
Adapting OCR with limited supervision

by

Deepayan Das, C V Jawahar

in

Document Analysis Systems: 14th IAPR International Workshop 2020
: 1
-15

Report No: IIIT/TR/2020/-1

Centre for Visual Information Technology
International Institute of Information Technology

Hyderabad - 500 032, INDIA
August 2020

Adapting OCR with Limited Supervision

Deepayan Das and C V Jawahar

Centre for Visual Information Technology,
International Institute of Information Technology, Hyderabad, India

deepayan.das@research.iiit.ac.in, jawahar@iiit.ac.in

Abstract. Text recognition systems of today (aka OCRs) are mostly
based on supervised learning of deep neural networks. Performance of
these is limited by the type of data that is used for training. In the
presence of diverse style in the document images (eg. fonts, print, writer,
imaging process), creating a large amount of training data is impossible.
In this paper, we explore the problem of adapting an existing OCR,
already trained for a specific collection to a new collection, with minimal
supervision or human effort. We explore three popular strategies for this:
(i) Fine Tuning (ii) Self Training (ii) Fine Tuning + Self Training. We
discuss details on how these popular approaches in Machine Learning
can be adapted to the text recognition problem of our interest. We hope,
our empirical observations on two different languages will be of relevance
to wider use cases in text recognition.

Keywords: Finetuning · Semi-supervised Learning · Self Training.

1 Introduction and Related Works

At the beginning of the last decade, Deep Learning ushered us into a new era of
artificial intelligence. Deep Neural Networks (dnns) like cnns [14] and rnns [10]
have shown to learn higher-order abstractions directly from raw data for various
machine learning tasks. The need to hand-craft the features for tasks which
earlier required domain experts has drastically declined. dnns have established
state-of-the-art results in almost all the computer vision (cv) tasks like image
segmentation, object detection, pose estimation etc. Thus, with so much success,
it was only natural that dnns also forayed into one of the oldest computer vision
problem of text recognition/ocr.

Motivation One of the crucial steps towards digitizing books is the recognition of
the document images using an ocr. More often than not there exists a domain
gap between the data on which the ocr was trained and the books on which
we want to perform recognition. In the case of digital library creation [1, 2]
books that come for digitization will invariably contain variations in their font-
style, font-size as well as in their print quality (in case of historical books and
manuscripts). Thus an ocr trained on a single source data will invariably fail
across such variations. This leads to the inferior performance of the ocr module

2 Deepayan Das and C V Jawahar

(a)

(b)

Fig. 2: (a) Word Images from the collection 1 containing clean-
annotated images (b) Word Images from the collection 2 containing
partially annotated noisy-degraded images.

resulting in many wrong words. Thus it becomes essential to fine-tune the ocr
model on portions of books that we want to digitize. However, fine-tuning suffers
from its inability to learn from unlabelled data as well as an added cost of
annotation. Thus, in this paper in addition to fine-tuning, we also explore a
branch of the semi-supervised approach called self-training where the ocr can
learn from its own predictions, therefore bypassing the need for the creation of
annotated data.

Deep learning in text recognition Traditionally, to recognize text from printed
documents, sequential classifiers like Hidden Markov Models (hmms) and graph-
ical models like Conditional Random Fields (crfs) have been used. These algo-
rithms were popular since they did not require the line images to be explicitly
segmented into words and characters, thus reducing the chances of error. How-
ever, due to the inability of such algorithms to retain long-term dependencies,
Long Short Term Memory networks (lstms) emerged as the de facto choice for
such sequential tasks. For recognition of handwritten text [9] was one of the ear-
lier works to make use of lstms. Later it was adopted by [5, 23, 24] for recognition
of printed text for Latin and Indic languages. More recently in [25] cnn was used
as a feature extractor in the text recognition pipeline, which helped them achieve
the state of the art results on various scene text datasets. Taking the same ar-
chitecture forward, [12, 6] showed that (crnn) outperformed Bi-lstm networks
on printed documents. In the last few years attention-based encoder-decoder
architecture [17, 15] have also been proposed for character sequence prediction.

Learning with limited supervision Although deep learning algorithms have be-
come very popular, much of its success can be attributed to the availability of
large quantities of clean annotated data. Collection of such datasets are both
laborious and costly and it proves to be the bottleneck in applying such algo-
rithms. A common approach to mitigate the effects of unavailability of clean and
annotated data is to leverage the knowledge gained by dnns on source tasks for

Adapting OCR with Limited Supervision 3

whom labeled examples exist and generalize it to target task which suffers from
the unavailability of labeled data. Such approaches fall under the purview of
transfer learning which has been widely used in the past especially in Computer
Vision (CV) tasks (object detection, classification and segmentation) under a
data-constrained setting. Training models from scratch is both resource and time
exhaustive. Adapting ocr models by pre-training on ImageNet data and later
fine-tuning on Historical documents has been attempted in the past [27]. How-
ever, the improvement in the character recognition rate was not very significant.
This may be attributed to the difference in image properties between document
images and the natural images found in the ImageNet dataset.

Although, fine-tuning improves the performance of dnns reasonably, yet it
suffers from the in consequence of having to annotate a sizeable portion of the
data which leads to an added cost. Additionally, fine-tuning also fails to take
advantage of the vast amounts of unlabelled data that can be used to enhance
the performance of machine learning models. In order to make use of the unan-
notated data, semi-supervised approaches like pseudo-labeling have become re-
cently popular, where proxy labels are generated for the unannotated images.
In [28, 8] the authors showed that by utilizing the unlabeled data in addition
to a fraction of the labeled data, they were able to boost the performance of
an existing handwriting recognition system (hwr) on a new target dataset. The
authors used self-training (discussed in detail in the later sections of this paper)
and were able to achieve a performance gain equivalent to a model which was
finetuned on the same dataset but with full annotations.
The key contributions of this paper are as follows:

– We study the effect of fine-tuning a pre-trained ocr model on target dataset
using a variety of fine-tuning approaches.

– We also, present a self-training approach for adapting ocr to the target
data. We show that by combining simple regularization measures like data
augmentation and dropout, we can attain improvement in accuracies close
to 11% in the case of English and close to 4% in the case of Hindi dataset
with no additional manual annotations.

– We also show that by combining the self-training and fine-tuning strategy
we can outperform models that have been trained exclusively using the fine-
tuning method.

– We empirically support our claims on the dataset for both English and Hindi
and show that our proposed approach is language independent.

2 Empirical Verification Framework

Dataset Our dataset is divided into two collections 1) Collection 1: which consists
of reasonably clean-annotated images on which our ocr is trained. 2) Collection
2: which consists of partially annotated data containing noisy-degraded images.
The images in the collection 1 are significantly different in terms of font style and

4 Deepayan Das and C V Jawahar

Collection Language Annotation Purpose #Pages #Lines

Collection 1
English Yes Training OCR 1000 14K
Hindi Yes Training OCR 4287 92K

Collection 2

English
Yes Fine-tuning 50 7K
Yes Evaluation 200 9K
No Self-training 1100 18K

Hindi
Yes Fine-tuning 250 8K
Yes Evaluation 1K 20K
No Self-training 5K 100K

Table 1: Details of the data used in our work. The table describes the language of the

type of collection from which the line images are used. Annotation refers to whether

the data split is annotated or not. Also, the column purpose defines the role of each

data split.

print quality from the document images in collection 2. This can be observed
from Fig 2. The various splits for each collection as well as the purpose of each
split is described in Table 1. We annotate a part of collection 2 and split it
into two parts (1) fine-tuning (2) evaluation. Our main objective is to transfer
knowledge from collection 1 to collection 2 with limited supervision.

Evaluation We use the character recognition rate (CRR) and word recognition
rate (WRR) metrics to compare the performance of various models. CRR is the
ratio of the sum of edit distance between the predicted text (pt) and ground truth
(gt) to the sum of total number characters in pt and gt while WRR is defined
as the number of words correctly identified, averaged over the total number of
words present in the ground truth.

Implementation Details We use a learning rate of 10−5 with a step scheduler.
Initially we keep the batch size as 32 and the number of epochs as 100. We use
early stopping criterion to avoid overfitting and the optimizer used is Adam.

3 Fine-tuning for text recognition

Image representations learned with cnn on a large scale annotated data can be
transferred to other visual tasks that have limited annotated training data [4].
Convolution layers pre-trained on a source task adapt better to the target task as
compared to a model trained from scratch. There exist several ways to fine-tune
a pre-trained model. The most common approach involves training only the last
layer while keeping all the layers frozen. Alternatively, another common approach
is to use pre-trained weights of a cnn as initialization, thus fine-tuning all the
layers. However, such techniques have gained minimal exposure in the domain of
text recognition. In one of the first attempts, [22] reported improvement in model

Adapting OCR with Limited Supervision 5

performance when an existing model is fine-tuned on target data as opposed to
training from scratch. We study the following fine-tuning approaches.

– Full: Using a pre-trained model as a mode of initialization and fine-tune
all the layers on the target dataset. We train the model on the annotated
portion of collection 2 until the loss on validation data stops decreasing.

– Last: Fine-tuning only the recurrent layers while keeping the convolution
layers frozen.

– Chain-thaw: Fine-tuning one layer at a time while keeping the other layers
frozen [7].

– Unfreeze: Another variation of chain thaw where we sequentially unfreeze
the layers and fine-tune each such instance and finally fine-tune the whole
network until convergence [11].

We further assess the effect of learning rate schedulers like slanted triangular
learning rate (‘Stlr’) [11] and cosine annealing scheduler (‘Cos’) [18] on fine-
tuning.

English Hindi
Method CRR WRR CRR WRR

Base Model 93.65 83.40 91.63 83.95

Full 97.46 95.88 92.90 86.52
Full + Stlr 98.75 98.22 92.99 86.85
Last 96.16 90.88 92.42 85.27
Chain Thaw 97.96 97.53 93.01 86.75
Unfreeze 98.02 97.75 93.03 86.96
Unfreeze + Cos 98.23 98.01 93.11 87.09
Unfreeze + Stlr 98.79 98.46 93.20 87.40

Table 2: Character and Word Recognition results for various finetuning methods.
The first row shows the CRR and WRR for the pre-trained model. Subsequent
rows contain values for models obtained after finetuning the base model.

3.1 Results and Discussions

Table 2 shows the result of various fine-tuning approaches on our English and
Hindi datasets. The base model refers to the pre-trained ocr models trained
on the clean-annotated source data, which acts as our baseline. Due to the sig-
nificant difference in the font-style and page image quality between the source
and target data, the base model performs poorly as is evident from the results
shown. From the experiments, we observe that (1) Fine-tuning the network con-
sistently results in better recognition rates as opposed to training from scratch
for both the datasets. (2) Fine-tuning only the recurrent layers (‘Last’) results in
under-fitting, particularly on the English dataset. (3) We observe that fine-tuning

6 Deepayan Das and C V Jawahar

the entire network (‘Full’) seems to give us more favorable results on both the
datasets. We believe that this is because the target data contains minute nuances
in the font style, which the pre-trained feature extractors are not able to capture
well. (4) We also observe that Gradual unfreezing (‘Unfreeze’) approach to fine-
tuning performs the best and is closely followed by ‘Chain-Thaw’. ‘Chain-thaw’
and ‘Unfreeze’ methods work better than the traditional fine-tuning method
since training one layer at a time helps the network to adapt better to the new
domain and avoid forgetting. Also, from Figure 4a we observe that validation
loss quickly converges for ‘Unfreeze’ and ’Chain-thaw’ techniques with ‘Unfreeze’
attaining the lowest validation error rate. This confirms the effectiveness of the
above two approaches. (5) Additionally, learning rate schedulers consistently
boost the performance for ‘Full’ and ‘Unfreeze’ methods with ‘Unfreeze + Stlr’
attaining the best overall accuracies. This is in support of our hypothesis that
the network learns better, one layer at a time.

4 Self-training for text recognition

Self-training is one of the widely used approaches in semi-supervised learning.
In this method, we generate the prediction for the unannotated data using a
pre-trained model and then use them as pseudo-labels to train a new model
[19, 21]. Formally, suppose we have m labeled data (L) and n unlabelled data
(U) such that n >> m. Additionally, L and U do not come from the same
source which introduces a domain shift. M0 is a pre-trained model trained on L.
M0 is used to generate predictions for U such that we now have images along
with their predictions [(I0, y

∗
0), (I1, y

∗
2)....(In, y

∗
n)]. The most confident samples

are taken and added to the labelled data L. The model M0 is then trained on
the n + p samples and at the end of the training, we obtain model M1. This
process is repeated for a fixed number of cycles such that at the end of each
cycle, model Mi+1 is obtained, which is then used to generate pseudo labels on
the remaining n−p unlabelled data samples. The process is continued until there
are no more unlabelled samples or when there is no improvement in accuracy on
the evaluation dataset. Figure 3 illustrates the self-training approach. We follow
the same procedure for training the model using the self-training strategy on our
unlabeled dataset.

Although self-training has shown success in a variety of tasks it has the
downside of suffering from confirmation bias [16], where the model becomes over-
confident on incorrect pseudo labels thus hindering the model’s ability to learn
and rectify its errors. In [28] the authors proposed to use a lexicon to verify the
correctness of the pseudo-labels thereby avoiding the inclusion of any incorrect
labels in the training data. However in the absence of a pre-defined vocabulary
(in case of highly inflectional languages like Hindi/Tamil) it becomes essential
to carefully regularize the network to alleviate the effects of confirmation bias.
We use the recently proposed mixup strategy [32] to augment data which is
an effective method for network regularization. Additionally, we also provide
perturbations to the network using dropout regularization [26], which further

Adapting OCR with Limited Supervision 7

Fig. 3: A pipeline of our proposed iterative self-training approach. At each itera-
tion model, Mi performs inference and confidence estimation on the unannotated
dataset. Top k confident samples is mixed with the labelled data L and the com-
bined samples are noised. The network (Mi) is trained on the combined samples
at the end of which we obtain model Mi+1. The above procedure is repeated
until there is no more improvement in word accuracy on test data.

mitigates the confirmation bias and enhances the model’s performance. We show
that by applying careful regularization measures to our self-training framework,
we can achieve comparable accuracies to the fine-tuning approach on the Hindi
dataset even though no actual labels were used. We also show that by initially
training the network on pseudo-labels followed by fine-tuning on actual labels
helped us achieve the best accuracies on both English and Hindi datasets.

4.1 Details

Confidence estimation To estimate the network confidence for each unlabelled
sample in U , we take the log probability distribution given by the model Mi over
the C classes where each class represents a character present in our vocabulary
as shown in equation 1, where pi is the probability outputted by the rnn at
each time step t. We sort the predictions in decreasing order of their confidence
scores and take the top 20% at the beginning of each cycle. However, due to the
presence of a domain gap between the source and target data, the network tends
to confuse between similar-looking characters resulting in a high probability of
being assigned to the wrong character. This leads to predictions containing a
considerable number of error words. When the network is trained over such con-
fident but wrong predictions, the errors get reinforced in the subsequent trained
models. This further amplifies the errors, which shows that the probability dis-
tribution can be a poor estimator for selecting the pseudo labels. To neutralize
our dependence on the model’s probability distribution as confidence estimator,
we also take into consideration, the perplexity score of each prediction obtained
by a pre-trained language model and finally take a weighted sum over both as
shown by equation 2.

score = −
t∑

i=1

log(pi) (1)

8 Deepayan Das and C V Jawahar

score = −α
t∑

i=1

log(pi) + (1− α)
1

m
logP (w1, . . . , wm) (2)

where, logP (wi, . . . , wt) is the joint probability of a sentence and α is the weight
parameter that we determine empirically. The language model tends to assign a
low score to predicted sentences that have error words, which lead to the overall
score being low. This leads to sentences with error words to get weeded out from
the confident pseudo labels, which in turn helps the model to avoid confirmation
bias while training.

Prediction Ensemble Additionally, while computing the maximum likelihood
given by model Mi for each sample, we also take into consideration the proba-
bility values outputted by the earlier models i.e. M0, . . . ,Mi−1 which is given by
equation 3 where Zi is the model prediction at iteration i and zj−1 is the average
of predictions for models at iteration 0 to i − 1. Thus, Z contains a weighted
average of outputs of an ensemble of models, with recent models having greater
weight than the distant models. In the first cycle of our iterative self-training
method, both Z and z are zero since no previous models are available. For this
reason, we specify λ to be a ramp-up function to be zero on the first iteration.
The idea has been borrowed from [13] where it is used to enforce consistency
regularization for semi-supervised learning.

Zi = λZi + (1− λ)zi−1 (3)

4.2 Regularization

Regularization plays an essential role in our design of the self-training frame-
work. We regularize our network mainly by two ways 1) perturbing the input
data and 2) perturbing network. Perturbations to the input data are done by
adding Gaussian noise to the input image. In contrast, perturbations to the net-
work are provided by adding a dropout layer, the details of which we discuss
in the following sections. Earlier works [30, 3] noted that providing perturba-
tions enforced local smoothness in the decision functions of both labelled and
unlabelled data. It has also the added advantage of preventing the model from
getting stuck at local minima and avoid overfitting.

Gaussian Noise We multiply the input image with a mask sampled from a
binomial distribution. The mask zeros the pixel values at multiple locations,
resulting in loss of information. This forces the model to become more robust
while making predictions.

Mixup In addition to Gaussian Noise, we also experiment with another type
of data augmentation known as mixup [32]. Mixup creates new training sam-
ples using a weighted interpolation between two randomly sampled data points
(x1, y1), (x2, y2). where λ ∈ [0, 1] is a random number drawn from a β(α, α)

Adapting OCR with Limited Supervision 9

Proposed Baseline
Model English Hindi English Hindi

CRR WRR CRR WRR CRR WRR CRR WRR

VGG + BiLSTMs 96.53 94.01 93.04 87.23 93.65 83.40 91.63 83.95
ResNet18 + BiLSTMs 96.76 94.64 93.22 87.90 95.23 89.71 92.30 85.97

Table 3: Comparison of word and character recognition rates of CRNN models
between baseline and our self training framework.

distribution. Mixup encourages the model towards linear behavior in between
training samples. Additionally, mixup has the property of curbing confirmation
bias by enforcing label smoothness by combining yi and yj as noted by [29]. This
is especially important from the perspective of self-training strategy since we are
using predictions of unlabelled images as targets. In such cases, the networks,
while training, tend to overfit to its predictions.

x̂ = λxi + (1− λ)xj (4)

ŷ = λyi + (1− λ)yj (5)

Weight Dropped LSTM In addition to the above data augmentation techniques,
we also apply dropout to the recurrent and fully connected network (fcn). The
recurrent layers (Bi-lstms) is the most fundamental block in any modern ocr
models. Therefore, it only makes sense to regularize them for optimal perfor-
mance. Dropout is one of the most widely used approaches towards regularizing
a neural network. However, naively applying dropout to the hidden state affects
the rnn’s ability to retain long-term dependency [31]. We use Weight Dropped
LSTMs proposed in [20] which uses DropConnect on the recurrent hidden to
hidden weight matrices. We also introduce dropout on the two fully connected
layers after each Bi-lstm layer with dropout probability set to 0.5. The above
data augmentation and model perturbation techniques force the model to act as
an ensemble which is known to yield better results than a single network in the
ensemble.

We also use slanted triangular learning rates (STLR) proposed in [11] for
scheduling our learning rates (lr). The authors argue that stlr enables the
network to quickly converge to a suitable region in the parametric space at the
start and then gradually refine its parameters.

4.3 Results and Discussions

Table 3 presents the results of our self-training strategy on two kinds of crnn
architectures where the cnn part comes from 1) vgg 2) resnet18. We observe
a significant improvement in word and character accuracies from the baselines
for both the models which shows that the refinements that we suggest are model
agnostic and can work under any setting. It is interesting to note that our self-
training method on the Hindi base model improves the word recognition rate

10 Deepayan Das and C V Jawahar

Heuristics English Hindi
CRR WRR CRR WRR

ST 94.22 85.12 92.13 85.41
+ STLR 94.72 86.88 92.17 85.45
+ noise 95.61 91.87 92.26 85.57
+ dropout 95.99 92.57 92.26 85.54
+ mixup 96.48 93.57 92.57 86.23

Table 4: The breakdown effect of
each regularization heuristic on VGG
CRNN model

English Hindi
CRR WRR CRR WRR

ST base 94.22 85.12 92.13 85.41

ST noise 95.61 91.87 92.17 85.47
ST dropout 95.22 89.28 91.91 85.27
ST mixup 96.09 91.73 92.57 86.46

Table 5: Ablation study of various re-
finements

quite significantly and brings it at par with the ‘Unfreeze + Stlr’ which is the best
performing finetuning approach (shown in Table 2), even though no actual labels
were used to train the network. In the case of English, our proposed approach
also performs comparatively well with an improvement of 10% in the wrr and
3% in crr but lags behind the ‘Unfreeze’ methods. This can be attributed to
the difference in the number of training examples between the two datasets with
Hindi being far superior in numbers. Thus, we can conclude that the self-training
framework benefits from the amount of training data. Additionally, the testing
accuracies for each refinement are shown in Table 4. By perturbing input images
followed by data augmentation using mixup and adding weighted dropout, we
systematically improve the recognition rates at both character and word level.
Also, it is essential to note that the values are shown in table 4 are for models
that have been trained for only one cycle of our self-training framework and top
samples were generated using sum over log probabilities.

Cycles English Hindi
CRR WRR CRR WRR

Cycle 1 96.49 93.88 92.57 86.23
Cycle 2 96.52 93.92 92.95 87.07
Cycle 3 95.52 93.97 93.04 87.23
Cycle 4 95.53 94.01 93.04 87.22

Table 6: Character and word recog-
nition rates at the end of each it-
erative cycle for both English and
Hindi datasets.

scoring CRR WRR

prob-dist 96.48 93.45
lang-model 96.01 91.56

weighted score 96.52 93.88

Table 7: Character and word
recognition rates for different
scoring mechanisms on En-
glish dataset

4.4 Observations

To study the impact of individual regularization measures on the performance
of our self-trained models we add each regularization one at a time. We then

Adapting OCR with Limited Supervision 11

(a) (b)

Fig. 5: (a) shows the Validation curves for different fine-tuning methods (b) Val-
idation vs. Epochs plots for the self-training method with various regularizers
on English dataset.

train the model with our self-training framework and check the performance for
each model on the evaluation dataset. We report the accuracies in Table 5. For
the above experiments we use vgg16 architecture and we run on only one cy-
cle of our iterative self-training framework. From our experiments, we observe
that (1) only by corrupting the images with Gaussian noise the self-trained at-
tains better recognition rates compared to the base model. The improvement is
rather significant especially in the case of English. (2) Similarly, in the case of
dropout, wrr and crr show an improvement of 4% and 2% respectively. How-
ever, we observe that in the case of Hindi, the performance drops. We believe
that this happened due to the dropout model under-fitting on the Hindi data
and believe that a lower dropout probability will easily fix the issue. We also
compare the performance self-trained model with and without the mixup data
augmentation technique. In this study, no other perturbations were provided.
We observe that (4) mixup improves the character and word recognition rate on
both the datasets, Also, from Figure 4b we observe that the validation loss for
self-training with mixup strategy converges more quickly than other regulariza-
tion techniques which demonstrates the effectiveness of the mixup strategy in
dealing with the confirmation bias. Additionally, we also study the effect of our
iterative self-training strategy and (5) report the gradual increase in accuracy
at the end of each self-training cycle in table 6. To show the effectiveness of our
proposed weighted sum approach for confidence estimation against log proba-
bility distribution and sentence probability score. From Table 7 we observe that
the proposed weighted scoring achieves the best accuracies. Since no pre-trained
language model was available for the Hindi language, this set of experiments
were performed only on the English data. Using only the probability scores from
the language model results in an inferior performance. This happens because ev-
ery language models suffer from an inherent bias towards the dataset on which
it was trained. Also, sentences containing proper nouns and abbreviations were
given a low score in spite of being correct.

12 Deepayan Das and C V Jawahar

5 Hybrid Approach: Self-training + Fine-tuning

Now, we combine both finetuning and the proposed self-training framework to
further improve the performance of our ocr. The success of a finetuning depends
on how well weights of the pre-trained models are initialized. In case the source
and target tasks are very different or else if the source and target data come from
very different distributions, then training the model from scratch seems to be a
more viable option as compared to finetuning. In order to acclimatize the weights
to the source data, we take advantage of the huge quantities of unlabelled data
by employing our self-training strategy. We then follow it by finetuning the self-
trained models on the limited annotated data. We show by a series of ablations
that this approach outperforms the finetuning approach on both the datasets.

5.1 Results and Discussions

(a) (b)

Fig. 7: (a)Validation losses vs Epochs for self-train, fine-tune and hybrid ap-
proaches on English dataset. (b)Comparison of word recognition rates between
finetuning and hybrid approach when different percentages of labelled data is
used

From Table 8 we observe that (1) in the case of Hindi, the improvement in
word and character recognition rates are quite significant for our hybrid models
with 2% and 1.5% improvement in word accuracy over fine-tuning and self-
training methods respectively. (2) In the case of English, the improvement is
significant from self-training. However, the increase in accuracies are not notice-
able when compared to the fine-tuning approach. We attribute it to the fact that
the character and word recognition rates had already maxed out using only fine-
tuning, leaving little scope for improvement by the hybrid approach. Fine-tuning
on top of self-training has the effect of canceling out any wrong prediction that
the model learned during the self-training phase. It also boosts the model’s con-
fidence over uncertain predictions. Hence, we always see a spike in character and
word accuracy for the hybrid approach. Figure 6a shows the validation curves

Adapting OCR with Limited Supervision 13

English Hindi
Method CRR WRR CRR WRR

Fine-tuning 98.76 98.54 92.87 86.41
Self-train 96.53 94.01 93.04 87.23
Hybrid 98.80 98.64 93.65 88.68

Table 8: Character and word recognition rates for fine-tuning, self-training and
hybrid approach on English and Hindi datasets.

for the above three approaches. We observe that the validation error rate for the
hybrid approach reaches minimum within the stipulated number of epochs and
it is closely followed by fine-tuning. This is in agreement with the results shown
in Table 8 where the hybrid method outperforms the rest of the two methods.
Additionally, we also investigate the effect of the amount of data on fine-tuning.
For this, we systematically increase the amount of labelled data by a factor of
20% to observe the character and word recognition rates for fine-tuning and
hybrid approaches. Figure 6b presents the comparison between the hybrid and
the fine-tuning approach for different percentages of labelled data. We observe
that by (3) fine-tuning the self-trained model on only a fraction of the labelled
data helps us achieve better word recognition rate when compared to the models
which were trained using the fine-tuning approach alone.

Fig. 8: Qualitative Result of our Base, self-trained and hybrid model for English
(left) and Hindi (right) datasets. Here ST+FT refers to the model trained using
the proposed hybrid approach. We observe that there is a systematic decrease in
the character errors from the base model to the hybrid model. This shows that
the hybrid model is the best performing model as it has the ability to correct
the character errors incurred by the self-trained model due to the confirmation
bias. Here crosses show the incorrect words while the correct words are denoted
by tick marks.

14 Deepayan Das and C V Jawahar

6 Conclusion

In this paper, we present three different approaches for knowledge transfer be-
tween source and target data and compare the performance of each in terms of
character and word recognition rates on two different datasets. We also show
that simple regularization measure on self-training enables the models to learn
more efficiently without getting biased towards the faulty network predictions.
Additionally, we also show that combining self-training and fine-tuning can sig-
nificantly boost the performance of the ocr across datasets of different languages
even when the amount of labelled samples is considerably less.

References

1. Google Books. https://books.google.co.in/
2. Project Gutenberg. www.gutenberg.org
3. Arazo, E., Ortego, D., Albert, P., O’Connor, N.E., McGuinness, K.: Pseudo-

labeling and confirmation bias in deep semi-supervised learning. ICLR (2019)
4. Bengio, Y.: Deep learning of representations for unsupervised and transfer learning.

In: ICMLW. pp. 17–36 (2012)
5. Breuel, T.M., Ul-Hasan, A., Al-Azawi, M.A., Shafait, F.: High-performance ocr for

printed english and fraktur using lstm networks (2013)
6. Dutta, K., Krishnan, P., Mathew, M., Jawahar, C.: Offline handwriting recognition

on devanagari using a new benchmark dataset. In: DAS (2018)
7. Felbo, B., Mislove, A., Søgaard, A., Rahwan, I., Lehmann, S.: Using millions of

emoji occurrences to learn any-domain representations for detecting sentiment,
emotion and sarcasm. ACL (2017)

8. Frinken, V., Fischer, A., Bunke, H., Foornes, A.: Co-training for handwritten word
recognition. In: ICDAR (2011)

9. Graves, A., Schmidhuber, J.: Offline handwriting recognition with multidimen-
sional recurrent neural networks. In: NIPS (2009)

10. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. (1997)
11. Howard, J., Ruder, S.: Universal language model fine-tuning for text classification

(2018)
12. Jain, M., Mathew, M., Jawahar, C.: Unconstrained scene text and video text recog-

nition for arabic script. In: ASAR (2017)
13. Laine, S., Aila, T.: Temporal ensembling for semi-supervised learning. ICLR (2017)
14. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.: Gradient-based learning

applied to document recognition. Proceedings of the IEEE (1998)
15. Lee, C.Y., Osindero, S.: Recursive recurrent nets with attention modeling for ocr

in the wild. In: CVPR (2016)
16. Li, Y., Liu, L., Tan, R.T.: Certainty-driven consistency loss for semi-supervised

learning. CoRR (2019)
17. Liu, W., Chen, C., Wong, K.Y.K., Su, Z., Han, J.: Star-net: a spatial attention

residue network for scene text recognition. In: BMVC (2016)
18. Loshchilov, I., Hutter, F.: Sgdr: Stochastic gradient descent with warm restarts.

ICLR (2017)
19. McClosky, D., Charniak, E., Johnson, M.: Effective self-training for parsing. In:

ACL (2006)

Adapting OCR with Limited Supervision 15

20. Merity, S., Keskar, N.S., Socher, R.: Regularizing and optimizing lstm language
models. ICLR (2017)

21. Reichart, R., Rappoport, A.: Self-training for enhancement and domain adaptation
of statistical parsers trained on small datasets. In: ACL (2007)

22. Reul, C., Wick, C., Springmann, U., Puppe, F.: Transfer learning for ocropus model
training on early printed books. CoRR (2017)

23. Sankaran, N., Jawahar, C.: Recognition of printed devanagari text using blstm
neural network. In: ICPR (2012)

24. Sankaran, N., Neelappa, A., Jawahar, C.: Devanagari text recognition: A transcrip-
tion based formulation. In: ICDAR (2013)

25. Shi, B., Bai, X., Yao, C.: An end-to-end trainable neural network for image-based
sequence recognition and its application to scene text recognition. PAMI (2016)

26. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. JMLR (2014)

27. Studer, L., Alberti, M., Pondenkandath, V., Goktepe, P., Kolonko, T., Fischer,
A., Liwicki, M., Ingold, R.: A comprehensive study of imagenet pre-training for
historical document image analysis. ICDAR (2019)

28. Stuner, B., Chatelain, C., Paquet, T.: Self-training of blstm with lexicon verifica-
tion for handwriting recognition. In: ICDAR (2017)

29. Thulasidasan, S., Chennupati, G., Bilmes, J., Bhattacharya, T., Michalak, S.: On
mixup training: Improved calibration and predictive uncertainty for deep neural
networks. NIPS (2019)

30. Xie, Q., Hovy, E., Luong, M.T., Le, Q.V.: Self-training with noisy student improves
imagenet classification (2019)

31. Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., Zemel, R.,
Bengio, Y.: Show, attend and tell: Neural image caption generation with visual
attention. In: ICML (2015)

32. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: Beyond empirical risk
minimization. ICLR (2017)

