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Abstract. This paper addresses the problem of multiclass classification
with corrupted or noisy bandit feedback. In this setting, the learner may
not receive true feedback. Instead, it receives feedback that has been
flipped with some non-zero probability. We propose a novel approach to
deal with noisy bandit feedback based on the unbiased estimator technique.
We further offer a method that can efficiently estimate the noise rates,
thus providing an end-to-end framework. The proposed algorithm enjoys
a mistake bound of the order of O(

√
T ) in the high noise case and of the

order of O(T
2/3) in the worst case. We show our approach’s effectiveness

using extensive experiments on several benchmark datasets.
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1 Introduction

In machine learning, multiclass classification is of particular interest due to its
widespread application in several domains such as digit-recognition [17], text
classification [18] and recommender systems [14]. Some of the well-known batch
learning approaches for multiclass classification are discussed in [13,1,5,21]. An
extension of Perceptron [23] to the multiclass setting was first proposed in [11],
which was later modified by [14] to deal with bandit feedback setting. Unlike
the full information setting, the bandit setting’s learner receives only partial
feedback, indicating whether the predicted label is correct or incorrect, popularly
known as bandit feedback. The learner’s ability to learn a correct hypothesis
under bandit feedback finds several web-based applications, such as sponsored
advertising on web pages and recommender systems as mentioned by [14]. In the
typical setting of the recommender system, when a user makes a query to the
system, then the user is presented with a suggestion based on the past browsing
history; finally, the user responds to the suggestion, either positively (clicking it)
or negatively (not clicking it). However, the system does not know the behavior
of the user if presented with other suggestions.

Banditron [14] uses an exploitation-exploration scheme proposed in [3]. When
it updates, it replaces the gradient of the loss function with an unbiased estimator
of the gradient. When the data is linearly separable, the expected number of
mistakes made by Banditron is shown to be O(

√
T ). In the general case, the
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Fig. 1: Three kinds of supervised learning (a) Full Information Setting: In this setting,
the learner receives the actual class label. (b) Bandit Feedback Setting: A bandit
feedback is revealed to the learner, indicating whether the predicted label is correct
or not. (c) Noisy Bandit Setting: The learner receives noisy bandit feedback (noisy
feedback is received by flipping the correct feedback with some small probability).

expected number of mistakes of Banditron is O
(
T 2/3

)
. Another bandit algorithm,

named Newtron [12], is based on the online Newton method. It uses a strongly
convex objective function (adding regularization term with the loss function)
and Follow-The-Regularized-Leader (FTRL) strategy to achieve O(log T ) regret
bound in the best case and O

(
T 2/3

)
regret bound in the worst case. Second-

order Perceptron is also extended in bandit feedback setting by Crammer, and
Gentile [6]. It uses upper-confidence bounds (UCB) [2] based approach to handle

exploration-exploitation and achieves regret bound of O
(√

T log(T )
)

Beygelzimer

et al. [4] proposed efficient algorithms under bandit feedback when the data is
linearly separable by a margin of γ. They show that their algorithm achieves a
near-optimal bound of O (K/γ) under strong linear separability condition [4].

In all the above approaches, it is assumed that the user has provided correct
bandit feedback. There are many practical situations where the bandit feedback
can become noisy too. In such a scenario, this means that the feedback that
indicates that the predicted label is identical to the actual label may be incorrect
with some non-zero probability. Consider the following examples of noisy bandit
feedback. In the recommendation system, there are few cases in which a user
may accidentally click (positive feedback) the recommended ad. In this case, the
true feedback should be negative (no clicks). However, instead of negative, the
recommender system receives positive feedback. Fake reviews and ratings are also
posted using automated bots, which can boost the visibility of those products on
recommendation platforms [15].

In this paper, we model the noisy bandit feedback by assuming an adversary
between the learner and the environment. Whenever the learner asks a binary
query, the environment releases the actual feedback. Then, the adversary flips the
actual feedback with probability ρ and releases it to the learner. The problem of
multiclass classification under noisy bandit feedback is as follows: on each round,
the learner is given an instance vector x; the learner predicts a label ŷ; then the
learner receives the corrupted feedback fρ. The noisy version of this problem is
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more challenging because, besides bandit feedback, the learner also has to deal
with noise or corruption present in the feedback. To learn a robust classifier in
the presence of noisy bandit feedback, we propose an unbiased estimator h(fρ)
of the actual feedback f . The goal is to maximize the sum of h(f tρ), which in
expectation, turns out to be the maximizing sum of actual feedbacks. Similar
ideas have been explored to handle label noise in classification problems [20]
under full information setting. This is the first work proposing a robust multiclass
classifier under noisy bandit feedback to the best of our knowledge.

Key Contribution of The Paper:

1. We propose a robust algorithm for learning multiclass classifiers under noisy
bandit feedbacks. The proposed algorithm enjoys a mistake bound of O(

√
T )

in the high noise case and O(T 2/3) in the worst case.
2. We also propose an algorithm for noise rate estimation.
3. We validate our algorithms through experiments on benchmark datasets.

2 Multiclass Classification

In the multiclass classification, the goal is to learn a function which maps
each example to one of the K categories. Let g : X → [K] be the multiclass
classifier where X ⊆ Rd and [K] = {1, . . . ,K}. A multiclass classifier can be
modeled using a weight matrix W ∈ RK×d as g(x) = arg maxj∈[K] wj · x, where

wj is the jth row of matrix W and x ∈ X . We need to identify the weight
matrix W to find the classifier. In order to identify the parameters in W of the
underlying classifier, we use training data of the form {(x1, y1), . . . , (xT , yT )}
where (xt, yt) ∈ X × {1, . . . ,K}, ∀t ∈ [T ]. The performance of the classifier
f described by parameters W on example xt is measured using 0-1 loss as
L0−1(g(xt), yt) = I[g(xt) 6= yt].1 L0−1 is difficult to optimize. In practice, we
use convex surrogates of L0−1. LH is one such surrogate [7] described as follows.

LH(W, (xt, yt)) = max
j 6=yt

[1−wyt · xt + wj · xt]+ (1)

Here [a]+ = max(0, a). Loss LH becomes 0 when wyt · xt −wj · xt ≥ 1, ∀j 6= yt.

Online Multiclass Classification: Full Information Case

In the full information case, the learner receives the actual class label of examples
in every trial. A large margin Perceptron algorithm for multiclass classification
using LH is proposed in [8]. The algorithm works as follows. The algorithm starts
with W 1 as a zero matrix. Let W t be the weight matrix, and xt be the example
presented at trial t, to algorithm. Then the algorithm predicts the labels ŷt as

1 Here, I[A] = 1 when the predicate A is true and 0 otherwise.
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ŷt = arg maxj∈[K] wt
j ·xt. Now it receives the true class label yt of xt. Algorithm

incurs a loss LH(W t, (xt, yt)) and updates the parameters as W t+1 = W t + U t.

U tr,j =
[
I[yt = r]− I[ŷt = r]

]
xt,j . (2)

This algorithm converges in finite iterations if the data is linearly separable [8].

Online Multiclass Classification: Bandit Feedback Case

In the bandit feedback setting [14], the learner can only know whether the
predicted label is correct or not. Banditron [14] modifies the Perceptron algorithm
to deal with the bandit feedback. Let W t be the weight matrix in the beginning
of trial t and xt be the example presented at trial t. Let ŷt = arg maxj∈[K] wt

j ·xt.
Banditron defines a probability distribution pt on class labels as follows.

pt(i) = (1− γ)I [i = ŷt] +
γ

K
(3)

Here, γ ∈ [0, 1) is the probability of exploration. The algorithm predicts the
label ỹt, which is randomly drawn from the distribution pt. The algorithm then
receives a feedback f t = I[ỹt = yt]. Banditron updates the weight matrix as

W t+1 = W t + Ũ t where Ũ tr,j = xt,j

(
I[yt = ỹt]I[ỹt = r]

pt(r)
− I[ŷt = r]

)
.

3 Learning Using Noisy Bandit Feedback

In the noisy feedback setting, an adversary is present between the learner and the
feedback, which manipulates the feedback to confuse the learner. It is hypothetical
to assume noise-free data [15] in the real world. So, one can find many real-
world applications which are more appropriately modeled using a noisy feedback
setting. For example, in a click-based recommendation system, we try to model
the user behavior based on the clicks. These clicks are nothing but the bandit
feedbacks, which are assumed to describe whether the user liked the recommended
ad/product. Indeed, a user clicking the ad (or like the product) and likes it are
two correlated events. However, the user may like the ad and does not click on it.
On the other hand, the user may not like the ad but clicks on it (accidentally or
in the absence of other exciting ads). These clicks are noisy as each user click
does not necessarily mean that they agree with the recommended ad/product.

In this paper, we model the noisy bandit feedback as follows. Let there
be an adversary which flips the true feedback, f , with a non-zero probability
and generates noisy feedback. We denote the noisy bandit feedback by fρ. Let
P (fρ = 1|f = 0) = ρ0, P (fρ = 0|f = 1) = ρ1 be the noise rates (ρ1 + ρ0 < 1).

Proposed Approach

Here, we propose a robust algorithm that can learn the true underlying classifier
given noisy bandit feedback. To deal with the noisy or corrupted feedback, we



Learning Multiclass Classifier Under Noisy Bandit Feedback 5

propose a modified or proxy feedback h(fρ), which is an unbiased estimator of
true feedback f , as follows. Given the noisy feedback fρ, Lemma 1 shows how to
construct an unbiased estimator of the true feedback f .2

Lemma 1. Let f t = I[ỹt = yt] be the true feedback. Let h(f tρ) be defined as,

h(fρ) =
(1− ρf ′ρ)fρ − ρfρf

′

ρ

1− ρ0 − ρ1
(4)

where f
′

ρ = 1− fρ. Then, Eftρ [h(f tρ)] = I[ỹt = yt] = f t.

Instead of noisy feedback fρ, we use h(fρ) (see eq (4)) which is an unbiased
estimator of the true feedback f (Lemma 1). Similar ideas have been used to
deal with the label noise in full information case [20]. We are now in a position
to state a robust classifier for noisy bandit feedback. When there is no noise (i.e,
ρ0 = ρ1 = 0), we see that h(fρ) = fρ = f . Thus, under noise-free case, h(fρ)
becomes same as the noise-free bandit feedback f . At each round, the learner
finds ŷt = arg maxj∈[K] (wt

jx
t) and defines a distribution P t over the class labels

as described in eq (3). Now, it samples a label ỹt randomly from P t. It receives
noisy bandit feedback f tρ. We find h(f tρ) and update as W t+1 = W t +Ht, where

Ht
r,j = xtj

(
h(f tρ)I[ỹt = r]

P t(r)
− I[ŷt = r]

)
. (5)

Ht has two sources of randomness, namely, ỹt (randomness used in the RCNBF
algorithm) and f tρ (randomness due to noise). Lemma 2 shows that the update
matrix Ht used in RCNBF is an unbiased estimator of the matrix U t (used in
multiclass Perceptron), described in eq (2).

Lemma 2. Suppose Ht be the update matrix as defined in eq (5) and let U t be
the matrix as defined in eq (2). Then, Eỹt,ftρ [H

t] = U t, where Eỹt,ftρ [H
t] is the

expected value conditioned on y1, · · · , yt−1.

We keep repeating these steps for T trials. Complete details of the approach are
given in Algorithm 1.

Mistake Bound Analysis of RCNBF

In this section, we derive the mistake bound for the RCNBF (Algorithm 1). To
do that, we first show that the expected value of the norm of Ht is bounded.

Lemma 3. Let Ht be defined as in eq (5) and β = 1− ρ0 − ρ1. Then,

Eỹt,ftρ [
∥∥Ht

∥∥2] ≤
∥∥xt∥∥2(A1I[yt 6= ŷt] +A2I[yt = ŷt]

)
where A1 = 2K

γ + 2ρ0(1−ρ0)K
βγ + Kρ1

β2γ + ρ0(1−ρ0)K2

β2γ2 , A2 = 2γ+ ρ1
β2(1−γ) + ρ0(1−ρ0)K2

β2γ .

2 All the omitted proofs can be found in the supplementary material.
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Algorithm 1 Robust Classifier for
Noisy Bandit Feedback (RCNBF)

Input: γ ∈ (0, 0.5), ρ0, ρ1 : ρ0 + ρ1 < 1
Initialize: Set W 1 = 0 ∈
RK×d

for t = 1, 2, · · · , T do
Receive xt ∈ Rd.
Set ŷt = arg maxr∈[K](w

t
r · xt)

Set P t(r) = (1−γ)I[r = ŷt] + γ
K
, ∀r

Randomly sample ỹt according to P t.

Predict ỹt and receive feedback f tρ
Calculate h(f tρ) using

h(f tρ) =
(1−ρ

ft
′
ρ

)ftρ−ρftρ
ft
′
ρ

1−ρ0−ρ1

Compute Ht ∈ RK×d such that

Ht
r,j = xtj

(
h(ftρ)I[ỹ

t=r]

P t(r)
− I[ŷt = r]

)

Update: W t+1 = W t +Ht

end for

Algorithm 2 RCNBF with Implicit
Noise Estimation (RCINE)

Input: γ ∈ (0, 0.5), Ns
Initialize: W 1 = 0 ∈ RK×d, ρ̂0 = ρ̂1 =
0,S

for t = 1, 2, · · · , T do
Receive xt ∈ Rd.
Set ŷt = arg maxr∈[K](w

t
r · xt)

Set P t(r) = (1− γ)I[r = ŷt] + γ
K
, ∀r

Randomly sample ỹt according to P t.
Predict ỹt and receive feedback f tρ
Calulate h(f tρ) using

h(f tρ) =
(1−ρ̂

ft
′
ρ

)ftρ−ρ̂ftρ
ft
′
ρ

1−ρ̂0−ρ̂1

Define Ht ∈ RK×d such that

Ht
r,j = xtj

(
h(ftρ)I[ỹ

t=r]

P t(r)
− I[ŷt = r]

)

Update: W t+1 = W t +Ht

Data: Push {(xt, ỹt), f tρ} in S
if t%Ns == 0 then
ρ̂0, ρ̂1 = NREst(S), Clear S

end if
end for

Note that the norm of the matrix Ht is inversely proportional to β = 1−ρ0−ρ1.
Thus, if the noise rate increases, the upper bound on the norm of Ht will increase.
We now find the expected mistake bound of the RCNBF algorithm.

Theorem 1 (Mistake Bound). Let x1, · · · ,xT be the sequence of examples
presented to the RCNBF in T trials. Let, ‖xt‖ ≤ 1,∀t ∈ [T ] and yt ∈ [K].

Let RH =
∑T
t=1 LH(W ∗; (xt, yt)) and D = ‖W ∗‖2F =

∑K
r=1

∑d
j=1(W ∗i,j)

2 be the
cumulative hinge loss and the complexity of any matrix, W ∗. Let ρ0 and ρ1 be
the noise parameters. Then the expected number of mistakes made by RCNBF is
upper bounded as E[M ] ≤ RH +

√
A1DRH + 3 max

{
A1D,

√
A2DT

}
+ γT . Here,

expectation is with respect to all the randomness of the algorithm.

Before moving, let us find the optimal value for the exploration-exploitation
parameter γ and the corresponding mistake bound.

Corollary 1. (Zero Noise Case, ρ0 = ρ1 = 0) In this case the mistake bound of
RCNBF is of the order O(

√
T ) which can be obtained by setting γ = O(T−1/2).
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Algorithm 3 Noise Rate Estimator (NREst)

Input: S = {
(
xt, ỹt), f tρ

)
: t = 1 . . . T}

Train a network using S which approximates q(x, ỹ) = p̂(fρ = 1|x, ỹ)
Find xj = arg maxx∈X p̂(fρ = 1|x, ỹ = j), j ∈ [K]
Set 1− ρ1 = p̂(fρ = 1|xl, ỹ = l) and ρ0 = p̂(fρ = 1|xk, ỹ = l)

Output: ρ0, ρ1

Corollary 2. (High Noise Case, ρ0, ρ1 ≤ min
{

0.5, O(
√

D
T )
}

) In this case, we

obtain the bound E[M ] ≤ O(
√
DTβ−1) for γ = O(

√
D
β2T ).

Corollary 3. (Very High Noise Case, ρ0, ρ1 ≤ 1) In this case the mistake bound
of is O(T 2/3β−1) for γ = O(T−1/3β−1).

We see that the above mistake bound is inversely proportional to β, i.e., as
we increase the noise rate, the mistake bound will increase, which is as expected
and also aligns with the batch mode algorithm in the presence of label noise [20].

Noise Rate Estimation

Here, we propose an approach for estimating ρ0 and ρ1 which uses ideas presented
in [22,16]. The proposed approach is based on the following Theorem.

Theorem 2. Assume that

1. There exist at least one “perfect example” for every class j ∈ [K]. Which
means, there exists x∗j ∈ X (prefect example for class j) such that p(x∗j ) > 0
and p(y = ỹ|x∗j , ỹ = j) = p(y = j|x∗j ) = 1.

2. There exist sufficient corrupted examples to estimate p(fρ|x, ỹ = l) accurately.

Then it follows that 1 − ρ1 = p(fρ = 1|x∗l , ỹ = l), l ∈ [K] and ρ0 = p(fρ =
1|x∗k, ỹ = l), l 6= k, where x∗l and x∗k are perfect examples of class l and k.

Theorem 2 assumes that for every class j ∈ [K], there exists a perfect example
x∗j such that p(f = 1|x∗j , ỹ = j) = p(y = j|x∗j ) = 1. We use this idea to estimate
the noise rates as follows. We use the data generated by RCNBF under noisy
bandit feedback setting. Using this, we create a training set S with following
sequence of examples {(xt, ỹt), f tρ} for t = 1 . . . Ns. Note that the input to the
network is xt concatenated with ỹt. This is the major difference with the noise
rate estimation presented in [22]. We use S to train a neural network with a
output layer of size 2 and softmax as the activation function of the output layer.
Our classification problem is binary however following [24], we prefer to use
softmax with one-hot output instead of sigmoid as it allows the network to learn
non-convex boundaries. This network approximates q(x, ỹ) = p̂(fρ = 1|x, ỹ). Now
we find perfect example for each class. A perfect example x∗j for class j is the
one for which p̂(y = j|x∗j ) = p̂(fρ = 1|x∗j , ỹ = j) = 1. We can find x∗j as

x∗j = arg max
x∈S

p̂(fρ = 1|x, ỹ = j), j ∈ [K] (6)
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Table 1: Estimated noise rates (rounded to 3 decimal digits)
Actual Noise
Rates

Estimated Noise Rates

MNIST USPS Fashion-MNIST

ρ0 ρ1 ρ̂0 ρ̂1 ρ̂0 ρ̂1 ρ̂0 ρ̂1

0.000 0.000 0.063 0.029 0.017 0.000 0.090 0.004
0.150 0.150 0.172 0.147 0.181 0.153 0.189 0.140
0.250 0.250 0.248 0.264 0.258 0.257 0.264 0.259
0.200 0.400 0.211 0.439 0.194 0.419 0.215 0.393
0.400 0.200 0.400 0.260 0.393 0.229 0.404 0.222
0.400 0.400 0.403 0.508 0.402 0.515 0.397 0.502

Now, we can approximate ρ̂0 and ρ̂1 as 1 − ρ̂1 = p̂(fρ = 1|x∗l , ỹ = l) and ρ̂0 =
p̂(fρ = 1|x∗k, ỹ = l). The noise estimation approach is described in Algorithm 3.

Learning using Noisy Bandit Feedback with Implicit Noise Rate
Estimation

RCNBF (Algorithm 1) runs under the online setting while NREst (Algorithm 3)
is a batch algorithm. With the help of the above two algorithms, we are
proposing a pseudo online mode algorithm, RCNBF with Implicit Noise Estima-
tion(Algorithm 2), which runs under the online setting. The RCINE Algorithm3

uses RCNBF to make predictions and generate dataset S for Noise Estimation.
After every Ns trails, the algorithm updates the estimated noise rate parameters
by running the NREst algorithm on the collected dataset S. The crux of this
setup is that the RCNBF will run in the online mode, while NREst, which is
running parallelly at the same time, will estimate the noise rates parameter ρ̂0
and ρ̂1 and update them repetitively after a small interval of time.

4 Experimentation

We do experiments on various real-world as well as synthetic datasets. The
synthetic dataset is called SynSep. SynSep is a 9-class, 400-dimensional synthetic
data set of size 105. While constructing SynSep, we ensure that the dataset is
linearly separable. For more detail about the dataset, one can refer to [14]. We
also perform experiments on MNIST and Iris datasets from UCI repository [9],
USPS dataset4 and Fashion-MNIST for image classification [25].5.

Feature Extraction for Fashion-MNIST dataset: We first randomly sam-
pled 35, 000 images from the dataset for feature extraction and trained a four-layer
convolutional neural network. The first layer is a convolutional layer with 32
feature maps having a size of 3x3 and a stride of 1. It takes an input of 28 x
28 grayscale images. The convolutional layer is followed by a max-pooling layer

3 The complete code for all the experiments can be found here.
4 https://www.kaggle.com/bistaumanga/usps-dataset
5 The results and further discussion for SynSep and IRIS dataset are included in the

supplementary file due to the space restrictions

https://github.com/Mudit-1999/Learning-Multiclass-Classifier-Under-Noisy-Bandit-Feedback-Code
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Fig. 2: Average error rates of RCNBF, RCINE and other benchmarking algorithms
under noise-free case (first row; ρ0 = ρ1 = 0), low noise case (second row; ρ0 = ρ1 =
0.15), high noise case (third row; ρ0 = ρ1 = 0.40) and mixed noise case (fourth row;
ρ0 = 0.2, ρ1 = 0.4 and fifth row; ρ0 = 0.4, ρ1 = 0.2). Three datasets are used (left to
right): MNIST, USPS and Fashion-MNIST.

having 2x2 as pool size. The next layer is a fully-connected layer with 100 units
and a dropout of the probability of 0.2. The last layer is a fully connected softmax
layer. To extract features, we took the output of the fully connected layer of size
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Fig. 3: Average error rates of RCINE against parameter’s value γ under different noise
rate setting on MNIST.

100. By experimenting on this dataset, we show that our approach can also be
used for learning classifiers for complex datasets.

Benchmark Algorithms and Noise Rate Setting: We present experimental
comparisons of our proposed algorithms (RCNBF and RCINE) with Banditron
[14], Bandit Passive Aggressive [26] and Second Order Banditron Algorithm [4].
Five different settings of noise rate are used. These are (a) ρ0 = ρ1 = 0.0, (b)
ρ0 = ρ1 = 0.15, (c) ρ0 = ρ1 = 0.4, (d) ρ0 = 0.2, ρ1 = 0.4 and (e) ρ0 = 0.4, ρ1 = 0.2.
On each of the different noise setting, we ran our proposed algorithm, RCNBF
(using original noise rates) and RCINE (with initial value of ρ̂0 = ρ̂1 = 0). For
updating the noise rates parameter, the RCINE algorithm, runs the NREst
algorithm after Ns trails on the collected dataset S. NREst algorithm uses a
neural network to estimate the noise rates. Table 1 shows the results of estimation
of noise rates at an intermediate instance of RCINE algorithm.

In NREst algorithm, train-test ratio of 90:10 is taken. Cross-entropy loss is
chosen for comparison. 10% of the training set is used for validation. The mini-
batch size used for training is 128. The activation function for all the network is
ReLU and optimizer is AdaGrad [10] with initial learning rate 0.01 and δ = 10−6.
After training, we apply the estimator to find ρ̂0, 1− ρ̂0, ρ̂1 and 1− ρ̂1 on S. Then
we normalize the values of ρ̂0, 1− ρ̂0 and ρ̂1, 1− ρ̂1 such that they sum up to 1.
From [19,22] we know that the sample maximum is susceptible to the outliers, so
instead of argmax eq (6), we take 89%-percentile.

For MNIST dataset, the architecture consists of two dense hidden layers of size
128 with a dropout of the probability of 0.2. We train the network for 70 epochs.
For the next set of experiments, we consider the USPS dataset. We trained an
architecture with three dense hidden layers of 32, 256, and 32 respectively, with
a dropout of probability 0.2 for 70 epochs. Lastly, for Fashion-MNIST dataset,
the architecture consists of three dense layers of size 32, 128 and 32 respectively
with a dropout of probability 0.2 and is trained for 70 epochs.

Parameter Selection: For each dataset and each different noise setting, simu-
lations for RCINE are run for a wide range of values of the exploration parameter,
γ. 6 For MNIST dataset, γ exploration results are shown in Figure 3. We choose
the γ value for which the minimum error rate is achieved.

6 The value of γ as shown in the figure are for RCINE. For other algorithms, the
optimal value of γ is chosen.
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Results: We ran our proposed algorithms (RCNBF and RCINE) and compared
the average 7 error rate with other benchmark algorithms as shown in Fig 2. For
better visualization of the asymptotic bounds, we plotted the result on a log-log
scale. It shows that in the presence of noise, the final error rate of RCINE and
RCNBF is significantly better than SOBA, BPA, and Banditron. While all other
algorithms converge, RCNBF and RCINE are still learning and yet to converge.

Analysis of Fig. 2 shows that as the number of examples grows, the slope of
the error rate of RCNBF and RCINE under all different settings of noise rate is
comparable to that of SOBA, BPA, and Banditron for the noise-free (0%) setting.
The final error rate of RCNBF and RCINE under all different noise rate settings
is also close to SOBA, BPA, and Banditron under the noise-free setting. RCINE
performs comparably to RCNBF for all the datasets and noise settings. This
happens as we can efficiently estimate the noise rates.

5 Conclusion and Future Work

In this paper, we proposed a noisy bandit feedback setting in online multiclass
classification, which can effectively incorporate the noise present in real-world
data. We proposed a novel algorithm based on the unbiased estimation technique,
which enjoys a favorable bound (both theoretically and practically) under the
proposed noisy bandit feedback setting. The proposed algorithm is robust to
the noisy bandit feedback and can learn the true hypothesis in the presence of
noise. We also propose a technique to estimate the noise rate, thus providing
an end-to-end framework. Experimental comparisons on various datasets with
benchmarking algorithms show that RCNBF and RCINE are comparable to other
algorithms under noise-free bandit feedback settings but far better than others
under noisy bandit feedback settings.
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