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Abstract
Demand response is a crucial tool to maintain the stability of
the smart grids. With the upcoming research trends in the area
of electricity markets, it has become a possibility to design a
dynamic pricing system, and consumers are made aware of
what they are going to pay. Though the dynamic pricing sys-
tem (pricing based on the total demand a distributor company
is facing) seems to be one possible solution, the current dy-
namic pricing approaches are either too complex for a con-
sumer to understand or are too naive leading to inefficiencies
in the system (either consumer side or distributor side). Due
to these limitations, the recent literature is focusing on the
approach to provide incentives to the consumers to reduce
the electricity, especially in peak hours. For each round, the
goal is to select a subset of consumers to whom the distribu-
tor should offer incentives so as to minimize the loss which
comprises of cost of buying the electricity from the market,
uncertainties at consumer end, and cost incurred to the con-
sumers to reduce the electricity which is a private informa-
tion to the consumers. Due to the uncertainties in the loss
function (arising from renewable energy resources as well as
consumption needs), traditional auction theory-based incen-
tives face manipulation challenges. Towards this, we propose
a novel combinatorial multi-armed bandit (MAB) algorithm,
which we refer to as GLS-MAB to learn the uncertainties
along with an auction to elicit true costs incurred by the con-
sumers. We prove that our mechanism is regret optimal and is
incentive compatible. We further demonstrate efficacy of our
algorithms via simulations.

Introduction
A Smart Grid is an electricity network that can intelligently
adapt according to the behaviour and actions of all the users
connected to it (def 2010). The connected users can be cat-
egorized into distributors, producers, consumers, and pro-
sumers (that do both, producer as well as consumer). Due
to intelligent communication monitoring, the smart grid en-
ables two-way information and power exchange between
different connected users. The smart grid allows the inte-
gration of new communication (Farhangi 2010) that induces
increased participation of prosumers to make informed deci-
sions on consuming/producing the electricity appropriately.
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This participation will allow consumers to be more respon-
sive to time-varying grid conditions, including peak demand
and renewable excess or shortfall. Typically the consumers
interact with the smart grids through software agents with
capabilities of taking decisions on the behalf of the con-
sumers (or prosumers). Thus, unlike the traditional electric-
ity networks, the smart grid offers a promising future to-
wards providing more reliable service to its users. The pri-
mary question we ask in this paper is, can we manage our
electricity smartly? We answer this through designing a de-
mand response program.

Demand response is a critical part of the smart grids,
which refers to the change in consumers’ energy usage be-
havior with respect to the pricing signals from the distributor
company. An important point to note is that when it comes
to resources like water or electricity, it is the government’s
responsibility to supply the required electricity; thus, the op-
tion left to the government is either to install more expensive
generators to match the demand and supply or to make the
consumers voluntarily optimize their electricity load by pro-
viding some monetary incentives. When taking the second
approach, the major challenge is that different consumers
may behave differently with the given incentives. Thus, in
order to increase participation from the consumers, it be-
comes crucial to learn their reaction towards these incen-
tives. Learning the customers’ behavior is challenging due
to uncertainty and randomness involved with the integrated
renewable energy resources on the smart grid and on pro-
sumer side. We intend to learn these uncertainties over time
using multi-armed bandit approach.

We have the following demand response problem. There
are different consumers integrated into the smart grid net-
work. Henceforth, we call consumers/prosumers as well as
the software agents acting on behalf of them agents. As
each agent derives a certain value from a unit (KWh) of
electricity, it incurs a cost per unit reduction (CPR) when
asked to reduce a unit of electricity. Hence the distribu-
tor company must ensure that when giving an offer to the
agent, it matches its CPR. Since the CPRs are private, a
simple mechanism to ask CPRs from the agents may not
work as the strategic agents may report higher CPR in or-
der to receive higher monetary offers. In-spite of monetary



incentives higher than its CPR, an agent may not be able
to reduce the consumption due to stochasticity involved in
production/consumption of the electricity at its end. This
stochasticity may be due to uncertainty in renewable energy
resources or some other factors like the arrival of sudden
guests at residential house or sudden workload in industry.
We model these uncertainties via acceptance rates (AR) of
the agents. At each round, when the distributor company
faces a shortage, we wish to select a subset of agents whom
the distributor company asks to reduce the consumption of
electricity in order to minimize its losses. The following are
our main contributions:

Contributions
• We show that the problem of maximizing the efficiency

maps to a subset selection combinatorial optimization
problem to minimise a non-monotone supermodular loss
function which in general can be a hard problem.

• We propose a polynomial-time algorithm, namely GLS
that leads to local optimal solution for the proposed de-
mand response (Theorem 2).

• We employ the techniques from Multi-Armed Bandit
(MAB) literature to learn ARs (GLS-MAB). We prove
that GLS-MAB is regret optimal with respect to the lo-
cal optima (Theorem 3).

• With the help of GLS-MAB, we design a truthful mecha-
nism to elicit CPRs from the agents (Theorem 6).

• We show via simulations that we attain sub-linear regret
with respect to a global optima as well.

Related Work
The existing demand response methods like time-of-day
tariff (Akasiadis et al. 2015; Ramchurn et al. 2011; Robu
et al. 2016; Jain et al. 2013), real-time pricing (Chao
2012), critical peak pricing (Zhang, Wang, and Fu 2009;
Park et al. 2015), direct load control (Hsu and Su 1991),
demand bidding (Anderson and Fuloria 2010) are either
too complex or not very efficient. To solve these issues re-
searchers have explored giving incentives to the consumers
to reduce their electricity consumption.

A similar MAB mechanism for demand response is con-
sidered in (Jain, Narayanaswamy, and Narahari 2014),
where the agents who share the same parameters are clus-
tered together. At each time, one cluster is chosen for de-
mand response and all the consumers in that cluster are
asked to reduce the consumption by one unit. This is a
naive approach as it may be optimal to select more than
one clusters thus leading to a combinatorial problem. A sub-
set selection problem for demand response is considered in
(Ma et al. 2016; Ma, Parkes, and Robu 2017) where re-
ward (penalty) is imposed on the agents if they accept the
offer and reduce (not reduce) the consumption by elicit-
ing the ARs. Along similar lines, (Methenitis, Kaisers, and
La Poutré 2019) proposed mechanisms where the proba-
bility of accepting the offer (acceptance rate, AR) as well
the costs are elicited. In practical settings, ARs may not be
known to the agents and should be learnt over a period of

time. A combinatorial MAB approach considered in (Li,
Hu, and Li 2018) learns ARs but does not capture the CPRs
and the strategic behaviour of the agents. In summary, none
of the existing works have considered learning ARs as well
as eliciting true CPRs in a combinatorial MAB framework.
In addition, none of the above papers model the loss due to
not meeting the demand reduction explicitly together with
the cost of incentives in the case of high demand reduction.

Mathematical Model
There are N = {1, 2, . . . , n} agents, that can prepare for
a demand response when given the right incentives. Each
agent incurs a fixed cost for reducing one unit of electric-
ity. We call this fixed cost as CPR (cost per unit reduction)
denoted by ci for agent i which is the private information
to the agent. The CPRs depend on consumers’ priorities, for
example, industrial consumers may have more CPR as com-
pared to domestic consumers. Even if there are slight varia-
tions in the CPR based on the time slots, the consumers can
choose to bid their mean CPR of all the time slots. Even if an
agent commits to the reduction, the agent may fail to do so
due to some external uncertain events like some emergency
situation or failing to generate expected electricity due to
renewable resources at their end. We model these uncertain-
ties as Acceptance Rate (AR), pi, which denotes the prob-
ability of accepting the offer by an agent i. At each time,
which we denote as round t, the distributor company faces
a shortage of electricity denoted by Dt which may be posi-
tive, negative, or zero. The goal of the distributor company
is to select the subset of the agents to whom it asks to reduce
electricity and offer them the proper incentives so that it is
in their best interest to reduce the electricity. If the distrib-
utor company fails to satisfy the demand Dt, then it would
have to buy from the market. Buying electricity generally
leads to quadratic loss (Li, Hu, and Li 2018) which is given
as: Lt(St) =

(∑
i∈St

Xt,i −Dt

)2
. Here, Xt,i is a bino-

mial random variable with parameter pi which is 1, when
the agent i reduces one unit of electricity at round t and is 0
otherwise. For every round t, our demand response problem
is to select a subset that minimizes the expected loss and the
expected cost from the agents.

EL(St) = E

[
CLt(St) +

∑
i∈St

Xt,ici

]
= CELt(St) +

∑
i∈St

pici

= C

(∑
i∈St

pi −Dt

)2

+ C
∑
i∈St

pi(1− pi) +
∑
i∈St

pici

Here C is the cost that the distributor company incurs for
the loss to buy electricity from the market. We minimize ex-
pected cost of the agents as oppose to maximizing rewards
as we consider the problem of maximizing social welfare
due to the following reasons:

• Electricity is a social good

• Revenue of the efficiency maximizing mechanism with
k + 1 bidders is no less than the revenue of the revenue-
maximizing mechanism with k bidders (Bulow and Klem-
perer 1996).

• Social welfare maximizing mechanisms are simple to un-
derstand by the consumers.



The Demand Response Mechanism
We propose a two phase demand response mechanism that
goes for T rounds. At each round t, the following happens:
Phase 1:
• Agents choose to report ci with bids ĉti. We assume that

true CPRs of agents do not change across rounds, however
their bids may as the bids depend on offer at each round.

• The distributor company observes the shortage Dt.
• With ĉtis, Dt, and the learnt acceptance rates from the

past history, the distributor company prepares a demand
response comprising of offer price rti .

• Based on rtis, agents decide whether to accept the offer to
reduce the consumption by one unit or not.

Phase 2:
• Each agent who accepted the offer, observes their random

variable Xt,i generated based on pi. If Xt,i is 1 then they
reduce the consumption by one unit.

• For each of selected agents, distributor companies pays rti
if it reduces the consumption and 0 if it fails to reduce.

Note that unlike previous works, we do not wish to impose
the penalty on the agents if they fail to reduce the consump-
tion. Instead, we would like to propose rti in such a way that
it is in best interest for the agent to reduce the electricity
each round if it can do so. Our goal is to design a learn-
ing algorithm to optimize EL(St), a supermodular function,
and design a mechanism to determine payments rti to ensure
truthful reports of CPRs.

Challenges
• ARs need to be learnt across rounds.
• Proper incentives need to be given to elicit true CPRs.
• Even when ARs and CPRs are known, this problem is

hard due to combinatorial nature.
Towards solving these challenges, we start with perfect in-
formation setting where ARs and CPRs are known and de-
sign a polynomial time algorithm GLS for this setting. We
next move to unknown ARs model where we extend GLS to
GLS-MAB using the MAB techniques. When CPRs are not
known, we prove that our algorithm GLS-MAB is stochastic
monotone and hence the rewards can be constructed so as to
get incentive compatible and individual rational mechanism.

Perfect Information Setting
We first show that the given problem of obtaining global
optima S∗∗t at round t when ARs and CPRs are known is
a minimization of a non-monotone supermodular function.
Therefore it may not be possible to even approximate the
minimum of expected loss function within any factor.
Lemma 1 EL(St) is non-monotone and supermodular.
Proof: Consider any sets A ⊂ B ⊂ [n] and j /∈ B then:

EL(A ∪ {j})− EL(A) = pj(2C
∑
i∈A

pi + cj + C − 2CDt)

< pj(2C
∑
i∈B

pi + cj + C − 2CDt) = EL(B ∪ {j})− EL(B)

Non-monotonicity is easy to verify as
∑
i∈A pi −Dt can be

positive or negative. �

Theorem 1 (Mittal and Schulz 2013) Let f : 2S → Z+ be
a supermodular function defined over the subsets of S. Then
it is not possible to approximate the minimum of f to within
any factor, unless P = NP.
Though the above result does not directly imply that our
problem is also inapproximable as it is real valued function,
it is indicative that ours problem might be difficult to approx-
imate. Due to the above result, we look for a local optimal
solution S∗t as oppose to S∗∗t . Our first Lemma characterizes
the agents that should be present in S∗t
Lemma 2 1. cj

2 < C(−
∑
i∈S∗t \{j}

pi+Dt−1/2) ∀j ∈ S∗t
2. cj

2 > C(−
∑
i∈S∗t

pi +Dt − 1
2 ) ∀j ∈ [n] \ S∗t

Proof:
1. EL(S∗t )− EL(S∗t \ {j}) < 0

=⇒ pj(2C
∑
i∈S∗t

pi − 2CDt − 2Cpj + C + cj) < 0

=⇒ cj/2 < C(−
∑
i∈S∗t \{j}

pi +Dt − 1/2)

2. Suppose ∃j ∈ [n]\S∗t such that cj/2 < C(−
∑
i∈S∗t

pi+

Dt − 1/2), then: EL(S∗t ∪ {j}) − EL(S∗t ) =
pj(2C

∑
i∈S∗t

pi + cj + C − 2CDt) < 0 which leads
to the contradiction that S∗t is local optima. �

Corollary 1 If cj
2 > C(Dt − 1/2) then j /∈ S∗t .

Greedy Local Search (GLS) Algorithm
With the help of the above characterization result, we now
present a polynomial time algorithm to produce the set S∗t
for each round t in Algorithm 1. As the algorithm searches
for a local optimal greedily, we refer to it as Greedy Local
Search (GLS). GLS arranges and renumber the agents in the
decreasing order of Cpi − ci/2 and keep adding an agent
j if it satisfies Lemma 2. The next set of results proves the
correctness of the algorithm. The following Lemma proves
that when more agents are added in the set, Lemma 2 will be
still satisfied for the agents that are already added and thus,
they would remain in S∗t .

Algorithm 1: Greedy Local Search (GLS) Algo-
rithm

Input: CPRs, {c1, c2, . . . cn}, ARs, {p1, p2, . . . pn},
Shortage at round t, Dt

Output: Optimal subset at round t, S∗t
1 S∗t = ∅;
2 Eliminate agents with high cost:

cj/2 > C(Dt − 1/2);
3 Arrange remaining agents in the order Cpi − ci

2 . Let
the agents be numbered as 1, 2, 3, . . . , n1;

4 for i← 1 to n1 do
5 if ci/2 < −C

∑
j∈S∗t

pj + CDt − C/2 then
6 S∗t = S∗t ∪ {i}

Lemma 3 If cj/2 < C(−
∑
i<j,i∈S∗t

pi + Dt − 1/2) then
ci/2 < C(−

∑
k<j,k∈S∗t \{i}

pk +Dt − 1/2− pj), ∀i < j



Proof: We prove via induction: We have c1/2 <
C(Dt − 1/2) (if such an agent is not present then op-
timal set is ∅ due to Corollary 1). Now let us try to
add second agent such that c2/2 < C(−p1 + Dt − 1/2).
Cp1−c1/2 > Cp2−c2/2 =⇒ c1/2 < C(−p2+Dt−1/2).
For induction hypothesis, assume: ci/2 <
C(−

∑
k≤j,k∈S∗t \{i}

pk + Dt − 1/2). Now, consider agent
j + 1 such that: cj+1/2 < C(−

∑
k≤j,k∈S∗t

pk +Dt− 1/2)

and Cpi − ci/2 > Cpj+1 − cj+1/2 ∀i < j, i ∈ S∗t .
Proof of Induction: Pick any agent i < j, i ∈ S∗t :

Cpi − ci/2 > Cpj+1 − cj+1/2 =⇒ ci/2 < −Cpj+1 −
C
∑
k≤j,k∈S∗t \{i}

pk + CDt − C/2. �
We next prove that if at any round, we have skipped an agent,
it can never become a part of S∗t .
Lemma 4 If ck/2 > C(−

∑
i:i<k AND i∈S∗t

pi +Dt − 1/2)

then ck/2 > C(−
∑
i∈S∗t

pi +Dt − 1/2).

Proof:ck/2 > C(−
∑
i:i<k AND i∈S∗t

pi + Dt − 1/2) =⇒
ck/2 > C(−

∑
i:i<kAND i∈S∗t

pi + Dt − 1/2 −∑
i∈S′ pi) ∀S′ ⊂ [n] �
From the above results, we have the following Theorem:

Theorem 2 The set S∗t obtained from GLS is a local optima.

Imperfect Information Setting: Unknown ARs
Motivated by UCB algorithm for MAB, we present GLS-
MAB (Algorithm 2) to learn the ARs of the agents. Let
us denote p̂+

i = p̂i +
√

2 ln t
ni(t)

and p̂−i = p̂i −
√

2 ln t
ni(t)

as upper confidence and lower confidence bound on pi at
round t. p̂i denotes the learnt probability which is given as

p̂i =
∑t

t′=1
1(Xt′,i=1)

ni(t)
, where ni(t) denotes the number of

times the agent is given the offer till round t. The agents are
then arranged in the order of Cp̂+

i −
ci
2 that ensures that the

agents are given the chance optimistically.

Regret Analysis for GLS-MAB
Regret of a learning algorithm is the difference in the loss
achieved by the algorithm and the loss incurred by the opti-
mal subset if the probabilities were known. In our setting the
optimal subset may differ every round. We derive the regret
of our algorithm with respect to GLS that finds a local op-
tima S∗t . In simulations section, we empirically show that the
regret with respect to S∗∗t is not much. Typically the regret at
round t w.r.t. a global optimal solution is: RGt = EL(St) −
EL(S∗∗t ). However, as finding S∗∗t is computationally hard,
we define regret as Rt = EL(St) − EL(S∗t ), where S∗t is
the solution returned by GLS with known ARs. The over-
all regret of the algorithm is given as: R(T ) =

∑T
t=1Rt

(RG(T ) =
∑T
t=1R

G
t ). We look for the algorithms which

gives sub-linear regret with respect to the total number of
rounds T . Let us denote ∆ij = |Cpi−ci/2− (Cpj−cj/2)|
and let ∆ = mini ∆ij .

Theorem 3 The regret of GLS-MAB is O(
√
T ).

Proof: Let the agents are numbered in the order of pi− ci/2
i.e. Cp1 − c1/2 ≥ Cp2 − c2/2 ≥ Cp3 − c3/2 ≥ . . . Cpn −
cn/2. We prove the theorem through a series of lemmas:

Algorithm 2: GLS-MAB: GLS For unknown ARs
Input: CPRs, {c1, c2, . . . cn}, Total number of

rounds T
Output: Sequence of allocations S1, S2, . . . ST

1 S1 = [n] i.e. make offer to everybody to get certain
estimates on AR, ni(1) = 1 ∀i;

2 for t← 2 to T do
3 Observe Xi,t−1 ∀i, Shortage Dt;
4 Update Estimated ARs, upper confidence bounds

on ARs and lower confidence bounds on ARs as
follows: p̂i =

∑t−1

t′=1
Xi,t′

ni(t−1) , p̂+
i = p̂i +

√
2 ln t

ni(t−1) ,

and p̂−i = p̂i −
√

2 ln t
ni(t−1) respectively.;

5 Eliminate agents j s.t. cj/2 > C(Dt − 1/2);
6 Out of remaining agents, renumber the agents in

the order Cp̂+
i −

ci
2 ;

7 St = ∅;
8 for i← 1 to n′ do
9 if ci/2 < −C

∑
j∈St

p̂−j + CDt − C/2 then
10 St = St ∪ {i}

Lemma 5 If ni(T ) ≥ 8C2 lnT
∆2 ∀i ∈ [n], then ∀i, j ∈ [n]:

Cpi − ci/2 > Cpj − cj/2 =⇒ Cp̂+
i −

ci
2 > Cp̂+

j +
cj
2 and Cp̂−i −

ci
2 > Cp̂−j −

cj
2 with high probability.

Proof: Suppose not, then we have:

Cp̂i + C

√
2 ln t

ni(t)
− ci

2
< Cp̂j + C

√
2 ln t

nj(t)
− cj

2

or Cp̂i − C

√
2 ln t

ni(t)
− ci

2
< Cp̂j − C

√
2 ln t

nj(t)
− cj

2

=⇒ Cpi −
ci
2

< Cpj + 2C

√
2 ln t

nj(t)
− cj

2

or Cpi − 2C

√
2 ln t

ni(t)
− ci

2
< Cpj −

cj
2

which is a contradiction since nk(t) ≥ 8C2

∆2 lnT ∀k. �

Corollary 2 After each agent has been selected for
8C2

∆2 lnT rounds, we will have correct ordering on the agents
with respect to UCB bounds.

Lemma 6 If cj/2 < −C
∑
i<j,i∈St

p̂−i + CDt − C/2

and nj(t) > 8C2

∆2 lnT ∀j ∈ [n] then ci/2 <

−C
∑
k<j,k∈St\{i} p̂

−
k + CDt − C/2− Cp̂−j , ∀i < j

Proof: The proof follows similar steps as in Lemma 3 with
the use of Lemma 5. �

For ease of notation, let D′ = Dt − 1/2 and let us denote
Xt
i = 1 if i ∈ S∗t and Y ti = 1 if i ∈ St.

Lemma 7 If i1 is the first index s.t. ∀i < i1 X
t
i = Y ti and

Xt
i1
6= Y ti1 then either Xt

i1
= 0 i.e. i1 ∈ St or ∃j ∈ [n] such

that nj(t) < 8C2

∆2 lnT



Proof: If Xt
i1

= 1 and ∀j ∈ [n], nj(t) ≥
8C2

∆2 lnT then ci1/2 ≤ C(−
∑
j:j<i1ANDj∈S∗t

pj + D′) ≤
C(−

∑
j:j<i1ANDj∈St

p̂−j + D′). However then, Y ti1 = 1

which leads to the contradiction to Xt
i1
6= Y ti1 . �

Lemma 8 ∀i > i1, if Y ti = 0 and nj(t) > 8C2

∆2 lnT ∀j ∈
[n] then Xt

i = 0 i.e. the algorithm will not miss any optimal
agents after selecting i1 in St.

Proof: Y ti1 = 1 =⇒ ci1/2 ≤ C(−
∑
j∈St

p̂−j +D′)

Xt
i1

= 0 =⇒ ci1/2 > C(−
∑
j<i1ANDj∈S∗t

pj +D′)

Y ti = 0 =⇒ ci/2 > C(−
∑
j∈St

p̂−j + D′) >

C(−
∑
j<i1ANDj∈S∗t

pj +D′) =⇒ Xt
i = 0 (i > i1).

Thus, S∗t ⊂ St after all the agents are selected for at-least
8C2 ln(T )

∆2 rounds. We next bound the number of sub-optimal
agents present in St.

Lemma 9 For any i1 < i, if nj(t) > 8n2C2

∆2 lnT ∀j ∈ S∗t
and nj(t) > 8C2

∆2 ln(T ) ∀j ∈ [n] and i ∈ St then i ∈ S∗t i.e.
we will not add more sub-optimal agents in our selected set.

Proof: Consider the first agent i > i1 such that i ∈ St
but i /∈ S∗t . Thus, till agent i, we have St = S∗t ∪ i1.
If i /∈ S∗t then ci/2 > CD′ − C(

∑
j<iAndj∈S∗t

pj) Also,
ci/2 < CD′ − C(

∑
j<iAndj∈S∗t

p̂−j ) − Cp̂−i1 < CD′ −
C(
∑
j<iAndj∈S∗t

pj) + ∆− Cp̂−i1 =⇒ p̂−i1 <
∆
C

The last condition is not possible if ∆ is small enough
and pi1 is large enough. Thus, we will get regret only due
to the agent i1. If i1 ∈ St but i1 /∈ S∗t implies that ci/2 >
C(D−1/2−

∑
j<i1

pj) but ci/2 < C(D−1/2−
∑
j<i1

p̂−j ).
Then, the regret contributed due to agent i1 is EL(S∗t ∪
i1) − EL(S∗t ) = 2pi1(C

∑
i∈S∗t

pi + ci1/2 + CD′) <

2pi1(C
∑
i∈S∗t

pi − C
∑
i∈S∗t

p̂−i ) < 2npi1

√
2 ln t
ni(t)

i ∈ S∗t .
Proof of Theorem 3: An agent i 6= i1 contributes to regret
if:

1. i ∈ St and i /∈ S∗t : This happens only when ∃j ∈ S∗t s.t.
Cpi−ci/2 < Cpj−cj/2 but Cp̂+

i −ci/2 > Cp̂+
j −cj/2.

This event has low probability if ni(t) ≥ 8C2

∆2 ln(T ).
2. i ∈ S∗t and i /∈ St: This can only happen if ∃j ∈ St s.t.
Cpi−ci/2 > Cpj−cj/2 but Cp̂+

i −ci/2 < Cp̂+
j −cj/2.

Again this will not happen after nj(t) ≥ 8C2

∆2 ln(T ).

Thus, after n 8C2

∆2 ln(T ) above cases will not occur. Let T ′ =

n2 8C2

∆2 ln(T ). The total regret is given as:

max
i∈St

T ′ + 2npi1

T∑
t>T ′

√
2 ln t

ni(t)
≤ T ′ + pi1∆

T∑
t=T ′

√
1

t

≤ T ′ + pi1∆
√
T = O(

√
T )�

Imperfect Information Setting: Unknown
CPRs

While eliciting the unknown CPRs from the agents, the
agents may be strategic and may not reveal their true CPRs

in order to maximize their own utilities. We first formal-
ize the game theoretic notions in this section. Let us de-
note the CPR bid profile by ĉ = {ĉ1, ĉ2, . . . , ĉn}. We wish
to design a mechanism M = (S(ĉ),R(ĉ)) which con-
sists of an allocation rule, S = {S1, S2, . . . , ST } where
each St is the selected subset of agents at round t, and a
reward rule R = {R1,R2, . . . ,RT } where each Rt =
{rt1, rt2, . . . , rtn} represents the offer price. Note that the se-
lected subset at any round t will depend on the bid profile,
but we will not explicitly mention this dependence every
time. The expected cost per unit reduction of any agent i
is pici. Thus given the reward rti , the utility of a agent at
round t is given as: E[ui(St(ĉi, ĉ−i), ci)] = pi(−1(i ∈
St)ci + rti) , where ĉ−i is the bid profile of all the agents
other than i. The utility for the distributor company is
given as: E[uC(St(ĉi, ĉ−i), ci)] = −C(Dt −

∑
i∈St

pi)
2 −

C
∑
i∈St

pi(1 − pi) −
∑
i∈St

pir
t
i . The expected social

welfare (sum of the expected valuations) is W (S) =

−
∑T
t=1 C(Dt−

∑
i∈St

pi)
2−
∑T
t=1 C

∑
i∈St

pi(1−pi)−∑T
t=1

∑
i∈St

pici. We now define some of the desirable
game theoretic properties that we would like mechanism
M = (S,R) to satisfy:

Definition 1 Allocative Efficiency(AE): An allocation rule
S is allocatively efficient if it maximizes the social welfare.

It is easy to see that allocation rule produced by GLS is al-
locative efficient. Further, when ARs are not known, the re-
gret in social welfare due to GLS-MAB is given in Theorem
3. We now provide some definitions that are required to elicit
the CPRs truthfully from the agents.

Definition 2 Individual Rationality (IR): MechanismM is
IR for an agent if truthful bidding results in positive utility.

If the mechanism is IR than it is always in the best response
for the agent to reduce the electricity if he can as failing to
reduce the consumption will lead to utility of zero.

Definition 3 Dominant Strategy Incentive Compatible
(DSIC): Mechanism M is called DSIC if for each agent
bidding its true cost maximizes its utility irrespective of the
bids of other agents for every round.

A mechanism is DSIC iff the allocation rule is mono-
tone and the payment satisfies certain property (Myerson
1981). For now, we focus on the monotone allocation rule.
The monotonicity is defined as:

Definition 4 (Monotone Allocation Rule) Consider two
bids, ĉi and ĉ−i for agent iwith ĉi ≥ ĉ−i . An allocation rule S
is monotone if i ∈ St(ĉi, ĉ−i) =⇒ i ∈ St(ĉ−i , ĉ−i) ∀i ∀t.

The next result shows that the allocation returned by GLS
results in the monotone allocation rule.

Theorem 4 Let S(p, c) denote the subset returned by the
GLS with ARs p = {p1, p2, . . . , pn} and CPRs c =
{c1, c2, . . . , cn}. Let c−(i) = {c1, c2, . . . , ci − ε, . . . , cn}
be another CPR profile, where CPR of other agents remain
same but the CPR of i is reduced. Then i ∈ St(p, c) =⇒
i ∈ St(p, c−(i)) ∀t.



Proof:
Assume that with c, agent i was ranked k in the order-
ing with respect to pj − cj/2 and with cost profile c−(i),
he is ranked k−. Then, it is easy to see that k− < k. If
i /∈ St(p, c−(i)) then
ci−ε

2 > C(−
∑
j<k−ANDj∈St(p,c−(i)) pj +Dt − 1/2)

=⇒ ci
2 > C(−

∑
j<k−ANDj∈St(p,c−(i)) pj +Dt − 1/2)

> C(−
∑
j<kANDj∈St(p,c) pj + Dt − 1/2). Thus, i /∈

St(p, c)}. �
Achieving DSIC is a very strong condition in learning

environment and thus we look for ex-post monotonicity or
stochastic monotonicity. We will show that GLS-MAB is
stochastic monotone which is monotonicity in expectation,
where expectation is taken over the randomness of the ac-
ceptance rate of the agents.
Definition 5 (Stochastic Monotone Allocation Rule)
Consider any two bids for agent i, ĉi and ĉ−i such
that ĉi ≥ ĉ−i . An allocation rule S is called stochastic
monotone if for every agent i, we have if E[

∑T
t=1 1(i ∈

St(ĉi, ĉ−i))] ≤ E[
∑T
t=1 1(i ∈ St(ĉ−i , ĉ−i))].

In order to prove that the allocation is stochastic monotone,
we use the property of Independence of Irrelevant Alterna-
tives (IIA) which we define below.
Definition 6 Independence of Irrelevant Alternatives (IIA):
At any round t, if the estimates on AR of all the agents are
fixed other than i, than change in the estimates on AR of i
should not transfer allocation from agent j to agent l.

Lemma 10 GLS-MAB satisfies IIA property.

Proof: Let j and l be the two agents such that j ∈
St(p̂i, p̂−i) and l /∈ St(p̂i, p̂−i) with the estimate of agent
i as p̂i till round t. This means the following should hold:
cj/2 ≤ −C

∑
k∈St(p̂i,p̂−i)

p̂+
k + CDt − C/2 and

cl/2 > −C
∑
k∈St(p̂i,p̂−i)

p̂−k + CDt − C/2.

Let us denote the changed estimates of agent i by p̂′i.
For ease of notation, denote St = St(p̂i, p̂−i) St

′
=

St(p̂′i, p̂−i). Then we will prove: if j /∈ St′ then l /∈ St′ .

j /∈ St′ =⇒ cj/2 > C(−
∑

k∈St′

p̂+k + Dt − 1/2)

=⇒ − C
∑

k∈St′

p̂+k + CDt − C/2 < −C
∑
k∈St

p̂+k + CDt − C/2

< −C
∑
k∈St

p̂−k + CDt − C/2 < cl/2

Thus, agent l /∈ St(p̂′i, p̂−i). We now prove the main result
of this section:
Theorem 5 Allocation rule returned by GLS-MAB is
stochastic monotone.
Proof: We want to prove that in expectation, with bid ĉ−i ,
agent i receives more offers as compared to with bid ĉi. Once
IIA property is in place (Lemma 10), the proof of stochastic
monotonicity is similar to the proof in (Babaioff, Kleinberg,
and Slivkins 2010). However, the proof in (Babaioff, Klein-
berg, and Slivkins 2010) works only for the case when single

agent needs to be selected at each round. Let us represent a
table n×T where (i, t) represents whether agent i accepted
the offer or not when he was given the offer at round t. Note
that we might not be able to observe each and every entry
of this table, as an agent may not be given the offer for all
T rounds. For the sake of the proof we fix the table and we
will prove that the allocation rule by GLS-MAB is monotone
with respect to any given table and hence has to be stochas-
tic monotone. Let us now proceed by fixing an instance of
the table and use induction on round t.
When t = 1, the offer is given to everyone irrespec-
tive of the bids and hence we have i ∈ S1(ĉi, ĉ−i) and
i ∈ S1(ĉ−i , ĉ−i). Thus, from induction hypothesis we have:∑t
t′=1 1(i ∈ St

′
(ĉ−i , ĉ−i)) ≥

∑t
t′=1 1(i ∈ St

′
(ĉi, ĉ−i)).

We now have to prove that the above condition is true for
round t + 1 as well. Note that we just have to worry about
the case when the above condition holds with equality, oth-
erwise for t + 1 round, the condition holds trivially. Thus,
let us assume:

∑t
t′=1 1(i ∈ St

′
(ĉ−i , ĉ−i)) =

∑t
t′=1 1(i ∈

St
′
(ĉi, ĉ−i)). When the number of allocations to agent i are

equal in both the cases, the estimates of agent i are fixed,
since we have fixed the table. However, it may so happen
that the estimates of other agents are changed since i may
get totally different rounds with bids ĉi and ĉ−i . We will
prove that if this is the case then estimates of other agents
will also not change due to IIA property. Let us denote
at(ĉ−i ) = t −

∑t
t′=1 1(i ∈ St

′
(ĉ−i , ĉ−i)) and at(ĉ−i ) =

t −
∑t
t′=1 1(i ∈ St

′
(ĉ−i , ĉ−i)) as the number of instances

where agent i was not selected till round t. We will prove
that for any rounds t, s if at(ĉ−i ) = as(ĉi) then

∑t
t′=1 1(j ∈

St
′
(ĉ−i , ĉ−i)) =

∑s
t′=1 1(j ∈ St′(ĉ−i , ĉ−i)) ∀j 6= i.

Let us prove this using induction, when at(ĉ−i ) =
as(ĉi) = 0 i.e. when i is selected for all rounds. In this case
the allocation of any agent depends only on the estimates
of agent i and his own bid. It does not depend on the bid
of agent i. Since, the agent i is selected for all the rounds,
the estimates at any round for agent i will be the same in
both the case and hence the same subset of agents will be
selected with bid ĉ−i and ĉi. Thus, we have t−

∑t
t′=1 1(j ∈

St
′
(ĉ−i , ĉ−i)) = s −

∑s
t′=1 1(j ∈ St

′
(ĉ−i , ĉ−i)) ∀j 6= i.

By induction hypothesis when at(ĉ−i ) = as(ĉi) = a,
then t −

∑t
t′=1 1(j ∈ St

′
(ĉ−i , ĉ−i)) = s −

∑s
t′=1 1(j ∈

St
′
(ĉ−i , ĉ−i)) ∀j 6= i. We need to prove for the case when

at(ĉ−i ) = as(ĉi) = a + 1. Let t′ and s′ be the last rounds
such that at

′
(ĉ−i ) = as

′
(ĉi) = a. Thus, from t′ + 1 to t− 1

agent i is selected with bid ĉ−i and similarly from s′ + 1 to
s− 1 agent i is selected with bid ĉi. From induction hypoth-
esis: t′ −

∑t′

t=1 1(j ∈ St(ĉ−i , ĉ−i)) = s′ −
∑s′

t=1 1(j ∈
St(ĉ−i , ĉ−i)) ∀j 6= i. Since, the estimates of all the agents
are same till round t′ and s′, and from t′ + 1 to t agent i
is selected, from IIA property, it will not influence alloca-
tion of other agents and same subset will be selected for all
the rounds, the estimates till round t − 1 and s − 1 will be
the same. Thus, the subset at round t and s will be the same
and hence the proof follows. Now, at t+ 1, the estimates are



(a) Worst-case and average case ratio of
local optima and global optima vs n

(b) Expected regret (RT ) vs T , n = 15 (c) Expected regret (RT and RGT ) vs n

Figure 1: Experimental Results

same. Thus, due to the monotonicity Theorem 4, we have:∑t+1
t′=1 1(i ∈ St′(ĉ−i , ĉ−i)) ≥

∑t+1
t′=1 1(i ∈ St′(ĉi, ĉ−i)).

One of the major hurdle to obtain a truthful mechanism is
to come up with a monotone allocation rule. Once we have
the monotone allocation rule, one can easily obtain the pay-
ment using the black box technique provided in (Babaioff,
Kleinberg, and Slivkins 2010). Though the mechanism is
provided for single agent selection at each round, the tech-
nique can easily be extended to multiple agent selection and
has been done in (Jain et al. 2018). With this we have the
final result as follows:

Theorem 6 GLS-MAB produces incentive compatible
mechanism in expectation where expectation is taken over
the randomness of the acceptance rate.

Simulation Results
We now present some simulation results to demonstrate the
efficacy of GLS and GLS-MAB and validate the proposed
theoretical bounds. For the simulation purposes, we have
fixed the cost of buying the electricity C = 3 and maximum
CPR of the agents to be 1. For each round, we generated the
demand shortage ∼ U [1, n4 ], n being the number of agents.

In Fig. 1(a), we compare the solution obtained by GLS
and the optimal solution. We compute an optimal solution
via the brute-force technique by considering all possible
subsets. We compute the ratio of the loss incurred by GLS
to the loss incurred by the optimal algorithm. We plot the
average ratio and worst-case ratio of over 5000 samples by
varying ARs and CPRs of the agents in each sample. As can
be seen from the figure that the average ratio is very close to
one, i.e., most of the times, the solution obtained was very
close to the global optima. Even in the worst-case scenario,
the ratio is tightly bounded and remains close to two.

We next study the growth of regret with t in Fig. 1(b). We
vary rounds from t = 1 → 106 and do it across randomly
generated 40 samples. The graph shown is the average of
the regret of 40 samples. As can be seen from the figure, the
regret is sub-linear, close to a logarithmic function of t. It
is better than theoretically obtained bound of

√
T . We study

the effect of the number of agents n on regret in Fig. 1(c). We
consider both the regret of GLS-MAB w.r.t. GLS (R(T )) as

well as w.r.t. a global optima (RG(T )). For R(T ), we con-
sider up to n = 15 whereas RG(T ) we consider only up to
n = 10. We see that the regret grows quadratically with the
number of agents as established in our theoretical analysis.
We can further see from Fig. 1(c) that RT and RGT are very
close to each other. The simulation results establish that al-
though the proposed algorithm provides us a local optimum,
it provides us excellent performance in terms of the regret in
practice.

Conclusion and Future Work
When a distribution company wants to reduce peak energy
cost, it is best to incentivize the consumers to reduce their
consumption as opposed to buying high-cost electricity from
the secondary market. It is called a demand response mech-
anism. However, designing such monetary offers in demand
response mechanisms are challenging due to the high uncer-
tainty in the smart grids arising from more and more renew-
able integration. To resolve these uncertainties, we proposed
a GLS algorithm to select a subset of consumers to offer in-
centives. We designed GLS-MAB to learn these uncertain-
ties and transformed it into a truthful combinatorial MAB
mechanism to design monetary offers. We then analyzed our
mechanism and showed that it is incentive compatible and
achieves optimal regret in terms of social welfare.

Though we are solving the problem of minimizing a non-
monotone supermodular function which in general can be
a hard problem, we have not proved that our particular
problem is NP-hard or not. In future, we would like to ei-
ther prove that the problem is NP-hard or come up with a
polynomial-time algorithm that gives global optima. This
work can be extended to a setting where each consumer
can reduce more than one unit, which can again be a pri-
vate information to the consumer. In a more compelling fu-
ture work, one may look for a more complicated distribution
function (for example Gaussian) over ARs. One can also
look at other types of mechanism like posted price mech-
anism where consumers come online, and the distributor
company has to decide whether to ask the consumer to re-
duce the consumption or not.
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