
Improving Product Placement in Retail with Generalized

High-Utility Itemsets

by

Chinmay Bapna, P Krishna Reddy, Anirban Mondal

in

IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA)
: 1
-10

sydney, Australia

Report No: IIIT/TR/2020/-1

Centre for Data Engineering
International Institute of Information Technology

Hyderabad - 500 032, INDIA
October 2020

Improving Product Placement in Retail with
Generalized High-Utility Itemsets

Chinmay Bapna∗, Polepalli Krishna Reddy∗
International Institute of Information Technology Hyderabad, India

∗chinmay.bpn@gmail.com, ∗pkreddy@iiit.ac.in

Anirban Mondal∗
Ashoka University, Haryana, India
∗anirban.mondal@ashoka.edu.in

Abstract—Product placement in retail has a significant impact
on the sales revenue of retailers. Hence, research efforts are
being made to improve retailer revenue using high-utility pattern
mining based product placement approaches. However, none of
these existing approaches has explored generalized high-utility
itemset mining for determining product placement in retail.
The knowledge of generalized high-utility itemsets extracted
from user purchase transactional database in conjunction with
a product taxonomy can provide new insights about customer
purchase behaviour. This work proposes the generalized utility
itemset (GUI) index for retrieving generalized high-utility (rev-
enue) itemsets. We also present a framework, which leverages the
GUI index towards retail product placement to improve revenue.
Our performance study using real datasets shows the effectiveness
of our proposed scheme w.r.t. two existing schemes.

Index Terms—utility mining, generalized association rules,
retail management, product taxonomy

I. INTRODUCTION

Product placement on the shelf space in retail stores has a
significant impact on the sales revenue of retailers [1]–[3]. The
past few decades have witnessed the prevalence and popularity
of medium-scale stores and the rising trends of mega-sized
retail stores (e.g., Dubai Mall and Walmart Supercenters [4])
with huge retail floor space. Such retail stores generally have
a huge number of slots across the different aisles of the store
space. Thus, it becomes critical to strategically place products
in the huge number of slots of the retail store in a way that
improves the sales revenue of the retailer.

The shelf space of a retail store can be segregated into
premium and non-premium slots. Premium slots are those,
which are easily visible and physically accessible to the
customers e.g. slots which are closer to the eye or shoulder
level of the customers. Those slots, which are located very
high or very low in the shelves, are examples of non-premium
slots. In this work, we focus on product placement only for
the premium slots for improving revenue. We assume that each
item is physically of the same size i.e., each item consumes
equal space on the retail store’s shelves. We shall use revenue
as an example of a utility measure throughout this paper;
hence, we use the terms revenue and utility interchangeably.

Research efforts are being made to propose pattern mining
and utility mining techniques towards enhancing product as-
sortment [5], placing the items strategically [3], [5], designing
shop layout [6], indexing high-utility itemsets for facilitating
improved product placement [7]–[9] and exploiting product

categories to improve retailer revenue [10], [11]. Notably,
approaches have also been proposed in [12]–[14] for extracting
knowledge of generalized association rules from a given
transactional database in conjunction with a taxonomy of
items. However, none of the existing approaches incorporate
knowledge of high-utility generalized itemsets in retail.

Given a taxonomy of items and user purchase transactions,
it is possible to extract interesting associations among the
generalized items at different levels of the taxonomy. For
example, typically, there are a relatively few user purchase
transactions that include a specific brand of soap, toothbrush
and toothpaste in a super market. However, there would
be a much larger number of transactions that include the
generalized itemset of {soap, toothbrush, toothpaste}.

There is a scope to improve the revenue of the retailer by
extending the utility mining paradigm to generalized itemsets
for improving product placement. For example, consider items
a, b, c, d, e, and f. Also, let generalized item of a, b and c
be X and d, e, and f be Y. Suppose we extract a generalized
pattern with itemsets X and Y with support say ψ. It means
that the ψ percentage of the transactions purchases one of the
items of X and one of the items of Y. If we follow the existing
utility-based placement methods based on the utility patterns
at the item level, we have to place itemsets {a, d}, {a, e}, {a,
f}, {b, d}, {b, e}, {b, f}, {c, d}, {c, e}, {c, f} in the given
slots of retail store to cover all corresponding transactions. On
the other hand, if we place the items based on the knowledge
of generalized utility pattern {X, Y}, it is sufficient to place
items {a, b, c, d, e, f} at one place. It can be noted that the
approach with generalized itemsets provides scope to cover a
larger number of user transactions within a relatively lower
number of slots in a comprehensive manner.

In this paper, we extend utility mining and generalized
itemset mining to propose an improved approach for product
placement in retail to improve retailer revenue. Incidentally,
generalized itemsets are virtual in the sense that they cannot
be directly placed in the slots of the given retail store i.e., we
need to identify the specific actual items that pertain to such
generalized itemsets. Given a pattern of generalized items,
it may not be effective in improving retailer revenue if we
place all of the corresponding actual itemsets corresponding
to the generalized itemset. This is because many of these
actual itemsets would be likely to have low utility (revenue).
Referring to our earlier example of the generalized itemset of

{soap, toothbrush, toothpaste}, there could be some brands
of soaps, toothbrushes and toothpastes, which generate higher
sales revenue for the retailer e.g., due to higher popularity (fre-
quency of sales) or higher pricing. Here, the issue is to identify
the potential items to be placed for a given generalized pattern,
while ensuring that different brands of soaps, toothbrushes and
toothpastes are placed in the slots of the retail store, thereby
providing customers with purchase flexibility based on their
brand preferences for improving the revenue of the retailer.

Our proposed framework includes an indexing scheme
for extracting and storing high-revenue generalized itemsets
and a product placement approach. Given a user purchase
transactions database and a product taxonomy, we propose
a utility-based framework to extract high-revenue generalized
itemsets. For a given level of the taxonomy, we build an
index, designated as the Generalized Utility Itemset (GUI)
index, to identify and store high-revenue generalized itemsets.
Furthermore, we propose a product placement framework,
which exploits the GUI index, for placing items in the slots
of the retail store to maximize retailer revenue.

The key contributions of this work are three-fold:
1) We propose GUI, which is an efficient index for facili-

tating retrieval of generalized high-revenue itemsets.
2) We propose a framework for leveraging the GUI index

towards retail product placement to improve revenue.
3) We conducted a performance evaluation using real

datasets to demonstrate the effectiveness of our proposed
scheme w.r.t. two existing schemes.

The remainder of this paper is organized as follows. Section
II discusses related works and background, while Section
III describes the proposed problem framework. Section IV
presents the GUI indexing scheme and product placement
framework. Section V reports the performance evaluation.
Finally, Section VI concludes the paper.

II. RELATED WORK AND BACKGROUND

This section discusses existing works and background.

A. RELATED WORK

Association rule mining approaches [15]–[17] use the down-
ward closure property [17] for finding frequent itemsets pri-
marily based on support. However, they do not consider the
utility of the items. Notably, the downward closure property
does not apply to utility mining. Since a brute-force approach
for extracting high-utility itemsets would be prohibitively
expensive, utility mining approaches have been proposed.

A representation of high-utility itemsets has been discussed
in [18], [19], while the notion of MinHUIs (minimal high-
utility itemsets) has been proposed in [20]. MinHUIs are the
smallest itemsets that generate high utility [20]. The HUG-
Miner and GHUI-Miner algorithms [21] extract high-utility
itemsets by mining concise representations in conjunction with
pruning.

Observe that in practice, taxonomies (is-a hierarchies) typ-
ically exist over the items. Hence, association rules can be
extracted in a generalized form by using taxonomies, thereby

extracting knowledge in a compact form. Generalized associa-
tion rules depict the semantic relationships between the items
and analyze such correlations at higher abstraction levels [12]–
[14]. Multi-level association rules apply apriori-like frequent
pattern mining strategies for finding frequent itemsets at a
given level of abstraction [13]. However, they do not consider
the utility of the items.

The case for generalized (cross-category) itemsets in retail
has been well-documented in the literature [22]–[24]. The
work in [22] found that optimal in-store category adjacencies
could increase cross-category sales. The work in [23] indicated
the effects of aisle and display placements on significantly
improving cross-category brand sales. Furthermore, the work
in [24] found that cross-category effects go beyond substitutes
and complements in influencing consumer demand.

The works in [5]–[10] discuss product placement and shelf
space allocation in the retail domain. A microeconomic model
for product selection (PROFSET) has been proposed in [25].
It applies association rule mining to mine frequent itemsets
and introduces the concept of gross-margin for determining
optimal product assortments in retail stores. It also integrates
the discovery of frequent itemsets with both quantitative and
qualitative (domain knowledge) criteria. Moreover, it gener-
alizes this approach by introducing category-based product
allocation in [10]. The work in [5] proposed a multi-level
association rule mining-based framework for exploring the
relationships between products as well as between product
categories in retail stores. The works in [7], [9] focused on
placing itemsets in the slots of the retail stores when the
physical item sizes may vary. The work in [8] addressed
the problem of determining the placement of the itemsets in
different types of slots with varied premiumness.

Notably, none of the existing approaches incorporate knowl-
edge of high-utility generalized itemsets in retail. This limits
their applicability in building practical systems to place prod-
ucts in retail stores for maximizing the revenue of the retailer.

B. BACKGROUND

The kUI index [26] provides flexibility to the retailer by
serving as a guide towards strategic placement of high-utility
itemsets in the premium slots of the retail store. kUI is a
multi-level index, where each level concerns a given itemset
size. At the kth level, the kUI index stores the top-λ high-
revenue itemsets of itemset size k. Each level of the kUI
index corresponds to a hash bucket. For indexing itemsets of
N different sizes, the index has N hash buckets i.e., one hash
bucket per itemset size. Hence, given a query for finding the
top-λ high-revenue itemsets of a given size k, one can traverse
quickly to the kth hash bucket instead of having to traverse
all of the hash buckets corresponding to k = {1, 2,. . . , k-1}.

For each level k in the kUI index, the corresponding hash
bucket contains a pointer to a linked list of the top-λ itemsets
of size k. The entries of the linked list are of the form (itemset,
σ, ρ, NR), where σ refers to the frequency of item sales, ρ
refers to the item prices and NR refers to the net revenue of the
itemset. NR is computed as the product of frequency of sales

Fig. 1: Illustrative example of the kUI index

(σ) and price (ρ) of items in itemset. The entries in the linked
list are sorted in descending order of NR for facilitating quick
retrieval of high-revenue itemsets of a given size. Figure 1
depicts an illustrative example of the kUI index. Observe how
the itemsets (e.g., {I}, {O}) of size 1 correspond to level 1
of the index, the itemsets of size 2 (e.g., {A, L}, {N, M})
correspond to level 2 of the index and so on. Notice how the
itemsets are sorted in descending order of NR.

Observe that in practice, the number N of products in large
retail stores can run into tens of thousands. The kUI index gen-
erates the top-λ high revenue items from a considerably large
number of items i.e., λ<<N . Consequently, it considers only
these top-λ items to subsequently build higher levels of the
index by generating itemsets from among these items. Hence,
the items, which are outside of the top-λ high revenue items
(as well as their corresponding associations), are essentially
ignored and therefore not covered by the kUI index, thereby
possibly resulting in missed opportunities for improving the
revenue of the retailer. On the other hand, we cannot keep
increasing the value of λ to cover a significant percentage
of the items because the computational overheads of finding
all of the associations (e.g., 2-itemsets, 3-itemsets etc.) would
become prohibitively expensive beyond a certain point.

III. PROPOSED FRAMEWORK OF THE PROBLEM

Consider a set D of user purchase transactions on a finite
set Υ of m items, where each transaction comprises a set of
items from set Υ. Each item i ε Υ is associated with a price
ρi and a frequency of sales σi. Let T be a taxonomy (i.e., a
is-a hierarchy), which aggregates items in Υ into higher-level
concepts that represent the semantic is-a relationship between
the related items. These higher-level concepts will henceforth
be designated as generalized items.

Generalized items can be further aggregated to other gen-
eralized items at higher abstraction levels. We assume the
taxonomy to be a well-balanced tree with the items in Υ as
the leaf nodes. We assign the leaf-level nodes of a taxonomy
as taxonomy level zero, the nodes on the level immediately
above it as taxonomy level one, the next higher level of nodes
as taxonomy level two and so on. Observe that in a balanced
taxonomy, the nodes on the same level of the taxonomy tree
would have the same taxonomy level values. Our focus is

on finding combinations of generalized items lying on the
same level in the taxonomy, since they precisely constitute
information at specific abstraction levels. We shall now discuss
some terminology for a better understanding of the context.

Definition 1 (Net Revenue of an item): We define the net
revenue NRk of a specific item k as the product of its price
ρk and its frequency σk of sales i.e., NRk = (ρk ∗ σk).

Now we define the notion of net revenue of a generalized
item after defining the notion of cover set.

Definition 2 (Cover Set): Let G be the set of generalized
items in T . Given a generalized item g ε G, cover set (CSet) of
g, where CSet(g) ⊆ Υ, is the set of leaf-level items covered by
g. Thus, the cover set maps generalized items in the taxonomy
to their corresponding leaf-level items.

Definition 3 (Net Revenue of a generalized item): Given
a taxonomy T and a generalized item g ε G, net revenue NRg
of g is the product of its frequency of sales and the mean price

of items in CSet(g) i.e., NRg = ceil(

∑
jεCSet(g) ρj

|CSet|
) ∗ σg .

Observe that the value of NRg computed above is approx-
imate because we are using the average of the prices of the
items in the corresponding cover set of a given generalized
item as opposed to considering the product of the prices and
frequencies of sales of each individual item. This approxi-
mation in the computation of NRg is justifiable because in
practice, item prices in the same taxonomy category do not
typically vary to any significant extent in a given retail store. In
the absence of this approximation, we would have to maintain
individual item prices and item frequencies of sales for each
level of our proposed GUI index, thereby resulting in increased
storage and computational overheads.

Figure 2a depicts a sample taxonomy Retail of items. The
items in the taxonomy have been encoded using a simple
encoding scheme described in Table I. Figure 2b presents a
sample transactional database of encoded items of the tax-
onomy. We construct generalized transactions corresponding
to a specific taxonomy level by replacing each item in the
original transaction by its respective ancestor at that taxonomy
level. Some examples of generalized transactional databases
of taxonomy levels one and two are depicted in Figures 2b(ii)
and 2b(iii) respectively, which have been generalized from the
transactions in Figure 2b(i).

(a) Sample Taxonomy Retail

(b) Transactional Database

Fig. 2: Taxonomy and corresponding Transactional Database

TABLE I: Encoding of nodes in Product Taxonomy.

Item Code σ ρ NR
Dairy & Bakery 1 21 2 42

Snacks 2 12 3 36
Beverages 3 27 2 54

Dairy 11 13 2 26
Bakery 12 8 3 24
Chips 21 8 3 24

Chocolates & Candy 22 4 3 12
Soft Drinks 31 12 2 24
Fruit Juices 32 15 2 30

Milk 111 9 1 9

Item Code σ ρ NR
Cheese 112 4 3 12
Bread 121 6 1 6
Cake 122 2 4 8

Potato Chips 211 2 3 6
Corn Chips 212 6 3 18
Chocolates 221 2 5 10

Candy 222 2 1 2
Soda 311 3 1 3
Coke 312 9 2 18

Apple Juice 321 7 2 14
Orange Juice 322 8 2 16

For instance, consider the taxonomy level-1 transaction
X = {11:2, 32:1} i.e., {dairy:2, fruit juices:1} in Figure
2b(ii). Observe that the cover sets of the generalized items
of taxonomy level one, dairy and fruit juices are CSet(dairy)
= {milk, cheese} and CSet(fruit juices) = {apple juice, orange
juice} respectively. Notice that price of the itemset ρX =

ceil(
ρmilk + ρcheese

2
)∗2+ceil(

ρapple juice + ρorange juice

2
) is equal

to 6. Its frequency of sales σX is equal to 3, hence its net
revenue NRX(ρX∗σX) equals 18. Similarly, for the taxonomy
level-2 transaction from Figure 2b(iii), Z={2:1, 1:1, 3:2} i.e.,
{snacks:1, dairy & bakery:1, beverages:2}, price of the itemset
ρZ is equal to 9, its frequency of sales σZ is equal to 1, thus
its net revenue NRZ(ρZ ∗ σZ) equals 9.

Problem statement: This paper addresses the problem of
product placement in retail with generalized high-revenue
itemsets for improving the revenue of the retailer.

IV. PROPOSED SCHEME

This section presents our proposed scheme.

A. Overview

Consider the existing kUI-based utility mining approach
[26] for itemset placement in retail stores. Given that the total
number of items in a large-scale retail store can be large,
the approach considers only the top-λ high revenue items and
creates 2-itemsets, 3-itemsets and so on up to n-itemsets by
associating them. However, the items, which are outside of the

top-λ high revenue items (as well as their corresponding asso-
ciations), are essentially ignored and therefore not covered by
the placement algorithm, thereby possibly resulting in missed
opportunities for improving the revenue of the retailer. On the
other hand, we cannot keep increasing the value of λ to cover a
significant percentage of the items because the computational
overheads of finding all of the associations (e.g., 2-itemsets,
3-itemsets etc.) would become prohibitively expensive beyond
a certain point. Here, by considering generalized itemsets, we
can essentially cover a much larger percentage of the items
without incurring significant computational overheads.

The following issues are to be resolved to develop item
placement framework based on generalized high-utility item-
sets. First, given a transactional database and generalized
items at the given taxonomy level, the issue is to build a k-
level generalized utility itemset (GUI) index and identify the
potential set of items for each generalized itemset. The second
issue is to develop a placement algorithm, given GUI index of
a given taxonomy level and the number of premium slots.

Given a set of items Υ, transactional database over Υ and
taxonomy T over Υ, the GUI index for each taxonomy level
tl, GUI(tl), is built from high-revenue generalized itemsets
based on the existing generalized itemset extraction algorithm
[12], [13]. GUI(tl) is a multi-level index, where the jth level
of GUI(tl) corresponds to j-sized generalized itemsets. The
index is built in a level-wise manner starting from the lowest
level, which corresponds to generalized items of size 1. Then

Fig. 3: Illustrative Example of the GUI Index

the next higher levels of the index are built progressively one-
by-one by considering only the top-λ high-revenue itemsets at
the lower levels.

Normally, given a generalized item g in GUI(tl), the cover
set CSet(g) contains several items. If we place all leaf-level
items of g, it will not be effective as the net revenue of some
of the items may be low. Hence, the issue is to identify the
potential items from CSet(g) with high net revenue for place-
ment. For each CSet(g), we maintain a revenue contribution
list, RCL(g), which stores potential items based on their mean
net revenue.

Given the number of premium slots, our proposed placement
framework identifies high-revenue generalized itemsets from
each level of GUI(tl) for allocation of premium slots in
a round-robin manner. It progressively allocates generalized
itemsets of different sizes to premium slots until all such
slots are exhausted. Subsequently, in the slots allocated to
each generalized item g, we iteratively place high revenue
items from RCL(g) such that, each item in RCL(g) gets slots
proportionally based on their net revenue values.

B. GUI index and RCL

1) Building the GUI index: For a given taxonomy and
taxonomy level tl, the GUI index extracts high-revenue gen-
eralized itemsets of varying sizes from its corresponding
generalized transactional database of a given taxonomy level
tl. GUI index constitutes a multi-level index, where each level
concerns a given itemset size for generalized items of given
taxonomy level. Thus, for each level k of the GUI index, the
corresponding hash bucket contains a pointer to a linked list
of the top-λ itemsets of size k. The entries of the linked list
are of the form (itemset, σ, ρ, NR), where itemset refers to
a generalized itemset, σ refers to its frequency of sales, ρ is
its price and NR is the net revenue of the concerned itemset.
Moreover, the entries are arranged in descending order of NR.

The GUI index for a given taxonomy level tl is built from a
generalized transactional database, which is built by replacing
each item in the given transactions by their corresponding

generalized ancestor items in the taxonomy on tl. The index
is built in a level-wise manner starting from the lowest level,
which corresponds to itemsets of size 1. First, for level 1 of
the GUI index, we identify top-λ generalized itemsets of size
1 based on their net revenue. Next, we build the level 2 of
the index from top-λ high-revenue itemsets of size 2 selected
from all the combinations of the items of level 1. Similarly,
the higher levels of GUI index are computed from joining
the corresponding lower level items (itemsets). This process
is continued till the maximum level of the index has been
populated with itemsets of their respective sizes at that level.
Furthermore, for the purpose of appropriately representing
generalized items/categories of the GUI index on the shelf
space of a retail store, we will shortly discuss the concept of
revenue contribution lists.

Figure 3 depicts an illustrative example of the GUI index,
built on the items described in the taxonomy shown in Figure
2. Recall that Figure 2b portrays the transactional databases
based on items of the taxonomy. GUI index of taxonomy
level-2 is built from the transactions of taxonomy level-2 such
as those in Figure 2b(iii). Similarly, GUI index of taxonomy
level-1 is built from transactions of taxonomy level-1 and so
on. Observe that the itemsets of size one for each taxonomy
level of the GUI index (e.g., {212}, {32}, {3}) correspond
to level one of the corresponding GUI index, the itemsets of
size two (e.g., {212, 322}, {11, 32}, {1, 3}) correspond to
level two of the index and so on. Notice how for each level,
the entries show a linked list of itemsets with their prices,
frequency of sales and net revenue values. Observe that the
itemsets are sorted in descending order of NR.

2) Revenue Contribution List: Given a taxonomy T , the
selection threshold (STNR) of a generalized item g is
computed as STNR(g) = (µNR(g) + (β/100) ∗ µNR(g))),
where µNR(g) is the mean value of NR across all the items
in CSet(g, T). Here, β is a parameter which controls the
threshold STNR, and its value lies between 0 and 100. The
parameter β is application-dependent and it acts as a lever to
limit the number of items satisfying the selection threshold

criterion.
The revenue contribution list (RCL(g)) refers to a list of

tuples, with each tuple comprising of an item j in CSet(g, T)
with its revenue coefficient RCj such that its net revenue
equals or exceeds the selection threshold (NRj ≥ STNR(g)).
The tuple is of the form <j,RCj>. The revenue coefficient
of an item j in CSet(g, T) is computed as the ratio of NRj
with the sum of NR across all the items selected in RCL(g).
Note that RCL(g) is sorted in descending order of RC.

Consider a category CT that consists of eight items in
its cover set. The items and their net revenue values are
given as follows: (A, 12), (B, 20), (C, 5), (D, 13), (E,
2), (F, 6), (G, 10) and (H, 4). The selection threshold
STNR(CT) = (72/8) ∗ (1 + 30/100) (assuming β = 30)
is equal to 11.7. Thus, the revenue contribution list of CT
i.e., RCL(CT) is {<B, 20/45>,<D, 13/45>,<A, 12/45>}.
Let us assume that CT is assigned 6 premium slots. First, we
place the topmost item in RCL(CT), 3 slots are allocated to B
(ceil(6*(20/45))). Since, 3 slots are still left (6-3), for the next
item D, (ceil(6*(13/45))) 2 slots are allocated. Finally, item A
will be allocated the remaining 1 slot. Hence, slots allocated to
the items B, D and A are 3, 2 and 1 respectively. Observe how
the number of slots allocated to a given item is proportional
to the relative revenue contribution of that item. Note that for
the cases when two or more items have the same RC values,
we resolve ties arbitrarily through random allocation of slots.

C. Revenue-based Generalized Itemset Placement (RGIP)

We propose a framework, designated as Revenue-based
Generalized Itemset Placement (RGIP), which identifies
high-revenue generalized itemsets from the GUI index for
determining product placement in the premium slots. Our
proposed scheme works as follows. Premium slots are allo-
cated to high-revenue generalized itemsets, in a round-robin
manner, based on itemset sizes. This is subsequently followed
by mapping slots allocated to generalized items with their
corresponding high revenue leaf-level items in the product
taxonomy.

Algorithm 1 depicts our proposed RGIP scheme. It takes
as input, the number of premium slots to be allocated, N ;
taxonomy level, t; GUI index of taxonomy level t, GU ;
number of levels in GU , maxL; number of itemsets on each
level of GU , λ; list of pointers to linked lists on each level
of GU , pList; and the list of revenue contribution lists, LR,
which for every node r, in the product taxonomy, stores
RCL(r), which consists of a sorted list of tuples having items
with their corresponding RC values. The algorithm works as
follows. In Lines 1-2, GU and LR have been declared. In
Lines 3-7, we perform the necessary initializations.

In Lines 8-21, the algorithm allocates N premium slots
using the GUI index. In Lines 22-35, the algorithm places
items in allocated slots. We pick generalized itemsets from GU
and store the number of slots allocated to generalized items in
an array, temp. The variable s left represents the remaining
slots to be allocated over the course of this procedure. It is
initialized as N . In every iteration, we select the itemset K, at

Algorithm 1: Revenue-based Generalized Itemset
Placement (RGIP)

Inputs: (a) N : Number of premium slots (b) t: Taxonomy
Level (c) GU : GUI Index on taxonomy level t (d)
maxL: Number of levels in GU (e) λ: Number of
itemsets on each level of GU (f) pList: List of
pointers to linked lists on each level of GU (g) LR:
List of revenue contribution lists

Output: S: Placement of itemsets in N premium slots
Variables: (a) S: Slot Array (b) s left: Total slots left (c)

clev: Current level (d) temp: Array of items (e)
p: Pointer to level of GU (f) K: A generalized
itemset (g) alloc: Number of slots allocated to a
generalized item (h) assign: Number of slots
assigned to a leaf-level item

1 Scan GUI index as a 2D array GU [L, num[L]]
2 Scan LR as a 3D array LR[L1, L2, num(L1), num(L2)]
3 S ← []
4 s left← N
5 clev ← 2
6 foreach item j in LR do
7 temp[j]← 0

8 while s left 6= 0 do
9 if clev > maxL or s left− clev < 2 then

10 clev ← 2
11 if s left ≤ maxL then
12 clev ← s left

13 p← pList[clev]
14 if p == NULL then
15 break
16 K ← GU [clev][p]
17 pList[clev]← pList[clev]→next
18 foreach item j in K do
19 temp[j]← temp[j] + 1
20 s left← s left− 1

21 clev ← clev + 1

22 if t > 0 then
23 foreach item j in temp do
24 alloc← temp[j]
25 foreach leaf l in LR[j] do
26 assign← ceil(LR[j][l] ∗ temp[j])
27 if alloc ≥ assign then
28 S[l]← assign
29 alloc← alloc− assign
30 else
31 S[l]← alloc
32 break

33 else
34 S ← temp

35 return S

the current pointer of the linked list in GU and level (itemset-
size) clev. For every generalized item j in K, we increment
the count of slots allocated to j in temp by 1. After every
allocation we update the remaining slots.

We extract the top-revenue 2-sized generalized itemset
from GU , update temp and increment clev by 1. Then we
extract the top-revenue 3-sized itemset, allocate slots to it,
and so on. Thus, we progressively allocate slots to itemsets by

incrementing clev. Upon reaching the topmost level of GU ,
we do a round-robin and circle back to the next top-revenue
2-sized itemset, and repeat this process until all of the slots
have been allocated.

Subsequently, we progressively iterate on all the nodes in
temp and begin to place items in the slot array, S. For the case
when t > 0, for every node j in temp, we select items from
the revenue contribution list of j, LR[j], and place them in
slots allocated to j, in proportion of their revenue coefficient
RC, till all such slots are exhausted. For the other case when
t is equal to 0 (leaf-level of taxonomy), temp itself represents
the slot placement.

V. PERFORMANCE EVALUATION

This section reports the performance evaluation, which was
done on a 64-bit i3 core processor running Ubuntu 16.04
with 4GB memory. We have implemented our proposed RGIP
scheme as well as the reference schemes in Python.

We use two real datasets, namely the instacart retail dataset
(designated as DSET1) [27] and the classical R “groceries”
market basket analysis dataset (designated as DSET2) [28],
as summarized in Table II. DSET1 has a pre-defined product
taxonomy with three levels, the number of items at levels 0, 1
and 2 being 49688, 134 and 21 respectively. For DSET2, we
used the product taxonomy (concept hierarchy) available from
Tesco to generate a three-level taxonomy. The number of items
at levels 0, 1 and 2 were 169, 57 and 10 respectively. Notably,
the taxonomy of each dataset can be represented in the form of
well-balanced three-level trees. Since neither of these datasets
provides utility values, we generated the prices of the items for
each dataset as follows. Given an item, we generated its price
in the range of [0.01-1.0] as follows. We considered five price
ranges i.e., [0.01-0.20], [0.21-0.40], [0.41-0.60], [0.61-0.80]
and [0.81-1.0]. For assigning prices to items, we randomly
picked one of these price ranges and generated a random
number within that price range.

We split each dataset into a training set and a test set with
70% and 30% of the transactions respectively. For all schemes,
we place the itemsets based on the experiments run on the
training set and evaluate their performance on the test set.

As reference, we adapted the Generalized PROFSET model
[10], [25], which we have discussed in Section II-A. Consider
a transactional database with utility information and a user-
defined minimum support min sup as input. Generalized
PROFSET outputs a set of frequent itemsets with high gross-
margin (utility) having support no less than that of min sup.
By scanning the training set, the algorithm generates frequent
itemsets of different sizes. It then estimates the gross-margin
of each frequent itemset using the algorithm in [10]. This is
followed by a user-defined category-based allocation of items
from the frequent itemsets such that the sum of gross margin
of all the selected frequent itemsets is maximized.

We adapted the Generalized PROFSET model as follows.
First, using the procedure defined above, we generate all the
frequent itemsets having support more than min sup. We
compute the gross margin for each frequent itemset and select

TABLE II: Statistical Information about Datasets.

Dataset No. of Items No. of Transactions
DSET1 49,688 3,214,874
DSET2 169 9,835

itemsets with gross margin greater than a minimum utility
threshold min util across different itemset sizes (k). Since
the number of frequent itemsets to be analyzed is typically
very large, we set a threshold on the gross-margin to prune
the itemsets having low gross-margin. This is followed by
a random allocation of the total premium slots to different
product categories. From the itemsets extracted from the
training set, we first place a 2-sized itemset onto the premium
slots, followed by placing a 3-sized itemset and thus, we do
a round-robin selection of itemsets based on itemset-size for
placement, until all of the available category slots have been
exhausted. We shall henceforth refer to this scheme as GPF.

We also compare our proposed scheme with the kUI index
[26] (see Section II-B). We apply the RGIP scheme discussed
in Algorithm 1 to place the high-revenue itemsets in the
premium slots from kUI index and GUI index, and refer to
the schemes as kUIP and GUIP respectively. Recall that kUI
index is a multi-level index where the jth level of the index
corresponds to j-sized high-revenue itemsets. For kUIP, we
extract the top-revenue 2-sized itemset from kUI index and
assign 2 slots to it. Then we extract the top-revenue 3-sized
itemset and assign 3 slots to it and thus, we do a round-robin
selection of itemsets based on itemset-size for placement, until
all of the available slots have been allocated.

For the kUIP and GUIP schemes, the itemsets are extracted
from the training set and the respective index (i.e., kUI/GUI)
and RCL for GUIP is built offline. For the GPF scheme, we
performed an offline extraction of all of the itemsets from the
training set.

Our performance metrics include execution time (ET) and
total revenue (TR). For the kUIP and GUIP schemes, ET is
the sum of the time required for the identification of itemsets
from the respective index and the time required for placement
in the slots, until all of the slots have been exhausted. In case
of the GPF scheme, ET is the sum of the time required for
the identification of itemsets from the extracted itemsets of the
training set and the time required for placement in the slots,
until all of the slots have been exhausted. Moreover, TR is the
total revenue earned by the retailer based on the results of the
test set. To compute TR, we iterate through each transaction
t in the test set and add to TR only the prices of those items
(in t), which have already been placed in the premium slots
during the training phase.

Table III summarizes the parameters of our performance
evaluation. We specified the values of these parameters based
on our understanding of the application environment through
the results of our preliminary experiments.

A. Effect of variations in λ

Figure 4 depicts the effect of variations in λ for the datasets
DSET1 and DSET2 respectively. Being independent of λ, ET
and TR for the GPF scheme remain constant with varying

TABLE III: Parameters of Performance Evaluation

Parameters DSET1 DSET2
Default Variations Default Variations

Top high-utility items (λ) 1000 100, 500, 2000, 4000 20 5, 10, 40, 80
Number of Premium Slots (N) 1000 100, 500, 2000, 4000 20 5, 10, 40, 80

Taxonomy Level (TL) 1 0, 2 1 0, 2
Selection threshold (β(%)) 30 10, 20, 40, 50 30 10, 20, 40, 50

Itemset Size/Levels (k) 10 - 8 -
Revenue threshold (α(%)) 30 - 30 -

1 5 10 20 40
λ (x100)

0.0

0.5

1.0

1.5

ET
 (s

)

GPF kUIP GUIP

(a) ET (DSET1)

1 5 10 20 40
λ (x100)

0

2

4

7

TR
 (x

4x
10

5)

GPF kUIP GUIP

(b) TR (DSET1)

1 2 4 8 16
λ (x5)

0

15

30

45

ET
 (m

s)

GPF kUIP GUIP

(c) ET (DSET2)

1 2 4 8 16
λ (x5)

0

1

2

3

4

TR
 (x

10
3)

GPF kUIP GUIP

(d) TR (DSET2)

Fig. 4: Effect of variations in λ (DSET1 & DSET2)

1 5 10 20 40
N (x100)

0.0

0.5

1.0

1.5

ET
 (s

)

GPF kUIP GUIP

(a) ET (DSET1)

1 5 10 20 40
N (x100)

0

2

4

6

TR
 (x

4x
10

5)

GPF
kUIP
GUIP

(b) TR (DSET1)

1 2 4 8 16
N (x5)

0

10

30

50

ET
 (m

s)

GPF kUIP GUIP

(c) ET (DSET2)

1 2 4 8 16
N (x5)

0

1

2

3

4

TR
 (x

10
3)

GPF
kUIP
GUIP

(d) TR (DSET2)

Fig. 5: Effect of variations in total number of premium slots (DSET1 & DSET2)

GUI-0 GUI-1 GUI-2
TL

0.0

0.1

0.2

0.3

ET
 (s

)

(a) ET (DSET1)

GUI-0 GUI-1 GUI-2
TL

0

2

4

6

TR
 (x

4x
10

5)

(b) TR (DSET1)

GUI-0 GUI-1 GUI-2
TL

0

10

20

30

ET
 (m

s)

(c) ET (DSET2)

GUI-0 GUI-1 GUI-2
TL

0

1

2

3
TR

 (x
10

3)

(d) TR (DSET2)

Fig. 6: Effect of variations in taxonomy levels (DSET1 & DSET2)

10 20 30 40 50
β (%)

0.0

0.1

0.2

0.3

0.4

ET
 (s

)

GUI-0
GUI-1
GUI-2

(a) ET (DSET1)

10 20 30 40 50
β (%)

0

2

4

6

TR
 (x

4x
10

5)

GUI-0 GUI-1 GUI-2

(b) TR (DSET1)

10 20 30 40 50
β (%)

0

15

30

45

ET
 (m

s)

GUI-0
GUI-1
GUI-2

(c) ET (DSET2)

10 20 30 40 50
β (%)

0

1

2

3

4

TR
 (x

10
3)

GUI-0 GUI-1 GUI-2

(d) TR (DSET2)

Fig. 7: Effect of variations in selection threshold with varying taxonomy levels (DSET1 & DSET2)

TABLE IV: Summary of Notations of the Approaches

Notation Description Citation
GPF Generalized PROFSET [10]
kUIP k-Utility Itemset Placement [26]
GUIP Generalized Utility Itemset Placement Algorithm 1

λ. GPF scheme examines all the patterns that exceed a pre-
specified minimum support and minimum gross-margin. It
incurs a high execution time for search and retrieval of items
from a large number of itemsets for placement in category
slots. The kUIP and GUIP schemes outperform GPF in terms
of ET since they only examine the top-λ high-revenue itemsets
of different sizes (by exploiting the kUI index and GUI index
respectively). Moreover, as λ increases, the number of patterns
to be examined increases for both kUIP and GUIP, which
contributes to the increase in ET. Furthermore, GUIP exhibits
slightly higher values of ET than kUIP since it involves an
additional step of mapping its selected generalized items to
their corresponding leaf-level items in the taxonomy.

The results in Figure 4b indicate that the GUIP scheme
provides higher TR than both the GPF and kUIP schemes.
GPF is outperformed by GUIP and marginally falls behind
kUIP in terms of TR. GPF scheme imposes a restriction on
both the support and gross-margin of itemsets and it ignores
itemsets with high support & low gross-margin or low support
& high gross-margin. Moreover, a randomized selection of
itemsets for placement in an arbitrary number of category slots
further inhibits the revenue of the model. On each level, kUI
index stores only the top-λ high-revenue itemsets. Hence, the
items, which are outside of the top-λ high revenue items, are
essentially ignored and therefore not covered by the kUI index,
thereby resulting in missed opportunities which is indicated
by its TR curve. However, with increasing values of λ, kUIP
scheme considers more high-revenue itemsets and thus shows
an increase in TR. GUIP considers top-λ generalized itemsets
on each level. Since generalized items on higher levels of the
taxonomy are already small in number, lower values of λ do
not hinder the performance of GUIP. Furthermore, it places
high revenue leaf-level items for each selected generalized
item, which provides GUIP a larger outlook over the items
enabling discovery of distinct itemsets, which are unbeknownst
to approaches that restrict their focus only on the leaf-level
items of the taxonomy. The results in Figures 4c and 4d follow
similar trends as those of Figures 4a and 4b; the difference in
the actual values of the performance metrics arises due to the
respective dataset sizes.

B. Effect of variations in N

Figure 5 depicts the results for the datasets DSET1 and
DSET2 respectively when we vary the number of premium
slots (N). GUIP and kUIP outperform GPF in terms of ET due
to the reasons explained earlier for Figure 4a. A detailed inves-
tigation of the experimental logs revealed that ET increased for
all of the schemes. This is because as the value of N increases,
more slots need to be filled, thereby necessitating a slightly
higher number of patterns to be examined. However, this
increase in ET is only slight for kUIP and GUIP because of

their efficient indexing mechanism, which maintains the top-
λ high-revenue itemsets. On the other hand, the predominant
cost for GPF arises from examining a large number of itemsets
for extraction of itemsets of varied sizes and placing them in
their corresponding category slots.

The results in Figure 5b indicate that the total revenue TR
increases for all the schemes with increase in N. This occurs
because as the value of N increases, more slots need to be
filled up. Hence, more items would be used to fill up an
increased number of slots, thereby resulting in more revenue.
GUIP provides higher TR than that of kUIP and GPF for the
same reasons as explained for the results in 4b. Observe that
the results in Figures 5c and 5d follow similar trends as those
of Figures 5a and 5b; the difference in the actual values of the
performance metrics arises due to the respective dataset sizes.

C. Effect of variations in TL

Figure 6 depicts the performance of GUIP scheme for the
datasets DSET1 and DSET2 respectively when we vary the
number of taxonomy levels (TL) in the GUI index. The results
in Figure 6a indicate that ET increases with increase in TL.
Here, GUI-2 refers to GUIP scheme exploiting GUI index of
taxonomy level-2, GUI-1 corresponds to GUIP with GUI index
of taxonomy level-1, and so on.

As we go up the levels in the taxonomy tree T , the total
number of nodes on each level decrease by a large extent and
each such node g, maps to a much larger number of items in
its cover set i.e., CSet(g). As discussed in Section IV-C, after
allocating premium slots to generalized items, GUIP maps
each generalized item g, to leaf-level items in its revenue
contribution list RCL(g), for placement in its allocated slots.
With increasing TL, size of CSet(g) increases, which further
results in increase in execution time for decoding generalized
items to their respective leaf-level counterparts in RCL(g).
Thus, GUI-0 outperforms GUI-1, which outperforms GUI-2
in terms of ET albeit slightly.

The results in Figure 6b indicate that GUI-2 outperforms
both GUI-0 and GUI-1 in terms of TR. This is largely because
generalizing a large number of items to a concise set of
categories enables us to perform a more efficient analysis for
selecting high-revenue itemsets in contrast to analyzing only
a small fraction of the total items. Hence, for higher values
of TL, more items with good revenue garnering potential are
selected, which leads to increased total revenue. Observe that
the results in Figures 6c and 6d follow similar trends as those
of Figures 6a and 6b; the difference in the actual values of the
performance metrics arises due to the respective dataset sizes.

D. Effect of variations in β

Figure 7 depicts the performance of GUIP scheme for the
datasets DSET1 and DSET2 respectively with respect to the
different abstraction levels in the taxonomy, when we vary
the parameter β which controls the selection threshold. As
discussed in Section IV-B2 for a generalized item g, the selec-
tion threshold is computed as (µNR(g)+(β/100)∗µNR(g))),
where µNR(g) is the mean value of net revenue across all

the items in the cover set of g. Since the selection threshold
limits the number of leaf-level items to be placed in slots with
respect to every selected generalized item in GUIP, for GUI-0
(TL = 0), which only considers items on the leaf-level, values
of ET and TR are independent of β.

The results in Figure 7a indicate that ET decreases with
increase in the value of β. Moreover, GUI-0 outperforms both
GUI-1 and GUI-2 in terms of ET for the same reasons as
explained for the results in Figure 6a. Increase in the value
of β implies decrease in the number of items selected from
the cover set for every generalized item in the taxonomy, and
hence leads to decrease in ET.

The results in Figure 7b indicate that GUI-2 outperforms
both GUI-0 and GUI-1 in terms of TR for the same reasons
as explained for the results in Figure 6b. Increase in the value
of β implies decrease in the number of items selected from
the cover set for every generalized item in the taxonomy and
with lesser number of items placed in premium slots, the total
revenue also decreases. Observe that the results in Figures 7c
and 7d follow similar trends as those of Figures 7a and 7b;
the difference in the actual values of the performance metrics
arises due to the respective dataset sizes.

VI. CONCLUSION
Appropriate placement of products in a given retail store

is critical to improving the revenue of the retailer. In this
regard, we have proposed a generalized high-utility (revenue)
mining approach for retail product placement to improve
retailer revenue. Our performance evaluation with two real
datasets demonstrates the effectiveness of the proposed scheme
in terms of total revenue and execution time w.r.t. two existing
schemes. In the near future, we plan to examine the memory
usage of our proposed scheme w.r.t. existing schemes. Fur-
thermore, we plan to investigate the cost-effective integration
of our proposed scheme into existing retail business systems.

REFERENCES

[1] M.-H. Yang and W.-C. Chen, “A study on shelf space allocation and
management,” International Journal of Production Economics, vol. 60,
pp. 309–317, 1999.

[2] M.-H. Yang, “An efficient algorithm to allocate shelf space,” European
Journal of Operational Research, vol. 131, no. 1, pp. 107–118, 2001.

[3] Y.-L. Chen, J.-M. Chen, and C.-W. Tung, “A data mining approach for
retail knowledge discovery with consideration of the effect of shelf-
space adjacency on sales,” Decision Support Systems, vol. 42, no. 3, pp.
1503–1520, 2006.

[4] B. Farfan, Largest retail stores, 2019. [Online]. Available:
https://www.thebalancesmb.com/largest-retail-stores-2892923

[5] M.-C. Chen and C.-P. Lin, “A data mining approach to product as-
sortment and shelf space allocation,” Expert Systems with Applications,
vol. 32, no. 4, pp. 976–986, 2007.

[6] S. Altuntas, “A novel approach based on utility mining for store layout:
a case study in a supermarket,” Industrial Management & Data Systems,
vol. 117, no. 2, pp. 304–319, 2017.

[7] P. Chaudhary, A. Mondal, and P. K. Reddy, “A flexible and efficient
indexing scheme for placement of top-utility itemsets for different slot
sizes,” in Proc. BDA. Springer, 2017, pp. 257–277.

[8] P. Chaudhary, A. Mondal, and P. K. Reddy, “An efficient premiumness
and utility-based itemset placement scheme for retail stores,” in Proc.
DEXA. Springer, 2019, pp. 287–303.

[9] P. Chaudhary, A. Mondal, and P. K. Reddy, “An improved scheme for
determining top-revenue itemsets for placement in retail businesses,”
International Journal of Data Science and Analytics, vol. 10, pp. 359–
375, 2020.

[10] T. Brijs, B. Goethals, G. Swinnen, K. Vanhoof, and G. Wets, “A data
mining framework for optimal product selection in retail supermarket
data: The Generalized PROFSET Model,” in Proc. SIGKDD. ACM,
2000, pp. 300–304.

[11] I. Cil, “Consumption universes based supermarket layout through asso-
ciation rule mining and multidimensional scaling,” Expert Systems with
Applications, vol. 39, no. 10, pp. 8611–8625, 2012.

[12] R. Srikant and R. Agrawal, “Mining generalized association rules,” in
Proc. VLDB. Morgan Kaufmann, 1995, pp. 407–419.

[13] J. Han and Y. Fu, “Discovery of multiple-level association rules from
large databases,” in Proc. VLDB, 1995, pp. 420–431.

[14] S. Brin, R. Motwani, and C. Silverstein, “Beyond market baskets:
Generalizing association rules to correlations,” in Proc. ACM SIGMOD.
ACM, 1997, pp. 265–276.

[15] R. Agrawal and R. Srikant, “Fast algorithms for mining association
rules,” in Proc. VLDB, vol. 1215, 1994, pp. 487–499.

[16] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candidate
generation,” in Proc. ACM SIGMOD. ACM, 2000, pp. 1–12.

[17] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, “Discovering frequent
closed itemsets for association rules,” in Proc. ICDT. Springer, 1999,
pp. 398–416.

[18] V. S. Tseng, C.-W. Wu, B.-E. Shie, and P. S. Yu, “UP-Growth: An
efficient algorithm for high utility itemset mining,” in Proc. KDD.
ACM, 2010, pp. 253–262.

[19] P. Fournier-Viger, C.-W. Wu, S. Zida, and V. S. Tseng, “FHM: Faster
high-utility itemset mining using estimated utility co-occurrence prun-
ing,” in Proc. ISMIS. Springer, 2014, pp. 83–92.

[20] P. Fournier-Viger, J. C.-W. Lin, C.-W. Wu, V. S. Tseng, and U. Faghihi,
“Mining minimal high-utility itemsets,” in Proc. DEXA. Springer, 2016,
pp. 88–101.

[21] P. Fournier-Viger, C.-W. Wu, and V. S. Tseng, “Novel concise represen-
tations of high utility itemsets using generator patterns,” in Proc. ADMA.
Springer, 2014, pp. 30–43.

[22] A. Fares, “The effects of in-store category adjacencies on consumer
purchase behavior,” in Proc. EMS. SSRN, 2019.

[23] R. Bezawada, S. Balachander, P. Kannan, and V. Shankar, “Cross-
category effects of aisle and display placements: a spatial modeling
approach and insights,” Journal of Marketing, vol. 73, no. 3, pp. 99–117,
2009.

[24] S. Gelper, I. Wilms, and C. Croux, “Identifying demand effects in a large
network of product categories,” Journal of Retailing, vol. 92, no. 1, pp.
25–39, 2016.

[25] T. Brijs, G. Swinnen, K. Vanhoof, and G. Wets, “Using association
rules for product assortment decisions: A case study,” in Proc. SIGKDD.
ACM, 1999, pp. 254–260.

[26] P. Chaudhary, A. Mondal, and P. K. Reddy, “A diversification-aware
itemset placement framework for long-term sustainability of retail busi-
nesses,” in Proc. DEXA. Springer, 2018, pp. 103–118.

[27] Instacart, Instacart Market-basket analysis dataset. [Online]. Available:
https://www.kaggle.com/c/instacart-market-basket-analysis/data

[28] M. Hahsler, K. Hornik, and T. Reutterer, “Implications of probabilistic
data modeling for mining association rules,” in Proc. Conference of the
Gesellschaft fr Klassifikation. Springer-Verlag, 2005, pp. 598–605.

[29] C. Bapna, Source Code. [Online]. Available:
https://github.com/chinmay-bpn/Retail-GUI-Index.git

