
T3N: Harnessing Text and Temporal Tree Network forRumor

Detection on Twitter

by

Nikhil Pinnaparaju, Manish Gupta, Vasudeva Varma

Report No: IIIT/TR/2021/-1

Centre for Language Technologies Research Centre
International Institute of Information Technology

Hyderabad - 500 032, INDIA
May 2021

T 3N : Harnessing Text and Temporal Tree Network for
Rumor Detection on Twitter

Nikhil Pinnaparaju, Manish Gupta?, Vasudeva Varma

nikhil.pinnaparaju@research.iiit.ac.in,
{manish.gupta,vv}@iiit.ac.in

IIIT Hyderabad, India

Abstract. Social media platforms have democratized the publication process re-
sulting into easy and viral propagation of information. However, spread of rumors
via such media often results into undesired and extremely impactful political,
economic, social, psychological and criminal consequences. Several manual as
well as automated efforts have been undertaken in the past to solve this criti-
cal problem. Existing automated methods are text based, user credibility based
or use signals from the tweet propagation tree. We aim at using the text, user,
propagation tree and temporal information jointly for rumor detection on Twit-
ter. This involves several challenges like how to handle text variations on Twitter,
what signals from user profile could be useful, how to best encode the propa-
gation tree information, and how to incorporate the temporal signal. Our novel
architecture, T 3N (Text and Temporal Tree Network), leverages deep learning
based architectures to encode text, user and tree information in a temporal-aware
manner. Our extensive comparisons show that our proposed methods outperform
the state-of-the-art techniques by ∼7 and ∼6 percent points respectively on two
popular benchmark datasets, and also lead to better early detection results.

1 Introduction

Social media portals provide a rich platform to share, forward, vote and review to en-
courage users to discuss online news. While this allows for faster and democratized
publication of news, it also in-turn allows for malicious users to spread misinformation.
Misinformation events have had immense economic impact in the past as evidenced by
$130B stock market fluctuation due to “Barack Obama injured in explosion” rumor in
2017 [24], $4B drop in Apple market capitalization due to the “iPhone and Leopard
delay email” rumor in 2008 [14], etc. Misinformation can even have criminal conse-
quences. E.g., in 2016, a man was arrested after he walked into a popular pizza restau-
rant in Northwest Washington carrying an assault rifle and fired one or more shots.
The man told police he had come to the restaurant to “self-investigate” an election-
related rumor (“Mrs. Clinton is kidnapping, molesting and trafficking children in the
back rooms of a D.C. pizzeria”) that spread online during her presidential campaign.
Lastly, spreading rumor and sharing misinformation undermines your credibility; in the
past, news reporters have been suspended or fired for sharing misinformation [28].

? The author is also a Principal Applied Scientist at Microsoft.

2 Pinnaparaju et al.

Manual credibility verification on websites like Snopes, Politifact, etc. is challeng-
ing and time consuming. Automatic detection of misinformation from social media
posts (especially tweets) is also challenging because (1) They are very short and do
not typically follows English grammar rules. (2) Even real news appears on Twitter
much faster than other news media like TV new channels, which means that it is diffi-
cult to cross-check such news with other sources. (3) Since these posts pertain to very
fresh news, it is difficult to fact check against relatively stale information in knowledge
bases. (4) Difficult to handle text variations on Twitter, identify best way to encode the
tweet propagation tree information, and incorporate the temporal signal. Lastly, it is
very important to detect such misinformation early, which makes the task arduous.

Previous work on rumor detection has mainly leveraged the post content or the
network structure [38]. Content based methods have focused on (1) matching facts ex-
tracted from content with knowledge base facts, or (2) textual feature engineering [2,
31], or (3) image information [13]. However, textual representations prove to be insuffi-
cient for platforms where the amount of characters and therefore words is limited. Addi-
tionally, they rely on a very quickly updated knowledge base which is difficult. Hence,
recently, network based approaches have been proposed. Such approaches are broadly
of two types: propagation tree based [21, 33, 36] and user credibility based [9, 12, 27].
Overall, previous work has studied the importance of individual factors for predicting
the credibility of social media posts.

We aim to study such factors jointly. We extract semantics from the post text con-
tent using deep recurrent models as well as Transformer models. We extract multiple
features from the user profile. We combine such features along with the propagation
tree structure to learn a semantic representation of the tree. Further, we learn repre-
sentations of multiple temporal snapshots of the propagation tree. Representations of
such snapshots are combined using another recurrent network to obtain a representa-
tion for the temporal tree. The text representation and the temporal tree representation
are combined to finally predict credibility of the social media post. Figure 1 shows the
architecture of our proposed system, T 3N (Text and Temporal Tree Network).

Seriously Racist McDonald’s Sign Is Obviously a Hoax

…

Text Encoder

Temporal Tree Encoder Tree Encoder

50

100

150

4

Ru
m
or

De
te
ct
or

Fig. 1. T 3N System Architecture. T 3N could use a variety of text and tree encoders as discussed
in Section 3. Here we show an instance with LSTM text encoder and temporal tree encoder.

.

Overall, in this paper, we make the following main contributions. (1) We propose to
use the text content, propagation tree, user profile as well as temporal signals for early
misinformation detection on Twitter. (2) We propose a novel deep learning architecture,

T 3N : Harnessing Text and Temporal Tree Network for Rumor Detection on Twitter 3

T 3N (Text and Temporal Tree Network), which consists of a text encoder and a tempo-
ral tree encoder to jointly model the above signals. (3) Our experiments with Twitter-15
and Twitter-16 benchmark datasets show that T 3N outperforms state-of-the-art meth-
ods by ∼7 and ∼6 percentage points respectively.

2 Related Work

Content based rumor detection: Content based methods have focused on (1) match-
ing facts extracted from content with knowledge base facts [10], (2) textual feature
engineering for style-based misinformation detection [2, 3, 22, 23]. Fact checking can
be manual or automated. Popular manual fact checking websites include Snopes, Poli-
tifact, FactCheck, HoaxSlayer, TruthOrFiction, etc. Accuracy of automated fact check-
ing [10, 26] is rather limited because they rely on a very quickly updated knowledge
base for factual checking. While early studies used linguistic features [2, 23], more re-
cently, deep neural networks (DNNs) [3, 21] have been explored for rumor detection.
Content based representations prove to be insufficient for platforms where the amount
of characters and therefore words is limited. Hence, our approach combines text with
tree based signals.
Rumor detection using propagation trees: To address drawbacks of pure content
based methods (following the observations made by Vosoughi et al. [32]), recently,
propagation tree based methods [17,20,21,33] have been proposed. Earlier efforts used
graph kernels [20, 33] to capture high-order patterns differentiating different types of
rumors by evaluating the similarities between their propagation tree structures. Recent
DNNs like recursive neural networks (RNNs) [21], long short term memory (LSTM)
networks [34], combination of recurrent and convolutional networks [17] have been ex-
plored. While it is beneficial to use propagation tree signals, it is important to carefully
choose the right tree representation. We explore temporal trees.
Network based rumor detection: Apart from the simple propagation trees with only
user nodes, rumor detection community has also studied other richer networks – both
homogeneous [12, 25] as well as heterogeneous [9, 12, 27, 36]. Heterogeneous network
based rumor detection is orthogonal to the direction we follow in this work. This is
mainly due to lack of benchmark heterogeneous network datasets. We plan to explore
whether this line of work complements our findings, as part of future work.
Fake profile detection on Twitter: As another relevant but orthogonal line of work,
previous studies have attempted automated fake profile detection on Twitter. There are
broadly two types of work in this area: (1) methods that analyze user behavior pat-
terns [4] or content posted [6] or both [1], and (2) methods which jointly learn the user
credibility along with credibility of other node types like tweets, events, etc.

3 T 3N : A System for Rumor Detection on Twitter

3.1 Problem Definition and T 3N System Overview

Both the benchmark Twitter-15 [16] and Twitter-16 [18] datasets have instances con-
sisting of an origin tweet, its propagation tree and a class label. Each propagation tree is

4 Pinnaparaju et al.

represented using tree edges which link a tweet to its reply or retweet. Each node (tweet)
in the tree is represented by its userid, tweet id, and post time delay (in minutes). The
class label is one of the following four classes: true news, rumor, debunking of rumor
and unverified news1. Given this dataset, we model the problem of rumor detection as
a 4-class classification problem. The classifier should take a new origin tweet with its
propagation tree as input and output the appropriate class label with high accuracy.

We propose a novel deep text and temporal tree encoder network (T 3N) classifier.
The basic idea behind T 3N is to jointly learn a unified representation of both the tweet
content as well as the tweet’s propagation tree as shown in Figure 1. It has the following
four main components: (1) Text Encoder: It encodes the information from the tweet text
into a latent vector. (2) Tree Encoder: It encodes the information from a propagation tree
snapshot into a latent vector. (3) Temporal Tree Encoder: It encodes the information
from a series of historical snapshots of the propagation tree into a latent vector. (4)
Rumor Detector: It uses the learned combined text + temporal tree representation (latent
vector) to predict one of the four classes. We discuss these components in detail in the
remainder of this section.

3.2 Text Encoder

We use two kinds of text encoder architectures: recurrent architecture and Transformers.
RNNs like Gated Recurrent Units (GRUs) [5], LSTMs [11], bi-directional LSTMs [8]

and their attention based variants have been found to be very effective in modeling text
sequences across a large variety of natural language processing tasks mainly due to
their representational power and effectiveness at capturing long-term dependencies. At-
tention allows the model to give more importance to certain set of words in the tweet
while ignoring the others, effectively learning the focus points to better predict the cor-
rect rumor class for the tweet. The resultant tweet embedding, vi, learned using any of
these models, which is jointly learned during the training process captures the essential
information from the tweet text. Fig. 1 shows an attention-based recurrent text encoder.

Another way of encoding text which has become popular in the past two years is
using Transformer [30] based architectures like Bidirectional Encoder Representations
from Transformers (BERT) [7]. The post text sequence is prepended with a “CLS”
token. The representation C for the “CLS” token from the last encoder layer is used as
the tweet text embedding. We also finetune the pre-trained model using labeled training
data for the rumor prediction task.

3.3 Tree Encoder

Every propagation tree consists of the origin tweet as the root node. Replies and retweets
of a tweet are represented using its children. Each node in the tree takes a user represen-
tation as input corresponding to the user who replied to or retweeted the parent tweet
node, like in [17]. Tai et al. [29] extended regular linear LSTMs to child sum Tree-
LSTMs. These allow for tree structured data (be it parse trees or propagation trees) to

1 The label “debunking of rumor” denotes a news story that tells people that a certain news story
is rumorous.

T 3N : Harnessing Text and Temporal Tree Network for Rumor Detection on Twitter 5

be trained without the loss of the data’s inherent structure. While the standard LSTM
composes its hidden state from the input at the current time step and the hidden state
of the LSTM unit in the previous time step, the tree-structured LSTM, or Tree-LSTM,
composes its state from an input vector and hidden states of arbitrarily many child units.

Given a tree, if we denote children of a node j by C(j), the Child-Sum tree-LSTM
transition equations can be written as follows.

h̃j =
∑

k∈C(j)

hk; ij = σ(Wixj + Uih̃j + bi); oj = σ(Woxj + Uoh̃j + bo) (1)

fjk = σ(Wfxj + Ufhk + bf); cj = ij ◦ tanh(Wcxj + Uch̃j + bc) +
∑

k∈C(j)

fjk ◦ ck (2)

hj = oj ◦ tanh(cj) (3)

Here, hk and ck denote the hidden layer and the cell state outputs of the kth child
respectively. xj denotes the user profile vector for the node j. However, this method
inspired by Tai et al. [29] does not handle temporal aspects of the propagation tree.
Hence, we propose novel temporal-aware tree encoder methods in Sections 3.4 and 3.5.

3.4 Decayed Tree Encoder

Typically, the first few tweets in a rumor event are the most malicious in nature. Later
tweets are often copies of the initial tweets. Also, intuitively, in a propagation tree for
a rumor, the first few users (closer to the root of the tree) are malicious while users at
lower levels (who reply to or retweet the original tweet) are naı̈ve (who unintentionally
engage in rumor propagation). Hence, we propose a modified Tree-LSTM variant that
incorporates a temporal decay factor into our model. The variant provides less weight
to propagation tree nodes that are sharing this misinformation at a later point of time. In
some ways our time decay idea is also inspired by a similar notion as described in [20].

Each node k in the tree is associated with a timestamp ts(k). We compute the decay
factor corresponding to the node by comparing its timestamp with that of the original
tweet (i.e, the root node). The modified Tree-LSTM transition equations can then be
written as follows. Equations for h̃j , ij , oj , cj , hj remain the same as in Eqs. 1 to 3.

tdk = ts(k)− ts(root); fjk = σ(g(tdk) ∗ (Wfxj + Ufhk + bf)) (4)

We experimented with two different forms of decay function g: (1) Linear: g(tdk) =
tdk (2) Exponential: g(tdk) = e−tdk . Exponential decay function performed better
compared to the linear function and hence we report results using exponential one.

3.5 Temporal Tree Encoder

We hypothesize that the order in which the nodes get added to a propagation tree de-
pends on whether it contains true information or a rumor. Hence, we wish to learn a
vector representation across multiple snapshots of the tree using a temporal tree en-
coder discussed as follows. Consider a tree with N nodes where each node has an
associated timestamp. Such a tree can be represented as a time series of N snapshots

6 Pinnaparaju et al.

S1, S2, ..., SN where Si+1 has exactly one node ((i+ 1)th) more than Si and (i+ 1)th

node has a timestamp larger than all of the nodes from 1 to i and smaller than all of the
nodes from i+ 2 to N .

For each such tree snapshot, we use a tree encoder or a decayed tree encoder to get
a latent representation. Parameters are shared across all the trees in the sequence. The
temporal sequence of such latent representations across all snapshots S1 to SN are then
combined using an LSTM. The last hidden layer output from the LSTM can then be
considered as a latent representation for the temporal tree. Note that we use an LSTM
rather than a BiLSTM because at test time, we will not have future tree snapshots.

If N is large, memory needed to learn the temporal tree representation could be
large. Also, the number of computations needed are high. Hence, to generate the tem-
poral tree representation we take M + 1 equidistant snapshots from within the overall
sequence, and then design an LSTM with justM +1 inputs. The gap between each unit
in the LSTM input sequence is N/M . Note that M=1 is equivalent to learning from all
snapshots of the temporal tree sequence. We experiment with different values ofM and
present results in Section 4.

3.6 Putting it all together

Overall, our proposed T 3N system first encodes the tweet text to obtain a text repre-
sentation. Next, it creates a M + 1-sized temporal tree sequence. Each tree is encoded
using a tree encoder or a decayed tree encoder. Further, these individual M + 1 tree
representations are combined using a BiLSTM to obtain a temporal tree representation.
Finally, the text and the temporal tree representations are concatenated, and connected
to an output softmax layer with four neurons corresponding to the four class labels.

We use the cross entropy loss. The parameters of the text encoder, the temporal tree
encoder and the misinformation detector are all initialized randomly and trained jointly
using back propagation. We also experiment with separate pre-training and fine-tuning
phases. In this way of training, we first train the text encoder using the labeled train-
ing data by directly connecting the output of the text encoder with an output layer in
a fully connected manner. Next, we separately pre-train the tree encoder using the la-
beled training data by directly connecting the output of the temporal tree encoder with
an output layer in a fully connected manner. Once the separate pre-training of text en-
coder and the temporal tree encoder is done, we use the end-to-end architecture shown
in Figure 1 and fine-tune all the weights using the same labeled training data. We ob-
served that such pre-training followed by fine-tuning provided better results compared
to training end-to-end from scratch.

4 Experiments

4.1 Datasets, Experimental Settings and Baselines

Following the work in [2,15,17,19,20,21,33,35,37], we experiment with two popular
benchmark datasets: Twitter-15 [16] and Twitter-16 [18] which are also the only two
datasets that provide temporal network information along with the tweets. We elimi-
nated (1) repeated edges from tree files (2) nodes that appear as children but appear

T 3N : Harnessing Text and Temporal Tree Network for Rumor Detection on Twitter 7

before parent from the original datasets, and (3) nodes with negative post time delay).
Table 1 shows statistics of the two datasets. Further Figs 2, 3, 4, 5 show distributions
of important parameters of the two datasets. Note that the URLs in the tweets have
been replaced by the keyword URL in the original dataset. The original dataset con-
tains user IDs but not their profile information. Hence, we crawled user profiles using
the Twitter API2. From these profiles we extract user profile attributes which could be
correlated to their credibility. These features include length of the user profile descrip-
tion in words, length of username in characters, followers count, friends count, statuses
count, registration age, whether the user is verified and whether the user is geo enabled.
These features were also proposed in [17]. This feature vector of eight features is used
as the data input vector for the tree-LSTMs in the tree encoder. The datasets can be
downloaded from here3.

Statistic #stories #true
news

#rumors #debunking
of rumor

#unverified
news

#users #posts Avg Tweet
length

Avg Tree
Depth

Avg #tree
nodes

Twitter-15 1490 374 370 372 374 276663 331612 15.48 4.74 405.1
Twitter-16 818 205 205 207 201 173487 204820 15.19 4.89 428.9

Table 1. Statistics of the Twitter-15 and Twitter-16 Datasets

0

50

100

150

200

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Fr
eq

ue
nc

y

Length of tweets (in words)

Twitter-15

Twitter-16

0
500

1000
1500
2000
2500
3000
3500

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00

#N
od

es
 in

 th
e

tr
ee

Instance Number (sorted by #nodes in tree)

Twitter-15

Twitter-16

0

100

200

300

400

500

600

2 4 6 8 10 12 14 16 18

#T
re

es

Depth of Tree

Twitter-15
Twitter-16

190

240

290

340

390

1 10 100 1000 10000

Av
er

ag
e

#N
od

es

Log (Intervals (in min))

Twitter-15

Twitter-16

Fig. 2. Length distribution of tweets (in words)

0

50

100

150

200

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Fr
eq

ue
nc

y

Length of tweets (in words)

Twitter-15

Twitter-16

0
500

1000
1500
2000
2500
3000
3500

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00

#N
od

es
 in

 th
e

tr
ee

Instance Number (sorted by #nodes in tree)

Twitter-15

Twitter-16

0

100

200

300

400

500

600

2 4 6 8 10 12 14 16 18

#T
re

es

Depth of Tree

Twitter-15
Twitter-16

190

240

290

340

390

1 10 100 1000 10000

Av
er

ag
e

#N
od

es

Log (Intervals (in min))

Twitter-15

Twitter-16

Fig. 3. Distribution of #nodes in the propaga-
tion trees

0

50

100

150

200

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Fr
eq

ue
nc

y

Length of tweets (in words)

Twitter-15

Twitter-16

0
500

1000
1500
2000
2500
3000
3500

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00

#N
od

es
 in

 th
e

tr
ee

Instance Number (sorted by #nodes in tree)

Twitter-15

Twitter-16

0

100

200

300

400

500

600

2 4 6 8 10 12 14 16 18

#T
re

es

Depth of Tree

Twitter-15
Twitter-16

190

240

290

340

390

1 10 100 1000 10000

Av
er

ag
e

#N
od

es

Log (Intervals (in min))

Twitter-15

Twitter-16

Fig. 4. Depth distribution of propagation trees

0

50

100

150

200

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Fr
eq

ue
nc

y

Length of tweets (in words)

Twitter-15

Twitter-16

0
500

1000
1500
2000
2500
3000
3500

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00

#N
od

es
 in

 th
e

tr
ee

Instance Number (sorted by #nodes in tree)

Twitter-15

Twitter-16

0

100

200

300

400

500

600

2 4 6 8 10 12 14 16 18

#T
re

es

Depth of Tree

Twitter-15
Twitter-16

190

240

290

340

390

1 10 100 1000 10000

Av
er

ag
e

#N
od

es

Log (Intervals (in min))

Twitter-15

Twitter-16

Fig. 5. Distribution of arrival time of nodes in
the propagation trees (up to 1 week)

For our recurrent text encoders (GRUs and LSTMs), we used GloVe 100D embed-
dings and Adagrad optimizer with learning rate of 0.01. For BERT, we initialized using
bert-base-uncased with standard 768D hidden size, and used AdamW optimizer with
learning rate of 2e-5. No other specific pre-processing steps were performed. We train

2 https://developer.twitter.com/en/docs/accounts-and-users/
follow-search-get-users/overview

3 https://www.dropbox.com/s/7ewzdrbelpmrnxu/rumdetect2017.zip?
dl=0

8 Pinnaparaju et al.

all models for 10 epochs. For other settings for reproducibility, please refer to our code4.
We perform 4-fold experiments and report the average.
Baselines: We compare with the following 9 previously proposed traditional machine
learning methods: (1) SVM-BOW: Linear Support Vector Machines (SVM) with bag-
of-words features extracted from the text in each tree. (2) DTC [2]: The information
credibility model using a Decision-Tree Classifier based on various hand-crafted statis-
tical features of the tweets. (3) SVM-RBF [35]: Same as (2) but uses SVM classifier
with Radial Basis Function (RBF) kernel. (4) SVM-TS [19]: A linear SVM classifica-
tion model that uses time-series to model the variation of a set of hand-crafted features.
(5) DTR [37]: A Decision-Tree-based Ranking method to identify trending rumors. (6)
RFC [15]: A Random Forest Classifier using three parameters to fit the temporal prop-
erties and an extensive set of hand-crafted features related to the user, linguistic and
structure characteristics. (7) PTK [20]: Used kernel-based data-driven method called
Propagation Tree Kernel (PTK) to generate relevant features (i.e., subtrees) automati-
cally for estimating the similarity between two propagation trees. An SVM classifier
is used on top of such features. (8) cPTK [20]: Extends PTK into a context-enriched
PTK (cPTK) by considering different propagation paths from source tweet to the roots
of subtrees, which capture the context of transmission. (9) SVM-HK [33]: An SVM
classifier using features derived from propagation structures with Hybrid kernel.

Further, we compare with the following 5 previously proposed deep learning meth-
ods. (1) PPC RNN+CNN [17]: Uses propagation path construction and transformation,
RNN and CNN-based propagation path representation and propagation path classifica-
tion. (2) PPC RNN [17]: Same as PPC RNN+CNN where CNN based representation
is not used. (3) PPC CNN [17]: Same as PPC RNN+CNN where RNN based repre-
sentation is not used. (4) BU-RvNN [21]: Uses a recursive neural model based on a
bottom-up tree-structured neural networks for rumor representation learning and clas-
sification. (5) TD-RvNN [21]: Same as (4) but is top-down.

4.2 Accuracy Comparison

Results in Table 2 show that cPTK is the best traditional ML method across both the
datasets. Multiple DL methods are better than the ML methods. Our proposed method,
T 3N , outperforms all the other methods by a large margin. This particular variant of our
system used BERT as the text encoder and Decay Temporal Tree encoder for encoding
the propagation tree. Also, our method performs well across all the classes for both
the datasets, except for the “rumor” class for Twitter-16 where the PPC RNN+CNN
is better. We believe this is because for Twitter-16, all of our text encoders perform
relatively weakly for the “rumor” class (Table 3). On the other hand, this is not a concern
for PPC RNN+CNN since it uses a CNN also.

4.3 Ablation Studies

To understand the degree of contribution of various components towards rumor detec-
tion, we perform a series of ablation tests: using only text encoder, only tree encoder

4 https://www.dropbox.com/sh/nw14d4qd3zhm3mb/
AAB843fUKQIXxVqsWnrRW5mfa?dl=0

T 3N : Harnessing Text and Temporal Tree Network for Rumor Detection on Twitter 9

Model
Twitter-15 Twitter-16

Acc. T F1 R F1 D F1 U F1 Acc. T F1 R F1 D F1 U F1

Tr
ad

iti
on

al
M

L

SVM-BOW 0.548 0.564 0.524 0.582 0.512 0.585 0.553 0.556 0.655 0.578
DTC 0.454 0.733 0.355 0.317 0.415 0.465 0.643 0.393 0.419 0.403
SVM-RBF 0.318 0.455 0.037 0.218 0.225 0.321 0.423 0.085 0.419 0.037
SVM-TS 0.544 0.796 0.472 0.404 0.483 0.574 0.755 0.420 0.571 0.526
DTR 0.409 0.501 0.311 0.364 0.473 0.414 0.394 0.273 0.630 0.344
RFC 0.565 0.810 0.422 0.401 0.543 0.585 0.752 0.415 0.547 0.563
cPTK 0.750 0.804 0.698 0.765 0.733 0.732 0.740 0.709 0.836 0.686
PTK 0.710 0.825 0.685 0.688 0.647 0.722 0.784 0.690 0.786 0.644
SVM-HK 0.493 0.650 0.439 0.342 0.336 0.511 0.648 0.434 0.473 0.451

D
ee

p
le

ar
ni

ng

PPC RNN 0.811 0.759 0.842 0.765 0.787 0.842 0.809 0.865 0.836 0.839
PPC CNN 0.803 0.737 0.835 0.751 0.775 0.847 0.812 0.871 0.833 0.841
PPC RNN+CNN 0.842 0.811 0.875 0.790 0.818 0.863 0.820 0.898 0.837 0.843
BU-RvNN 0.708 0.695 0.728 0.759 0.653 0.718 0.723 0.712 0.779 0.659
TD-RvNN 0.723 0.682 0.758 0.821 0.654 0.737 0.662 0.743 0.835 0.708
Best T 3N 0.912 0.905 0.915 0.912 0.914 0.927 0.957 0.875 0.970 0.909

Table 2. Accuracy and class-wise F1 comparison across various methods for Twitter-15
and Twitter-16 datasets. Last row is our proposed method. (T=true, R=Rumor, D=debunk,
U=unverified)

and multiple combinations of various text and tree encoders in Tables 3, 4 and 5 resp.
In Table 3, we compare the accuracy obtained using multiple text encoders: GRU and
LSTM, and their bi-directional variants. We also tried adding attention to these models,
but it did not lead to significantly better results. We observe that bidirectional models
do not lead to better results either. We also present the accuracy using BERT. Across
both datasets, BERT clearly performs much better than any of the recurrent models.

Model
Twitter-15 Twitter-16

Acc. T F1 R F1 D F1 U F1 Acc. T F1 R F1 D F1 U F1
GRU 0.6040 0.6795 0.6438 0.5756 0.4894 0.6332 0.7086 0.5119 0.6870 0.4723
LSTM 0.5637 0.6881 0.5488 0.5445 0.4631 0.6528 0.7351 0.5169 0.6804 0.5127
Bi-GRU 0.5839 0.6833 0.6098 0.5659 0.4525 0.6235 0.7325 0.5146 0.6330 0.4508
Bi-LSTM 0.5496 0.6914 0.5430 0.5276 0.4223 0.6039 0.7448 0.4815 0.6018 0.4479
BERT 0.7795 0.8342 0.7530 0.7554 0.7721 0.7744 0.8992 0.5553 0.7383 0.7278

Table 3. Accuracy and class-wise F1 values for methods which use only tweet text information.
(T=true, R=Rumor, D=debunk, U=unverified)

In Table 4, we compare the accuracy obtained using multiple tree encoders: Stan-
dard, Decay, Temporal, Decay Temporal. We also vary the number of trees as 1, 5, 10,
15 and 20. Overall, we observe that temporal tree representation gives better results
compared to the standard one (where we just use the last snapshot of the tree). We
also observe that as we increase the number of trees, typically the accuracy increases
slightly. It is also important to note that the accuracy values obtained using tree only en-
coders are typically smaller than those using text only encoders. This could be because
the text content has relatively much stronger signals compared to the tree.

In Table 5, we compare the accuracy obtained using multiple text and tree encoder
combinations. For temporal and decay temporal tree encoders, we fixed the number of
trees to 20. For standard tree encoder, of course, the number of trees is 1, i.e., the latest
tree snapshot. As expected, results for text+tree methods (Table 5) are far better than
results with just text (Table 3) or just tree (Table 4). The best combination is Decay
Temporal tree encoder and BERT based text encoder. It is interesting to note that decay
temporal usually performs better than temporal tree encoder in most cases. Further, we

10 Pinnaparaju et al.

Tree Encoder # Trees
Twitter-15 Twitter-16

Acc. T F1 R F1 D F1 U F1 Acc. T F1 R F1 D F1 U F1
Standard 1 0.386 0.086 0.618 0.000 0.444 0.507 0.120 0.576 0.520 0.592
Decay 1 0.400 0.057 0.664 0.021 0.443 0.527 0.000 0.520 0.587 0.661
Temporal 5 0.437 0.475 0.610 0.378 0.203 0.522 0.077 0.537 0.544 0.649
Decay Temporal 5 0.458 0.462 0.621 0.376 0.358 0.571 0.290 0.644 0.579 0.640
Temporal 10 0.424 0.424 0.578 0.335 0.258 0.551 0.290 0.487 0.585 0.671
Decay Temporal 10 0.445 0.495 0.593 0.391 0.288 0.576 0.310 0.673 0.581 0.612
Temporal 15 0.464 0.568 0.605 0.352 0.113 0.517 0.246 0.546 0.496 0.639
Decay Temporal 15 0.485 0.514 0.372 0.541 0.540 0.551 0.478 0.500 0.520 0.644
Temporal 20 0.472 0.398 0.318 0.587 0.578 0.551 0.369 0.584 0.509 0.656
Decay Temporal 20 0.477 0.483 0.335 0.559 0.542 0.576 0.500 0.592 0.538 0.619

Table 4. Accuracy and class-wise F1 values for methods which use only propagation tree infor-
mation. (T=true, R=Rumor, D=debunk, U=unverified)

Tree Text Twitter-15 Twitter-16
Encoder Encoder Acc. T F1 R F1 D F1 U F1 Acc. T F1 R F1 D F1 U F1
Standard LSTM 0.625 0.699 0.549 0.559 0.710 0.629 0.745 0.547 0.633 0.596
Standard GRU 0.625 0.701 0.568 0.597 0.652 0.659 0.764 0.598 0.674 0.621
Standard BiLSTM 0.585 0.675 0.495 0.515 0.674 0.659 0.674 0.672 0.639 0.646
Standard BiGRU 0.652 0.756 0.577 0.631 0.653 0.590 0.681 0.609 0.568 0.500
Standard BERT 0.509 0.000 0.212 0.866 0.494 0.683 0.774 0.598 0.687 0.685
Temporal LSTM 0.582 0.683 0.448 0.554 0.648 0.629 0.605 0.696 0.679 0.679
Temporal GRU 0.619 0.696 0.561 0.570 0.647 0.683 0.725 0.631 0.685 0.703
Temporal BiLSTM 0.595 0.573 0.467 0.688 0.679 0.600 0.651 0.569 0.489 0.684
Temporal BiGRU 0.649 0.696 0.555 0.647 0.706 0.659 0.651 0.696 0.631 0.654
Temporal BERT 0.895 0.913 0.899 0.876 0.902 0.751 0.860 0.905 0.571 0.667
Decay Temporal LSTM 0.614 0.675 0.520 0.541 0.714 0.634 0.777 0.511 0.547 0.698
Decay Temporal GRU 0.646 0.734 0.558 0.597 0.696 0.683 0.714 0.638 0.661 0.721
Decay Temporal BiLSTM 0.619 0.674 0.570 0.591 0.639 0.663 0.667 0.633 0.626 0.726
Decay Temporal BiGRU 0.614 0.651 0.532 0.590 0.688 0.644 0.607 0.696 0.661 0.600
Decay Temporal BERT 0.912 0.905 0.915 0.912 0.914 0.927 0.957 0.875 0.970 0.909

Table 5. Accuracy and class-wise F1 values for various combinations of the text and tree en-
coders, i.e., variants of the T 3N system. (T=true, R=Rumor, D=debunk, U=unverified)

observed that the best model is confused the most between true and debunking of rumor
classes. Intuitively, these classes are very similar and hence this is expected.

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 4 8 12

Ac
cu
ra
cy

Detection deadline (hours)
BOW DTR BU_RVNN TD_RVNN
cPTK PPC T^3N

0 4 8 12

Fig. 6. Accuracy versus detection deadline
(hours). Left: Twitter-15 and right: Twitter-16.

0.89

0.895

0.9

0.905

0.91

0.915

1 2 3 4 5

Ac
cu
ra
cy

Detection deadline (minutes)

Twitter‐15 Twitter‐16

Fig. 7. Accuracy versus detection deadline for
our best T 3N method (minutes).

4.4 Early Detection Results

Further, we wanted to check how early can we predict rumorous tweets. Fig. 6 shows
the variation in accuracy wrt. time from original tweets in hours for various methods
for the two datasets. We have ensured that we take the data points only until the time to
detection. Note that our method shows an almost flat curve in Fig. 6 since it reaches a

T 3N : Harnessing Text and Temporal Tree Network for Rumor Detection on Twitter 11

0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 4 8 12 16 20 24

Ac
cu

ra
cy

Detection deadline (hours)
BOW DTR BU_RVNN TD_RVNN
cPTK PPC T^3N

0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 4 8 12 16 20 24

Ac
cu

ra
cy

Detection deadline (hours)
BOW DTR BU_RVNN TD_RVNN
cPTK PPC T^3N

0.4
0.5
0.6
0.7
0.8
0.9

1

10 20 30 40 50

Ac
cu

ra
cy

Number of Tweets

DTR BU_RVNN TD_RVNN
cPTK PPC T^3N

0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

10 20 30 40 50

Ac
cu

ra
cy

Number of Tweets
DTR BU_RVNN TD_RVNN
cPTK PPC T^3N

Fig. 8. Accuracy versus #tweets (Twitter-15).

0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 4 8 12 16 20 24

Ac
cu

ra
cy

Detection deadline (hours)
BOW DTR BU_RVNN TD_RVNN
cPTK PPC T^3N

0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 4 8 12 16 20 24

Ac
cu

ra
cy

Detection deadline (hours)
BOW DTR BU_RVNN TD_RVNN
cPTK PPC T^3N

0.4
0.5
0.6
0.7
0.8
0.9

1

10 20 30 40 50
Ac

cu
ra

cy
Number of Tweets

DTR BU_RVNN TD_RVNN
cPTK PPC T^3N

0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

10 20 30 40 50

Ac
cu

ra
cy

Number of Tweets
DTR BU_RVNN TD_RVNN
cPTK PPC T^3N

Fig. 9. Accuracy versus #tweets (Twitter-16).

high accuracy within the first 5 minutes of the original tweet itself (as shown in Fig. 7).
We believe this is because of the best use of text, network and user profile data in
our method. Although the accuracy using just the text encoder (at time=0) is relatively
lower, the tree generated within 1–2 minutes is good enough for accuracy to be high.
The best baseline is PPC. We also plot the variation in accuracy wrt. #tweets after the
original tweet in Figs. 8 and 9 for the two datasets respectively. Again, we observe that
our proposed method reaches high accuracy within a very few number of tweets.

Dataset Tweet Text Tree only
classifier
prediction

Text only
classifier
prediction

Actual
Label

Text con-
tribution in
Best Model

Tree con-
tribution in
Best Model

Twitter-15 ca kkk grand wizard endorses
@hillaryclinton #neverhillary
#trump2016 URL

Unverified Rumor Unverified 0.820 0.180

Twitter-15 florida woman pays $20,000 for third
breast — URL URL

Debunk Rumor Rumor 0.934 0.066

Twitter-15 one person dead, many taken to hospi-
tal after shootings, stabbing at denver
coliseum, police say. URL

Rumor Debunk Debunk 0.922 0.078

Twitter-15 reporter charlo green quit on air to start
a marijuana business URL will quitting
on tv pay off? URL

Debunk True True 0.925 0.075

Twitter-16 chick-fil-a to open on sundays URL Rumor Unverified Rumor 0.844 0.156
Twitter-16 dna confirms hakeem from ‘empire’

is jay-z’s biological son [read details
URL URL]

Rumor Debunk Rumor 0.633 0.367

Twitter-16 72 dhs employees on terrorist watch
list URL

Unverified Rumor Rumor 0.907 0.093

Twitter-16 #backtothefuture fans, it’s october 21,
2015 – the future is finally here! URL
URL

Debunk Rumor Rumor 0.901 0.099

Twitter-16 #ripnathancirillo rt @ABC: soldier
killed at war memorial identified as
cpl. nathan cirillo #ottawashooting
URL

Rumor True True 0.968 0.032

Table 6. Examples where the joint text+tree model provided correct prediction, and one of text-
only or tree-only encoders provided correct prediction.

5 Conclusion

In this paper, we discussed the critical problem of rumor detection on Twitter. To the
best of our knowledge this is the first work to explore the application of Transformer
based models for this task. Besides using a BERT based text encoder, our system T 3N
couples it with a temporal tree based encoder. Using two datasets and extensive compar-
isons with numerous previously proposed methods, we show the efficacy of our method.

12 Pinnaparaju et al.

References
1. Cai, C., Li, L., Zeng, D.: Detecting social bots by jointly modeling deep behavior and content information. In: CIKM.

pp. 1995–1998 (2017)
2. Castillo, C., Mendoza, M., Poblete, B.: Information credibility on twitter. In: WWW. pp. 675–684 (2011)
3. Chen, T., Li, X., Yin, H., Zhang, J.: Call attention to rumors: Deep attention based recurrent neural networks for early

rumor detection. In: PAKDD. pp. 40–52. Springer (2018)
4. Cheng, J., Bernstein, M., Danescu-Niculescu-Mizil, C., Leskovec, J.: Anyone can become a troll: Causes of trolling

behavior in online discussions. In: CSCW. pp. 1217–1230 (2017)
5. Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase

representations using rnn encoder-decoder for statistical machine translation. arXiv:1406.1078 (2014)
6. Chu, Z., Gianvecchio, S., Wang, H., Jajodia, S.: Detecting automation of twitter accounts: Are you a human, bot, or

cyborg? T. on Dependable and Secure Computing 9(6), 811–824 (2012)
7. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional transformers for language

understanding. arXiv:1810.04805 (2018)
8. Graves, A., Jaitly, N., Mohamed, A.r.: Hybrid speech recognition with deep bidirectional lstm. In: Workshop on auto-

matic speech recognition and understanding. pp. 273–278 (2013)
9. Gupta, M., Zhao, P., Han, J.: Evaluating event credibility on twitter. In: ICDM. pp. 153–164 (2012)

10. Hassan, N., Arslan, F., Li, C., Tremayne, M.: Toward automated fact-checking: Detecting check-worthy factual claims
by claimbuster. In: KDD. pp. 1803–1812 (2017)

11. Hochreiter, S., Schmidhuber, J.: Long Short-Term Memory. Neural Computation 9(8), 1735–1780 (1997)
12. Jin, Z., Cao, J., Zhang, Y., Luo, J.: News verification by exploiting conflicting social viewpoints in microblogs. In:

AAAI (2016)
13. Khattar, D., Goud, J.S., Gupta, M., Varma, V.: Mvae: Multimodal variational autoencoder for fake news detection. In:

WWW. pp. 2915–2921 (2019)
14. Krazit, T.: Engadget sends apple stock plunging on iphone rumor. CNET. com, May 16 (2007)
15. Kwon, S., Cha, M., Jung, K.: Rumor detection over varying time windows. PloS one 12(1) (2017)
16. Liu, X., Nourbakhsh, A., Li, Q., Fang, R., Shah, S.: Real-time rumor debunking on twitter. In: CIKM. pp. 1867–1870

(2015)
17. Liu, Y., Wu, Y.F.B.: Early detection of fake news on social media through propagation path classification with recurrent

and convolutional networks. In: AAAI. pp. 354–361 (2018)
18. Ma, J., Gao, W., Mitra, P., Kwon, S., Jansen, B.J., Wong, K.F., Meeyoung, C.: Detecting rumors from microblogs with

recurrent neural networks. In: AAAI (2016)
19. Ma, J., Gao, W., Wei, Z., Lu, Y., Wong, K.F.: Detect rumors using time series of social context information on mi-

croblogging websites. In: CIKM. pp. 1751–1754 (2015)
20. Ma, J., Gao, W., Wong, K.F.: Detect rumors in microblog posts using propagation structure via kernel learning. In:

ACL. pp. 708–717 (2017)
21. Ma, J., Gao, W., Wong, K.F.: Rumor detection on twitter with tree-structured recursive neural networks. In: ACL. pp.

1980–1989 (2018)
22. Ma, J., Gao, W., Wong, K.F.: Detect rumors on twitter by promoting information campaigns with generative adversarial

learning. In: WWW. pp. 3049–3055. ACM (2019)
23. Popat, K., Mukherjee, S., Strötgen, J., Weikum, G.: Credibility assessment of textual claims on the web. In: CIKM. pp.

2173–2178 (2016)
24. Rapoza, K.: Can ‘fake news’ impact the stock market? by Forbes (2017)
25. Rath, B., Gao, W., Ma, J., Srivastava, J.: From retweet to believability: Utilizing trust to identify rumor spreaders on

twitter. In: ASONAM. pp. 179–186. ACM (2017)
26. Shi, B., Weninger, T.: Discriminative predicate path mining for fact checking in knowledge graphs. Knowledge-based

systems 104, 123–133 (2016)
27. Shu, K., Wang, S., Liu, H.: Exploiting tri-relationship for fake news detection. arXiv:1712.07709 (2017)
28. Steel, E., Somaiya, R.: Brian williams suspended from nbc for 6 months without pay. The New York Times (2015)
29. Tai, K.S., Socher, R., Manning, C.D.: Improved semantic representations from tree-structured long short-term memory

networks. In: ACL. pp. 1556–1566 (2015)
30. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all

you need. In: NIPS. pp. 5998–6008 (2017)
31. Volkova, S., Shaffer, K., Jang, J.Y., Hodas, N.: Separating facts from fiction: Linguistic models to classify suspicious

and trusted news posts on twitter. In: ACL. pp. 647–653 (2017)
32. Vosoughi, S., Roy, D., Aral, S.: The spread of true and false news online. Science 359(6380), 1146–1151 (2018)
33. Wu, K., Yang, S., Zhu, K.Q.: False rumors detection on sina weibo by propagation structures. In: ICDE. pp. 651–662

(2015)
34. Wu, L., Liu, H.: Tracing fake-news footprints: Characterizing social media messages by how they propagate. In:

WSDM. pp. 637–645 (2018)
35. Yang, F., Liu, Y., Yu, X., Yang, M.: Automatic detection of rumor on sina weibo. In: KDD Workshop on Mining Data

Semantics. pp. 1–7 (2012)
36. Zhang, J., Cui, L., Fu, Y., Gouza, F.B.: Fake news detection with deep diffusive network model. arXiv:1805.08751

(2018)
37. Zhao, Z., Resnick, P., Mei, Q.: Enquiring minds: Early detection of rumors in social media from enquiry posts. In:

WWW. pp. 1395–1405 (2015)
38. Zhou, X., Zafarani, R.: Fake news: A survey of research, detection methods, and opportunities. arXiv:1812.00315

(2018)

