over distribution D. We next discuss it in context of
noise-tolerance (robustness) property of loss functions.
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Definition 1: Risk minimization under loss function L, is said to be
noise-tolerant [19] if

ProbD [pred ◦ f∗(x) = yx] = ProbD [pred ◦ f∗η (x) = yx]

When the above holds we also say the loss function is noise-tolerant.
Noise-tolerance is a very useful property. A loss function is noise-

tolerant if the minimizers of risk under the noise-free and noisy
distributions, both have the same probability of misclassification
under the noise-free distribution. If we take the noisy labels as true
labels and minimize risk, then if we are learning a classifier through
risk minimization using a noise-tolerant loss function, then we can
automatically take care of label noise. With a noise-tolerant loss
function, we need not even know whether or not there is label noise.

4 ROBUSTNESS TO SYMMETRIC LABEL
NOISE

In this section we prove a general sufficient condition for a loss
function to be noise-tolerant for symmetric and uniformly symmetric
label noise in the multi-label setting. This could be viewed as a
generalization, to the multi-label setting, of similar results for single-
label case [10, 11].

THEOREM 1. Multi-label classifier learning under risk minimiza-
tion is noise-tolerant to symmetric label noise if ηq < 1

2 ∀q and the
loss function, L(f(x), yx), satisfies the following conditions:

C1. L(f(x), yx) =
∑k
q=1 l((f(x))q , (yx)q ) ∀x, yx, f

C2. l(f (x), 0) + l(f (x), 1) = C ∀x, f

Here C is a constant greater than zero and l(f (x), (yx)q ) is
a loss function for binary classification. (Note that, here we
have f(x) ∈ Rk , f (x) ∈ R).

Proof: Under condition C1, we have

RL(f) = Ex,yx [L(f(x), yx)] =
k∑

q=1
Ex,yxl((f(x))q , (yx)q )

Since each term in the above sum depends on only one component
of f , to minimize RL we can individually minimize each term and
then make the minimizers as components of f∗, the minimizer of
risk under noise free case. Thus, we have

Ex,yxl((f
∗(x))q , (yx)q ) ≤ Ex,yxl((f(x))q , (yx)q ), ∀f (6)

Now for the risk under the noisy case, we have

R
η
L(f) = Ex, ỹx [L(f(x), ỹx)] = Ex,yxEỹx |x,yx

k∑
q=1

l(f(x), (ỹx)q )

= Ex,yx

k∑
q=1

(1 − ηq )l(f(x), (yx)q ) + ηql(f(x), 1 − (yx)q ),

using equation (3)

= Ex,yx

k∑
q=1

(1 − ηq )l(f(x), (yx)q ) + ηq (C − l(f(x), (yx)q )),

using condition C2 of the theorem

= Ex,yx

k∑
q=1

(1 − 2ηq )l(f(x), (yx)q ) + ηqC

Recall that f∗ is minimizer of risk under noise-free case. Now we
have, for any f ,

R
η
L(f) − R

η
L(f

∗) = Ex,yx
©«
k∑

q=1
(1 − 2ηq )

[
l(f(x), (yx)q ) − l(f∗(x), (yx)q )

]ª®¬
=

k∑
q=1

(1 − 2ηq )Ex,yx
(
l(f(x), (yx)q ) − l(f∗(x), (yx)q )

)
≥ 0, by eq. (6) and ηq < 0.5, ∀q

Thus, f∗ also minimizes the risk under noisy distribution and thus
completes the proof of the theorem.

REMARK 1. Theorem 1 is about robustness under symmetric
label noise where noise probabilities for different label components
can be different. The condition C2 in the theorems is same as the
symmetry condition on loss functions which is needed for robustness
in multi-class problems. The condition C1 in the theorem says that
the loss function for the vector label yx can be written as a sum of
k loss terms, one for each of the components of yx (which is the
usual case for multi-label loss functions). In addition, the loss for
qth component depends only on qth component of f . This second
part is also not a particularly restrictive condition, and the standard
Hamming loss satisfies this. This condition is needed only for en-
suring f∗ satisfies equation 6. With this assumption (for example,
class of functions over which we are minimizing is rich enough to
contain the Bayes classifier for each of the underlying binary classi-
fication problems), we can have robustness under the more general
symmetric label noise also. If assuming that the loss function for qth

label component depends only on qth component of f is restrictive,
we can relax this assumption. This is what is done in Theorem-2
below where the condition C2 is appropriately changed. However, in
such a case we can prove robustness only under the more restrictive
uniformly symmetric noise.

THEOREM 2. Multi-label classifier learning under risk minimiza-
tion is noise-tolerant to uniformly symmetric label noise if η < 1

2
and the loss function, L(f(x), yx), satisfies the following conditions:

C1. L(f(x), yx) =
∑k
q=1 l(f(x), (yx)q ) ∀x, yx, f
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C2. l(f(x), 0) + l(f(x), 1) = C ∀x, f

Here C is a constant greater than zero and l(f(x), (yx)q ) is a
loss function. (Here, f(x) ∈ Rk )

Proof:

R
η
L(f) = Ex, ỹx [L(f(x), ỹx)] = Ex,yxEỹx |x,yx

k∑
q=1

l(f(x), (ỹx)q )

= Ex,yx

k∑
q=1

(1 − η)l(f(x), (yx)q ) + ηl(f(x), 1 − (yx)q ),

using equation (3)

= Ex,yx

k∑
q=1

(1 − η)l(f(x), (yx)q ) + η(C − l(f(x), (yx)q )),

using condition C2 of the theorem

= (1 − 2η)Ex,yx
k∑

q=1
l(f(x), (yx)q ) + ηC

Hence, for any f we get

R
η
L(f) − R

η
L(f

∗) = (1 − 2η)
(
Ex,yx

k∑
q=1

l(f(x), (yx)q )

− Ex,yx

k∑
q=1

l(f∗(x), (yx)q )
)

= (1 − 2η)(RL(f) − RL(f∗)) ≥ 0

because f∗ is the minimizer of RL (cf. equation(2)) and η < 0.5. As
the above is true for any function f ∈ F , this implies f∗ will also be
minimizer of RηL , risk under noisy distribution. This completes the
proof of the theorem.

4.1 Loss Functions
Here we consider loss functions that satisfy condition C1 of Theo-
rem 1:

L(f(x), y) =
k∑

q=1
l((f(x))q , (y)q )

Recall that by our definition of a classifier, f(x) ∈ Rk . But from now
on we would consider models where f(x) ∈ [0, 1]k . This would
be the case, for example, if the classifier is a feedforward neural
network with sigmoidal output layer.

Different choices for the function l above would result in different
loss functions, L. If we take l to be 0–1 loss defined as

l(x ,y) =

{
1 if y = 1 & x ≥ 0.5 or y = 0 & x < 0.5
0 otherwise

(7)

then L would be the Hamming loss [36] which is a standard loss
function used in multi-label setting. Hamming loss in multi-label
setting is analogous to 0–1 loss in single label case.

As it is easy to see, the 0–1 loss defined by equation (7) satisfies
the condition C2 of Theorem 1. Hence Hamming loss is noise-
tolerant to symmetric label noise in multi-label classification. Ham-
ming loss is not continuous, which makes the risk minimization
problem computationally hard.

One can get what may be termed surrogates of Hamming loss by
using some other suitable loss for l in place of 0–1 loss. As shown
in [9], any classification calibrated binary loss function can be used
as l , and risk minimization under the resulting loss function would
be consistent. Such a loss function for multi-label problems would
also be noise-tolerant for symmetric noise if the binary loss, l , satis-
fies condition C2 of Theorem 1. Below, we consider three popular
binary losses, namely, Binary Cross-Entropy (BCE), Mean Square
Error(MSE), and Mean Absolute Error(MAE), for the function l . Of
these, only MAE satisfies the condition C2. In our simulation exper-
iments in the next section, we compare the relative noise tolerance
of these three losses.

As mentioned earlier, we take f(x) ∈ [0, 1]k because our classifier
is a feedforward net with sigmoidal output layer. Thus, we can
interpret each component of f(x) as (posterior) probability for the
presence of the corresponding label in the label set. Hence in our
definition of the binary losses below, we use p to denote any one
component of f(x). These losses are defined by:

l(p,y) =


yloд(p) + (1 − y)loд(1 − p) BCE
(y − p)2 MSE
|y − p | MAE

Now we can calculate the LHS of condition C2 for each of the
losses to see whether they satisfy the condition:

∑
y∈{0,1}

l(p,y) =


loд(p) + loд(1 − p) = loд(

p
1−p ) BCE

(1 − p)2 + p2 = 2p2 − 2p + 1 MSE
|1 − p | + |p | = 1 MAE

As clear from the above, only MAE satisfies C2. The relevant
sum is at least bounded in case of MSE while that in the case of BCE
is unbounded. Hence using MAE as the binary loss should result in
robust learning.

Our theoretical results are about the minimizer of the risk. Ideally,
the performance with MAE should not degrade if we are minimiz-
ing the actual risk. However, in practice, we can only minimize
empirical risk and may not get global minimizer of even empirical
risk. Thus, as we see in the simulation section, under empirical risk
minimization, the performance of even MAE degrades with label
noise, but it degrades less compared to non-symmetric losses.

5 EMPIRICAL RESULTS
In this section, we empirically compare the robustness (to symmetric
label noise) of the three losses described earlier. We show results
on four multi-label datasets ‘scene’, ‘tmc2007’, ‘yeast’ and ‘emo-
tions’ [30]. ‘scene’ [4] is an image dataset, ‘tmc2007’ [27] is a text
dataset(where we used the one with top-500 important attributes),
‘emotions’ [29] is a music emotion dataset and ‘yeast’ [7] is a dataset
of functional class prediction of genes.
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5.1 Simulation Settings
We use feedforward neural networks (NN) as our classifiers. In our
simulations, the number of input layer nodes are the same as the
number of attributes in a dataset. The number of node in the output
layer is the same as the cardinality of the label set. We use sigmoid
activation at each of the output nodes. All hidden layers are densely
interconnected, and the architecture is different for each dataset.
Each of the dense layer outputs is first batch normalized(BN) [13]
and then passed through ReLU activation function. We use two dense
layers for scene, emotions dataset, and four dense layers for ‘tmc’
dataset. As there are some correlations among the gene sequences,
we use three convolution layers(Conv) followed by a dense layer for
yeast dataset. Convolution layer output is only passed through ReLU
activation function.

Datasets statistics and the respective hidden layer architectures
are given in table 1. In the table, Ca( for Cardinality) is the average
number of labels per sample, i.e., Ca = 1

N
∑N
i=1 |yxi | and De( for

density) is normalized cardinality, i.e., De = 1
kCa.

For training emotions, scene, yeast networks we use RMSprop
optimizer (with parameters lr=0.001, rho=0.9, epsilon=1e-08, de-
cay=0.0) and for ‘tmc’ dataset we use Adam optimizer [16] (learning
rate - 0.001, beta1 - 0.9, beta2 - 0.999). We also use dropout of 0.5
after each dense layer (except in ‘tmc’). Batch size of 64 is used
for scene, yeast, emotions datasets, and 1024 for ‘tmc’. For ‘tmc’,
we found that batch normalization alone gives good results for all
noise levels with different losses, compared to batch normalization
and dropout regularizers used together. Hence we used only BN for
‘tmc’. For training the networks for ‘scene’, ‘yeast’ and ‘emotions’
datasets, we also reduce learning rate when there is no improvement
(i.e., it is ≤ 0.0001) by a factor of 0.1 with the minimum rate set to
10−5 and patience 10. We set aside 25% of the noisy training dataset
for validation.1 We train each network for 500 epochs and choose
the best network based on the error on the validation data.

5.2 Results
We show results with MAE, MSE, BCE losses and at noise rates
– 0%, 10%, 20%, 30%. Symmetric label noise is introduced in the
training and validation sets by independently corrupting each label
of each sample. We report results on test set which has no label
noise. For each dataset, loss and noise rate, we train the network five
times to account for randomness in label noise and initial starting
point. We report results using the commonly used evaluation metrics
for multi-label classifier learning – F1-macro, F1-micro and Jaccard

1Noisy data can be used for validation as the risk under noisy distribution is linearly
related to risk under noise-free distribution when the loss function satisfies the sufficient
conditions in Theorem 2.

Index [36].

F1macro =
1
k

k∑
q=1

2 ∗TPq
2 ∗TPq + FNq + FPq

F1micro =
2 ∗

∑k
q=1TPq

2 ∗
∑k
q=1TPq +

∑k
q=1 FNq +

∑k
q=1 FPq

Jaccard Index =
N∑
i=1

|yxi ∧ h(xi )|
|yxi ∨ h(xi )|

where TP, FP and FN are label wise true positives, false positives,
false negatives respectively. ∧ and ∨ are element wise logical AND
and logical OR operations. (Here |s | represents number of ones in
the binary vector s).

The results are shown in Figure 1 for the four datasets. Each
figure shows the values of F1-macro, F1-micro, and Jaccard Index
for different noise rates. (We show the mean and standard deviation).
As can be seen, on all the three metrics, the MAE loss shows better
robustness compared to the other two. (Recall that MAE is the
only loss that satisfies the symmetry condition of our theorem).
This robustness is particularly good for the ‘yeast’ and ‘emotions’
datasets. Ideally, the performance with MAE should not degrade if
we are minimizing the true risk. If we could find the global minimizer
of true risk, then the performance of MAE should be the same with
or without noise. However, here we are only minimizing empirical
risk, and the neural network algorithms do not necessarily learn the
global minimum even of the empirical risk. Also, normally, sample
complexities under label noise are higher, and the small number
of examples may be another reason why MAE performance also
degrades. However, MAE has much less degradation compared to
the other two losses. This adequately illustrates the utility of our
theoretical results.

The point that we wish to make, based on simulations, is that using
a robust loss function is attractive even if we do not get the ideal
robustness (because we are only finding local minima of empirical
risk). This is because, with a robust loss function, one gains some
robustness without any extra cost. If the data does not have noise,
the performance of MAE is on par with that of BCE; under noise,
the performance of MAE is better. For the learning algorithm, we
need no information about the noise (not even any information at all
about whether there is label noise). We use a different loss function
in empirical risk minimization. In this sense whatever robustness
we are getting is for free. This is what is attractive about robust loss
functions.

6 CONCLUSION
In this paper, we considered learning of multi-label classifiers in
presence of label noise. We defined symmetric label noise model
in a multi-label setting which can model random errors by labelers.
Random label noise in the multi-label setting is unavoidable because
of the inherent uncertainty (or variability in the decisions of different
labelers) in deciding which subset of labels is relevant for a given
instance. Thus, it is essential to consider classifier learning strategies
that are robust to random label noise.
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Table 1: Datasets and Architecture. Abbreviations:- DL(integer) - Dense layer(hidden units), BN - Batch Normalization, AF - activa-
tion function layer, dr - dropout), Conv(filters) - Convolution Layer(filters). We use ReLU activation function everywhere.

Dataset instances attributes labels Ca/De Hidden layer Architecture

scene 2407 294 6 1.074/0.179
DL(64) + BN + AF + (dr = 0.5)+
DL(32) + BN + AF + (dr = 0.5)

tmc2007 28596 500 22 2.158/0.098
DL(1024)+BN+AF+DL(512)+BN+AF+

DL(256)+BN+AF + DL(32)+BN+AF

yeast 2417 103 14 4.237/0.303
Conv(8)+ AF + Conv(16)+ AF+

Conv(32)+ AF+
DL(16) + BN + AF + (dr = 0.5)

emotions 593 72 6 1.869/0.311
DL(64) + BN + AF + (dr = 0.5) +
DL(16) + BN + AF + (dr = 0.5)

The focus of this paper is on the robustness of risk minimization in
multi-label settings. Many classifier learning algorithms can be cast
in the framework of risk minimization. In this paper, we have proved
a sufficient condition on the loss function for risk minimization to
be robust to symmetric label noise. Hamming loss, which uses 0–1
loss as the single-label loss, satisfies this sufficient condition. We
also show that a surrogate of Hamming loss obtained by replacing
0–1 loss with MAE loss is tolerant to symmetric label noise. On
the other hand, other losses, such as BCE or MSE, are not robust.
Through empirical results on benchmark datasets, we illustrated this
robustness. Our simulation results clearly show the superiority of
MAE over other losses. We do not compare the robustness of other
popular multi-label learning algorithms like Multi-label Decision
Tree, which can not be represented as risk minimization.

Our theoretical results pertain to the minimization of true risk,
though in practice, one can minimize only the empirical risk. Hence,
a useful extension of results presented here would be in the direction
of bounds on generalization error for empirical risk minimization in
the presence of label noise. In the presence of label noise, one would
need more examples for consistent learning, and such bounds would
be useful for adequately exploiting our results on robustness. In this
paper, we consider symmetric label noise in which for any label,
the probability of it being wrongly present is the same as it being
wrongly absent. (Even though this probability can be different for
different labels). Many scenarios (other than labeling errors) such as
missing labels, partially labeled data, etc. can be modeled using label
noise. Many such situations may not satisfy our symmetric noise
assumption. A more challenging problem would be to consider the
non-symmetric case or the general case where the noise probability
could be a function of the feature vector. This is also a very promising
direction in which results presented here need to be extended.
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Figure 1: F1 Scores for different datasets.
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