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Abstract—In most IoT-based monitoring applications, the data
can vary at a slow rate but the variability pattern may not
always be same. For example, the patterns of particulate matter
(PM), one of the most dominant air pollutants, often change
seasonally over a year. Therefore, having a fixed predefined
sensing rate is both hard to decide and energy inefficient.
This paper proposes an adaptive, non-parametric method to
change the sensing rate using the maximum frequency estimate
based on recent historical data. The proposed algorithm has
been tested on the data collected over one year from an IoT
network consisting of multiple PM sensor nodes. A performance
comparison of the proposed scheme with the existing approach
shows the effectiveness and performance improvement in terms
of Reduction Factor (RF) and Mean Absolute Error (MAE).

Index Terms—Energy Efficiency, Nyquist Rate, Particulate
Matter, Periodogram, Sensing

I. INTRODUCTION

IoT-based monitoring networks consist of distributed sen-
sor nodes that may sense parameters such as temperature,
humidity, CO2, particulate matter (PM) concentration in the
air, etc. The sensor node’s limited energy capacity leads to
the fact that it is one of the critical resources that need to be
managed efficiently. Extension of a sensor node’s lifetime is a
significant challenge, especially in the case of nodes that are
highly difficult to access or tedious to maintain. The lifetime of
sensor nodes is also essential for the robustness and scalability
of an IoT solution.

To understand the energy consumption of a sensor node,
the operations of a sensor node can be divided into two
major phases - standby and active [1], [2]. During the standby
phase, the node is idle and can consume very low energy. The
active phase includes three main energy consuming activities:
sensing, computing, and transmission. Mostly, the amount of
energy required for transmission is much higher than the other
two activities [3]. In such cases, reducing the number of
transmissions to the sink using data reduction technique sig-
nificantly improves the extension of the sensor-node lifetime
[3], [4]. This works very well for sensing phenomenons such
as temperature and humidity, which consume significantly less
energy when sensing as compared to that for transmission. So,
uniformly sensing such phenomena does not consume much
energy, while transmission consumes the majority of energy. In
our previous work [4], it has been shown how Shewhart-based
data reduction can be used to improve energy efficiency by
reducing the number of transmissions. However, sensors like
PM sensors have mechanical parts which use more power. For

example, the Nova PM sensor SDS011 draws around 70 mA
of current [5] while the DHT22 humidity sensor only draws at
a maximum of 2.1 mA [6]. So, the power consumption is high
for the PM sensor and energy consumed during sensing is now
comparable to the energy consumed during transmission. In
such a scenario, the node’s energy efficiency can be improved
by adaptively changing the sensing interval, which is the focus
of this paper.

Generally, the data collected from monitoring applications
like PM vary slowly. Some environmental phenomenon even
has data patterns which change seasonally. Therefore, having a
fixed and predefined sensing rate is hard to decide and highly
energy inefficient. It can be easily observed that for monitoring
applications like PM monitoring, the signal is usually very
stable for a long time only with an addition of the sensor
measurement noise. This motivates to sense the signal at far
lower rates than the predefined sensing interval to improve the
energy efficiency.

There have been very few works on adaptive sensing in the
IoT literature [7], [8]. In [7], a sigmoid function is used to
change the sensing rate. However, due to the nature of the
sigmoid function, the rate of sensing rate change is equal
when the parameter used lies at the extremes compared to
the threshold chosen. So, the rate of change is slow.

In [8], two algorithms are implemented. The first algorithm
is based on Bollinger bands [9], where the waiting time for
sensing the following sample is calculated using the absolute
difference between the upper and lower Bollinger bands and
a dynamic estimation function. The second algorithm in [8] is
based on the loss in information calculated by the vertical
distance between the real-time data and the modeled data.
Using the loss in information and a dynamic estimation
function, the waiting time is calculated. The modeling is linear
in nature. The performance comparison of the two algorithms
shows that the vertical distance has better performance as
compared to the one based on the Bollinger bands.

The issue with the approaches in [7], [8] is that they do not
take into account the Nyquist sampling rate, which defines the
lower bound on the sampling frequency [10]. According to the
Nyquist sampling theorem, the sampling frequency should be
more than twice the maximum frequency in the signal to avoid
any reconstruction error. In this paper, we take into account
the Nyquist criteria to decide the sensing frequency.

Specific contributions of this paper are
• An adaptive sensing algorithm is proposed which decides



the sensing interval based on the maximum frequency
estimate over a given time interval. The time interval has
to be small enough to capture the seasonal variations and
long enough to avoid frequent computations and change
in the sensing interval.

• The proposed algorithm is tested on the data set collected
from the IoT network consisting of seven PM monitoring
nodes deployed inside a small educational campus in
Indian city of Hyderabad. This data set corresponds to the
measurements over the whole year of 2020 and consists
of more than 22 million data points in total.

• The proposed approach is compared with the vertical
distance based algorithm [8] in terms of Reduction Factor
(RF) of sensed samples and Mean Absolute Error (MAE)
for different seasons and months.

The paper is organized as follows. Section II details on IoT
network deployment considered for experimental analysis fol-
lowed by data cleaning and preprocessing. Section III briefly
present the vertical distance based adaptive sensing algorithm.
Section IV presents the proposed maximum frequency based
adaptive sensing algorithm. Section V presents the comparison
metric and the results while Section VI concludes the paper.

II. METHODOLOGY

A. Sensor Nodes

The sensor nodes are developed at IIIT-H using ESP8266
based NodeMCU microcontroller, SDS011 PM sensor, and
DHT22 sensor for temperature and relative humidity as shown
in [11]. The microcontroller samples the data at an interval of
15 seconds and sends it periodically via WiFi to ThingSpeak
[12], which is a cloud-based IoT platform for storing and
processing data using MATLAB. The IoT network considered
in this paper is in the IIIT-H campus, Hyderabad, India. The
measurement region area is 66 acres (0.267 km2), and the data
considered is for the year 2020 which has more than 22 million
data points for seven nodes. Ten nodes have been deployed
around the campus. Out of the ten nodes, seven nodes have
been functional throughout the experimental period of one year
and these seven nodes are shown in Fig. 1. The figure also
shows the nodes’ numbering, which will be followed for the
rest of the paper.

B. Data cleaning and preprocessing

The following tasks were done to convert the seven sensor
nodes’ raw data into a usable dataset:

• For unbiased comparison, the data from all the months
needs to be at the same sampling rate. The arrival time
varied because of the additional network delay. So, the
data from all nodes is resampled and grouped at intervals
of 20 seconds bins.

• Due to various factors like power-cuts, network drops,
and sensor failures, the data sent by sensor nodes had
gaps, and some readings were zero. The longest con-
tiguous sequence of data without zeroes was chosen for
processing.

Fig. 1. Deployment and Node Locations

• Due to sensor errors, the data sent by the nodes contain
sharp outlier peaks at some instances. The outliers need to
be removed to prevent erroneous calculations. A value is
considered as an outlier if it is more than three Median
Absolute Deviations (MAD) away from the median of
nearby values, is replaced by the median.

• For the maximum frequency based adaptive sensing ap-
proach, the power containment in the frequency domain
is essential. Hence, the data has been smoothed using
a moving average filter before estimating the optimal
sensing frequency.

The total number of data points after cleaning and preprocess-
ing the data is around 16 million for the seven nodes combined
over the year.

III. DYNAMIC SENSING BASED ON VERTICAL DISTANCE

This is the algorithm proposed in [8]. A buffer
(S[1], S[2], ...S[N ]) of a fixed size N is taken. The data is
initially sensed at a constant sensing rate. The first N values
are pushed into the buffer. The data x[n] is then modeled as
a linear function between the sensed points and is given by

x[n] = nm+ S[n], (1)

where m is the (changing) slope of x defined by

m =
S[N ]− S[1]

N − 1
. (2)

Here, S[1] is the oldest sensed data in the buffer and S[N ]
is the newest. The mean absolute error ∆ between x[n] and



S[n] for n = 1 to N is calculated as

∆ =
1

N

N∑
n=1

|x[n]− S[n]|, (3)

and the estimation factor ε is calculated using the exponential
moving average as

ε =
7

8
ε+

1

8
∆. (4)

A maximum amount of waiting time tmax is defined which
limits the value of the estimation function. The amount of
waiting time is twait is defined as

twait =
tmax
1 + ε

. (5)

After waiting for twait amount time, the sensor starts the
active phase and senses data. After sensing the data, the node
transmits and goes back to the sleep phase. The pseudocode
for implementation of the vertical distance algorithm is given
in Algorithm 1.

Algorithm 1 Vertical Distance Based Adaptive Sensing [8]
procedure VERTICALDISTANCE

Initialize N, ε, S, and tmax
n = 1 to N
m = (S[N ]− S[1])/(N − 1)
Repeat = TRUE
while Repeat == TRUE do

x = nm+ S
∆ = (1/N) sum( abs(x− S) )
ε = (7/8)ε+ (1/8) ∆
twait = tmax / (1 + ε)
wait for twait
for i = 1; i < N ; i+ + do

S[i] = S[i+ 1]

S[N ] = senseData()
if wantToStop() == TRUE then

Repeat = FALSE

The main problem in this method is that many float expo-
nential and division operations are executed. So, even though
the results are better than the previous algorithms, there is
room for improvement by reducing the number of operations
executed. Also, the algorithm requires to be implemented on
the node as the sensing rate is updated with every instance as
implementing on the cloud would increase the communication
and power cost. The RF of the vertical distance based adaptive
sensing increases with the decrease in the buffer size. The best
RF for the vertical distance based dynamic sensing is obtained
when the buffer size is four as the buffer size cannot reduce
beyond four for this approach. This puts a constraint on the
maximum amount of RF that this approach can obtain.

At the receiver, the steps for reconstruction of the data to
calculate the MAE are:

• Take the sampled points along with the instances where
sampling was done after the algorithm is implemented.
Fill the remaining places as zeroes.

• Reconstruct the data using linear interpolation between
the sampled points.

IV. MAXIMUM FREQUENCY BASED ADAPTIVE SENSING

The maximum frequency based adaptive sensing algorithm
is a direct result of the Nyquist sampling criteria. The Nyquist
criterion requires that the sampling is done at a frequency
of more than twice that of the maximum frequency in the
considered signal: fs > 2fmax [10]. However, the calcula-
tion of maximum frequency is not trivial. To determine the
maximum frequency, a periodogram power spectral density is
calculated and integrated using the midpoint rule [13]. p%
is the percentage of total power of the signal which should
be contained in the signal. The maximum frequency fmax is
where the integrated power crosses the power containment p%
threshold [14]. Based on this estimate of maximum frequency,
the sensing frequency is adapted for the next time interval.

The periodogram is a non-parametric estimate of the power
spectral density (PSD). For a signal x[n] sampled at fs samples
per unit time, the periodogram P̂ (f) is defined as

P̂ (f) =
1

fsN

∣∣∣∣∣
N−1∑
n=0

x[n]e−j2π
f
fs
n

∣∣∣∣∣
2

,−fs/2 < f ≤ fs/2,

(6)
where N is the number of samples considered. The summation
part in (6) is Discrete Fourier Transform (DFT) of the signal
and is implemented using Fast Fourier Transform (FFT) for
reducing computational complexity.

Using the midpoint rule, the frequency where the integral
of P̂ (f) crosses p% power is calculated. The integral Î(fi) is
defined as

Î(fi) =

∑fi
f=0 P̂ (f) fsN∑fs/2
f=0 P̂ (f) fsN

100%, (7)

where P̂ (f) is the periodogram estimate. fmax is defined
as the value of fi when the value of Î(fi) crosses p%. A
buffer of δ is added for the fmax to not loose the critical
frequency information and avoid any possible aliasing during
upsampling step in reconstruction. The fmax is estimated, and
the sensing frequency is updated as fs = (2 + δ)fmax for the
considered cleaned data where δ > 0. δ provides a buffer over
the exact threshold for fs given by the Nyquist criterion. The
pseudocode for implementation is given in Algorithm 2.

Algorithm 2 Maximum Frequency Based Adaptive Sensing
procedure MAXIMUMFREQUENCY

Obtain signal xn of length N and fs sensing rate
Initialize p% and δ

P̂ (f) = 1
fsN

∣∣∣∑N−1
n=0 x[n]e−j2π

f
fs
n
∣∣∣2

Find where Î(fi) =
∑fi

f=0 P̂ (f)∆f∑fs/2
f=0 P̂ (f)∆f

100% > p%

fmax = fi
Update fs = (2 + δ)fmax



The value of power containment is varied in the range
of 90% to 99.9%. This allows having most of the signal
information retained at the lower frequency.

The maximum frequency based adaptive sensing is executed
after every set amount of time using the previous historical
data on the cloud. The number of data points taken needs to be
sufficiently large to estimate the periodogram PSD accurately.
Decreasing the length of the data considered reduces the
accuracy of the estimate of the PSD. In this paper, the update
has been done for the sensing frequency after every month.

The reconstruction of the newly sensed signal for calculating
MAE is done using interpolation, which is the opposite of
decimation [10]. The interpolation follows the following steps:

• Expand the signal to be interpolated to the initial length
by inserting zeroes between the newly sensed data values
which is called upsampling. The number of zeros to be
inserted, called the upsampling factor d is the immediate
lower integer to the ratio between initial fs and the
updated fs = (2 + δ)fmax resulting d =

⌊
fs

(2+δ)fmax

⌋
.

• A symmetric FIR filter that allows the original data to
pass through unchanged and interpolates to minimize the
mean-square error between the interpolated points and
their ideal values is designed.

• The designed filter is used to interpolate the zeroes in the
upsampled data by low pass filtering.

V. RESULTS AND ANALYSIS

The comparison criteria used for analyzing the two algo-
rithms’ performance for adaptive sensing are the MAE and
the RF. The RF is defined as

RF =
N

Nnew
, (8)

where N is the original number of data points and Nnew is
the number of data points after implementing the algorithm.
For calculating the MAE, using the samples received after
implementation, the data is reconstructed using the methods
mentioned in Sections III and IV. The MAE is given by

MAE =

n=N−1∑
n=0

|x[n]− xr[n]|, (9)

where x[n] is the original data and xr[n] is the reconstructed
data.

For vertical distance based dynamic sensing algorithm,
tmax is initialized as 3000 as in [8]. The buffer size N
is varied from 4 to 128 by doubling N for each instance.
Varying the buffer size showcases the impact of the size of
the buffer on the MAE and RF. For the maximum frequency
based adaptive sensing algorithm, the power containment p%
has been varied from 90% to 99.9% to obtain the different
reduction factors and corresponding MAE. δ is selected as
0.5 to avoid any possible aliasing during the reconstruction
giving fs = 2.5fmax. The data for the entire year of 2020
has been considered and is segregated into 12 months as
well as into 3 seasons of India - Summer (March, April,

May, June), Monsoon (July, August, September, October), and
Winter (November, December, January, February).

Fig. 2 shows the RF vs MAE comparison between Ver-
tical Distance (VD) based dynamic sensing and Maximum
Frequency (MF) based adaptive sensing for PM10. Similar
results are followed for PM2.5 but have not been shown here
because of space constraints. In Fig. 2, it can be observed
that the maximum frequency based algorithm works almost
always better than the vertical distance based algorithm. For
Summer, it has been observed that both algorithms are at par
and give similar results. However, in the Monsoon and Winter
seasons, the maximum frequency based adaptive sensing al-
gorithm gives a much higher RF with lower MAE. In Winter,
PM10 is higher due to factors like humidity, temperature and
festivals like Diwali due to the bursting of crackers in the
residential areas in and around the campus of IIIT-H. Whereas,
in Monsoon, the fluctuations in PM10 are very less due to the
rains.

Another important observation from Fig. 2 is that the
vertical distance algorithm stops after reaching a particular
value of RF as discussed in Section III. This maximum
corresponds to the buffer size of four, which is the minimum
required buffer size for the vertical distance based approach.
While the maximum frequency based approach does not have
this limitation. We can further reduce the power containment
p% till we reach the required RF or MAE. The decrease in
the power containment percentage can happen until we meet
the minimum points requirement for the filter used in the
reconstruction.

Fig. 3 presents box plots for monthly distribution of RFs for
the two approaches based on vertical distance and maximum
frequency for a fixed MAE = 0.75. It can be seen that the
median of the maximum frequency algorithm is either equal
or higher than the median RF of vertical distance algorithm for
all the months over the year 2020 except for the month August.
This shows the improvement in the RF for all the nodes on
average. The environmental parameters like temperature and
RH, which affect the PM concentration change over the year.
The maximum frequency based adaptive sensing algorithm
works better for all nodes on average, even with different
months considered over the course of a year.

In Fig. 4, the average RF for MAE = 0.75 for the year 2020
and for the seven nodes is given as a bar chart. On average, the
maximum frequency based adaptive sensing algorithm gives a
better RF than the vertical distance based dynamic sensing
algorithm over the year. Even though the nodes are spatially
distributed around the campus of IIIT-H and have varying
data patterns, the maximum frequency approach gives better
performance than the vertical distance approach. The maxi-
mum difference in the performance is observed for Node7. For
all the remaining nodes, the annual average reduction factors
using the maximum frequency approach is higher.

The results in Figs. 2, 3 and 4 show the improvement of
performance in terms of RF and MAE using the maximum
frequency based adaptive sensing approach for PM monitoring.
Along with the improvement in the RF for a particular MAE,



(a) Node1 (b) Node2

(c) Node3 (d) Node4

(e) Node5 (f) Node6

(g) Node7

Fig. 2. RF v/s MAE - PM10 for seven Nodes



Fig. 3. PM10 sensing RF comparison over year for MAE=0.75

Fig. 4. PM10 sensing RF comparison for 7 Nodes for MAE=0.75

this approach enables us to offload the calculation of the new
sensing interval to the cloud, and also, the number of times the
calculations to be done is far less than previous approaches. In
this paper, the results are shown by calculating the update to
the sensing interval every month for the maximum frequency
based sensing, whereas vertical distance based sensing requires
updating every sample. It has also been observed that vertical
distance based sensing hits a limit at a buffer size of four. In
contrast, the RF and MAE trade-off can still be extended for
maximum frequency based adaptive sensing by changing the
power containment considered.

VI. CONCLUSION

In this paper, a maximum frequency based approach has
been proposed for adapting the sensing interval for sensor
nodes in an IoT network. The algorithm has been employed
on the data collected from seven PM monitoring sensor
nodes over the year. It has been tested and compared against
the vertical distance based dynamic sampling algorithm. The
proposed algorithm is shown to perform better than the vertical
distance approach on three fronts. First, maximum frequency
approach has shown better performance than vertical distance
approach in terms of RF and MAE for different PM nodes
across the seasons and months over the year. Second, the
proposed algorithm enables us to offload the new sensing
interval calculation to the cloud, and also, the number of

times the estimates to be done is far less than that in vertical
distance approach. Lastly, it has been shown that the RF and
MAE trade-off can be extended using the maximum frequency
based adaptive sensing by changing the power containment. In
contrast, the vertical distance based approach hits a limit for
this trade-off. Thus, the paper demonstrates that the proposed
algorithm’s effectiveness for designing energy-efficient IoT
sensor applications by reducing the number of times the data
is sensed.
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