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Abstract
Fine-grained object recognition refers to a subordinate level of ob-
ject the recognition such as recognition of bird species and car
models. It has become crucial for recognition of previously un-
known classes. While fine-grained object recognition has seen un-
precedented progress with the advent of neural networks, many
of the existing works are cost-sensitive as they are acutely picture-
dependent and fail without the adequate number of quality pictures.
Efforts have been made in the literature for a picture-independent
recognition with hybrid human-computer recognition methods via
single question answering with a human-in-the-loop. To this end,
we propose an improved batch-based question answering method for
making the recognition efficient and picture-independent. When
pictures are unavailable, at each time-step, the proposed method
mines N binary cluster-centric local questions to pose to a human-
in-the-loop and incorporates the responses received into the model.
After a preset number of time-steps, the most probable class of the
target object is returned as the final prediction. When pictures are
available, our model facilitates the plug-in of computer vision algo-
rithms into the framework for better performance. Experiments on
three challenging datasets show significant performance improve-
ment with respect to accuracy and computation time as compared
to the existing schemes.

CCS Concepts
•Classification→ Fine grained recognition; • Feature extrac-
tion →Batch question answering.
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mining, batch-based question answering

ACM Reference Format:
Vyshnavi Gutta, Narendra Babu Unnam, and P.Krishna Reddy. 2018. An
improved human-in-the-loop model for fine-grained object recognition
with batch-based question answering. In CODS-COMAD 2020: ACM India
Joint International Conference on Data Science & Management of Data, 2020,
Hyderabad, India. ACM, New York, NY, USA, 9 pages. https://doi.org/10.
1145/1122445.1122456

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CODS-COMAD 2020, January 5-7, 2020, Hyderabad, India
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9999-9/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

1 Introduction
While object recognition deals with the recognition of several ob-
jects belonging to broader entry levels like birds, humans, chairs,
etc, fine-grained object recognition aims to distinguish the objects
of subordinate categories that belong to the same entry-level object
category, e.g., recognition of various species of birds. Its appli-
cations are numerous. Beyond simply being able to describe the
world in more detail, fine-grained object recognition can be used
for improved scene understanding, studying society and analyzing
biodiversity.

Notably, fine-grained object recognition is a difficult task due
to the small inter-class variance between the objects. Nevertheless,
enormous progress has been made in fine-grained recognition in
recent years. The existing fine-grained recognition methodologies
can be categorized into three major recognition modes: Image-only
based Recognition (IR), Question-answering based Recognition
(QR), and Image and Question-answering based Recognition (IQR).

The most widely used recognition mode is Image-only based
Recognition (IR), wherein recognition is achieved by categorizing
the image of the target object. Ever since the rise of Convolutional
Neural Network (CNN) architectures for image classification, the
accuracy of IR has dramatically improved and many CNN-based
approaches have been proposed [6–8, 12, 16]. However, IR is highly
resource-intensive as it requires a large number of images with
good quality. As a result, IR is completely picture-dependent, i.e,
without proper pictures, the performance of IR quickly collapses.
Furthermore, it incurs huge monetary support for the required pic-
ture acquisition. (In this paper, we use the terms image and picture
interchangeably.) This issue of monitory requirement becomes even
more poignant in fine-grained domains due to their stricter picture
requirements in terms of both quality and quantity. As a result, IR
is cost-sensitive and falls short in producing desirable accuracies in
budget-restricted domains. Moreover, the task of picture acquisition
itself becomes very intractable in fine-grained domains.

In contrast to IR, Question-answering based Recognition (QR) does
object recognition by utilizing the attribute (feature) information of
the object collected through interaction with a user a.k.a. human-in-
the-loop. (In this paper we use the terms user and human-in-the-loop
interchangeably.) It achieves recognition by exploiting the notion
that every visual object is characterized by its visual attributes. In
QR, questions on the presence/absence of relevant attributes of a
visible target object are posed to a user, whose perceived responses
on the object to the questions collectivelymake recognition possible.
But, as typical fine-grained objects have hundreds of such attributes,
having to rely solely on the user for their identification is inefficient
and cumbersome. Notably, QR does not use pictures for recognition.
That is, unlike IR, QR is not cost-sensitive.
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Research efforts have been made in the literature [3, 5, 9, 13, 17]
to improve object recognition by exploiting the merits of IR and
QR with a hybrid recognition which we refer to as Image and
Question-answering based Recognition (IQR). The idea behind IQR is
to combinedly leverage a machine’s extensive learning capability
and a human’s excellent visual capability for better recognition of a
test object. The approaches proposed in [9, 17] incorporate IQR by
utilizing the relative responses received for an attribute on multiple
images to distinguish between the fine-grained objects. Likewise,
an approach to pose discriminative features is proposed in [5]
for recognition. The approach in [13] jointly leverages part-based
click information and binary question answering for recognition.
However, the above works [5, 9, 13, 17] are cost-sensitive as they
are still picture-dependent.

In [2, 3], a picture-independent framework under IQR was intro-
duced for object recognition in which a single question with binary
[3] and multiple-choice [2] is posed to the user at each time-step.
They use the information gain criterion along with the prior predic-
tions of computer vision methods on the target image (if available)
to decide the best question to pose to the user at each time-step.
However, the approaches in [2, 3] are highly time-consuming as the
system has to compute information gain for every attribute to se-
lect the best question at each time-step. As a result, the approaches
would lead to high user waiting time.

In this paper, we propose an improved approach for fine-grained
object recognition which we refer to as Recognition via Image and
Batch-based Local question answering (RIBQ). Instead of asking a
single question at each time-step for object recognition as in exist-
ing approaches, there is an opportunity to improve the recognition
performance by asking multiple questions at each time-step. In
the approaches based on single question answering, only a single
discriminative attribute is identified to distinguish the probable
classes. Whereas in the case of the proposed batch-based ques-
tion answering, multiple discriminative attributes are identified to
distinguish the probable classes. As a result, object recognition is
achieved quickly and effectively.

For extracting the potential batch of questions to be posed at
each time-step, we propose a novel cluster-based local question
mining method. At each time-step, the proposed method groups
the probable classes into N non-overlapping clusters. From each
cluster, a cluster-centric local attribute, which is the attribute whose
presence/absence is exclusively pre-dominant in that cluster, is
mined. The set of mined attributes are posed as questions to the
user. After a preset number of time-steps, the most probable class
based on the responses received is returned as the final prediction of
the test object. When labelled images of target objects are available,
we could plug-in vision’s probabilistic class predictions on the
object’s test image into the proposed framework for more accurate
recognition.We conducted an extensive performance study on three
different datasets and demonstrate that the proposed approach
improves both accuracy and computation time significantly w.r.t.
the existing approaches.

Notably, with cluster-centric local question mining, the proposed
approach mitigates the computational overhead involved in the
information-gain based question mining in [2, 3] and is significantly
faster. Since the proposed approach employs multiple discrimina-
tive questions at each time-step, it also improves the recognition

quality. Furthermore, the proposed approach is flexible as it works
as QR when pictures are unavailable and as IQR when pictures are
available for better recognition. Thus the proposed method is also
cost-effective as it aims to make the recognition effective regardless
of the availability of pictures. Thus, the proposed method achieves
fast, accurate and cost-effective recognition under limited resource
environments (i.e., when pictures are unavailable.) With pictures, it
facilitates the easy plug-in of vision’s probabilistic class-estimates
into the framework for more accurate recognition.

The main contributions of this paper are three-fold:

(1) We introduce a batch-based question answeringmodel (RIBQ)
for fine-grained object recognition.

(2) We present an efficient dynamic cluster-centric local ques-
tion mining approach.

(3) We have demonstrated that the proposed model improves
both accuracy and computation time significantly w.r.t. the
existing approaches by conducting extensive experiments
on three different datasets.

The remainder of this paper is organized as follows. In the next
section, we present the related work. In Section 3, we present the
background. We present the proposed approach in Section 4. The
experimental results and conclusions presented in Section 5 and
Section 6 respectively.

2 Related Work
Regarding Image-only based Recognition (IR), several works [6, 7,
12, 16] utilize the visual attributes of objects to carry out the recog-
nition process. In [6], attributes are used for semantic knowledge
transfer between the known classes and the unseen classes through
direct and indirect attribute predictions. In [12], inherent relativity
between the attributes is exploited for mining information using
deep neural networks, by adding a ranking layer. In [16], discrimi-
native attributes are extracted from the class-specific discriminative
patches. In [7], localized image features represented by attribute
semantics are utilized for mining discriminative information.

Regarding Image and question answering based Recognition
(IQR), research works [2–5, 9–11, 13, 17] integrate computer vision
and human input to make the best of the both worlds. A picture-
independent framework for object recognition is proposed in [3, 10],
which asks an informative binary attribute as a binary question
at each time-step. The attribute is extracted using the information
gain criterion. If images are available, the vision’s prior probabilistic
class predictions on the object’s test image are plugged into the
framework for better recognition. In [2], an approach is proposed
which poses a multiple-choice question at each time-step instead
of posing a single binary question as in [3, 10]. However, the ap-
plicability of this approach in [2] is limited as the multiple-choice
questions are not available for all the datasets and it takes extra
human labour to prepare them. Note that, the proposed approach
is different to that in [2] as the proposed approach poses multi-
ple binary questions at each time-step rather than multiple-choice
questions. In [13], part-based click information and binary question
answering are jointly leveraged for recognition. In [4, 11], object
annotation is carried out jointly by vision-based methods and hu-
man input by employing a Markov’s decision process with the aid
of reinforcement learning. In [5], discriminative bubbles/features
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are mined from the image using the user’s responses. In [9], rela-
tive responses of the attributes are leveraged by learning a ranking
function per attribute. In [17], local learning is done through image
comparisons.

To summarize, few research efforts have been made to make
the recognition picture-independent thereby cost-insensitive. As a
part of this, picture-independent human-machine frameworks have
been proposed which employ vision (if pictures are available) and
binary [3] ormultiple-choice [2] question answering for recognition.
However, the information gain metric used in [2, 3] computes the
information gain on all the attributes for selecting the best question
to pose at each time-step. As a result, the interim user waiting period
between successive time-steps is high. The proposed approach uses
batch-based local question answering which facilitates faster and
better knowledge acquisition than the preceding approaches.

3 Background
In this section, after explaining about attribute, object, class and
class attribute vector, we discuss the picture-independent recogni-
tion framework used in [2, 3, 10].

3.1 Definitions
Definition 3.1. Attribute: A property of an object is called an

attribute, if a human has the ability to decide whether the property
is present or not for the object [6]. For example, red color neck is
an attribute of an object bird. Its corresponding question to pose to
the user would be Is neck color red?.

Definition 3.2. Object and Class: An object is a physical entity
with pre-defined attributes. A class represents a collection of objects
(instances) with the same attributes. For example, the class car
represents all the cars (objects) in the real world.

Definition 3.3. Class-attribute vector of class ck (CAV (ck )) and
Class-attribute vectors (CAV ): Class-attribute vector of a class de-
picts the relation between the class and all the attributes. Given a set
C = {c1, . . . , cm } of allm classes and set Q = {q1,q2, . . .qn } of all
n attributes, we denote CAV (ck ) as < v(q1k ),v(q2k ), . . . ,v(qnk ) >.
Here, v(qik ) is a real value from the interval [0-1] which indicates
the degree of presence of the attributeqi in the class ck . For example,
the value 0/1 for v(qik ) indicates the complete absence/presence of
qi in ck . CAV is the set of class-attribute vectors of all classes, i,e.,
CAV={CAV (c1),CAV (c2), . . . ,CAV (cm )}.

3.2 Picture-independent recognition
framework

Given a domain’s characteristic attributes and its class-attribute
vectors, the recognition process of a test object is done in two stages.
The stages repeat for a preset number of time-steps at the end of
which the class with the highest probability estimate is returned as
the final prediction of the target object. The details of each stage
are as follows:

(1) Question mining stage: This stage mines the relevant vi-
sual attribute(s) to be posed as question(s) to a user at a
time-step t based on the responses received till t and the
class-attribute vectors. The approaches in [2, 3, 10] mine

questions using information-gain. They compute informa-
tion gain for each attribute and pose the question correspond-
ing to the attribute with the maximum gain. The approaches
in [3, 10] mine a binary question whereas the approach in
[2] mines a multiple-choice question at t.

(2) Responsemodelling stage: This stagemodels the collected
user response/s at time-step t to the questions as perceived
by the user on the test object for processing in the next
time-step. This includes re-computing the class-probability
estimates of all the classes.

When pictures are available, the vision’s probabilistic class predic-
tion on the test image of the object is plugged into the framework
for faster and more accurate recognition.

4 Proposed model
In this section, we first explain the basic idea and then present the
proposed approach.

4.1 Basic idea
The basic idea of the proposed model is to improve the performance
of object recognition by posing multiple discriminative questions
in a batch at each time-step to the user. To this end, we employ
a clustering-based approach to identify multiple discriminative
attributes and then pose them as questions for distinguishing the
probable classes. It can be noted that, given any collection of data
points, the clustering process groups the data points into multiple
clusters, such that members of the same cluster are similar and the
members of the different clusters are dissimilar. So, by extracting
the most predominant attribute from each cluster, it is possible
to extract multiple discriminative attributes. As a result, object
recognition can be realized effectively in terms of both accuracy
and time.

So in the proposed approach, at each time-step, the probable
classes are first grouped into N clusters. From each cluster, a poten-
tial attribute is mined using the proposed concepts of Cluster-centric
local attribute and locality degree of an attribute. For a given cluster
X , we use the term Cluster-centric local attribute of X to denote the
attribute whose presence/absence is exclusively predominant in X .
For an attribute qi and a clusterX , we use the term locality degree of
qi in X for depicting the degree of qi ’s exclusive presence/absence
in X . Using these concepts, we mine the questions to pose to the
user by computing the locality degree of each attribute in each clus-
ter and identify those attributes which give the maximum locality
degree in a particular cluster in comparison to other clusters and
attributes as the potential cluster-centric local attributes. The mined
attributes are then posed as questions to the user at each time-step
whose responses to the questions collectively make recognition
possible.

4.2 Proposed approach
The proposed approach uses picture-independent recognition frame-
work (Section 3.2) for object recognition. We refer the proposed
approach which is based on the concepts of cluster-centric local
question mining and batch-based question answering as Recogni-
tion via Image and Batch-based local question answering (RIBQ). In
this section, we first explain the overview of the proposed approach.
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Figure 1: Recognition process in RIBQ.

Table 1: Commonly used terms and their notations

Notations Terms
t t th time-step
N Number of question in the batch
Q = {q1,q2,. . . ,qn } Questions/attributes
Qt Un-asked question set till t
C = {c1, c2,. . . , cm } classes
ut Set of user responses collected at t
U t Set of all user responses collected till t
Ct Probable classes after t
CSt Set of clusters at t
π t= {π t1 , . . . ,π

t
m } Class-probability estimates for c1(π t1 ),

. . . , cm (π tm ) given image x andU t

CAV= Class-attribute vectors for
{CAV (ck )∀k ∈ 1 . . .m} c1(CAV (cm )), . . . , cm (CAV (ck ))

CAV t= Probabilistic class-attribute vectors at t
{CAV t (c1)∀k ∈ 1 . . .m} for c1(CAV t (cm )), . . . , cm (CAV t (ck ))

ρx= Class-probability estimates for
p(ck |x)∀k ∈ 1 . . .m c1, . . . , cm given image x
LQt Set of cluster-centric local questions at t

Next, we present the details of question mining and response mod-
eling stages in RIBQ.

4.2.1 Overview
Table 1 shows the commonly used terms and their notations. The
recognition process of the proposed approach is depicted in Figure
1. The question mining stage consists of two steps: A) Dividing
CAV t into N clusters and B) Mining N cluster centric local questions.
The response modelling stage consists of two steps: C) Collecting
user responses and D) Computing probable classes.

At t = 0, the proposed approach takes the class-attribute vectors
CAV , number of questions N in a batch, probable classes C0 =

C , and class-probability estimates π 0 as input. If pictures are not
available, we consider all the classes as probable initially. So, the
class probability estimates in π 0 are equal for all the classes. If
pictures are available, class probability estimates in π 0 are initialized
to probabilistic class predictions produced by a vision-basedmethod.
The steps at t are as follows: A) The probabilistic class-attribute
vectors CAV t at t are computed and then clustered into a set of
clusters CSt . B) From N clusters in CSt , N cluster-centric local
questions LQt are mined. C) A set ut of user responses to the
derived LQt are collected from the user. D) Using ut , CAV and
vision’s predictions ρx (if pictures are available) class-probability
estimates π t and the probable classes Ct are computed which are
input to the next time-step t + 1. The above steps are repeated
until the preset number of time-steps. In the end, the class with the
maximum probability estimate is returned as the final prediction.

4.2.2 Question Mining Stage
Question mining stage consists of 2 steps A and B.

A) Dividing CAV t into N clusters
The inputs to this step are the number of clusters N , class at-

tribute vectors (Definition 3.3), probable classes Ct−1 and class-
probability estimates. Here, Ct−1 and π t−1 are the outputs of re-
sponse modeling stage at t − 1. After computing probabilistic class-
attribute vectors CAV t at t , N non-overlapping clusters CSt are
computed from CAV t . The details are as follows.

(i) Computing CAV t : For each class ck in Ct−1, we multiply
its class-probability estimate π t−1(ck ), and its class-attribute
vector for obtaining the probabilistic class-attribute vector
of ck at t denoted by CAV t (ck ).

CAV t (ck ) = π t−1(ck ) ∗CAV (ck ), ck ∈ Ct−1 (1)

Now, CAV t = {CAV (ck ), ∀ck ∈ Ct−1}
(ii) ClusteringCAV t into N clusters:We perform centroid ini-

tialized K-means clustering on the obtainedCAV t for getting
the set of clusters CSt . At a time-step t , in K-means cluster-
ing, instead of initializing centroids randomly, we initialize
them to the final centroids of clusters from the previous
time-step t − 1. So, the clustering algorithm converges faster
[1] thereby reducing the computation time.

B) Mining N cluster-centric local questions
The input to this step is the set CSt of clusters produced in the

preceding step. The output is the set LQt of the mined questions to
be posed.

Given the set Qt of n previously unasked questions till t and the
set CSt of N clusters at t , the issue is to select a potential question
from each cluster. Ideally, we should select a question with high
discriminating power such that the user’s answer to the question
prunes most of the improbable classes.

To select such questions, we have developed the followingmethod
based on the observation that the classes within a cluster are simi-
lar and classes from different clusters are dissimilar. We extract an
attribute for each cluster which is exclusively predominant in that
cluster either by presence or absence. As a result, we get multiple dis-
criminative attributes, which we refer to as Cluster-centric local
attributes (LQt ). The resultant attributes LQt are later posed as
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questions to the user. To find the exclusively predominant attribute
for each cluster, we propose the concept of locality degree.

We present the details of the proposed question mining approach
after explaining the notions of compound cluster representative vector
and locality degree of an attribute in a cluster.

- Compound cluster representative vector of clusterCStj (CR
t
j ):

CRtj is the probability vector < CRt1, j ,CR
t
2, j . . . ,CR

t
n, j > where,

CRti, j is the probability of presence of qi inCStj .CR
t
j is obtained by

the summation of probabilistic class-attribute vectors (Equation 1)
of all the classes contained in clusterCStj . We denote the collection
of compound cluster representatives of all clusters in CSt as CRt .

Given a cluster CStj , we compute CRtj as follows:

CRtj =
∑

CAV t (ck )∈CS tj

CAV t (ck ) (2)

- Locality degree of an attribute qi in cluster CStj : LD(i, j) de-
picts the degree of an attribute qi ’s exclusive presence or absence
in the cluster CStj . LD(i, j) indicates the expected probability of qi
occurring in CStj and expected probability of qi not occurring in
every other cluster CStj′ . So, for a given CS

t
j , LD(i, j) is computed

by taking the mean of the differences of the probability of occur-
rence of qi in CStj to that in every other cluster. The computed
mean’s absolute value represents the locality degree qi in CStj and
its sign represents qi ’s dominance either by presence(+ve) or by
absence(−ve). If there is only a single cluster CStj , we compute
LD(i, j) as the maximum of the probability of qi ’s presence and
probability of qi ’s absence in the cluster CStj .

LD(i, j) =


abs

(∑
j,j′ (CRti, j−CR

t
i, j′ )

N−1

)
if size(CRt ) ≥ 2

max(CRti, j , 1 −CRti, j ) if size(CRt ) = 1

 (3)

where j, j ′ ∈ 1..size(CRt ).
Example 1., Consider three representative vectors of CRt to be

[0.01,0.6,0.1], [0.4,0.2,0.8], and [0.5,0.1,0.02].
Then LD(0, 1) = abs( (0.01−0.4)+(0.01−0.5)2 ) = 0.44.

The steps for computing cluster-centric local questions is as
follows. Algorithm 1 shows the pseudocode.

(1) Compute compound cluster representatives of all clusters in
CSt (Line 2).

(2) For each attribute qi in Qt ,
(2.1) Compute qi ’s locality cluster LC(i) which is the cluster

in which locality degree of qi is the highest (Line 7). Let
LC(i) be CStJ in which qi ’s locality degree is LD(i, J ).

(2.2) If local attribute information field forCStJ (LAI (J )) is either
empty or if LD(i, J ) is greater than an existing locality
degree in LAI [J ], update LAI (J ) (Lines 8-9).

(3) Add the questions stored in the local attribute information
fields of clusters to LQt and remove them from Qt (Line 11).

(4) Repeat steps 2,3 till each cluster gets its question by removing
the clusters which have mined a local question along with
their representatives from the respective sets (Line 12).

Algorithm 1 Cluster-centric local question mining at t

Input: CSt : set of N clusters at t .
Output: LQt : set of N cluster-centric local questions to be posed
at t .
1: LQt={}. If t = 0, Qt = {q1, . . . ,qn }, else Qt = Qt−1

2: Compute CRt = {CRt1, . . . ,CR
t
N } using Equation 2.

3: while CSt is not empty do
4: for j ∈ 1..size(CSt ) do
5: LAI [j] = [False, ∅, ∅]

6: for all the attributes in Qt do
7: LC(i) = CStJ = arдmax(LD(i, J )), J ∈

{arдmax(CRti, j ),arдmin(CRti, j )}, j ∈ 1 . . . size(CRt )
8: if LAI [J ][0] == False OR LAI [J ][2] ≤ LD(i, J ) then
9: LAI (J )= [True,qi ,LD(i, J )].
10: for all CStj ∈ CS

t with LAI [j][0] == True do
11: LQt .add(LAI [j][1]), Qt .remove(LAI [j][1])
12: CSt .remove(CStj ), CR

t .remove(CRtj ),

4.2.3 Response modelling stage
Response modelling stage consists of 2 steps C and D.

C) Collecting user responses
The input to this step is the set of cluster-centric local questions

to be posed LQt . The output is the set of user responses to LQt .
The user response set to the N questions in LQt is denoted by

ut= {ut1 ,. . .,u
t
N }. Here, uti denotes the user’s response to i

th ques-
tion in LQt . Each response uti =(ai ,ri ), where ai denotes the answer
to the ith question, i.e, ai ∈ {yes/no} (as the questions are binary)
and ri denotes the user’s confidence in his answer, ri ∈ {guessing,
probably, definitely}.

D) Computing probable classes
The inputs to this step are the user response set to LQt , ut and

the class attribute vectors (Definition 3.3). Outputs are the probable
classes and the class probability estimates for all classes computed
based on ut and vision’s predictions (if pictures are available).

The class-probability estimate π tk for every class ck k = 1 . . .m
is computed as the conditional probability of ck being the true class
given image x and the responsesU t collected till t [3].

π t (ck ) = p(
ck

x ,U t ) =
p(U

t ,ck
x )

p(U
t

x )
=

p( U t

ck ,x
) ∗ p( ckx )∑

k p(
U t

ck ,x
) ∗ p( ckx )

(4)

Note that p( U 0

ck ,x
) = 1 ∵ U 0 = {}

When pictures are unavailable, we consider p( ckx ) as uniform prior
probabilities p(ck ). It is assumed that the questions are answered
independently given the class [3]. Equation 4 can then be written
as

π t (ck ) = p(
ck

x ,U t ) =
p(U

t−1

ck ,x
) ∗ p( ut

ck ,x
) ∗ p( ckx )∑

k p(
U t−1
ck ,x

) ∗ p( ut
ck ,x

) ∗ p( ckx )
(5)

where, p(
ut

ck ,x
) =

∏
uti

p(
uti
ck ,x

), uti ∈ ut
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p(
uti
ck ,x

) = p(
ai , ri
ck ,x

) = αri ∗ p(
ai

ck ,x
) = αri ∗ p(

ai
ck

)

p(
ai
ck

) =

{
CAV 0

ck [i], if ai = True
(1 −CAV 0

ck [i]), if ai = False

}
Here, we make the assumption that p( ai

ck ,x
) =p( aick ). It means

that the types of noise or randomness that we see in user responses
is class-dependent and not image-dependent. We use αri to scale
the responses according to the response’s confidence as given by
the user to ensure effective contribution of user’s responses. i.e,

αдuess < αprobably < αdef

Once π t (c1), . . . ,π t (cm ) are calculated, we determine probable
classes Ct at t + 1. A class is considered probable at t + 1 (after t ) if
its class-probability estimate π t (ck ) is not too less than the mean
estimate p( C

U t ,x )Avд . i.e,

Ct = [ck | (p(
C

U t ,x
)Avд − π t (ck )) ≥ γ ∀k ∈ 1, . . . ,m]. (6)

Here, γ is a threshold for pruning.
The probable classes and the class-probability estimates are then

passed as input to the question mining stage for processing in the
next time-step. Algorithm 2 shows the pseudocode.

Algorithm 2 Batch-based response modelling at t

Input: ut= ut1 ,. . .,u
t
N : response set to LQt .

Output: Ct : probable classes after t ,
π t (c1),π t (c2), . . . ,π t (cm ) : class-probability estimates of all
classes after t .
1: for ck , k ∈ 1..m do
2: for uti ∈ ut do
3: Compute π t (ck ) using Equation 5
4: Determine Ct using Equation 6.

5 Experimental results
All the experiments are conducted on an Intel i5 processor with
8GB RAM running Ubuntu Linux operating system. To evaluate
the performance of the proposed method, the experiments are con-
ducted on three datasets: CUB-200-2011 (CUB) [14], Animals with
attributes (AwA2) [15], and aPascal dataset [18]. Table 2 provides
the details about datasets. In Table 2, the notations |Size|, |A| and
|C| denote the number of labelled objects, binary attributes per
object, and classes in the dataset respectively. The attributes for
all the datasets are of binary type. However, the approach in [2]
requires multiple-choice questions. So, we manually created the
same for all the datasets.

We have evaluated the performance of the following approaches.
• B-IQR: Image and Binary question answering based Recog-
nition [3]

• M-IQR: Image andMultiple-choice question answering based
Recognition [2]

• B-RAN: Batch-based random question answering algorithm
implemented by us. In this approach, we select the questions
in the batch randomly. The objective for considering this
approach is to show the effect of cluster-based local question
mining in RIBQ.

• RIBQ: Recognition via Image and Batch-based local Ques-
tion answering, which is the proposed approach.

We simulated the human-in-the-loop paradigm for all the pre-
ceding approaches by scaling the available instance-level attribute
values in the datasets to integrals in the range [-3,3] (excluding 0),
where a positive value {1, 2, 3} signifies the response ’yes’ and a neg-
ative value {-1, -2, -3} signifies ’no’ with the magnitude indicating
the confidence of the user response (guessing, probably, definitely).
For example, if the user responded with -2 for a question, then it
indicates the response as ’no’ with confidence as ’probably’.

The parameters of our simulation are selected to closely reflect
real-world application requirements. Table 3 summarizes the pa-
rameters of our performance evaluation. The parameter Resp is
employed to vary the total number of questions to be posed to the
user (default=30). To vary the number of time-steps, we employ the
parameter Level (default=15). To vary the number of questions in
a time-step, we employ the parameter N (default=2). We employ
the parameter γ (default=10−5) to vary the number of improbable
classes which are pruned at the end of each time-step. The parame-
ters αprobably and αдuess are employed to vary the weights of the
user’s response: probably (default=0.75) and guessing (default=0.25)
respectively. The performance was observed to be the best at the
chosen default values for γ , αprobably and αдuess . We have not
presented the actual results due to space limitation.

The following performance metrics are employed.

• Acc1: % of correct predictions in the test dataset without
considering pictures.

• Acc2: % of correct predictions in the test dataset by consid-
ering pictures.

• CT: Average time (in seconds) taken for a target object’s
recognition. (It does not include the time consumed by the
user a.k.a. human-in-the-loop to give the response.)

We use a test-train split of 50:50 on all the datasets. We use Pedro
Morgado’s publicly available source code [8] as the vision algorithm
on the datasets CUB and AwA2.

Table 2: Dataset details
Data |Size| |A| |C|
CUB 11,788 312 200
AwA2 37,322 85 50
aPascal 12,695 64 20

Table 3: Parameter details
Param Def Variations
|Resp| 30 10,20,40,50,60,70
N 2 1,4,8
Level 15 5,10,20,25,30
γ 10−5 10−1,10−3,10−7
α prob 0.75 0.5,0.8,0.9
α дuess 0.5 0.25,0.6,0.8

Table 4: Performance results at default parameter values

CUB AwA2 aPascal
Acc1 Acc2 CT Acc1 Acc2 CT Acc1 CT

RIBQ 34.6 83.8 7 67.2 85.8 4 82.5 3
B-IQR 29.6 75.6 167 66.2 83.3 76 81.1 68
M-IQR 21.8 67.3 64 51.4 74.5 28 73.9 23
B-RAN 12.6 56.2 2 42.7 69.4 2 68.5 2
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5.1 Performance comparison
Table 4 shows the performance results of the approaches for Acc1,
Acc2, and CT on the datasets at default parameter values (Table
3) except Level as Level and N are inter-dependent at fixed Resp
(Resp = Level∗N ) and N varies with each approach. Between B-IQR
and M-IQR, the results show that M-IQR does well in terms of CT
due to the multiple-choice questions employed in M-IQR. However,
the performance in Acc1, Acc2 for M-IQR is lesser over B-IQR due
to the lesser diversity among the questions in M-IQR compared to
B-IQR. The B-RAN approach shows the best CT performance and
lowest Acc1 and Acc2 as this approach selects a batch of questions
at random. Between the proposed RIBQ and B-RAN, as both are
batch-based approaches, CT performance of RIBQ is comparable
to the best performing B-RAN. However, for RIBQ, Acc1 and Acc2
are high over B-RAN due to the careful selection of questions in
RIBQ. The CT in both B-IQR and M-IQR is significantly higher
than that in RIBQ due to the costly information gain metric used
in B-IQR and M-IQR. The Acc1 and Acc2 are high for RIBQ than
B-IQR and M-IQR because of the cluster-centric local question
mining method employed in RIBQ. Overall, the results show that
our proposed approach, RIBQ significantly improves accuracy over
all the approaches and CT over B-IQR and M-IQR due to batch-
based cluster-centric local question mining.

As an alternative to RIBQ, we considered an experimental ap-
proach by extending B-IQR to multiple binary questions. In the
experimental approach, at each time-step, N attributes with the
highest information gain are posed as questions to the user. How-
ever, the overlap between the discriminative information gained by
the chosen N attributes is very high. As a result, the performance
of the experimental approach is even lesser than B-IQR, so we have
not presented the comparison results due to space limitation.

5.2 Effect of variation in Resp

The parameter Resp is employed to vary the total number of ques-
tions to be posed to the user. Fig. 2 shows the results of the ap-
proaches on the datasets w.r.t. variations in Resp. From Fig. 2(a),
we can see that with an increase in Resp, RIBQ improves Acc1 sig-
nificantly over other approaches on CUB dataset. The results show
that RIBQ at N=2 improves the Acc1 performance over B-IQR, and
M-IQR, due to the multiple discriminative questions posed by RIBQ.
Between B-IQR and M-IQR, B-IQR performs better for all Resp val-
ues, since the diversity of the responses received to questions in
B-IQR is better than that in M-IQR as the net response for a single
multiple-choice question in M-IQR is the total number of choices
of the question (say a user selects one of the choices, it implies that
other choices are not possible). B-RAN fails to improve Acc1 due
to the random nature of posed questions. The Acc1 performance
on AwA2 dataset in Fig. 2(b) and aPascal dataset in Fig. 2(c) exhibit
a similar trends as that of Fig. 2(a). Notably, as the number of at-
tributes and classes are few, the performance improvement of RIBQ
on AwA2 and aPascal over other approaches is less as compared to
the performance improvement on CUB dataset. The results demon-
strate that RIBQ exhibits superior performance over other methods
with the increase in the number of attributes and classes.

Similar to the results of Fig. 2(a), the results of Fig. 2(d) and
Fig. 2(e) show that, with the increase in Resp, the proposed RIBQ
improves Acc2 over other approaches on CUB dataset and AwA2

datasets. The justification for the performance improvement is sim-
ilar to the case of performance improvement of Acc1. The results
of Fig. 2(f) show CT results on CUB dataset with the increase in
Resp. As expected, B-RAN at all responses gives the lowestCT over
other approaches due to its batch-basele to gain more informa-
tion by posing more number of questions compared to other appd
random question answering. CT for RIBQ is slightly higher than
B-RAN as it has to compute cluster-centric local questions. CT in
B-IQR is significantly high due to the high computational overhead
in gain-based question mining. M-IQR improves performance in
comparison to B-IQR by posing a single multiple-choice question
every time-step leading to reduced computation. The results of Fig.
2(g) and Fig. 2(h) show CT results on AwA2 and aPascal datasets
respectively with the increase in Resp. The results trend are similar
to the performance results shown in Figure 2(f).

It can be noted that, even when the value of Resp is kept same for
all four approaches, the proposed approach RIBQ is giving better
Acc1, Acc2 and CT over other approaches for all datasets. It means
that RIBQ is posing questions with better discriminating power as
compared to other approaches.

5.3 Effect of variation in Level

The parameter Level is employed to vary the total number of time-
steps. Fig. 3 shows the results of the approaches on the datasets
w.r.t. variations in the value of parameter Level . The results in Fig.
3(a) show that with the increase in Level , the proposed approach,
RIBQ improves Acc1 significantly over other approaches on CUB
dataset. This is because, with the increase in Level , the number of
diverse questions asked by RIBQ is double (as default N=2) of that
asked in B-IQR and M-IQR leading to faster knowledge gain. Also,
M-IQR performs slightly better than B-IQR as Level increases. The
reason is that for any Level value, M-IQR poses Level number of
informative multiple-choice questions whereas B-IQR poses Level
number of informative binary questions. As a result, the knowledge
gain in M-IQR is slightly higher than in B-IQR leading to its better
performance. B-RAN fails to improve performance due to the ran-
dom nature of posed questions every level. The Acc1 performance
on AwA2 dataset in Fig. 3(b) and aPascal dataset in Fig, 3(c) exhibit
a similar trend to Fig. 3(a) in the performance improvement.

Similar to the results of Figure 3(a), the results of Figure 3(d)
and 3(e) show that, with the increase in Level , RIBQ improves
the Acc2 performance over other approaches on CUB dataset and
AwA2 datasets. The reason for the performance improvement is
the same as that mentioned in the case of Acc1. The results of Fig.
3(f), 3(g), 3(h) showCT results on CUB, AwA2 and aPascal datasets
respectively with the increase in Level . The trend and justification
for the trend is similar to that in 2(f).

It can be noted that, even when the value of Level is kept same
for all four approaches, the proposed approach RIBQ is giving better
Acc1, Acc2 and CT over other approaches for all datasets. It means
that RIBQ is able to gain more information by posing more number
of questions compared to other approaches.

5.4 Effect of variation in N

The parameter N is employed to vary the number of questions to
be posed to the user at each time-step. Table 5 reports the perfor-
mance of the four methods in the comparison metrics at varying N .
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Fig 2: Effect of variations in Resp Fig 3: Effect of variations in Level

(Note that in this experiment the value of Level is kept constant.
Also, as the value of N increases the total number of questions Resp
increases.) As expected, Acc1 and Acc2 of RIBQ increase with N
for three datasets. The reason is that as N increases, more num-
ber of questions are processed at each time-step. Also, it can be
observed thatCT is increasing slightly with N for CUB. This is due
to increased computation in identifying more number of discrimi-
nating attributes (questions) in a batch as N increases. Overall, the
results show that there is scope to improve the performance using
batch-based local question answering.

6 Conclusions
Fine-grained object recognition has received much attention with
the advent of neural nets due to its potential applications. How-
ever, many of the existing works are either excessively picture-
dependent making them cost-sensitive or are too slow and weak.
In this paper, we propose a batch-based local feature extraction
method leveraging a human-in-the-loop’s input for making the

Table 5: Effect of variation in N
CUB AwA2 aPascal

RIBQ Acc1 Acc2 CT Acc1 Acc2 CT Acc1 CT

N=2 34.6 83.8 2.4 51.3 82.6 1.3 69.6 0.6
N=4 38.3 90.1 2.6 78.4 88 1.3 79 0.6
N=6 40.5 91.6 2.7 87.5 91.3 1.4 81.9 0.6
N=8 42.2 91.9 2.8 92.2 95.2 1.4 82.7 0.7

recognition process cost-sensitive, robust and fast. When pictures
are available our model facilitates the plug-in of vision algorithms
into the framework for better performance. Experiments on three
real datasets show significant improvement in performance with
respect to both the accuracy and computation time.

As a part of the futurework, we are planning to investigate the ap-
plicability of the proposed approach in building human-in-the-loop
based decision support systems in agriculture and medial domains
for crop problem identification and disease diagnosis respectively.
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