
DFVS: Deep Flow Guided Scene Agnostic Image Based Visual

Servoing

by

Harish Yenala, Harith Pandya, Ayush Gaud, Shreya Reddy T, Sai Shankar, Madhava Krishna

Report No: IIIT/TR/2020/-1

Centre for Robotics
International Institute of Information Technology

Hyderabad - 500 032, INDIA
January 2020



DFVS: Deep Flow Guided Scene Agnostic Image Based Visual Servoing

Y V S Harish1, Harit Pandya2, Ayush Gaud3, Shreya Terupally1, Sai Shankar1 and K. Madhava Krishna1

Abstract— Existing deep learning based visual servoing ap-
proaches regress the relative camera pose between a pair of
images. Therefore, they require a huge amount of training
data and sometimes fine-tuning for adaptation to a novel scene.
Furthermore, current approaches do not consider underlying
geometry of the scene and rely on direct estimation of camera
pose. Thus, inaccuracies in prediction of the camera pose,
especially for distant goals, lead to a degradation in the servoing
performance. In this paper, we propose a two-fold solution:
(i) We consider optical flow as our visual features, which
are predicted using a deep neural network. (ii) These flow
features are then systematically integrated with depth estimates
provided by another neural network using interaction matrix.
We further present an extensive benchmark in a photo-realistic
3D simulation across diverse scenes to study the convergence
and generalisation of visual servoing approaches. We show
convergence for over 3m and 40 degrees while maintaining
precise positioning of under 2cm and 1 degree on our challeng-
ing benchmark where the existing approaches that are unable
to converge for majority of scenarios for over 1.5m and 20
degrees. Furthermore, we also evaluate our approach for a real
scenario on an aerial robot. Our approach generalizes to novel
scenarios producing precise and robust servoing performance
for 6 degrees of freedom positioning tasks with even large
camera transformations without any retraining or fine-tuning.

I. INTRODUCTION

Visual servoing addresses the problem of attaining a

desired pose with respect to a given environment using image

measurements from a vision sensor. Classical visual servoing

approaches extract a set of hand-crafted features from the

images. Pose based visual servoing (PBVS) approaches use

these visual features to estimate the camera pose directly

in Cartesian space from a given image. The controller then

guides the robotic system in the direction that minimizes

the difference in pose between current and desired image

pair directly in 3D space. In contrast, image based visual

servoing (IBVS) approaches control the robot by minimizing

the feature error explicitly in the image space [1]. It can

be observed that the pose based visual servoing controllers

attain the desired pose without getting stuck at local minima.

They, however, are sensitive to camera calibration errors and

pose estimation errors [2]. On the contrary, image based

visual servoing approaches are robust to calibration and

depth errors but could lead to a local minima. Classical

PBVS and IBVS approaches, both rely on reliable matching

of hand-crafted features, thus inaccuracies while obtaining

correspondences degrades the servoing performance. Direct
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visual servoing [3] approaches avoid the feature extraction

step and operate directly on image measurements. This helps

in achieving higher precision in goal reaching, but the trade-

off is a smaller convergence basin. Another rigid requirement

of classical visual servoing approaches is the knowledge of

environment’s depth. This is especially difficult to obtain on

robotic systems using a monocular camera.

To circumvent the requirement for extracting and tracking

hand-crafted features, Saxena et al. [4] presented a deep

learning based visual servoing approach. Specifically, they

employed a deep network to estimate the relative camera

pose, from an image pair. A traditional PBVS controller

is then used to minimize the relative pose between the

current and the desire image. Their network was trained

on publicly available Microsoft 7 scenes dataset [5] for

estimating relative camera pose. Although trained on limited

number of scenes, their network was able to generalise

well on novel environments, however, the convergence basin

was limited. Bateux et al. [6] presented a similar deep

pose based visual servoing approach with a Siamese [7]

based network architecture for estimating relative camera

pose from an image pair. They further proposed extensive

guidelines for training deep networks for the task of visual

servoing. They used LabelMe database [8] which contains

a diverse set of images with scene variations while using

homography for obtaining viewpoint variations to make the

network robust. The network was then trained to estimate

the relative pose given a pair of images taken from these

viewpoints, which helped in generalisation of the approach

to different environments. Similarly, Yu et al. also present

a Siamese style deep network for visual servoing [9], their

network obtains a much higher sub-millimeter precision for

the servoing task, however the network was trained only on

a table-top scene with similar objects and therefore requires

retraining for adjusting to novel environments.

Unlike the above approaches that estimate the relative

camera pose and use a PBVS controller for achieving the

desired pose, recent deep reinforcement learning based vi-

sual servoing approaches [10], [11], [12], [13] use neural

controllers to maximize the rewards and therefore require

minimal supervision. However, several of these approaches

are specific to manipulation tasks and are trained only for

scene with objects lying on a table. Furthermore, these

approaches do not consider full 6 degrees of freedom (DOF)

visual servoing. Sampedro et al. [14] showcased a similar

deep reinforcement learning approach for an aerial robot for

autonomous landing on a moving target, however they only

report results for a single scene with a colored target. Zhu

et al. [15] presents the results quite similar to ours on a







Fig. 3: The test-beds compared by existing deep visual servo-

ing approaches (top) are either planar, near -planar(table-top)

or synthetic. On the other hand, we propose a photo-realistic

benchmark (bottom) for deep visual servoing approaches.

between the environments used for the servoing task could

easily be noticed in figure 3. The central focus in the

experiments is to validate the ability to generalise on different

environments. Therefore, we present a set of benchmarking

tasks in simulation environment to be performed without

fine-tuning the network. To showcase that our approach

can be used as plug-and-play for various environments, we

further present results with an aerial robot on an outdoor

scenario.

A. Simulation results on Benchmark

The proposed simulation benchmark consists of 10 indoor

photo-realistic environments from Habitat simulation engine

[24]. We have selected these scenes such that they cover

different textures and variable number of objects. Further for

each scene we provide an initial pose and a desired pose. We

classify these tasks in three categories easy (refer figure 4

row 1-3), medium (refer figure 4 row 4-7)and hard (refer

figure 4 row 8-10).The categorization was done based on

the complexity of the scenes namely the amount of texture

present ,the extent of overlap and the rotational , translational

complexities between initial and desired image.The first

category, easy has quite a good number of distinctive objects

in the scene and has more of just translational motion[around

1.4m] and small rotation[around 15°] ,the second category,

medium has less number of objects(lesser texture) and also

a decent change in rotation[near 20°] and translation[near

1.5m]. The last category, hard either has huge amount of

rotation[>=30°] or translation[>=2m] or both thus having

less overlap between initial and desired image. To evaluate

the visual servoing approaches we propose following metrics

capturing both perception as well as control aspects of

servoing: final translation error, final rotation error, trajectory

length and number of iterations . We report both quantitative

table I and qualitative fig 4 results on the benchmark. It can

be noticed that Saxena et al. [4], are able to converge on

easy and medium scenes but they have difficulty on hard

scenes. We also compared our approaches with photometric

visual servoing, using true depth of the scene obtained from

the depth sensor. It can be seen from the table I even with

the knowledge of the correct depth of the scene, it is not

able to converge in most of the environments. Quantitative

results (table I) shows that when using depth predicted by

our approaches (single-view as well as two-view), pose error

after convergence is at par compared with ground truth depth

for visual servoing tasks. The mean error with our approach

after convergence is 0.025 cm and 1.167 degrees on 10

different scenes with initial mean pose error of 1.76 cm

and 22.89 degrees. On the contrary, both [3] and [4] fail to

converge on more than half the scenarios. The simulations

done using true depth were stopped without achieving 100

% convergence [zero photometric error] since, initially we

only wanted to know the the precision upto which we can

go using true depth. Therefore, the results using true depth

are close to the two proposed pipelines.

B. Controller performance

For analysing the controller performance, we next present

the results for a visual servoing trial. The initial pose and

desired pose are given from figure 4, row 8. It can be

observed from figure 5 that both our approaches (flow-depth

based and depth-network based) are able to converge without

any oscillations while [3] and [4] diverge. The photometric

error steadily reduces. It can also be seen that flow-depth

based approach takes longer to converge as compared to

the depth-network based approach but has a much shorter

trajectory. The velocity profile is bounded and gradually

decreases to zero.

C. Convergence study

In this experiment we compare existing approaches with

ours for studying the convergence domain. We randomly

select multiple scenes from habitat environment, vary the

desired pose and evaluate how many times our approach

was able to converge. Similar to [6], our flow-depth pipeline

was evaluated by linearly increasing the distance between

initial and desired image in each axis x,y,z by 0.4 meters till

4 meters, making 10 batches in total. We have selected the

rotations in [x,y,z] into 3 set-points specifically [10°,10°,25°],

[20°,20°,40°] ,[30°,30°,50°]. Thus, considering 3 different

situations each having an increased translational variation in

[x,y,z] (refer to the x axis in fig 6). Each batch of experiments

had 16 environments randomly selected from Gibson dataset,

upon which the convergence ratio was calculated, the initial

position was fixed and the desired position was varied as

mentioned. It can be seen from the figure 6 that our approach

outperforms the existing approaches like [6], where the con-

vergence ratio drastically drops to about 65 percent around

the variance of 2.4cm , 12°in x and y and 1.2cm , 30°in z.

Our pipeline showed greater convergence ratio of about 90

percent for the [20°,20°,40°] case which is close to the setting

proposed by [6] even with a higher convergence basin till 4m.

Our approach shows robust performance even for complex

cases with [30°,30°,50°] rotational change [convergence for

over 75 percent in most cases] where in [6] falls down

to 40 percent at [20°,20°,50°]. Note that the criteria for

convergence is final translation error less than 4 cm and

rotation less than 1°.

D. Real drone experiment

We finally validate the generalisation of our approach

using Parrot Bebop-2 drone on outdoor scenario. We test



Initial Image Desired Image PhotoVS [3] Saxena et al.[4] True depth Depth-net Flow-depth

Fig. 4: Qualitative results on the benchmark for 10 scenes. Given initial and desired images of various scenes from the

benchmark, we compare 3 variants of our approach (true depth, network-depth and flow-depth) with Saxena et al. [4] and

PhotoVS [3] visualize the error image between desired and resulting pose of the approach. While both [4] and [3] converges

on all easy (row 1-3) and some medium scenes (row 4-7) they fail to converge on all hard scenes. Whereas, all the variants

of our approach are able to converge on all test-cases. Grey areas mean that the difference between attained and desired

image is zero and white portions indicate there is a slight non-overlap between them.

our approach for a large camera transformation of [0.29,

0.39,1.27]m in translation and [-25.63°,-25.63°,-10.56°] in

rotation between the initial and desired images, as shown in

figure 7. It can be seen qualitatively that the robot is able to

smoothly attain the desired pose precisely even with constant

illumination variations in the outdoor scenario without need

for fine-tuning or retraining. Note that due to erroneous

odometry of the robot, we only present the qualitative results

for this experiment.

IV. CONCLUSION

In this work, we have put forward a baseline comparison

between all the present state of the art supervised visual

servoing techniques and have quantified the effect of each

method. We have compared our deep image based visual

servoing technique with the existing frameworks. We have

used a network to estimate the optical flow between the

images and have used this as visual features. A major break

through in the attainment of the desired pose can be found

using the integration with depth estimates. We presented

two methods for estimating depth under single and two-

view settings. We Also presented an extensive benchmark to

evaluate servoing. Our approach showcases precise servoing

with large convergence basin for diverse environments and

performs robustly without retraining or fine-tuning.
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Fig. 5: 3D positioning task for an indoor scene: (a) Photo-

metric feature error, (b) Translational velocity in m/s., (c)

Rotational velocity in rad/s. and (d) Camera trajectory. Both

the variants of our approach are able to converge, whereas

existing approaches fail.
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Fig. 6: Convergence study for medium and large camera

transforms in simulation, the labels represent rotation in deg.

[x,y,z]. Our approach shows larger convergence domain over

existing approaches such as [6].

(a) (b)

(c) (d)

(e) (f)

Fig. 7: Outdoor positioning task: (a) Initial image as seen

by the drone, (b) Desired final image (c) Attained image,

(d) Initial drone position as seen by us (mid-right), (e)

Final drone position as seen by us (center). and (f) Drone’s

Trajectory. Our approach is able to attain precise positioning

for this task as well without any retraining or fine-tuning.

Metric I. err [3] [4] T.depth D.net F.depth

T. err 1.42 0.06 0.19 0.02 0.02 0.04

R. err 18.20 0.76 0.89 0.37 0.38 0.72

Tj. len - 2.26 2.69 2.24 1.42 1.19

Iter - 956 1486 764 233 1560

T. err 1.49 0.12 0.08 0.04 0.02 0.03

R. err 16.33 0.66 0.84 0.84 0.42 0.06

Tj. len - 2.22 2.48 1.58 1.55 2.31

Iter - 869 1687 150 143 871

T. err 1.41 0.28 0.13 0.03 0.02 0.04

R. err 18.07 3.23 6.44 8.72 8.87 8.39

Tj. len - NC 2.94 2.31 1.19 1.1

Iter - NC 1647 214 185 580

T. err 1.15 0.91 0.83 0.02 0.02 0.02

R. err 17.27 13.25 10.54 1.39 1.38 0.66

Tj. len - NC NC 1.52 2.56 0.89

Iter - NC NC 104 186 3831

T. err 1.64 0.33 0.04 0.03 0.03 0.03

R. err 30.96 3.57 1.39 0.85 0.83 0.89

Tj. len - NC 2.86 2.36 3.65 2.37

Iter - NC 1235 84 89 869

T. err 1.37 1.29 1.25 0.02 0.02 0.03

R. err 17.26 7.63 9.55 1.81 0.77 1.81

Tj. len - NC NC 1.33 2.49 1.26

Iter - NC NC 20 283 661

T. err 1.95 0.54 0.35 0.02 0.02 0.03

R. err 22.86 4.56 6.47 0.53 0.53 1.39

Tj. len - NC NC 2.74 2.82 1.85

Iter - NC NC 62 244 981

T. err 2.54 2.49 2.32 0.02 0.01 0.03

R. err 20.02 39.65 48.77 11.67 0.34 0.55

Tj. len - NC NC 2.03 5.88 2.26

Iter - NC NC 504 237 754

T. err 1.94 2.36 2.27 0.04 0.041 0.041

R. err 31.78 43.37 29.69 0.78 0.75 0.91

Tj. len - NC NC 2.24 2.28 2.32

Iter - NC NC 183 145 1124

T. err 2.43 2.27 1.36 0.01 0.01 0.02

R. err 36.05 53.246 29.24 0.28 0.16 0.49

Tj. len - NC NC 2.52 2.67 3.52

Iter - NC NC 314 114 1386

TABLE I: Quantitative results on benchmark: We compare

our all the 3 variants of our approach True depth(T. depth),

Depth network(D.net) and Flow depth(F.depth), with existing

visual servoing approaches and report following metrics:

Initial error(I. err) final translation error(T. err) and trajectory

length(Tj. len) in meters, rotation error(R. err) in degrees.

It can be observed that existing approaches are able to

converge only on the simple scenes, whereas our approaches

successfully converge on all. NC stands for not converging.
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