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Abstract

Cities having hot weather conditions results in geo-
metrical distortion, thereby adversely affecting the perfor-
mance of semantic segmentation model. In this work, we
study the problem of semantic segmentation model in adapt-
ing to such hot climate cities. This issue can be circum-
vented by collecting and annotating images in such weather
conditions and training segmentation models on those im-
ages. But the task of semantically annotating images for
every environment is painstaking and expensive. Hence,
we propose a framework that improves the performance
of semantic segmentation models without explicitly creat-
ing an annotated dataset for such adverse weather varia-
tions. Our framework consists of two parts, a restoration
network to remove the geometrical distortions caused by
hot weather and an adaptive segmentation network that is
trained on an additional loss to adapt to the statistics of the
ground-truth segmentation map. We train our framework
on the Cityscapes dataset, which showed a total IoU gain
of 12.707 over standard segmentation models. We also ob-
serve that the segmentation results obtained by our frame-
work gave a significant improvement for small classes such
as poles, person, and rider, which are essential and valu-
able for autonomous navigation based applications.

1. Introduction
In computer vision literature, the task of understanding

the semantics of the scene is achieved by semantic seg-
mentation. Formally, we define semantic segmentation as
a method of classifying each pixel into its object category.
Cityscapes [3] is one of the widely used datasets for training
semantic segmentation models in an autonomous navigation
based setting. The images of Cityscapes have been captured
from road scenes from different cities of Germany, which
have relatively colder and clear weather. Now, for instance,
if we train a semantic segmentation model on the Cityscapes
dataset and deploy it in places having extremely hot weather
conditions such as Dubai, then the trained model finds hard
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Figure 1: (a) Natural atmospheric turbulent images curated
from the internet. The zoomed patches show the geomet-
rical distortion caused by atmospheric turbulence. (b) A
simulated atmospheric turbulent image of the Cityscapes
dataset. (c)-(d) Performance of DeepLabV3 [2] and our pro-
posed method on the turbulent image.

to keep its optimal performance and give poor segmenta-
tion results, as shown in Figure 1(c) (even though the roads



may look similar). This phenomenon happens due to the
geometrical distortion caused by hot weather into the in-
put image shown in Figure 1(a). Hence, it becomes neces-
sary for us to ponder upon the problem of adapting seman-
tic segmentation models in such weather variations due to
the change in geographical location. This condition, espe-
cially variations caused by hot weather, is also referred to
as atmospheric turbulence [44] as it affects the atmospheric
parameters such as the refractive index between an object
and a camera. In the remaining paper, we interchangeably
use atmospheric turbulence and hot weather conditions for
convenience. The problem of semantic segmentation model
to generalize for hot weather can be bypassed by collected
data, especially in such weather conditions and training a
model on the collected images. However, collecting and
annotating images for such atmospheric conditions is an ex-
tremely tedious task, which is time consuming and very ex-
pensive.

In this paper, we propose a solution to improve seman-
tic segmentation model performance in hot weather with-
out explicitly creating an annotated dataset. The proposed
framework consists of two networks: Restoration network
and Segmentation network. The restoration network is
specifically intended to minimize the geometrical distortion
caused by atmospheric turbulence in an image. We could
have used existing machine learning methods [24, 37] for
restoring images from atmospheric turbulence. But, these
methods suffer from two significant limitations: (i) none
of the methods works for single image restoration, and (ii)
considerable variation in an atmospheric parameter cannot
be handled by these methods. To overcome these issues, we
train our restoration model on a large scale dataset, having
images with varying atmospheric parameters for better gen-
eralization. At inference time, the trained restoration net-
work can perform single image restoration. The architec-
ture of our restoration network is adapted from the widely
used image-to-image translation network [13]. Addition-
ally, we introduce Channel Attentive Multi-Scale Residual
Block (CA-MSRB), which learns local multi-scale features
along with the inter-dependencies between residual chan-
nels using an attention mechanism.

The restored images obtained from the restoration net-
work are passed to the segmentation network. The segmen-
tation network consists of a DeepLabV3 [2] model, which
is trained on multi-class cross-entropy loss between seg-
mentation colormap of the restored image and ground-truth
segmentation colormap. To make our semantic segmen-
tation model more adaptive to the turbulent environment,
we additionally use CORAL loss [30] between the restored
image segmentation colormap and the non-turbulent image
segmentation colormap got from pre-trained DeepLabV3
model. By using the additional loss, there is further im-
provement in segmentation results, and the domain gap be-

tween restored and non-turbulent segmentation colormap
reduces. Our method shows significant improvement in seg-
mentation results on the Cityscapes dataset, particularly for
small classes (Figure 1) like poles, person, and, rider which
are essential and valuable classes in autonomous navigation.

Our Contributions:

• We propose an adaptive semantic segmentation frame-
work, which shows significant improvement in seg-
mentation accuracy in hot-weather conditions. This
framework bypasses the tedious task of semantic an-
notation on turbulent images.

• We use CORAL loss [30], as an additional loss to
train our semantic segmentation network, which im-
proves the segmentation accuracy and reduces the do-
main gap. Extensive experiments were conducted on
Cityscapes [3] dataset to show improvement in seg-
mentation accuracy, particularly for small classes.

• We proposed a restoration network for removing at-
mospheric turbulence in the images. Further, we also
improve the restoration capabilities of our network on
multi-scale, by introducing CA-MSRB block, which
achieves state-of-the-art performance over the general
image-to-image translation methods.

2. Related Work
Restoration In Atmospheric Turbulence: Removing

the phenomena of atmospheric turbulence from images has
been studied from the past few decades. Initial methods
used adaptive optics [24], which were purely motivated
by optics. These methods required precise experimental
set-up, which was mainly used for astronomical applica-
tions. Lucky imaging [6] was another widely used method
that relied on the probabilistic approach to restore images.
Multi-frame image restoration approaches [1, 43] by Lucky
imaging has also been proposed for enhancing the images
and videos degraded from turbulence by correcting the ge-
ometrical distortion and reducing the blur present in the
images. Frequency-based methods such as Fourier analy-
sis [40] were also used to restore the images.

Recent methods have started using a machine learning
approach to recover images from atmospheric turbulence.
Zhu et al. [44] proposed a restoration method that first sup-
presses the geometrical distortion of each frame by using
B-Spline built on non-rigid registration. After that, an im-
age is generated from the set of registered images by using
a temporal regression process. This regression process can
also be viewed as the convolution of images with space in-
variant near-diffraction-limited blur. At last, the final output
is produced by applying blind deconvolution on the regres-
sion output. However, this approach suffered from a signif-
icant limitation from the use of temporal mean to calculate
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Figure 2: Overview of our framework: Our restoration network Gθ takes the input turbulent images It and gives the
restored images Ir. To train the parameters of restoration network θ, a linear combination of losses is minimized between the
restored and non-turbulent images. The restored images are further fed into the segmentation network Sβ1, which predicts the
segmentation colormap Cr. The parameters of segmentation network β1 is trained by calculating multi-class cross-entropy
loss between Cr and ground-truth segmentation colormap Cgt. Additionally, we take the logarithm of CORAL loss between
Cr and the predicted segmentation colormap C, which acts as an additional loss to train β1. The segmentation colormap C
is obtained by passing non-turbulent images I into pre-trained segmentation network Sβ2, with fixed parameters β2.

the reference image, which lead to poor image registration.
Xie et al. [38] proposed a method in which they overcome
this limitation. This method first constructs a reference im-
age using low-rank matrix decomposition on a set of in-
put frames. And, for the registration process, they used a
variational framework with a spatiotemporal regularization
which iteratively optimizes the reference image.

However, none of the methods discussed above can be
used to restore a single turbulent image as they require mul-
tiple turbulent images for restoration. Hence, we overcome
this drawback by proposing a deep learning-based restora-
tion model. Our restoration model requires only a single
turbulent image to restore itself.

Image-to-Image Translation Via Deep Learning: Re-
cent advancements in deep learning have drastically im-
proved the performance in vision problems, such as clas-
sification [11], segmentation [19], and detection [25]. An-
other powerful property of deep networks is that they can
learn to generate high dimensional non-linear data, such as
images and audio using generative models [31, 23]. Among
all the generative models, Generative Adversarial Network
(GAN) [8] is the most successful model, which is widely
used in image super-resolution [16], image impanting [39],
and image-to-image translation [13].

However, general image-to-image translation model
such as PixelRNN [32], Pix2Pix [13] and CycleGAN [42]
learns the general mapping from one distribution to an-
other. This restricts the general image-to-image transla-
tion model to leverage the specific problem structure, which
could be effectively used for removing atmospheric turbu-

lence. We overcome this problem by proposing an image-
to-image translation which is specially intended to remove
atmospheric turbulence. Recently, Wu et al. [36] proposed
a method motivated from image stylization [7] to transfer
an image from one weather condition to another. They fur-
ther show improved semantic segmentation results on the
styled image. However, their method is not modeled to han-
dle significant geometrical changes in an image. Whereas,
our method is specifically intended to work in geometrical
distortion caused by extreme atmospheric turbulence.

Channel Attention for CNNs: Channel attention can
be viewed as attending selectively on a specific part of the
entire information while ignoring the rest of the informa-
tion. In the context of CNNs, it can be interpreted as as-
signing selective weights to a feature map of a convolutional
layer rather than giving equal weights to all feature maps. J.
Hu et al. [12] introduced the concept of channel attention
in CNNs. Later, this concept further extended into various
vision applications, such as super-resolution [41], pose es-
timation [29], and action classification [4]. Motivated by
wide applicability of channel attention in various vision ap-
plications, we build a CA-MSRB for use in our restoration
network.

3. Our Approach
In this section, we describe the formalization of our pro-

posed restoration model, followed by an improved segmen-
tation model. The formalization of our restoration frame-
work begins with a dataset consisting of turbulent images
It = {Iit : i = 1...n} and their corresponding non-turbulent
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Figure 3: (a) Shows network architecture of our restoration network. The network takes the turbulent image and outputs the
corresponding restored image. In the figure, k is the kernel size, n is the number of feature maps, and s is the stride in each
convolutional layer with p as padding. (b) Architectural details of proposed Channel Attentive Multi-Scale Residual Block
(CA-MSRB) used in the restoration network.

images I = {Ii : i = 1...n}, where Ii ∈ RN×M and n
is the total number of samples in the dataset. Then, Iit is
passed through the restoration networkGθ having learnable
parameters θ. The output of Gθ is the restored image Iir of
corresponding turbulent image Iit . The loss between Iir and
Ii is used to train the restoration network parameters. Af-
ter the restoration of turbulent images, we pass the restored
images to the segmentation framework. The segmentation
framework consists of two input heads. The first input head
takes the restored image Iir, which is passed through train-
able semantic segmentation network Sβ1 with trainable pa-
rameters β1. Another input head takes the corresponding
non-turbulent image Ii of Iir, which is passed through a pre-
trained network Sβ2 with fixed parameters β2. Thereafter,
we minimize the second-order statistics between the pre-
dicted segmentation map Cir of Sβ1 and Ci of Sβ2 which
makes the Cir to adapt the domain statistics of Ci. Fig-
ure 2 shows an overview of our approach. In subsequent
subsections, we describe our restoration and segmentation
networks emphasizing the architectural details and losses
used in training the network.

3.1. Restoration Network

The architecture of our restoration network is motivated
by, Ledig et al. [16] and Li et al. [18] with some significant
architectural changes for better adaptation to our problem,
which is discussed below in detail along with the loss func-
tions.

Network Architecture: Our restoration network archi-
tecture consists of an input convolutional layer, upsampling
block, Channel Attentive Multi-Scale Residual Block (CA-
MSRB), downsampling block, and output convolutional
layer. The input convolutional layer projects input image
to feature space whose output after that passed through the
downsampling block. The downsampling blocks are com-
prised of 3 Group Normalization layer [35], 3 ReLU layer,
and 3 convolutional layers. We perform Group Normaliza-
tion rather than other normalization techniques as it gives
lower training loss on smaller batch sizes. The configura-
tion of each convolutional layer has a filter size of 4×4 with
padding 1 and stride 2. After each convolutional layer in the
downsampling block, the number of output features dou-
bles. The downsampled features obtained from the down-
sampled block are passed through 8 CA-MSRB blocks.

The architecture of CA-MSRB is inspired by Hu et
al. [12] and Li et al. [17]. The CA-MSRB consists of three
parts: multi-scale atmospheric distortion learning, channel
attention, and local residual learning. The multi-scale at-
mospheric distortion learning comprises of two bypass net-
works with convolutional kernel sizes of 5 × 5 and 3 × 3.
The information between bypass networks is shared to fa-
cilitate the learning of atmospheric distortion at multiple
scales. The output of the bypass networks is fused by a
1 × 1 convolutional layer. After fusion, we apply chan-
nel attention on the output of a 1 × 1 convolutional layer
to capture channel-wise inter-dependencies. After that, the



learned weights are used to scale channel features learned
by the 1 × 1 convolutional layer. At last, we perform lo-
cal residual learning by adding input of CA-MSRB block to
the channel attention output, so that the atmospheric distor-
tion learned from the previous layers is effectively is passed
deeper into the network. Figure 3(b) shows the architectural
details of a CA-MSRB.

The output features obtained after all CA-MSRB blocks
are then upsampled by upsampling blocks. The architec-
ture of the upsampling block is similar to downsampling
blocks, instead of the convolutional layer, it uses transpose
convolution to upsample the features. The number of out-
put features decreases from 256 to 32 across the upsampling
block. Finally, we use the output convolutional layer to get
the final warping field, which contains the flow movement
of pixels displaced from its original position due to atmo-
spheric turbulence. The field is warped bi-linearly applied
to the input image to get the restored image. We also add
skip-connection [26] to our restoration network to recover
information lost during downsampling.

Restoration Loss Function: Our restoration network
can be trained only on L1 loss (content loss), however, it
results in overly smooth output images. To overcome this
problem, we train our restoration network by minimizing a
loss function consisting of a linear combination of content
loss, perceptual loss [14], and adversarial loss [8]. Percep-
tual loss is used to add perceptually relevant characteris-
tics into the output image. This loss is calculated by tak-
ing the L1 distance between the restored and non-turbulent
images feature representation of Conv4 3 of VGG16 [28].
Lastly, we add adversarial loss to our loss function, so that,
the output image lies in the natural image manifold. Our
restoration network Gθ is used as the generator for our ad-
versarial training. The architecture of the discriminator is
adopted from DCGAN [25]. Also, we use spectral normal-
ization [22] which stabilizes the training of discriminator
networks. We use least-square loss function [21] in train-
ing the network which results in high-quality output image
generation. The overall loss function of our restoration or
generator network is:

lgen = λ1||I −Gθ(It)||1 + λ2[Dβ(Gθ(It))− 1]2

+ λ3||ψ4,3(I)− ψ4,3(Gθ(It))||1 (1)

where, ψ4,3 is the feature map of VGG16 at Conv4 3 layer
output and λ1, λ2, and λ2 are hyper-parameters that em-
pirically estimated during training the network.The loss for
discriminator is formulated as:

ldisc = [Dβ(Gθ(It))
2 + (Dβ(I)− 1)2] (2)

also, we apply spectral normalization on each layer of dis-
criminator, so that ||Dβ ||Lip ≤ 1.

Method PSNR SSIM MS-SSIM MSE

CycleGAN [42] 22.3450 0.6597 0.9010 203.6862

Pix2Pix [13] 25.1881 0.7934 0.9563 146.6870

UNet [26] 25.9149 0.8042 0.9611 134.6829

Li et al. [18] 26.1525 0.8095 0.9631 131.7664

Ours 26.6137 0.8120 0.9655 125.7047

Table 1: Quantitative comparison of our restoration model
with state-of-the-art image-to-image translation models.
All the models were trained on the Cityscapes dataset. We
can observe that our model outperforms the other general
image-to-image translation models over all the image qual-
ity metrics.

3.2. Segmentation Network

The restored images Iir obtained as output from the
restoration network are passed into Sβ1. The output of Sβ1
network is Cir = Sβ1(I

i
r), which is the predicted colormap

of restored image. The parameters β1 of Sβ1 is trained by
using multi-class cross-entropy loss function. Ideally, our
predicted colormap of restored images Cir from Sβ1 should
be equal to Ci = Sβ2(I

i), the predicted colormap of non-
turbulent image on pre-trained network. Hence, we use
CORAL [30] as an additional loss function to further min-
imize the gap between Cir and Ci. CORAL loss is widely
used in domain adaptation to match the second-order statis-
tics of source and target distribution. In this problem, Cir
can be considered as a sample from the source domain and
Ci sample from the target domain. We take natural loga-
rithm of the output of CORAL loss for better stability. The
overall segmentation loss function can be formulated as:

Ls = lcross−entopy(C
i
r, C

i
gt) + γlcoral(C

i
r, Ci) (3)

where, Cigt is the ground-truth segmentation colormap of
input image Ii and γ is the hyper-parameter of Ls. For
all our semantic segmentation experimentation, we use
DeepLabV3 [2] as our semantic segmentation network to
get predicted colormap of an image.

4. Experimentation
4.1. Experimental Settings

Dataset: Turbulent images can be simulated by using
computer graphics [10]. But, these methods use high com-
putational power for rendering. So, we use a physics-based
method [27], which efficiently renders turbulent images by
following a few simple 2D operations. We use pixel-level
Cityscapes dataset to create our turbulent dataset, which
was used in the experiments of our proposed framework.
The synthesized dataset consists of 2975 training image
pairs and 500 validation image pairs of turbulent and non-
turbulent image pairs. We follow the evaluation method



Method Dataset road swalk build. wall fence pole tlight sign veg. terrain sky person rider car truck bus train mbike bicycle mIoU

DeepLabV3 [2] Non-Turbulent 97.34 82.94 91.24 65.36 69.53 41.58 56.01 66.03 89.47 70.63 91.57 74.94 58.68 91.20 81.71 86.89 88.19 66.89 68.99 75.746

DeepLabV3 [2] Turbulent 94.22 66.13 71.98 25.77 18.27 23.14 30.39 37.51 71.15 46.99 86.87 44.06 15.43 64.26 32.93 47.57 19.79 15.65 29.41 44.291

DeepLabV3 [2] Restored 95.07 69.5 81.65 26.92 26.59 32.04 39.21 42.42 85.07 53.47 87.94 58.03 36.45 85.47 54.61 64.03 24.21 33.79 48.65 55.006

MMD-DLV3 Restored 95.24 69.12 83.43 29.56 28.29 31.24 38.04 44.23 85.56 53.57 87.42 56.27 38.86 86.03 54.65 64.78 23.96 32.61 50.11 55.419

Coral-DLV3 Restored 95.25 69.30 82.92 29.17 26.04 31.61 39.80 44.63 85.79 53.79 87.99 57.76 38.28 85.95 55.96 63.79 26.45 33.82 50.75 55.739

Joint Coral-DLV3 Restored 95.76 71.81 83.86 30.72 30.55 33.28 39.29 43.59 86.06 55.19 88.61 60.73 39.21 87.41 54.54 63.09 30.02 36.41 52.79 57.011

IoU Gain 1.54 5.68 11.88 4.95 12.28 10.15 8.90 6.08 14.92 8.20 1.74 16.67 23.78 23.15 21.61 15.53 10.23 20.76 23.39 12.707

Table 2: Quantitative comparison of various semantic segmentation methods on the Cityscapes dataset. We compare the
performance of DeepLabV3 on non-turbulent, turbulent, and restored (output images from our restoration method) dataset
of Cityscapes. We see significant gain in IoU by using the restored images over turbulent images. The performance is
further improved by using the Joint Coral-DLV3 model, which is a DeeplabV3 network jointly trained on CORAL loss and
multi-class cross-entropy. We compare our Joint Coral-DLV3 model with MMD-DLV3 and Coral-DLV3, which are the
DeepLabV3 model trained on MMD and CORAL as a loss function, respectively. Finally, we show the IoU gain by the Joint
Coral-DLV3 method on restored images over the DeepLabV3 model trained on turbulent images.

         Turbulent Image                              CycleGAN                                       UNet                                          Pix2Pix                                       Li et al.                                         Ours                              Non-Turbulent Image

Figure 4: Qualitative comparison of our restoration network with other general image-to-image translation methods.

for semantic segmentation used in the Cityscapes dataset,
where 19 semantic labels were used for evaluation without
the void labels. We share all the parameter information for
generating turbulent images in the supplementary material.

Implementation Details: We train our restoration net-
work on the Cityscapes training image pairs of turbulent and
non-turbulent images. The restoration network was trained
for 15 epochs with a learning rate of 1e−4 and batch size 8.
For another 10 epochs, the restoration network was trained
for a learning rate of 1e − 5. We use Adam [15] as the
network optimizer with beta1 = 0.5 and beta2 = 0.999 for
computing, running average of gradients and its squares.
The value of λ1, λ2, and λ3 in equation 1 are empirically
found to be 100, 1 and 5, respectively. To train all the seg-
mentation models, we largely employ the training protocol
followed in DeepLabV3 [2]. The value of γ in equation 3 is
empirically found to be 0.002.

Evaluation Metrics: We measure the structural and per-
ceptual quality between images by Peak Signal-to-Noise-
Ratio (PSNR), Structural Similarity (SSIM) [33], and Mean
Square Error (MSE). Additionally, we use Multi-Scale

Structural Similarity (MS-SSIM) [34] to measure the struc-
tural similarity between images at various resolutions. For
semantic segmentation tasks, we use Intersection over
Union (IoU) [3], which is a common evaluation metric
among semantic segmentation methods.

4.2. Experimental Results

We compare our image restoration results with Cycle-
GAN [42], Pix2Pix [13], UNet [26] and Li et al. [18] on
Cityscapes test dataset. Table 1 and Figure 4 shows the
qualitative and quantitative comparison of our model out-
put with the other model. From Table 1, we can see that
our model outperforms the other methods on all the im-
age quality metrics. From the qualitative results observed in
Figure 4, we notice that our model removes geometrical dis-
tortion caused by atmospheric turbulence as well as recov-
ers the perceptual information. We can also see CycleGAN
and Pix2Pix struggle to remove the geometrical distortion
caused by turbulence. However, UNet and Li et al. elimi-
nate the geometrical distortions to some extent but suffers
from overly-smooth textures and color artifacts.
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Figure 5: Shows the qualitative comparison of semantic segmentation results between DeepLabV3 and Joint Coral-DLV3.
Row 1: The input turbulent image passed into the segmentation network. Row 2: Ground-truth segmentation colormap of
the corresponding input image. Row 3&4: Predicted segmentation colormap by DeepLabV3 and its corresponding segmen-
tation error from ground-truth. Row 5&6: Predicted segmentation colormap by Joint Coral-DLV3 and its corresponding
segmentation error from ground-truth.

Table 2 shows the semantic segmentation results on non-
turbulent, turbulent, and restored images of the Cityscapes
validation dataset. MMD-DLV3 is the DeepLabV3 model
trained on Maximum Mean Discrepancy (MMD) [20, 9] as
a loss function. In the experiments, we used linear time
MMD with a linear kernel. Coral-DLV3 and Joint Coral-
DLV3 are the DeepLabV3 model trained on only CORAL
and jointly by CORAL and multi-class cross-entropy as
the loss function, respectively. From Table 2, we no-
tice that the segmentation performance of the MMD-DLV3
was marginally inferior to Coral-DLV3, which shows that
CORAL loss is better able to adapt the statistics of the

ground-truth segmentation map.
We can observe our Joint Coral-DLV3 model on restored

images making a total IoU gain of 12.707 over the results of
the DeepLabV3 which is trained and validated on turbulent
images. We also observe that the IoU gain is significant in
classes such as bicycle, person, car, rider, and fence, which
are more important and valuable classes than other classes
like, sky for self-driving cars. Joint Coral-DLV3 gives a
marginal improvement over individually training the net-
work on CORAL loss or multi-class cross-entropy, which
can be seen in Table 2. Figure 5 shows the semantic seg-
mentation result of our model and DeepLabV3. We can



Multi-scale residual block 7 7 3 7 3 3 7 3
Spectral Normalization 7 3 7 7 3 7 3 3
Channel Attention 7 7 7 3 7 3 3 3

PSNR 20.1793 20.5455 21.7452 21.2314 22.0432 21.9523 21.8170 22.1411
SSIM 0.5765 0.5935 0.6319 0.6153 0.6495 0.6487 0.6473 0.6517
MS-SSIM 0.8057 0.8317 0.8759 0.8592 0.8889 0.8861 0.8836 0.8910
MSE 258.592 247.758 223.105 239.311 217.121 219.653 220.897 214.686

Table 3: Ablation investigation of multi-scale residual block, spectral normalization, and channel attention on our proposed
restoration network. We find that combining all three components gave the best performance on all the image quality metrics.
In the ablative investigation, we train all the models for 10 epochs.
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Figure 6: Semantic segmentation output of turbulent im-
ages on varying structure constant C2

n. We can observe
that there is a small degradation in the segmentation per-
formance as the value of C2

n increases. (Best viewed when
zoomed.)

notice that in the segmentation colormap that small object
classes such as poles and pedestrians are segmented out by
using our model on restored images.

4.3. Ablation Study
We perform our first ablation study on our restoration

model by demonstrating the effectiveness of our residual
block CA-MSRB, which is split into MSRB and channel at-
tention block for ablative study. Additionally, we also show
the effectiveness of spectral normalization in the discrimi-
nator. We train all our models on the Cityscapes dataset for
10 epochs. Table 3 shows the ablation investigation on the
effects of using spectral normalization, MSRB, and channel

attention block. We find that using MSRB of residual block
improves the quality of output, which shows the advantage
of multi-scale learning in MSRB. Then, we use CA-MSRB
by combining MSRB and channel attention block showing
further improvement. Lastly, we include the spectral nor-
malization technique into our discriminator network along
with CA-MSRB into the restoration model resulting in the
best combination for the restoration model. We also show
the effect of varying structure constant (Cn2) [5] on seman-
tic segmentation. Cn2 is an important parameter for atmo-
spheric turbulence, which measures the atmospheric refrac-
tive index and directly depends on atmospheric temperature.
To get a wide variety of turbulent images, we change the
Cn2 while stimulating turbulent images using [27] method.
Figure 6 shows the semantic segmentation results by Joint
Coral-DLV3. We observe that as the value of Cn2 in-
creases, it becomes difficult to segment smaller classes such
as poles.

5. Conclusion
In this paper, we have proposed a semantic segmenta-

tion framework which adapts to hot weather conditions and
gives improved segmentation results over standard seman-
tic segmentation network. Our framework circumvents the
painstaking tasks of semantic annotation on turbulent im-
ages. The proposed framework works in two stages. In
the first stage, we propose a restoration network specifi-
cally intended to remove geometrical distortion from tur-
bulent images. Additionally, to improve the performance
of our restoration network, we propose CA-MSRB block,
which learns local residual at multi-scale along with inter-
dependencies between the residual channels. In the next
stage, the restored images were passed through an adap-
tive semantic segmentation model to give segmentation col-
ormap. The segmentation results showed by our framework
gave a significant improvement in small classes such as
poles, person, and rider, which are more important and valu-
able classes for autonomous applications. Our work opens
the possibility of improving semantic segmentation in other
weather conditions such as rain, snow, and fog, which could
be the next possible extension of this work.
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