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ABSTRACT

As the field of Music Information Retrieval grows, it is
important to take into consideration the multi-modality of
music and how aspects of musical engagement such as
movement and gesture might be taken into account. Bod-
ily movement is universally associated with music and re-
flective of important individual features related to music
preference such as personality, mood, and empathy. Fu-
ture multimodal MIR systems may benefit from taking
these aspects into account. The current study addresses
this by identifying individual differences, specifically Big
Five personality traits, and scores on the Empathy and Sys-
temizing Quotients (EQ/SQ) from participants’ free dance
movements. Our model successfully explored the unseen
space for personality as well as EQ, SQ, which has not
previously been accomplished for the latter. R2 scores for
personality, EQ, and SQ were 76.3%, 77.1%, and 86.7%
respectively. As a follow-up, we investigated which bodily
joints were most important in defining these traits. We dis-
cuss how further research may explore how the mapping
of these traits to movement patterns can be used to build a
more personalized, multi-modal recommendation system,
as well as potential therapeutic applications.

1. INTRODUCTION

From the perspective of most computational analysis, mu-
sic can be defined as sound, its important features yielding
to the decomposition of waveforms. However, for the vast
majority of history, musical sound could not be separated
from its source; to whatever degree it may have evolved
biologically to serve various human functions, music must
be regarded as an embodied and socially embedded phe-
nomenon [1–3]. Research has shown intimate links be-
tween musical features and human movement, including
the reflection of hierarchical rhythmic structures in em-
bodied eigen movements [4], the reflection of higher-level
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musical structures in group movement to Electronic Dance
Movement [5], and reflection of spectral and timbral fea-
tures of music in dance [6]. Bodily movement is one of
the most commonly reported responses to music [7], and
movement to music is one of very few universal features
of music across cultures [8].

This paper towards Multimodal MIR takes into con-
sideration the multi-modality of music, and takes into ac-
count one of the primary aspect of musical engagement,
i.e, movement. It is therefore insufficient to consider mu-
sic only in terms of sound when trying to understand hu-
man digital use and interaction with music. This may be
especially true in terms of user experience and personal-
ization; human movement in response to music reflects not
only the music itself but characteristics of the individual,
such as personality [9] and emotion [10]. Indeed, research
has shown that music-induced movement is so individual
that its features can be used in person-identification with
a high degree of accuracy [11]. This is in line with pre-
vious research, such as that of Cutting et al. [12] demon-
strating that friends can recognise each other from their
walk with only point-light (stick figure) displays of move-
ment, without the need for other distinguishing features.
This paradoxical balance between universality and individ-
uality in human motoric responsiveness to music poses a
challenge for the creation of digital music interfaces which
take music-induced movement into account in providing
personalized music experiences. Although the concept of
an interactive music system has long been proposed that al-
low music playback to be controlled and altered via human
gestures [13], human-movement based interaction tech-
niques and devices are fast gaining importance in the field
of HCI [14]. In this context, it makes decoding aspects
of a user/individual via human movements a key and use-
ful endeavor, which would then aid in the design of more
personalized experiences.

2. RELATED WORK

The specific features used in previous work associated
movement with individual differences are quite varied.
Satchell et al. [15] examined speed, relative and absolute
rotation of the body and found relationships between rela-
tive movement of the upper and lower body during walk-
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ing in both FFM personality traits and gait, while Micha-
lak et al. [16] were able to associate low mood with lateral
body sway and posture. In dance, relevant features have in-
cluded amount of movement of the whole body relative to
itself and to the environment, responsiveness to music fea-
tures such as tempo [4, 17]. Another area for exploration
of individual differences in movement patterns has been
in the context of disorders that have altered or impaired
movement [18–20]. These links allow us to postulate that
movement patterns should give us information related to
individual traits and tendencies which can be then linked
to music preferences, mood or emotion in relation to mu-
sic experiences and could have implications for music ther-
apy as well as for music information retrieval. However,
as an initial step, there exist no studies that predict per-
sonality and empathy as a function of movement patterns.
The current study focuses on identifying FFM personality
traits, as well as scores on the Empathy Quotient (EQ) and
Systemizing Quotient (SQ), from participants’ free dance
movements to various genres of music. The EQ measures
participants’ tendency to empathize with others [21], while
the SQ measures the tendency to think in terms of sys-
tems [22]. These two measures were originally developed
to increase understanding of people with ASD, as in this
population trait systemizing tends to be very high while
empathy tends to be low. However previous work has
also used the EQ/SQ to determine how these traits are dis-
tributed in the general population. Although previous work
has found relationships between empathy and responsive-
ness to changes in heard music or in dance partner [23,24],
and between EQ/SQ scores and music preferences [25,26],
general movement patterns associated with empathy have
not, to the knowledge of the authors, been explored using
dance movement, nor have patterns related to systemizing
tendencies.

3. METHOD

3.1 Participants

Data acquired was from a previous study [27] comprising
data from 73 university students (54 females, mean age =
25.74 years, std = 4.72 years). Thirty-three reported hav-
ing received formal musical training; five reported one to
three years, ten reported seven to ten years, while sixteen
reported ten or more years of training. Seventeen partici-
pants reported having received formal dance training; ten
reported one to three years, five reported four to six years,
while two reported seven to ten years. Participants were of
24 different nationalities, with Finland, the United States,
and Vietnam being the most frequently represented. For
attending the experiment, participants received two movie
ticket vouchers each. All participants spoke and received
instructions in English. Fifteen participants were excluded
from further analysis due to incomplete data. They were
asked to listen to the music and move as freely as they de-
sired, but staying within the marked capture space. The
aim of these instructions was to create a naturalistic set-
ting, such that participants would feel free to behave as

they might in a real-world situation.

3.2 Apparatus, Stimuli, and Procedure

Participants’ movements were recorded using a twelve-
camera optical motion-capture system (Qualisys Oqus 5+),
tracking at a frame rate of 120 Hz, the three-dimensional
position of 21 reflective markers attached to each partic-
ipant. Markers were located as follows (L=left, R=right,
F=front, B=back) 1: LF head; 2: RF head; 3: B head; 4:
L shoulder; 5: R shoulder; 6: sternum; 7: stomach; 8: LB
hip; 9: RB hip; 10: L elbow; 11: R elbow; 12: L wrist;
13: R wrist; 14: L middle finger; 15: R middle finger;
16: L knee; 17: R knee; 18: L ankle; 19: R ankle; 20: L
toe; 21: R toe. The stimuli comprised sixteen 35-second
excerpts from eight genres, in randomized order: Blues,
Country, Dance, Jazz, Metal, Pop, Rap, and Reggae. The
stimuli for the experiment were selected using a computa-
tional process based on social-tagging and acoustic data.
The selection pipeline was designed to select naturalistic
stimuli that were uncontroversially representative of their
respective genres, which would also be appropriate to use
in a dance setting. Moreover, investigating movements to
multiple genres of music further adds to the generalizabil-
ity of our findings.

(A) (B)

Figure 1: Marker and joint locations (A) Anterior view of
the marker locations a stick figure illustration; (B) Anterior
view of the locations of the secondary markers/joints used
in animation and analysis of the data

3.2.1 Personality and Trait Empathy Measures

The Big Five Inventory (BFI) was used to capture the five
predominant personality dimensions, namely, Openness,
Conscientiousness, Extraversion, Agreeableness, and Neu-
roticism [28]. Trait Empathy was measured using the EQ-
and SQ-short form version, developed and validated by
Wakabayashi et al. [29], as a result giving an EQ and SQ
score per participant.
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Figure 2: Overview of our Pipeline. Given the position of joints across time frames in 3D Euclidean space(a), we apply
pairwise correntropy between time series xi and xj and calculate the K-matrix (b). Then, taking the lower triangular part
of the symmetric covariance matrix, we get the feature vectors (c). After training the regression model on the feature
vectors, we get the weight vector(d). Finally, corresponding weight values from the learned weight vector are mapped to
the corresponding joints to get the per-joint importance (e).

3.3 Feature Extraction

The analysis and prediction pipeline is illustrated in
Figure 2. To facilitate extraction of kinematic features us-
ing the MATLAB Motion Capture (MoCap) Toolbox [30],
a set of 20 secondary markers, subsequently referred to as
joints, was derived from the original 21 markers. The lo-
cations of these 20 joints are depicted in Figure 1. The
locations of joints B, C, D, E, F, G, H, I, M, N, O, P, Q, R,
S, and T are identical to the locations of one of the orig-
inal markers, while the locations of the remaining joints
were obtained by averaging the locations of two or more
markers; Joint A: midpoint of the two back hip markers;
J: midpoint the shoulder and hip markers; K: midpoint of
shoulder markers; and L: midpoint of the three head mark-
ers. The instantaneous velocity of each marker in each
direction was calculated. Instantaneous velocity was es-
timated by time differentiation followed by the application
of a 2nd-order Butterworth filter with a cutoff frequency of
24Hz [30].

The features used in our analysis is the co-variances of
position and velocity. The co-variances between all marker
time series in each direction (X , Y and Z) within each
participant for each stimulus. We used a non-linear mea-
sure to calculate covariance between the markers. This
method, referred to as correntropy between time series xi
and xj [31], is given by:

K(xi, xj) = e
−||xi−xj ||

2
2

2σ2T2 (1)

where ||xi − xj ||2 is L2-norm between xi and xj , σ is
a constant, 12.0 in our case and T is the length of the
time-series. The L2-norm is divided by T to normalize ac-
cording to time series length since it has different lengths
with varying stimuli. Since the number of joints are 20
and each joint has three coordinates, the dimension of K

would be 60×60. The lower triangular part excluding the
diagonal elements of the symmetric covariance matrix was
vectorised to produce a feature vector of length 1770 for
each participant and for each stimuli.

We also run our experiments using the Normalized fea-
ture vectors calculated by using Position and Velocity, we
employed standard Gaussian Normalization technique:

X̂ =
X − µ(X)

σ(X)
(2)

where X̂ is the feature vector, µ(X) is the mean and σ(X)
is standard deviation.

3.4 Model Regression

The most common regression model for value prediction
tasks used is Linear Regression. The goal here is to find
an optimal line that minimizes the total prediction error.
But this model treats its parameters as unknown constants
whose values must be derived. Moreover, the weights be-
come sensitive when the dataset size is large. So to prevent
the model from overfitting, we took principal components
of the features to train the model (For the result sections,
we will be considering 243 components for position data
and 137 components for velocity data which gave us the
best results). We also approached this problem by using
Bayesian Regression other than Principal Component Re-
gression (PCR) 1 .

In Bayesian Regression the parameters are treated as
random variables belonging to an underlying distribution.
Depending on the dataset, we can be more or less certain
about the weights. Since, the parameters of the model be-
long to a distribution, the predictions of the model also be-
long to a distribution. So we have confidence bounds on

1 Detailed analysis of Principal Component Regression (PCR) and
Bayesian Regression are discussed in the supplementary.
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our predictions. Therefore, they are better at representing
the uncertainty of a model’s predictions.

3.4.1 Personality and Trait Empathy Prediction

The features extracted are used to train five different
Bayesian Regression models to predict each of the five
personality traits - Openness, Conscientiousness, Extraver-
sion, Agreeableness, and Neuroticism (OCEAN). The fea-
tures extracted are used to train both regression models to
predict EQ and SQ respectively. The model is trained and
evaluated on the described dataset.

3.5 Visualizing the Weight Vector

To interpret the coefficients (also known as the weights or
model parameters) of the regression models, we add the
value of the feature vector to the corresponding joints. In
our algorithm, we first find the index in the 60×60 matrix
and then add the absolute value to those joints.

The sign of the coefficient indicates the direction of the
relationship but the magnitude preserves the importance.
After that, Min-Max Normalization is applied to bring the
values in the range (0, 1) for better visualizing the same
variable across similar tasks.

JI[i] =

(
JI[i]−min(JI)

max(JI)−min(JI)

)
∀JI[i] (3)

where JI represent the normalized Joint Importance Vec-
tor. Algorithm 1 describes the pseudo-code to get the im-
portance of joints from the weights of the trained regres-
sion model.

Algorithm 1 Joint Importance
Result: Calculate a vector J of 20 dimensions represent-

ing importance of each joint.
W is the weight vector; J is the importance vector

initialised with 0; S contains lower triangular indices
excluding diagonal indices; 0-indexing is followed;

1: S ← LowerTriangularIndices(60× 60)
2: N ← S.length()
3: for k = 0 : N − 1 do
4: (i, j) := S(k)
5: (̂i, ĵ)← IndexToJoint(i, j)
6: J (̂i) := J (̂i) + |W (k)|
7: J(ĵ) := J(ĵ) + |W (k)|
8: end for
9: return J

After getting a vector of 20 dimension, we reduce it to
12 before visualizing joint importance. We did this by tak-
ing the average of joints which occur in pairs eg. (L shoul-
der, R shoulder), (L wrist, R wrist).

3.5.1 Evaluation Metric

(a) Root Mean Square Error (RMSE): It computes a risk
metric corresponding to the expected value of the root of
squared (quadratic) error or loss.

(b) R2 Score: It represents the proportion of the vari-
ance(of y) that has been explained by the independent vari-
ables in the model. 2

As the square root of a variance, RMSE can be interpreted
as the standard deviation of the unexplained variance, and
has the useful property of being in the same units as the re-
sponse variable and at the same time theR2 helps us evalu-
ate the goodness of fit in capturing the variance in training
data. We calculate RMSE and R2 on multiple splits so that
we get an average estimate of the accuracy.

3.6 Results

3.6.1 EQ and SQ

The results for EQ prediction are in Table 1 and SQ predic-
tion are in Table 2. The results are calculated using 5-fold
cross validation. The range of EQ and SQ is 0-80. The
boldface values represent the best score. The ’N’ in the
tables denote that Gaussian Normalization was applied on
the features. We trained and evaluated two different mod-
els for each of the aforementioned tasks. We can see that
using position data, instead of velocity data, to generate
the feature vectors, gave us the best results. Also, we can
see that the Bayesian Regression gave better results than
Principal Component Regression on both metrics. So from
here on, we will be using Bayesian Regression for other
prediction and analysis tasks.

Input PCR Bayesian Ridge
RMSE R2 RMSE R2

Position 3.071 0.708 2.722 0.771
Position(N) 3.201 0.684 2.733 0.765

Velocity 4.938 0.249 4.343 0.423
Velocity(N) 4.583 0.353 4.015 0.503

Table 1: Prediction Results for Empathizing Quotient

Input PCR Bayesian Ridge
RMSE R2 RMSE R2

Position 2.398 0.781 2.161 0.867
Position(N) 2.363 0.786 2.502 0.838

Velocity 4.448 0.252 3.832 0.469
Velocity(N) 4.211 0.329 3.714 0.552

Table 2: Prediction Results for Systemizing Quotient

3.6.2 Personality Regression

The results for OCEAN value prediction on Dataset can be
found in Table 3. The results are calculated using 5-fold
cross validation. The range of the personality values is 1.0-
5.0. We can see that using position data to extract features
gave the best results on predicting all five personality traits
on the dataset. We can concur that using position data in-
stead of velocity data in the kernelized space is better for
these regression tasks.

2 Detailed explanation of metrics is provided in the supplementary.
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Input Openness Conscientiousness Extraversion Agreeableness Neuroticism
RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2

Position 0.197 0.776 0.317 0.760 0.384 0.743 0.252 0.776 0.384 0.758
Position(N) 0.227 0.740 0.332 0.690 0.414 0.756 0.273 0.716 0.390 0.739

Velocity 0.332 0.464 0.487 0.415 0.556 0.523 0.440 0.335 0.557 0.483
Velocity(N) 0.304 0.527 0.426 0.543 0.501 0.623 0.408 0.442 0.461 0.654

Table 3: Prediction Results for Five Personality Traits using Bayesian Regression

3.6.3 Joints’ Importance

For evaluating joint importance we used learned weights
of the model using position data across different tasks. For
the purpose of analyzing the importance of the joints, we
reduced them to 12 by taking the average for those joints
which occur in pairs eg. (L shoulder, R shoulder). This was
also done for hips, knee, ankle, toe, elbow, wrist, and fin-
ger. Altogether the results in characterizing an individual
trait is dominated by the limbs than the core of the body.

From the relative joint importance depicted in Figure 3,
we observe that ’Ankle’, Elbow’ and ’Shoulder’ play an
important role in determining EQ and SQ of an individual,
whereas ’Neck’ and ’Torso’ have a negligible contribution.
We also infer that ’Finger’, ’Hip’, and ’Knee’ are more
crucial joints for predicting EQ than for SQ whereas ’El-
bow’ holds significantly higher importance for predicting
SQ than for EQ.

Figure 4 displays the relative joint importance of per-
sonality along with the mean plotted in each sub-figure.
The farther away from the mean the joint importance value
for an individual joint is, the more important it is in char-
acterizing that trait. Some similarities in the joint impor-
tance profiles across the personality traits can be attributed
to the inherent correlation that exists among them 3 . We
observe that it is the ’Finger’, ’Elbow’, and ’Knees’ that
contribute to Feature Importance whereas ’Root’, ’Neck’
and ’Torso’ have negligible contribution. For character-
izing Conscientiousness, ’Shoulders’, ’Knees’ and ’Neck’
play a crucial role while ’Head’ and ’Toe’ plays an im-
portant role for Extraversion. For Agreeableness, ’Neck’
and ’Wrists’ have relatively less importance as compared
to other joints whereas, ’Wrists’ play an important role in
Openness. Finally, there are no significant defining fea-
tures for Neuroticism, which indicates that their expression
in Dance Movements through Music-Induced Movements
are very limited.

4. DISCUSSION

Music experiences are highly embodied, making it neces-
sary to consider individual embodied responses to music in
developing more advanced personalized user experiences.
The current study is among the first to the authors’ knowl-
edge to use participants’ free dance movements to predict
personality traits, and both the Empathizing and Systemiz-
ing Quotients (EQ/SQ).

3 The table for Spearman Correlation between the personality traits is
provided in the supplementary material.

Co-variance between joint velocities has previously
been used to identify an individual from their free dance
movements with a high degree of accuracy [11]. The re-
sults of the current analysis show co-variance to be a useful
feature in predicting individual differences. However, we
achieved considerably better prediction accuracy by using
position data than velocity data.

Overall, the limbs of the body seemed to have more im-
portance in predicting individual traits than the core body.
This is in line with the fact that gesture plays an important
role in communication [32], and as specifically regards the
EQ/SQ, as these tests were originally developed in con-
junction with studies of ASD, in which gesture and imita-
tive movement appear to be compromised [33]. Although
the sample used in the current study comprised typically
functioning (non-ASD) participants, the accuracy of pre-
diction of EQ/SQ scores in this analysis is worth highlight-
ing in light of recent work suggesting the existence of mo-
tor signatures unique to ASD, detectable from whole body
movements as well as data drawn from participants’ inter-
action with tablets [19, 34].

The specific markers that were important in the predic-
tion of individual traits in some cases corroborates previ-
ous work, and in some cases contradicts it. Luck et al.
[9] found correlations between Extraversion and speed of
head movement, which supports the current finding that the
head is of particular importance in identifying Extraver-
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Figure 3: Relative importance of Joints in EQ and SQ
Tasks using the Position Data.
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Figure 4: Relative importance of Joints of the five personality traits(Openness, Conscientiousness, Extraversion, Agree-
ableness, and Neuroticism) using the Position Data. The black line indicates the mean importance of the corresponding
joint marker. The red dotted line in the top left sub-figure indicates the standard deviation about the mean.

sion. Carlson et al. [17] found that, compared to Conscien-
tiousness, the core body was more important in responsive-
ness to musical tempo in relation to Extraversion, which
is partly supported by the slightly greater importance of
the finger and wrist markers to Extraversion in our study,
but partly contradicted by the importance of the shoulder
marker in Extraversion. The difference between findings
may relate to the use in the current study of position rather
than velocity or acceleration data; that is, core body pos-
ture while moving to music may be more indicative of
Conscientiousness than core body movement. EQ scores
were more related to head, finger, hips and lower limb
joints than SQ scores, which may be partly attributed to
gender-typical movement patterns as females tend to score
higher on the EQ than males [21, 35].

Several limitations of the current study should be noted.
First, the majority of participants were from European or
North American countries, and all eight music stimuli were
of Western origin, limiting the degree to which results can
be generalized cross-culturally. Secondly, There may ex-
ist potential bias due to gender imbalance. Future work
could include separate analysis performed within gender
categories. And lastly, participants’ preferences for heard
stimuli were not included in our model. This would be an
important feature to focus on in future work, as preference

and enjoyment are highly relevant to personalized MIR.
Further extension of this work could help to make mu-

sic recommendation systems more robust. Previous work
has considered the relationship between personality and
music preference [25, 36], while Greenberg et al. [26]
explored the relationship between music preference and
empathizing-systematizing theory, suggesting even that
music may play a role in increasing empathy in people with
empathy-related disorders, such as ASD. However, the re-
lationship between embodiment, personality and musical
experiences requires further exploration.

To conclude, this study represents an early step towards
multimodal MIR. To make this approach applicable to per-
sonalized gesture-based retrieval systems, it can be ex-
tended to monocular video captured by accessible devices
such as a mobile phone camera. This approach would be
feasible due to recent progress in the area of 3D human
pose estimation in predicting the body joint coordinates
from a monocular video [37–39]. This would then al-
low future recommendation systems to take embodied pro-
cesses into account, resulting in better and more responsive
personalized experiences.
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